
Distributed resource discovery and management
in the XenoServers platform

Evangelos Kotsovinos and Timothy L Harris
University of Cambridge Computer Laboratory

Contact: E Kotsovinos, Computer Laboratory
J J Thomson Avenue, Cambridge, UK, CB3 0FD

Evangelos.Kotsovinos@cl.cam.ac.uk

August 2002

Abstract

In this paper we present the main ideas behind
the design of the XenoServers distributed plat-
form, which substantiates a public infrastructure
for wide-area distributed computing. We present
our initial design of the distributed architecture,
and emphasize on ways of locating and admin-
istering distributed resources in this large-scale,
federated platform. The XenoServers global in-
frastructure is essential to address several funda-
mental problems of today, such as communication
latency, network bottlenecks and long-haul net-
work charges.

1 Introduction

The XenoServers [11, 4] project aims to build
a public infrastructure for wide-area distributed
computing. Clients from any place in the world
will be able to submit code for execution on our
platform, and the sponsor of the code will be
billed for all the resources used or reserved dur-
ing the course of execution.

The XenoServers architecture is essential to help
addressing some significant problems and needs
of today. First, as studies [10, 1, 9] show, unlike
previously prevailing opinion [2] there appears to
be a strong link between geographic distance and
communication latency. The XenoServers plat-

form supports the placement of servers physically
close to the clients, and therefore helps reduc-
ing latency and network load. Also, architectures
like computational grids [8] or distributed multi-
media servers [3] can find an ideal testbed envi-
ronment on our platform, having the opportunity
to be deployed easily and efficiently on a large
number of XenoServers around the world. Ad-
ditionally, our platform is a perfect infrastructure
for deploying mobile agent-based applications, as
XenoServers can host the execution platforms re-
quired by agents and allow agents to migrate be-
tween participating XenoServers. Likewise, mir-
roring web services for increasing content avail-
ability and balancing load will become a lot eas-
ier, dynamic and feasible in short timescales with
the use of XenoServers.

XenoServers are fundamentally different from
Computational grids, as the latter denote virtual
supercomputers, constructed dynamically from
geographically dispersed and heterogenous re-
sources, linked by high-speed networks to com-
plete some large-scale work. Those architectures
provide application-level programming models
and interfaces for resource sharing rather than
system-level support. Resource management in
such systems is focused on grouping and mapping
distributed resources to local ones, rather than ad-
ministering and sharing distributed resources be-
tween competing users. Metacomputing infras-
tructures would find XenoServers a highly suit-
able platform to run on.



This paper is focusing on the higher level design
of the XenoServers platform and the proposed re-
source discovery and management mechanisms,
whereas [5] discussed the design of the Hyper-
visor module, briefly described later in Section
2. Also, it has to be pointed that there are sev-
eral issues on areas like security and auditing,
that are an integral part of the system, but are not
covered in detail in this paper. The structure is
as follows. Section 2 outlines the design of our
distributed architecture, Section 3 discusses the
resource discovery and management issues, and
Section 4 summarizes our conclusions.

2 XenoPlatform Design

The main entities of our distributed platform
are clients, XenoCorp servers, and XenoServers.
XenoServers are hosted by remote machines
around the Internet, and it is there that jobs are
dispatched for execution. In order to make this
possible, a part of the XenoServers software is
running in a layer called the Hypervisor [5] be-
tween the hardware and the execution contexts,
which the system hosts. These contexts may in-
clude versions of traditional operating systems
ported to run over the Hypervisor –we have al-
ready developed a Linux context – or special-
ized environments, such as a resource managed
Java Virtual Machine, which can run without an
intervening operating system. Having a part of
XenoServers running in such a low level, allows
for accurate resource isolation and accounting to
be performed in a per-execution context basis.

