
BambooTrust: Practical scalable trust management
for global public computing

Evangelos Kotsovinos
Deutsche Telekom Laboratories

Ernst-Reuter-Platz 7
10587 Berlin, Germany

evangelos.kotsovinos@telekom.de

Aled Williams
Cambridge University Computer Laboratory

15 JJ Thomson Avenue
Cambridge CB3 0FD, UK

aledwilliams@cantab.net

ABSTRACT
Global public computing platforms, such as PlanetLab, grid
computing systems, and XenoServers, require facilities for
managing trust to allow their participants to interact ef-
fectively in an open and untrusted environment. In this
paper, we describe BambooTrust, a practical, high-perfor-
mance distributed trust management system for global pub-
lic computing platforms. We present our peer-to-peer archi-
tecture, based on the XenoTrust model and the Bamboo dis-
tributed hash table. We describe the initial BambooTrust
implementation and deployment, and demonstrate that the
system performs and scales more than adequately well by
means of experimental evaluation.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
H.3.5 [Online Information Services]: Data sharing; H.3.3
[Information Search and Retrieval]: Clustering

Keywords
Reputation systems, incentives, honesty detection, trust man-
agement, peer-to-peer systems

1. INTRODUCTION
The XenoServer project [9] is building a global network of
servers, which undertake the safe execution of potentially
untrusted computation on behalf of clients. Servers perform
accounting for resources consumed and ultimately charge
clients accordingly. Utility computing initiatives1, grid com-
puting projects2, and PlanetLab [13] provide — or plan to
provide — similar facility. We collectively term distributed
platforms that allow the deployment of third-party compu-

1
http://www.utilitycomputing.com

2
http://www.gridcomputing.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

tation — potentially in exchange for money or services —
global public computing systems.

Such systems are facing a number of threats stemming
from their open and public nature. For instance, servers
may be unreliable, overcharging clients or not running their
programs faithfully, or even trying to extract clients’ secrets.
Also, clients may try to avoid paying their bills, or to run
programs with anti-social or illegal effects.

We discussed the threat model to public computing plat-
forms in [4], and described why the trust management re-
quirements they impose are distinct from the ones of on-line
marketplaces3 and peer-to-peer file-sharing applications —
mainly scaling well, supporting very frequent feedback sub-
missions, and facilitating multidimensional trust. In light of
those requirements, we proposed XenoTrust [5], a high-level
paradigm for the design of decentralised trust management
systems for global public computing, and Pinocchio [6] for
providing participation incentives.

In this paper, we will analyse the architecture and imple-
mentation of BambooTrust, a practical, scalable distributed
trust management system based on the XenoTrust model
and the Bamboo distributed hash table4. BambooTrust is
designed and implemented to facilitate:

• Performance. The reputation system needs to be
able to retrieve reputation information quickly, provid-
ing reasonably predictable perceived quality of service
to the users.

• Scalability. The sheer volume of reputation informa-
tion that needs to be stored and processed in a global-
scale setting requires a highly scalable reputation sys-
tem to handle it.

• Efficiency. As the size of the distributed reputation
system increases to cope with increasing workload, it
is important to do so without incurring prohibitive
amounts of network traffic and turning the underly-
ing network into a bottleneck.

• Load balancing. The reputation system has to be
able to spread its storage and processing load rela-
tively evenly among its nodes to improve uniformity
of service and enhance reliability.

3
http://www.ebay.com

4
http://bamboo-dht.org/

We outline the XenoTrust model, describe Bamboo DHT,
and discuss related work in Section 2. We analyse the Bam-
booTrust architecture in Section 3, and demonstrate its ef-
fectiveness and scalability by means of experimental eval-
uation in Section 4. Finally, in Section 5 we present our
conclusions and outline areas of future work.

2. RESEARCH CONTEXT

2.1 XenoTrust
Global public computing platforms comprise clients and ser-
vers, collectively termed participants or users. After inter-
actions, participants assess the performance of other partici-
pants in dimensions such as reliability, honesty, and through-
put. Using these assessments they form statements and sub-
mit them to the XenoTrust system. A statement is a unit of
reputation information; it expresses the value that a certain
subject’s performance has on a specific dimension, as rated
by another participant. For instance, “participant Y says
that participant X’s reliability is 40%”.

