
Models for Name-Passing Processes: Interleaving and Causal
(Extended Abstract)

In Proceedings of LICS 2000, c©IEEE Computer Society

Gian Luca Cattani∗ and Peter Sewell†

Computer Laboratory, University of Cambridge, England
{Luca.Cattani,Peter.Sewell }@cl.cam.ac.uk

Abstract

We study syntax-free models for name-passing processes.
For interleaving semantics, we identify the indexing struc-
ture required of an early labelled transition system to sup-
port the usualπ-calculus operations, definingIndexed La-
belled Transition Systems. For non-interleaving causal se-
mantics we defineIndexed Labelled Asynchronous Transi-
tion Systems, smoothly generalizing both our interleaving
model and the standard Asynchronous Transition Systems
model for CCS-like calculi. In each case we relate a deno-
tational semantics to an operational view, for bisimulation
and causal bisimulation respectively. This is a first step to-
wards a uniform understanding of the semantics and oper-
ations of name-passing calculi.

1. Introduction

The study of concurrency has involved rich interplay be-
tween model-theoretic and syntactic approaches. The first
takes a notion of behaviour – perhaps defined as some class
of automata or labelled transition systems – as primary;
the second focusses on some particular signature of process
terms, perhaps giving it only an axiomatic semantics. It
is now common to take an intermediate approach: to fix a
signature of process terms and equip it with an operational
semantics defining behaviour (e.g. transition relations) over
those terms. This has been followed for almost all work
onπ-calculi, beginning with [MPW92], in which an opera-
tional semantics defines transition relations with particular
labels overπ-terms. By contrast, in this paper we study
purely model-theoretic notions of behaviour forπ-calculi,
with definitions that do not involve process syntax, to sup-
port the uniform development of metatheory for a range of
calculi and semantics. For interleaving semantics we intro-

∗supported by EPSRC grant GR/L62290: Calculi for Interactive Sys-
tems: Theory and Experiment
†supported by a Royal Society University Research Fellowship

duceIndexed Labelled Transition Systemswith data speci-
fying how transitions change under renaming – thus pick-
ing out the essential structure of aπ early transition rela-
tion that is required for defining the normal operations and
equivalences overπ-terms. For non-interleaving causal se-
mantics, we defineIndexed Labelled Asynchronous Tran-
sition Systems, smoothly generalizing both our interleav-
ing model and the standard Asynchronous Transition Sys-
tems model for CCS-like calculi [Bed88, Shi85, WN95]. In
each case we give a denotational semantics of aπ-calculus;
we prove the operational early and causal bisimulations
[San93, BS98] coincide with model-theoretic notions. In
the full version of this extended abstract [CS00], we also
investigate the properties of and relationship between cate-
gories of the two models, and give the omitted proofs. This
is a first step towards a uniform understanding of the seman-
tics and operations of name-passing calculi.

Interleaving The standard notion of labelled transition
system (LTS) for calculi without value-passing is straight-
forward. For example, given a setN of names (ranged over
by a, b, . . .) the CCS fragment

P ::= 0
∣∣ a.P ∣∣ a.P ∣∣ P | Q ∣∣ (νc)P

can be given semantics in terms of LTSs

〈S,−→, i〉

whereS is a set of states,−→⊆ S × L × S is a transition
relation with labelsL = {τ, a, a, b, b, . . . }, andi ∈ S is the
initial state. Introducing value-passing, however, makes the
situation more complex – particularly with scope extrusion.
Consider theπ-calculus fragment below, in which the ‘c’ in
the inputbc.P and restriction(νc)P bind in the processP .

P ::= 0
∣∣ ad.P ∣∣ bc.P ∣∣ P | Q ∣∣ (νc)P

Defining the behaviour ofbc.P involves substitution. For
example, the communication of a free name

ad.P | ac.Q τ−→ P | {d/c}Q

is inferred in the ‘early’ semantics of [MPW93, San93] with
the rules below.