XenoCorp servers support the functionality of
our system, operating as a distributed direc-
tory for keeping track of active XenoServers
and registered clients. Clients have to regis-
ter with XenoCorp before they start using our
platform. One of the core functions of Xeno-
Corp is to supply clients with information about
available XenoServers and their specifications,
which means that XenoCorp undertakes the pro-
cess of finding an appropriate XenoServer on be-
half of the clients. Also, XenoCorp has to han-
dle the identification, authentication and charging

of clients. XenoCorp servers and XenoServers
have to be in regular communication. XenoCorp
needs to be informed by the XenoServers about
the resource usage done by each client, in order to
charge clients. Also, XenoServers have to be able
to check whether a client that has submitted a job
is registered and authorized to use the system.

It would be inappropriate to fix policies on is-
sues like pricing and charging at the system de-
sign stage –it is possible to conceive of many dif-
ferent models which are appropriate to different
circumstances. In order to support both choice
and diversity, we believe that the XenoPlatform
should be able to support multiple, distinct Xeno-
Corps. Those organizations can co-exist under
different ownerships and offer different pricing
schemes or kinds of services, to clients as well
as to XenoServers. For instance, a XenoCorp
might prefer to pay XenoServers’ owners accord-
ing to the absolute resource usage they report,
while another might agree to give a proportion
of its revenue to the XenoServer’s owner. Also,
XenoCorps might decide to use digital cash, di-
rect debit payment after the job has finished, or
tickets issued before the job is submitted, in order
to perform charging. Even further, tickets can be
valid only for a particular XenoServer, or for any
of the XenoServers cooperating with the Xeno-
Corp that issued the ticket.

Another major decision that should be taken by
each XenoCorp is about the exact model of inter-
action between XenoCorp and the XenoServers
that cooperate with it. For example, if tickets that
are not tied to a specific XenoServer are used in
order to perform charging and authorization of
clients, there is a tradeoff between the frequency
of updates sent to XenoCorp by the XenoServers
and the imposed network traffic. When a job
starts being executed on a XenoServer, it could
be immediately reported to XenoCorp, which
would eliminate the risk of having the same ticket
used more than once on several XenoServers.
However, this would significantly increase net-
work load and system complexity. On the other
hand, the approach of having XenoServers inform
XenoCorp periodically about the resource usage
on them would limit traffic, but introduce a risk



Root Linux system

Daemon

Consultant

Registry

Cashier
XenoComm

Clients XenoServers

Figure 1: XenoCorp structure

of vulnerability against malicious clients that, for
instance, use the same ticket on more than one
XenoServers at the same time. We have done
some initial work on analyzing the effect that dif-
ferent values for the period of updates would have
in the case of fraud [7].

3 Resource Discovery and Man-
agement

Executing jobs on any computing system requires
physical resources like CPU time and memory. In
order to run a job, the operating system needs to
locate available resources and then allocate a part
of them to the new task to be executed. The term
resource discovery is used to refer to the problem
of finding an appropriate execution context for a
job, and resource management to denote the pro-
cess of administering and dividing the available
resources between jobs in an efficient way.

In conventional systems, running on a single ma-
chine, resource management is being carried out
by a centralized scheduler, which is a part of the
operating system that allocates physical resources
to processes according to some criteria. Discov-
ering available resources in monolithic systems is
also not much of a problem, as resources are lo-
cal and the operating system is aware of the exact
amount and location of the available resources at
any time.

However, in distributed systems there is no cen-
tralized point of control. Resources are re-

served and released dynamically, network links
fail independently and unpredictably, machines
and servers connect and disconnect in an arbitrary
way. Moreover, locating, administering and shar-
ing distributed resources efficiently and fairly in
a global federated system with competing users,
like the XenoServers platform, appears to be a
major challenge. For all the above reasons, the is-
sues of resource discovery and management in the
XenoServers distributed execution platform need
to be investigated further.

3.1 XenoCorp

Resource discovery, in the context of XenoCorp,
is defined as the process of locating and suggest-
ing the most appropriate XenoServers for a par-
ticular job submitted by a client. In other words,
XenoCorp is responsible for matchmaking be-
tween clients and XenoServers. In the proposed
architecture, this task is carried out by the Con-
sultant module of XenoCorp servers. The main
structure of a XenoCorp server is shown in Figure
1.