For scalability and performance, XenoTrust facilitates the
aggregation of reputation information. Instead of querying
the system every time information is required, users submit
persistent queries, termed rule-sets, specifying how aggrega-
tion is to be performed — e.g. “the average reputation of
participant X according to participants Y and Z”. These are
stored in XenoTrust and evaluated periodically. For scala-
bility, participants can request to be asynchronously notified
when these evaluations change more than a trigger value in-
stead of having to continuously poll the system.

The computation that XenoTrust undertakes is expected
to increase as the system size grows. Centralised or clustered
architectures such as the one used by Google [8] and other
search engines typically work well in environments where
reads are far more frequent than writes, and writes only
happen for quantities of several megabytes. In our case,
writes are much more frequent and happen for small quan-
tities of data — reputation statements. Also, in centralised
approaches machines are financed and maintained by a sin-
gle organisation, and often are co-located. We believe that
a highly distributed system — such as an open distributed
hash table (DHT) — is more suitable for allowing the dy-
namic scaling of the trust management system to cope with
high update rates from globally distributed clients.

Furthermore, using a distributed reputation system in-
stead of a central supercomputer or cluster fits better with
the global public computing model, as BambooTrust nodes
can themselves be flexibly deployed on PlanetLab nodes or
XenoServers. Additionally, using a DHT provides trans-
parency and node anonymity. Also, some of the available
DHTs — such as Bamboo, discussed below — facilitate ef-
fective handling of the churn caused by continuous and ar-
bitrary node arrivals and departures.

2.2 Bamboo DHT
The Bamboo distributed hash table system [14] is based on
the Pastry [15] routing geometry, which performs lookups in
O(logN) hops. Each Bamboo node’s data is replicated on
a set of nodes called its leaf-set, providing improved fault
tolerance. Also the modified Pastry algorithm that Bamboo
uses has been proven to handle churn very effectively.

Bamboo uses the Staged, Event-Driven Architecture [16],
a single-threaded programming style running a small num-

Bamboo DHT

Subject X’s
container

statements

rule-sets

other
nodes

1. submit statement
2. submit rule-set

5. notifiy user

3. route

store Rule-set
evaluator

4. evaluate

Storage
Manager

net
i/f

Figure 1: Architecture of a BambooTrust node

ber of threads (usually one per CPU) processing individual
events from an event queue. This concurrent programming
method has been proved to scale better than thread-based
methods.

Bamboo exports the standard DHT put(key, value) and
value = get(key) interfaces for adding and retrieving data
to and from the system. It performs routing of data to the
node with the numerically closest node id to the data key.
Interfaces are also provided to access and manipulate the
data stored within a node. An iterator provides functional-
ity for retrieving all the node’s data in key order.

2.3 Related work
eBay, the popular auction site, employs a centralised reputa-
tion management system where participants submit ratings
about each other by means of a feedback forum. Partici-
pants’ performance is rated as positive, negative, or neutral
after each transaction. A participant’s trust rating is com-
puted as the sum of the positive feedbacks minus the sum
of negative feedbacks.

Yu and Singh propose a framework for combining reputa-
tion information from a distributed set of users [17], based
on the submission of referrals to acquaintances. Yenta [7]
and Web of Trust [11] provide trust models and computa-
tional methods for distributing and aggregating reputation
information.

Several other trust models and implementations have been
developed over the last ten years [10, 12, 2, 3]. The trust
model closest to XenoTrust is the one proposed by Aberer
and Despotovic [1].

All these approaches focus on trust models, algorithms
for aggregating trust information, and mechanisms for inter-
preting reputation feedback. We have not been able to find
any other deployed systems that transparently distribute the
computation and storage of reputation for performance, scal-
ability, load balancing, and efficiency.

3. ARCHITECTURE
BambooTrust is built as a peer-to-peer system; it consists
of a number of nodes, which are identical in terms of the
functionality they perform. This provides ease of implemen-
tation, as well as important fault tolerance and scalability
benefits, discussed in Section 4.

The architecture of a BambooTrust node is shown in Fig-
ure 1. Users communicate with a node using a network in-

1. submit statement
2. submit rule-set

5. notifiy user3. route

A

E

DC

B

4. evaluate
 rule-sets

Figure 2: BambooTrust operation (nodes A-E)

terface it exports, in order to submit statements or rule-sets.
Bamboo DHT determines whether a statement or rule-set is
to be stored locally, or forwarded to another node. A node’s
storage manager is responsible for storing statements and
rule-sets locally. The routing and transfer of rule-sets and
statements between BambooTrust nodes is managed by the
Bamboo DHT. The results of rule-sets are periodically cal-
culated by the rule-set evaluator, which may trigger user
notifications accordingly. The operation of the system is
described in more detail below.