OUT
ad.P

ad−→ P
IN
ac.Q

ad−→ {d/c}Q

COM
P

ad−→ P ′ Q
ad−→ Q′

P | Q τ−→ P ′ | Q′

Note thatd might or might not be in the free names ofQ.
Moreover, unlike in CCS,π-calculusτ -transitions can also
involve scope extrusion:

((νd)ad.P) | ac.Q τ−→ (νd)(P | {d/c}Q) if d 6∈ fn(Q)

To define theτ -transitions ofP | Q compositionally, in
terms of the transitions ofP andQ, the semantics must
distinguish between outputs of free and bound names, by
taking transitions with labelsad anda(d) respectively. The
τ -transition above can be inferred with the rules:

OPEN
P

ad−→ P ′ d 6= a

(νd)P
a(d)−→ P ′

CLOSE
P

a(d)−→ P ′ Q
ad−→ Q′ d 6∈ fn(Q)

P | Q τ−→ (νd)(P ′ | Q′)

The full semantics requires also the rules

RES
P

`−→ P ′ d 6∈ fn(`)

(νd)P
`−→ (νd)P ′

PAR
P

`−→ P ′ bn(`) ∩ fn(Q) = ∅
P | Q `−→ P ′ | Q

(in which bn(a(d)) = {d}, andbn(`) = ∅ for labels of
other forms) for restricted transitions that do not involve
scope extrusion and for parallel.

These SOS rules involve subtle conditions on the free
names of process terms (relating them to names in labels),
in addition to name substitution on process terms. To give
a syntax-free notion of LTS that has enough structure to
define the operations we must therefore consider states not
simply to be elements of an arbitrary set but of a set indexed
by finite sets of names – the ‘free’ names of the states –
and add data specifying how states change under renaming.
In Section 3 we will define an Indexed Labelled Transition
System (orN -LTS) to have data

〈S :N →Set, −→, 〈I, i〉〉

whereS is a functor from an indexing categoryN of name-
sets and renamings intoSet (the category of all sets and
functions), giving the set of states above each name-set; the
transition relation is over the coproduct

∐
A∈|N| S(A); and

the initial state〈I, i〉 is an element of that coproduct. Ax-
ioms must be imposed, enforcing:

1. the name-sets of the endpoints of a transition must be
related to each other and to the label;

2. input transitions occur in families related by renaming
of the result states;

3. (a) transitions are preserved by injective renaming,
both of the names of states and of new names in
labels;

(b) inputs of new names above a name-set give rise
to inputs of old names above larger name-sets;
and

4. the transitions of an injective renaming of a state are
determined by the transitions of the state.

We give the precise definition ofN -LTS in Section 3, fol-
lowing a description of theπ-calculus we are using in Sec-
tion 2. Many variant definitions ofN -LTS are possible; we
discuss the alternatives in Section 4. In Section 5 we define
constructions overN -LTSs, giving a denotational seman-
tics, and relate bisimulation overN -LTSs with the bisimu-
lation defined using the operational semantics.

Non-Interleaving models for process calculi have been
much studied; they can support model-checking techniques
that mitigate the state-explosion problem, and strong proof
techniques. They are also required in cases where the de-
sired properties of systems are most naturally stated in terms
of causality or locality. Here again there are model-theoretic
and syntactic approaches – the first is surveyed in [WN95];
the second is represented by various annotated operational
semantics, e.g. [DDNM88a, BC88, DD89, Kie94, WN95].
The two seem to have been carried out almost indepen-
dently – to our knowledge, the only works to make pre-
cise connections are [DDNM88a, BC88, WN95]. More-
over, only the syntactic approach has been developed to ad-
dress name-passing, in the annotated operational models of
[BS98, DP99]. There is also work that does not fit this cat-
egorisation, having both syntactic and model-theoretic as-
pects, with Petri nets and graph rewriting [BG95, MP95].

Our goal in the second half of this paper is to develop the
model-theoretic approach, and to make precise connections
to the annotated operational notions. We develop a simple
syntax-free non-interleaving model for name-passing that
generalises both our interleaving model and the standard
Asynchronous Transition Systems model for calculi with-
out name-passing [Bed88, Shi85, WN95]. This is precisely
related to causal bisimulation [BS98].

In CCS causal dependency arises from prefixing – in
the behaviour of the processx.y.0 the y output causally
depends on thex output. In π-calculus, name-binding
introduces new dependencies, as thoroughly discussed
in [DP99]. Transitions occurring in different parallel com-
ponents of a process term, naively regarded as independent,
may be forced to occur in a fixed order. For example, in
the process(νy)(xy | yz) the transitionyz can be observed
only afterxy – before this occurs the new-bound channel

2

is not known to the environment. The two transitions of
(νy)(xy | zy) are independent, however, despite the fact
that the first to occur will be an output of a new name
and the second will not. Further, an input of a previously-

extruded name, e.g.(νy)(xy | xw.0)
xy−→ xy−→ 0, or output

of a previously-input new name, e.g.xw.xw
xy−→ xy−→ 0

(wherey is new) involves dependency. Moreover, one can
choose whether or not to distinguish between the prefix and
name dependency, e.g. whether to identify(νy)(xy.yz)
and(νy)(xy | yz).