There are many parameters that the Consultant
has to take into account, while attempting to
figure out which XenoServer would be the best
choice for a job that has been received by the
Daemon module. First of all, the candidate
XenoServer must fulfill the environmental re-
quirements of the client, like a specific version
of an operating system or any execution platform.
Also, network traffic parameters and server load
should be taken into consideration, as XenoCorp



Linux

Daemon

Dispatcher

Environments
Manager

Execution
Environment

....

Resource Manager

Execution
Environment

XenoComm

XenoCorp

Clients

Clients

Hypervisor

Figure 2: XenoServer structure

should try to perform load balancing. Addition-
ally, XenoCorp should support the functionality
of attempting to minimize the cost for the job to
be submitted, if the client requests it, by check-
ing and comparing the pricing schemes of all
XenoServers that are appropriate to host it. At the
same time, the physical location of XenoServers
has to be investigated, as it is a strong intention of
our platform to favour geographical proximity of
servers and clients. All this information, regard-
ing available XenoServers and their properties, is
received by the XenoComm module and cached in
the Registry module in each XenoCorp server, in
order to reduce network load and eliminate unnec-
essary broadcast messages.

We propose that clients should be given the
ability to specify the priorities that the Xeno-
Corp should obey while searching for a suitable
XenoServer. In other words, clients should have
the option to specify themselves which proper-
ties of a XenoServer they would consider “use-
ful”. Then, the Consultant module performs the
search and examines all parameters on their be-
half. After the search is over, XenoCorp will sug-
gest a number of appropriate XenoServers, found
according those criteria, to the client, and supply
information about their location, load and pricing
schemes. In the end, it is up to the client to choose
a XenoServer, and submit its job directly there for
execution.

3.2 XenoServers

Jobs that are to be hosted by a XenoServer, have
to be launched in the appropriate context. The
XenoServer has to execute them on an instance of
the operating system they require, and give them
some amount of memory, supply them with IP ad-
dresses, hard disk space and any other kind of re-
sources they have requested. The set of those re-
sources, which are allocated to an instance of an
operating system in order to host clients’ jobs, are
called an execution environment.

In the architecture we propose, illustrated in Fig-
ure 2, XenoServers store information about all
environments that are currently running or have
been running in the past, containing details about
the operating system used, the name of the kernel,
the root directory, network parameters, memory
and CPU that each environment can use and so
on. This information is held in the Environments
Manager (EnvManager) module. When a new job
arrives and gets accepted by the Daemon [7], the
Dispatcher module is called, as this is the one re-
sponsible for matching the requirements of the job
with any of the environments in the EnvManager
module. If this procedure succeeds, the job will
be dispatched in the environment chosen for exe-
cution. If not, a new environment that meets the
specifications of the job has to be initialized. This
process of matching requirements with environ-



mental specifications can be carried out efficiently
using XML pattern matching techniques [6]. This
constitutes the resource discovery process inside
a XenoServer.

XenoServers are able to accommodate large num-
bers of jobs and execution environments, running
at the same time. It is very important that clients
get the amount of resources they pay for, and that
jobs are not allowed to get any arbitrary amount of
resources they ask for. Resource management in
the XenoServers context is the process of divid-
ing a single set of physical computing resources
between several operating system instances, ac-
cording to the Quality of Service (QoS) guaran-
tees they have paid for.

The Resource Manager module of XenoServers
is responsible for coordinating and allocating re-
sources to execution environments in a fair way.
There are several parameters that have to be
taken into consideration by the Resource Manager
while distributing resources to execution envi-
ronments, such as QoS requirements –like maxi-
mum completion time, minimum CPU percentage
given, minimum QoS crosstalk–, resource con-
gestion or past accounting information. The set
of the parameters that influence resource manage-
ment, and the effect that they will have on the dis-
tribution of resources, is defined as the resource
management policy that a XenoServer follows.

