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From: Robin Milner <Robin.Milner@cl.cam.ac.uk>
To: John Harrison <johnh@ichips.intel.com>
Date: Tue, 25 Jan 2000 11:32:39 +0000

Dear John

Thanks very much for inviting me to speak at
TPHOLs. I would enjoy it, but the main question
is whether I can offer enough of a perspective on
automated and interactive theorem proving, as I
haven’t done any to speak of for 20 years!



1968: Arrival as a researcher in Swansea

What really sparked me off was getting interested in
program verification and what semantics might mean.
When I went to Swansea in 1968 I took a research job,
I gave up teaching and became a research assistant
with David Cooper who was head of the department in
Swansea. He had a small group there, working on
program verification and automatic theorem-proving
and semantics.

Cooper is perhaps most famous for the first elementary-time
decision procedure for linear integer (Presburger) arithmetic.
(In fact, arguably the first for any significant first-order theory.)
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1969: Dana Scott’s Oxford lectures

That was at the time when Dana Scott produced his
famous domain theory. He gave a series of talks then,
in ’69, and I went over to Oxford and heard him. That
was very exciting.
So, in some sense, it began to move very fast. The
idea of a machine proving theorems in logic, and the
idea of using logic to understand what a machine was
doing ... this double relationship began to inspire me
because it was clearly not very simple.

Dana Scott’s influence on semantics is well-known, but his work
was also an important factor in the development of interactive
theorem proving.
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1970: From automated to interactive proving

I wrote an automatic theorem prover in Swansea for
myself and became shattered with the difficulty of
doing anything interesting in that direction and I still
am. I greatly admired Robinson’s resolution principle,
a wonderful breakthrough; but in fact the amount of
stuff you can prove with fully automatic theorem
proving is still very small. So I was always more
interested in amplifying human intelligence than I am
in artificial intelligence.

Interest in ‘interactive’ theorem proving was growing at the time,
either because

I Abilities of ATP systems had grown but were plateauing
I More interactive computers made it natural/convenient
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1971–2: Move to Stanford and Stanford LCF

I spoke to Zohar Manna [...] As a result I got a job with
McCarthy from 1970, from the beginning of ’71, at the
AI lab in Stanford.

Stanford LCF was a proof assistant for Scott’s Logic of
Computable Functions (LCF), developed by Milner together
with Whitfield Diffie, Richard Weyhrauch and Malcolm Newey.

I Support for backward, goal-directed proof
I A powerful simplification mechanism

Just one of many significant proof assistants being developed
at around the same time (AUTOMATH, Mizar, SAM), and had
significant drawbacks:

I Memory limitations made it hard to store large proofs
I The set of proof commands could not easily be extended.
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1973-1978: Move to Edinburgh and Edinburgh LCF

Edinburgh LCF, developed with Malcolm Newey, Lockwood
Morris, Mike Gordon and Chris Wadsworth, tackled the two
shortcomings of Stanford LCF:

I Did not store complete proofs, just remembering the
conclusions of proofs

I Provided a full programming ‘meta-language’ (ML) so that
the user could extend the set of proof commands

But how to ensure that theorems were proved correctly, not just
arbitrarily asserted or created by buggy user proof commands?

I Make theorems an abstract type in the metalanguage
(‘thm’) with its only constructors being primitive inference
rules of the logic.

The requirements of the LCF system directly motivated many
features of ML.
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How an LCF-style prover works

A logical inference rule such as ⇒-elimination (modus ponens)

Γ ` p ⇒ q ∆ ` p
Γ ∪∆ ` q

becomes a function, say MP : thm->thm->thm in the
metalanguage.
For example, if th1 is the theorem ` p ⇒ (q ⇒ p) and th2 is
p ` p, then MP th1 th2 gives p ` q ⇒ p.
Highly automated or convenient derived inference rules can be
programmed using these as the basic building-blocks, including
support for backward proof via ‘tactics’.
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The LCF diaspora

[LCF] didn’t immediately get applied a great deal, but
Mike Gordon brought it to Cambridge [...] He started
doing hardware verification. And then one or two other
people began to design verifications systems, or
rather systems to perform computer-assisted proof, on
the model of our system, particularly Constable at
Cornell with his NuPrl.

Despite the name, which has stuck, the LCF approach is not
tied to the Logic of Computable Functions, and many other
LCF-style provers were written over the years.

I Cambridge LCF (rationalized system for same LCF logic)
I HOL (higher-order logic based on polymorphic type theory)
I Nuprl (Martin-Löf type theory)
I Coq (the Calculus of Inductive Constructions)
I Isabelle (framework supporting multiple object logics)
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Avra Cohn’s LCF poster



The HOL family DAG

The HOL system alone has given rise to numerous different
LCF-style implementations of essentially the same logic:
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Applications of LCF provers

Several LCF-style systems have been used for major work in
formal verification and formalization of mathematics.

I Verification of microprocessors, compilers, floating-point
microcode, cryptographic protocols, OS kernels, properties
of programming languages and their type systems . . . .

I Formalization of Jordan Curve Theorem, Prime Number
Theorem, 4-Colour Theorem . . . . Feit-Thompson theorem
and Kepler conjecture (‘Flyspeck project’) in progress.

The ideas that Robin Milner developed almost 40 years ago are
central to machine-assisted proof today.



Invited speaker at TPHOLs 2000

From: Robin Milner <Robin.Milner@cl.cam.ac.uk>
To: John Harrison <johnh@ichips.intel.com>
Date: Fri, 28 Jan 2000 17:26:21 +0000

Dear John

I’ve thought a bit more. I believe I can offer,
informally, some interesting reminiscences. What
I can’t do, given my current preoccupation, is to
spend very long on that. (Indeed, a whole talk
would be too hard.) At present I am working flat
out on the theory I mentioned, hence my interest
in how machine assistance could help with it. I
can’t afford too much time away from this task
over the coming year -- life is short.