3.1 System operation
BambooTrust users can submit statements or rule-sets to
any BambooTrust node — operations 1 and 2 in Figures 1
and 2. Statements and rule-sets get routed to the node that
is responsible for storing them — operation 3.

Rule-sets are periodically evaluated on the node on which
they are stored — operation 4. If the result is such that the
user needs to be notified, a message is sent asynchronously
to the user — operation 5.

3.1.1 Statement and rule-set submission
Statements and rule-sets can be submitted by users to any
BambooTrust node — operations 1 and 2 in Figures 1 and 2.
Discovery of BambooTrust nodes can be achieved with the
help of a third-party service, such as a search engine, a web
site, or a an on-line database — this is not part of the work
presented in this paper.

The fact that all BambooTrust nodes can receive, route,
and process rule-sets and statements is important for en-
suring the fault-tolerance of the system. It also improves
responsiveness, as a nearby, low-latency node can be chosen
by a user.

A statement or rule-set has to be signed using the private
key of the participant who is submitting it, for authentica-
tion. BambooTrust nodes retrieve participants’ public keys
— necessary for message verification — by communication
with the global computing system’s authority component
— for example PlanetLab Central (PLC) in PlanetLab, or
XenoCorp in the XenoServer platform. Statements and rule-
sets are also timestamped to avoid replay attacks.

3.1.2 Routing and storage of data
Each subject — i.e. participant for whom statements are
submitted — is allocated a container on a BambooTrust
node, as shown in Figure 1. All statements and rule-sets
related to a subject are stored in its container. Containers
are replicated on more than one nodes for fault-tolerance,
and nodes store several containers.

When a statement or rule-set is submitted by the user to
a node, it needs to be routed to the nodes that hold its con-
tainers. BambooTrust uses a hash of the subject identifier
as the key passed to Bamboo DHT for routing the data.
Bamboo then forwards and stores the data in the appropri-
ate node and container — operation 3 in Figures 1 and 2.
If there is no container for a subject when a statement or
rule-set is submitted, a new one is created.

Rule-sets and statements for the same subject are stored
on the same node. As a rule-set can only involve one subject,
the need for message passing between nodes during rule-set
evaluation is effectively nullified — as all statements for the
rule-set’s subject reside in the same node. This proves to
be an effective strategy, as the number of subjects is far
greater than the number of BambooTrust nodes. In the
opposite case a different distribution scheme might have to
be considered.

3.1.3 Rule-set Evaluation
Each node periodically evaluates all rule-sets it stores locally
— operation 4 in Figures 1 and 2. The rule-set evaluator
module cycles through the containers present on the node,
evaluating all rule-sets of each container based on the rele-
vant statements it stores. A statement is relevant if it rates
the same property that the rule-set evaluates — e.g. “per-
formance” — and if the advertiser is included in the list
of participants’ whose opinions are to be considered. Each
rule-set is evaluated in turn so there is no conflict between
rule-sets that reference the same statements.

For example, a server would evaluate a rule-set in its con-
tainer translating to “the average reputation of participant
X according to participants Y and Z” using all statements
in X’s container submitted by Y or Z and rating X’s reli-
ability — such as “participant Y says that participant X’s
reliability is 40%”.

The atomic rule-sets employed by the XenoTrust model
require simple calculations, such as for calculating the max-
imum, minimum, or average values of sets of statements.
More complex rule-sets can be composed by sequences of
atomic ones, as shown in [5].

3.1.4 User Notification
When submitting a rule-set, a user is effectively registering
with a publish/subscribe facility that BambooTrust provides.
Each rule-set states a trigger value to ascertain when an
event needs to be triggered to notify the user of significant
changes in its result. A rule-set also contains an IP address
and port where the user expects to receive such updates.

To ensure that only authenticated BambooTrust nodes
can submit such updates to the user, BambooTrust nodes
must sign messages using a common private key. The user,
having BambooTrust’s public key, is able to verify the mes-
sage. Messages are also timestamped to avoid replay attacks,
before being sent to the user — operation 5 in Figures 1
and 2.