In Section 6 we define a relation of name-dependency
between two labels (wrt. a name-set), and then an Indexed
Labelled Asynchronous Transition System (orN -LATS) to
have data

〈S :N →Set, −→, 〈I, i〉, E, I〉

where now transitions are annotated by elements of a setE
of eventsandI ⊆ E × E is an independence relationbe-
tween events. We impose axioms requiring that one obtains
an Indexed LTS when considering eache ∈ E separately,
and (roughly), that independent transitions can be per-
muted. As one would expect, name dependency is involved
in the relationship between the transition and independence
relations. We discuss how the constructions of Section 5 can
be extended toN -LATS, define history-preserving bisimu-
lation and a name-dependency aware variant (respectively
distinguishing and identifying the example two processes
above), and prove correspondence results.

In [CS00] an abstract study of the structures defined in
this paper is initiated. CategoriesN -LTSI of Indexed LTS
andN -LATSI of Indexed LATS (each for initial name-
setI) are defined. Their properties and mutual relationship
are studied, as the first step towards an abstract understand-
ing of the equivalences and constructions involved in the
semantics ofπ-like process languages. Space limitations
prevent us from presenting such results here.

Further Motivation, Future Directions and Related
Work Viewing models categorically has proven useful
in study of the interleaving/non-interleaving and linear-
time/branching-time distinctions [SNW96]. Moreover, the
categorical study of process calculi gives the possibility
of obtaining general congruence results: in [WN95] cate-
gorical models of CCS-like processes are axiomatised and
in [JNW96] an abstract model-theoretic notion of bisimula-
tion is introduced (via open maps); in [CW97, CW99] these
two are combined to give abstract congruence results for
strong bisimulation over a wide range of models. It is our
hope that the present work serves as a first step towards sim-
ilar results forπ-calculus-like process languages. In partic-
ular, we would like a categorical understanding of our op-
erations for the two models, related by the results presented
in [CS00].

Among earlier models ofπ-processes, the name pass-
ing synchronisation trees of [Hon99] and presheaves
of [CSW97] are the closest to ourN -LTS, though they
employ a slightly different indexing structure (cf. Sec-
tion 4). In [CSW97] the models are defined using domain
theoretical techniques similar to those employed in [Sta96,
FMS96], as the solutions to semantic equations. By con-
trast here we take a more concrete approach, with several
advantages. Firstly, it is easy to conceive of minor modifi-
cations to our definitions which adapt them to closely reflect
paradigms such as the asynchronousπ-calculus [Bou92,
HT91]. In particular it should be quite straightforward
to adapt the axioms of [Sel97] to our models. It should
also be easy to address theπI-calculus [San96a], in which
only new names are communicated (though this can also
be done domain-theoretically). Secondly, it supports a di-
rect definition of weak bisimulation, something the domain
model lacks and the presheaf model can, as far as we know,
only achieve indirectly by means of a saturation construc-
tion [FCW99].

It is also worth noticing that while the domain mod-
els are tailored for late bisimulation, our focus here is on
early semantics, both to obtain a simpler notion of tran-
sition system, and because we have found the early style
suits work on concurrent language semantics and on secure
encapsulation [Sew97, SV99a, SV99b, Sew00]. Presheaf
models exist for both early and late notions [Cat99]. More-
over we should add that, in constrast to [Sta96, FMS96]
(which have full-abstraction results wrt. strong bisimula-
tion), we focus on intensional models, over which a num-
ber of equivalences can be defined (though we give re-
sults only for bisimulation). The literature contains also
testing-based models [Hen96, BDN95]. The precise rela-
tionships with these and other models defined in the litera-
ture e.g., [MP98, MP95, BG95, JJ95] requires further work.