There are studies [12] regarding dynamic or au-
tomatic pricing, proposing the use of pricing as a
mechanism to regulate resource congestion. As a
resource becomes more congested, its price rises,
encouraging users to move to less congested re-
sources, and possibly providing a source of rev-
enue for increasing the capacity of the congested
resource. Also, they propose the use of QoS-
adaptive applications, which are programs that
can adjust the amount and type of resources they
require, according to the feedback that they get
from the resource manager of the underlying op-
erating system. In our architecture, owners of
XenoServers must be given the opportunity to
modify and specify their XenoServer’s pricing
scheme manually, in any way they want. How-
ever, some of them might find it more convenient

to use dynamic pricing, which will administer re-
source pricing and congestion automatically and
efficiently.

4 Conclusions

The XenoServers infrastructure offers an inno-
vative approach to distributed computing, sup-
porting efficient resource management, accurate
accounting and charging, and reliable resource
isolation for its clients. The proposed platform
changes the traditional interaction models radi-
cally, as servers can be moved close to clients on-
demand, in a dynamic and efficient way, in or-
der to enforce locality of services, reduce com-
munication latency and improve the utilization of
servers. In this paper, we have outlined some de-
sign issues of the XenoServers platform, and pre-
sented our ideas regarding how resource discov-
ery and management can be performed. A large
subset of the described mechanisms are still in the
design or early development stage.

5 Acknowledgements

We would like to acknowledge the financial
support of Marconi plc for Evangelos Kotsovi-
nos’ work, and the members of the XenoServers
project for our productive and inspiring coopera-
tion.



References

[1] Anurag Acharya and Joel Saltz. A study of
internet round-trip delay. Technical Report
CS-TR-3736, UMIACS and Department of
Computer Science, University of Maryland,
1996.

[2] Gerco Ballintijn and Maarten van Steen.
Characterizing internet performance to sup-
port wide-area application development.
ACM SIGOPS Operating Systems Review,
34(4):41–47, 2000.

[3] E.Gialama, E. Markatos, J. Sevasslidou,
D. Serpanos, E. Kotsovinos, and X. Asi-
makopoulou. DIVISOR: Distributed video
server for streaming. In Proceedings of
the 5th IEEE/WSES International Confer-
ence on Circuits, Systems, Communications
and Computers (CSCC), pages 4531–4536,
June 2001.

[4] K.A. Fraser, S.M. Hand, T.L. Harris, I.M.
Leslie, and I.A. Pratt. The Xenoserver com-
puting infrastructure, a project overview,
February 2001.

[5] Keir Fraser. Xenoservers: Service plat-
forms in the internet infrastructure. In
6th CaberNet Radicals Workshop, February
2002. Funchal, Madeira Island.

[6] Haruo Hosoya and Benjamin Pierce. Reg-
ular expression pattern matching for XML.
In Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of pro-
gramming languages, pages 67–80. ACM
Press, 2001.

[7] Evangelos Kotsovinos. First year report,
July 2002. Computer Laboratory, University
of Cambridge.

[8] Klaus Krauter, Rajkumar Buyya, and
Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management
systems for distributed computing. Soft-
ware Practice and Experience, 32(2):135–
164, February 2002.

[9] T. S. Eugene Ng and Hui Zhang. Predicting
internet network distance with coordiantes-
based approaches. In Proceedings of the
21st Annual Joint Conference of the IEEE
Computer and Communications Societies
(INFOCOMM 2002), June 2002.

[10] Venkata N. Padmanabhan and Lakshmi-
narayanan Subramanian. An investigation
of geographic mapping techniques for inter-
net hosts. In Proceedings of the 2001 con-
ference on applications, technologies, archi-
tectures, and protocols for computer com-
munications, pages 173–185. ACM Press,
2001.

[11] Dickon Reed, Ian Pratt, Paul Menage,
Stephen Early, and Neil Stratford.
Xenoservers: Accountable execution of
untrusted programs. In Workshop on
Hot Topics in Operating Systems, pages
136–141, 1999.

[12] Neil Stratford and Richard Mortier. An eco-
nomic approach to adaptive resource man-
agement. In Workshop on Hot Topics in Op-
erating Systems, pages 142–147, 1999.