RS Avg(ms) Min(ms) Max(ms) Std dev
1 2.22 1 8 1.04
2 2.25 1 7 1.04
3 2.33 1 8 1.05

Table 1: Time (average, minimum, and maximum)
required to compute rule-sets 1,2, and 3, and stan-
dard deviation of time measurements (experiment
repeated 100 times)

4. EVALUATION
It is important that BambooTrust processes reputation in-
formation with high performance and scales well to accom-
modate large numbers of participants. Furthermore, as the
system grows, load should be balanced between the nodes,
and traffic on the underlying network should be kept to a
minimum.

4.1 Experimental setting
The experiments were carried out on 56 3.2GHz Pentium 4
machines with 1GB RAM and 160GB SATA disks. The soft-
ware was developed in Java 1.5.0 and executed on a Win-
dows XP platform. Nodes were connected using a 100Mbps
network, and were physically co-located.

We generated 95,000 random statements and 5,000 rule-
sets on 500 subjects, and added them to the system by com-
munication with BambooTrust nodes. Tests were run on
different BambooTrust network sizes, starting from a single
node and going up to 56, in increments of four nodes.

4.2 Performance
It is important that BambooTrust can evaluate rule-sets
quickly in order to ensure efficient operation as the system
scales to include large numbers of statements and rule-sets.
It is also desirable that rule-set computation time is fairly
constant to allow for a predictable perceived quality of ser-
vice on the user side.

We used a the data set described above and submitted
the following rule-sets to the system: 1.“the maximum value
of participant X’s reputation according to all participants”,
2.“the average value of participant X’s reputation accord-
ing to participants Y and Z”, and 3.“the standard deviation
of participant X’s reputation according to all participants”.
Each rule-set was evaluated 100 times.

Table 1 shows the average, minimum, maximum, and
standard deviation of computation times. The results show
that rule-sets are computed quickly, and that their computa-
tion time is fairly constant. This suggests that BambooTrust
can provide good perceived quality of service to users.

4.3 Scalability
Adding more BambooTrust nodes to the system should re-
sult to a near-linear performance improvement, in order to
allow the system to grow to cope with increasing participa-
tion. We measured the system throughput as the number of
nodes increased, keeping the amount of data — i.e. state-
ments and rule-sets — constant, by monitoring and timing
the periodical evaluation of rule-sets at each node.

Figure 3 shows the statistics aggregated and plotted for
the system as a whole showing the average rule-sets evalu-
ated per-second as a function of the number of nodes present

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

R
ul

e-
se

t e
va

lu
at

io
ns

 p
er

 s
ec

on
d

Number of BambooTrust nodes

Figure 3: Total system throughput as number of
BambooTrust nodes increases

in the BambooTrust network. The performance of the sys-
tem improves linearly with the number of nodes present.
This is a very encouraging result, demonstrating that Bam-
booTrust can easily scale to accommodate increasing num-
bers of participants.

4.4 Efficiency
While the system has been shown to scale well in terms of
processing throughput achieved, it is also crucial to demon-
strate that it can do so efficiently, without generating pro-
hibitive amounts of network traffic.

Our system uses Bamboo DHT for the communication
between nodes. According to Bamboo documentation, inter-
node management traffic increases logarithmically with the
number of nodes present in the Bamboo network.

In this experiment we measured the total bytes of data
sent and received by each BambooTrust node, as the sys-
tem size was increasing. We found that, as expected, all
generated traffic between BambooTrust nodes was due to
Bamboo DHT management operations, as rule-sets always
operate on statements stored in the same node. Our exper-
iment also confirmed that the increase in Bamboo manage-
ment traffic as the network size increases is logarithmic, as
expected — as described in [14], the leaf-set size is logarith-
mic of the network size and management traffic is only to
and from nodes in the leaf-set.

This is an important result, as it demonstrates that new
nodes can be added on demand to allow the system to scale
without quickly turning its network into a bottleneck.

4.5 Load balancing
For effective distribution of computation, the load must be
spread relatively evenly between BambooTrust nodes. This
experiment recorded the number of rule-sets and statements
— collectively termed items — stored at each node. There
were 56 nodes present and a total of 100,000 items, as de-
scribed in Section 4.1.