In [CS00] we begin the study of three applications.
Firstly, we believe our structures may form a useful basis for
π-calculus interleaving and partial-order model checking,
via notions of finitely-generableN -LTS andN -LATS. We
define the former precisely. Secondly,N -LTS (extended to
allow communication of tuples and encrypted values) may
provide a basis for proofs and model-checking of crypto-
graphic protocols. In particular, it would support direct (i.e.
not via a process calculus syntax) definitions of behaviours,
as in [Pau98], while still allowing composition of these be-
haviours. Thirdly, developing work on secure encapsulation
[SV99a, SV99b], quantifying over elements of the model,
rather than over syntactic processes, would allow stronger
security properties to be stated. We state conjectures relat-
ing the colouredπ-calculus semantics – an approximate but
simple notion of causality used there to state security prop-
erties – toN -LATS. We also wonder what the relationships
are with the recent [GP99, FPT99, Hof99], where similar

3

indexing structure is used in aλ-calculus setting.
Finally, notice that in this paper we introduce transition

systems with indexed sets of states, but not indexed sets
of transitions. This is because, as remarked above, when
moving from a name-set to a larger one, transitions labelled
with inputs of new names in the former give rise to input
transitions of both new and old names in the latter – the
correspondence between transitions is not functional, even
for injective renamings. We have begun to consider, with
Hyland, more sophisticated indexing structures which al-
low transitions as well as states to be indexed; the pay-off
for the extra complication being e.g. the possibility of us-
ing the notion of internal category to formally relate our
Indexed Transition Systems with the standard ones.

2. Background on theπ-Calculus

Many variantπ-calculi have been studied in the litera-
ture since the original was introduced in [MPW92]. Here, to
show the wide applicability of our models, we take a rich set
of primitives including summation, matching, mismatching
and synchronous output. For notational simplicity, however,
we treat only a monadic untyped calculus without basic val-
ues; for lack of space also omitting replication. These could
be easily added.

Syntax We take an infinite setN of namesof channels,
ranged over bya, b etc. Theprocess termsare then those
defined by the grammar

P,Q ::= 0 | P | Q | P +Q | τ.P | ad.P | ac.P |!P
| (νc)P | [a = b]P | [a 6= b]P .

Here thec in the inputbc.P and restriction(νc)P bind in
the processP ; we work up to alpha renaming of bound
names. We writefn(P) for the set of free names ofP , and
{a/b}P for the process term obtained fromP by replacing
all free occurrences ofb by a.

Operational semantics We equip the calculus with a
mild presentational variant, explicitly-indexed, of the early
labelled transition semantics of [San93, MPW93], in which
transitions are given for processes with respect to explicit
supersets of their free name sets. This style simplifies
the SOS rules, allowing sideconditions in PAR and CLOSE

(here coalesced with COM) to be removed, gives a simple
notion of trace, and supports subtype systems; it has been
useful for work on concurrent language semantics and on
secure encapsulation [Sew97, SV99a, SV99b]. The labelled
transition relation has the form

A ` P `−→ Q

whereA is a finite set of names andfn(P) ⊆ A; it should
be read as ‘in a state where the namesA may be known
by processP and by its environment, the processP can
do ` to becomeQ. The name-set associated withQ is then
A∪fn(`). The labelsLab are{τ}∪{xy | x, y ∈ N }∪{xy |
x, y ∈ N }. Note that we now have only one form of output

label – a transitionA ` P xv−→ Q is an output of a new name
iff v 6∈ A. The transition relation is defined as the smallest
relation satisfying the rules in Figure 1. The free names of
a label arefn(τ) = {}, fn(xv) = fn(xv) = {x, v}. We
writeA, x for A ∪ {x} wherex is assumed not to be inA.
If A = ∅ then(νA)P denotesP .

Note that the set of free names of a process can grow

along transitions, for example{a} ` (νd)ad.ad ad−→ ad,
and that the rules depend in an essential way on alpha-
conversion – the processR = (νd)ad must be able to
perform a bound output with labelad̂ for any d̂ 6= a;
derivations of such transitions require use of the alpha-
equivalenceR = (νd̂)ad̂. Note also that the SOS rules
do not involve any structural congruence.

Example Properties We illustrate the SOS with some ex-
ample transitions and properties – these will be special cases
of the axioms imposed onN -LTS in Section 3.

1. If A ` P xz−→ Q thenx ∈ A. We might havez new,
i.e. z ∈ A or not, i.e. z 6∈ A. In either case,Q has
free names contained inA ∪ {x, z}. The same holds
for input transitions.

2. A transitionA ` P xz−→ Q must arise from an input
prefix inP , which must therefore be able to input any
other name (new or old). Moreover, the resulting states
can all be obtained by substitution from the resulting
state after a new name is input.

3. (a) IfA ` P xz−→ Q andz ∈ A then for any injective
substitution, sayf :A→inj B, there is a transition

B ` fP fxfz−→ fQ. For output of a new name, i.e.
z 6∈ A, the valuez can also be renamed to any

ẑ 6∈ B, givingB ` fP fxẑ−→ (f + [ẑ/z])Q. The
same holds for input transitions.