As Figure 4 shows, BambooTrust achieves an even spread
of data amongst nodes, ensuring a respectively even work-
load and effectively distributing the storage and compu-
tation. This is attributed mainly to the effectiveness of
our hashing function mapping subject identifiers to Bam-
boo keys.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

N
um

be
r

of
 it

em
s

Node

Figure 4: Number of items (statements and rule-
sets) stored and evaluated at each node

5. CONCLUSIONS AND FUTURE WORK
In this paper we described BambooTrust, a practical, scal-
able, high-performance distributed trust management sys-
tem based on the Bamboo DHT and the XenoTrust model.
We presented the statement submission and routing, rule-set
evaluation, and asynchronous user notification mechanisms
facilitated. Furthermore, we demonstrated that the system
performs, scales, and balances load more than adequately
well, incurring a very low network traffic penalty.

In the future, we plan to deploy and test BambooTrust
in existing global public computing platforms, such as Plan-
etLab and XenoServers. We also plan to investigate algo-
rithmic optimisations for rule-set computation, as well as
mechanisms to detect or prevent the submission of malicious
statements.

Acknowledgements
We would like to thank Jon Crowcroft and Tim Moreton
for their valuable suggestions. We also wish to thank the
anonymous reviewers for their constructive feedback while
preparing the final version of this paper.

6. REFERENCES
[1] K. Aberer and Z. Despotovic. Managing Trust in a

Peer-2-Peer Information System. In CIKM, pages
310–317, 2001.

[2] T. Beth, M. Borcherding, and B. Klein. Valuation of
Trust in Open Networks. In Proceedings of the 3rd
European Symposium on Research in Computer
Security – ESORICS ’94, pages 3–18, 1994.

[3] A. Chavez and P. Maes. Kasbah: An Agent
Marketplace for Buying and Selling Goods. In
Proceedings of the 1st International Conference on the
Practical Applications of Intelligent Agents and
Multi-Agent Technologies (PAAM’96), 1996.

[4] B. Dragovic, S. Hand, T. Harris, E. Kotsovinos, and
A. Twigg. Managing Trust and Reputation in the
XenoServer Open Platform. In Proceedings of the 1st
International Conference on Trust Management, pages
59–64, Heraklion, Crete, Greece, May 2003. Also

published in Springer-Verlag Lecture Notes in
Computer Science (LNCS), Volume 2692, pp. 59-74.

[5] B. Dragovic, E. Kotsovinos, S. Hand, and P. Pietzuch.
XenoTrust: Event-Based Distributed Trust
Management. In Proceedings of the 2nd IEEE
International Workshop on Trust and Privacy in
Digital Business (DEXA Workshop), pages 410–414,
Sept. 2003.

[6] A. Fernandes, E. Kotsovinos, S. Ostring, and
B. Dragovic. Pinocchio: Incentives for honest
participation in distributed trust management. In
Proceedings of the 2nd International Conference on
Trust Management (iTrust 2004), pages 63–77,
Oxford, UK, Mar. 2004. Also published in
Springer-Verlag Lecture Notes in Computer Science
(LNCS), Volume 2995, pp. 63-77.

[7] L. N. Foner. Yenta: a Multi-Agent, Referral-Based
Matchmaking System. In Proceedings of the 1st
International Conference on Autonomous Agents
(AGENTS ’97), 1997.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
’03), 2003.

[9] S. Hand, T. L. Harris, E. Kotsovinos, and I. Pratt.
Controlling the XenoServer Open Platform. In
Proceedings of the 6th International Conference on
Open Architectures and Network Programming
(OPENARCH), Apr. 2003.

[10] A. Josang. The right type of trust for distributed
systems. In Proceedings of the New Security
Paradigms Workshop, 1996.

[11] R. Khare and A. Rifkin. Weaving a Web of Trust.
World Wide Web Journal, 2(3):77–112, 1997.

[12] S. Marsh. Formalising Trust as a Computational
Concept. PhD thesis, Department of Mathematics and
Computer Science, University of Stirling, 1994.

[13] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proceedings of the 1st Workshop on
Hot Topics in Networks (HotNets-I), Oct. 2002.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling Churn in a DHT. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’04),
June 2004.

[15] A. Rowstron and P. Druschel. Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In Proceedings of
the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Nov.
2001.

[16] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet
Services. In Proceedings of the 18th Symposium on
Operating Systems Principles (SOSP ’01), Oct. 2001.

[17] B. Yu and M. P. Singh. Distributed reputation
management for electronic commerce. Comput.
Intelligence, 18(4):535–549, 2002. Special Issue on
Agent Technologies for Electronic Commerce.