(b) A derivation of an inputA ` P xz−→ Q of a new
namez 6∈ A is preserved by extending the name-
set – soP above(A, z) has an input of an old
nameA, z ` P xz−→ Q.

4. Non-injective renaming can enable and (with mis-
match) disable transitions, but the behaviour of an in-
jective renaming ofP is determined by that ofP .

4

OUT
A ` xv.P xv−→ P

PAR A ` P `−→ P ′

A ` P | Q `−→ P ′ | Q
RES

A, x ` P `−→ P ′ x 6∈ fn(`)

A ` (νx)P
`−→ (νx)P ′

IN
A ` xp.P xv−→ {v/p}P

COM
A ` P xv−→ P ′ A ` Q xv−→ Q′

A ` P | Q τ−→ (ν{v} \A)(P ′ | Q′)
OPEN

A, x ` P yx−→ P ′ y 6= x

A ` (νx)P
yx−→ P ′

SUM A ` P `−→ P ′

A ` P +Q
`−→ P ′

MATCH A ` P `−→ P ′

A ` [x = x]P
`−→ P ′

M ISMATCH
A ` P `−→ P ′ x 6= y

A ` [x 6= y]P
`−→ P ′

In all rules with conclusion of the formA ` P `−→ Q there is an implicit side conditionfn(P) ⊆ A. The rule forτ.P and symmetric
versions of PAR, COM and SUM are elided.

Figure 1. π operational semantics

Operational Equivalences The normal notion of early
bisimulation can be easily adapted to the explicitly-indexed
setting. Takebisimulation∼̇ to be the largest family of re-
lations indexed by finite sets of names such that each∼̇A
is a symmetric relation over{P | fn(P) ⊆ A } and for all
P ∼̇A Q,

• if A ` P
`−→ P ′ then ∃Q′ . A ` Q

`−→ Q′ ∧
P ′ ∼̇A∪fn(`) Q

′.

We do not develop other equivalences in this paper, but
linear-time notions can also be defined straightforwardly.
For example, for partial traces write

A1 ` P1
`1−→ . . .

`n−→ Pn+1

to mean∃P2, . . . , Pn, A2, . . . , An . ∀i ∈ 1..n . Ai+1 =
Ai ∪ fn(`i) ∧ Ai ` Pi

`i−→ Pi+1. If fn(P) ⊆ A then
the partialA-traces ofP are simply{ `1 .. `n | ∃P ′ . A `
P

`1−→ . . .
`n−→ P ′ }.

3.N -LTS

In this section we introduce Indexed Labelled Transition
Systems. To account for name substitution ofπ-terms, we
take an indexing structure of name-sets and renaming func-
tions on the set of states. We then axiomatize the key prop-
erties of the transition relation with respect to this indexing
structure. We have also considered other choices of index-
ing structure, as briefly discussed in the next section.

Definition 3.1 TakeN to be the category with objects finite
subsets ofN and arrows functionsf :A→B between them.

NOTATION: If f :A→B andg :A′→B′ are two functions
we writef + g for the obvious functionA] A′→B]B′.
If f :A→B andg :A′→B we write [f, g] for the obvious
copairing functionA]A′→B. Given a functionf :A→B

and two namesx /∈ A andy ∈ B, write [f, [y/x]] for the
obviouscopairingfunctionA, x→B.

If S : N → Set is a functor and if
∐
A∈|N| S(A) is

the disjoint union of the setsS(A) for objectsA of N ,
write 〈A, s〉 for the elements ∈ S(A) as an element of
the disjoint union andS for the set

∐
A∈|N| S(A) itself. If

−→⊆ S × Lab × S is a (transition) relation, we will write

A ` s
`−→ t to mean that there exists ans ∈ S(A), a set

B and at ∈ S(B) such thats = 〈A, s〉, t = 〈B, t〉 and

s
`−→ t. Sometimes we want to make explicit the existence

of B and writeA ` s
`−→ t a B to this purpose. Also if

f : A→ B is a function, writefs for 〈B,S(f)(s)〉.

Definition 3.2 For any label` ∈ Lab, define thechannel
namesof `, chan(`) and thevalue namesof `, val(`)as fol-
lows:

chan(τ) = ∅ val(τ) = ∅
chan(xy) = {x} val(xy) = {y}
chan(xy) = {x} val(xy) = {y}

Definition 3.3 Define an Indexed Labelled Transition Sys-
tem (N -LTS) to be a structure

T = 〈S :N →Set, −→, 〈I, i〉〉

where〈I, i〉 ∈ S, −→⊆ S × Lab × S and the following
conditions hold.

1. (Naming)A ` s
`−→ t a B =⇒ chan(`) ⊆ A ∧

B = A ∪ fn(`)

2. (a) (Input – new)A ` s
xy−→ t a A, y =⇒ ∀z ∈

A.A ` s
xz−→ [1A, [z/y]]t

(b) (Input – old)A ` s
xy−→ t a A =⇒ ∀z 6∈

A∃ tz. A ` s
xz−→ tz a A, z ∧ t = [1A, [y/z]]tz

3. (a) (Injective substitution)

For f :A→inj B, A ` s
`−→ t ∧ g :(fn(`) \

A)→bij B̂ ∧ B̂∩B = ∅ =⇒ fs
(f+g)`−→ (f+g)t

5

(b) (Shifting)
A ` s

xy−→ t a A, y =⇒ A, y ` ιs xy−→ t, where
ι : A ↪→ A, y is the set inclusion function

4. For f :A→inj B, if fs
`′−→ t′ then (at least) one of the

following two cases applies

(a) there exist̀ , t, g : fn(`)\A→bij B̂ such thatB̂∩
B = ∅ and `′ = (f + g)(`) and s

`−→ t and
t′ = (f + g)t

(b) there existx ∈ A, y 6∈ A, z ∈ B and t such
that `′ = f(x)z andA ` s

xy−→ t a A, y and
t′ = [f, [z/y]]t

Condition 1 ensures that communication with the environ-
ment occurs only along publicly known channels and that
the knowledge of such channels is correctly propagated
from one state to another when a transition occurs. Condi-
tions 2 ensure that if a name can be received as input along
a specific channel, then any other name can be received as
well. Condition 3a asserts that transitions are preserved
along injective renamings, while condition 3b shows how
inputs of new names generate inputs of “old” names when
moving from a name set to a larger one. Finally, condition
4 ensures that the transitions out of a state which has been
injectively renamed are determined by those of the state it-
self.

In fact the definition contains some redundancy:

Proposition 3.4 Condition 3b ‘shifting’ is implied by con-
ditions 2a ‘input-new’ and 3a ‘injective substitution’.

Despite this we keep condition 3b, for two reasons. Firstly,
we regard the condition as conceptually important, thus we
did not want to omit it from the main definition. Secondly,
conditions 2a,2b, introduced to ensure uniform behaviour
of input transitions, can be argued to be unnecessary from
the model-theoretic point of view (just as their analogues
are neglected in the reduction of value-passing CCS to pure
CCS [Mil89]). When 2a,2b are omitted, 3b becomes essen-
tial.

For illustrative purposes we list now a few simple con-
sequences of Definition 3.3. Analogous properties ofπ-
terms are often established as lemmas, e.g. to prove
correspondence between labelled and reduction semantics
(see [SV99a, Sew00] for explicitly-indexed developments).

Proposition 3.5 (Weakening) If A ` s
`−→ t and x 6∈

A ∪ fn(`) then ιs
`−→ t, where ι :A ↪→ A, x and

 :A ∪ fn(`) ↪→ (A ∪ fn(`)), x.

Proposition 3.6 (Strengthening) If A, x ` ιs `−→ t′, and
x 6∈ fn(`), whereι :A ↪→ A, x, then there existst such

that A ` s
`−→ t and t′ = t, where :A ∪ fn(`) ↪→

(A ∪ fn(`)), x.

Proposition 3.7 (Converse of Shifting)If A, y ` ιs
xy−→

t, whereι :A ↪→ A, y, thenA ` s
xy−→ t.

Weakening and Strengthening are immediate conse-
quences of conditions 3a and 4. The converse of Shifting
requires 2b, strengthening and 3a.

4. Alternative indexing structure

There are several alternative indexing structures – one
simpler, with only injective renaming; one more elaborate,
with data for restriction; and variants of all with a chosen
new-name function. We discuss the trade-offs briefly.

Sets and injections Instead of indexing by the category
N one can index byNinj , the subcategory ofN with all
objects but only injective functions as arrows. This gives
a simpler structure, in which the transitions of a reindexed
statefs are always determined by those ofs. To make input
prefix definable, however, the denotation of a process withn
free names must be a function fromn-tuples of names toN -
LTSs, not simply anN -LTS – to define[[xy.P]] one would
need[[{z/y}P]] for all z. Moreover, we doubt whether an
analogue of the input axioms 2a,2b could be stated.

Building restriction into the indexing It is arguable that,
as restriction is a fundamentalπ-calculus concept, one
should take models with more data than ourN -LTSs, spec-
ifying how the transitions of states change when names
are restricted. This leads to more complex axioms, though
clearly also to a simpler definition of the restriction opera-
tor. In more detail, defineNν to be the category with objects
finite subsets ofN and arrows pairs〈f,Rf 〉 :A→B where
f :A⇀B is a partial function andRf ⊆ (A \ dom(f)) ×
(A \ dom(f)) is an equivalence relation. IfA ` s then
the re-indexing ofs along 〈f,Rf 〉 should be thought of
as the state in which names inA \ dom(f) have been re-
stricted, after being quotiented byRf , and other names
have been substituted as specified byf . Define composi-
tion of arrows by〈g,Rg〉 ◦ 〈f,Rf 〉 = 〈g ◦ f,Rg◦f 〉 where
Rg◦f = Rf ∪ { (a, a′) | f(a) Rg f(a′) }.
Choosing new names In our definition, for a states above
A, all namesw 6∈ A are treated symmetrically – corre-
sponding to the operational fact that (ifx ∈ A) there is a

transitionA ` (νz)xz xw−→ 0 for anyw 6∈ A. One can
instead take a chosen new – a functionν :Pfin(N)→N
such that∀A . νA 6∈ A. This leads to an endofunc-
tor δ :N →N defined byδ A = A ∪ {νA} and δ(f) =
f ∪ {νA 7→ νB}; the axioms can be restated in terms of
δ. In this paper we have not taken a chosen new in or-
der to keep the tight correspondence with the operational
semantics, and for notational simplicity. The chosen new
version ofNinj is essentially the indexing structure used in
[Sta96, FMS96, Hen96, CSW97].

6

5. Denotational semantics

We describe now operations onN -LTS that we will
use in giving a compositional semantics to theπ-calculus.
In [CS00] we turn the class ofN -LTS with initial name-set
I into a category,N -LTSI , in the obvious way. It is then
straightforward to turn the operations below into functors,
in fact intoω-continuous functors. The categoryN -LTSI
can be easily shown to have colimits ofω-chains, in fact
to be cocomplete (and complete). Thus a semantics of re-
cursively defined processes, such as replicated ones, can be
obtained using least fixed points ofω-chains in the usual
way. Lacking enough space to develop all of the above (or
a more concrete definition for replication), we have decided
in this extended abstract not to consider recursive processes
at all.

The most interesting operations are deadlock, which to
obtain initiality has what may be a slightly surprising def-
inition, and restriction and parallel composition. For re-
striction an equivalence relation, a semantic analogue ofα-
conversion, needs to be imposed on states – just as in the
operational semantics a transition of(νx)P may be derived
from a transition of(νx̂){x̂/x}P for any x̂ 6∈ (fn(P) \ x).
For parallel, in the operational semantics states reachable by
transitions fromP | Q may involve restriction ofP ′ | Q′
for P ′, Q′ reachable fromP , Q. The construction over the
model involves a similar quotienting as for restriction. The
equivalence relation used in both cases is defined as follows.

Definition 5.1 If S :N →Set is a functor andA is a
finite subset ofN , take↔A to be the equivalence re-
lation on (possibly subsets of) the set

∐
B⊇A S(B) de-

fined by〈B1, s1〉 ↔A 〈B2, s2〉 if there exists a bijection
b :B1→bij B2, such that for everyx ∈ A, b(x) = x and
such thatS(b)(s1) = s2.

The equivalence classes of↔A are analogous to alpha-
equivalence classes of terms w.r.t. renaming of names not
in A. Observe that elements ofS(A) can only be related to
themselves, i.e. their equivalence class is a singleton. For
this reason, when no confusion arises, we will writes for
[〈A, s〉]↔A

.
In the constructions below we shall often extend a tran-

sition system with new initial state over a chosen name set
(sayI), but now all of its reindexings must also be added.
This can be expressed using therepresentablefunctor (see
e.g. [MLM92]) N (I,−) which sends each name-setA to
the set of functions (the morphisms inN) from I to A.
Given a functiong :A→B,N (I, g)(f : I→A) = gf . The
new initial state is the identity onI, 1I and each of its rein-
dexings is given by the reindexing function itself. Notice
that we write e.g.S + N (I,−) for the coproduct of func-
tors which is given by the pointwise disjoint union of sets.

NOTATION: If U and V are two sets and no confusion
arises, we will writel :U→U] V and r :V →U] V
for the obvious left and right injections in their disjoint
union. If s = 〈A, u〉, write ls for 〈A, lu〉 and simi-
larly for r. In what follows, unless otherwise stated we
suppose thatT = 〈S :N →Set, −→, 〈I, i〉〉 and Tk =
〈Sk :N →Set, −→k, 〈I, ik〉〉 (for k = 1, 2) areN -LTSs.
Note that the initial name-setsI coincide.

Restriction If T = 〈S :N →Set, −→, 〈(I, x), i〉〉 de-
fine the restrictionνx∈(I,x)(T) to be

〈S′ :N →Set, −→′, 〈I, r[〈(I, x), i〉]↔I
〉〉 ,

where

• S′(A) = S(A)] (
∐
y 6∈A S(A, y))/↔A

• −→′ is defined by the following three rules:

A ` s
`−→ t

A ` ls
`−→′ lt

A, z ` s
`−→ t

A ` r[s]↔A

`−→′ r[t]↔A∪fn(`)

z 6∈ fn(`)

A, z ` s
xz−→ t

A ` r[s]↔A

xz−→′ l[t]↔A,z

x 6= z

Output and τ prefix If x, y ∈ I, definexy(T) to be

〈S +N (I,−) :N →Set, −→′, 〈I, r1I〉〉 ,

where−→′ is defined by the following rules:

s
`−→ t

ls
`−→′ lt

f : I→A

〈A, rf〉 f(x)f(y)−→′ 〈A, lS(f)(i)〉

Defineτ(T) similarly by labelling the transition in the
first ruleτ rather thanf(x)f(y).

Input prefix If T = 〈S :N →Set, −→, 〈(I, y), i〉〉 is a
transition system andy 6= x ∈ I, definexy(T) to be

〈S +N (I,−) :N →Set, −→′, 〈I, r1I〉〉 ,

where

f : I→A ι : A ↪→ A ∪ {z}

〈A, rf〉 f(x)z−→′ 〈A ∪ {z}, lS([ιf, [z/y]])(i)〉

s
`−→ t

ls
`−→′ lt

7

Deadlock at I For every set of namesI, define the
deadlockedN -LTS with free names inI as 0I =
〈N (I,−), ∅, 〈I, 1I〉〉. Notice that0I is the initial object of
the categoryN -LTSI (see [CS00]).

Matching and Mismatching If x, y ∈ I, then define
[x = y](T) to be

〈S +N (I,−) :N →Set, −→′, 〈I, i〉〉 ,

where−→′ is defined by the following rules:

f : I→A 〈A,S(f)i〉 `−→ 〈B, s〉 f(x) = f(y)

〈A, rf〉 `−→′ 〈B, ls〉

s
`−→ t

ls
`−→′ lt

Define [x 6= y](T) similarly by requiringf(x) 6= f(y) in
the first rule.

Sum Define the sum,

T1+T2 = 〈(S1+N (I,−)+S2) :N →Set, −→0, 〈I,m1I〉〉

where−→0 is defined by the following rules:

f : I→A 〈A,Sk(f)(i1)〉 `−→1 s

〈A,mf〉 `−→0 ls
(and sym. for2, r)

s
`−→1 t

ls
`−→0 lt

s
`−→2 t

rs
`−→0 rt

where we now usel,m, r rather than justl andr.
If we assume theN -LTSs to be non-restarting, we can

give a more standard definition which (pointwise) glues to-
gether the two (sets of) initial states; in this case the sum is
the categorical coproduct [CS00].

Parallel composition

NOTATION: If S1 andS2 are two functorsN →Set, and if
↔A is the equivalence relation on

∐
B⊇A(S1 × S2)(B) =∐

B⊇A S1(B) × S2(B) defined as in Definition 5.1, and if
s1 = 〈B, s1〉 ands2 = 〈B, s2〉 write s1|As2 for the equiva-
lence class[(B, s1, s2)]↔A

.

If T1 andT2 are twoN -LTSs as before, define their parallel
composition,

T1|T2 = 〈S0 :N →Set, −→0, 〈I, 〈i1, i2〉〉〉

where

• S0(A) = (
∐
B⊇A(S1 × S2)(B))/↔A, while

S0(f :A→A′)([(B, s1, s2)]↔A
) = [(B′, t1, t2)]↔A′ ,

where tk = S(f + g)(sk), for k = 1, 2 and g :B \
A→bij B

′ \A′ is a bijection

• −→0 is defined by the following three rules (and symmet-
ric versions of the first two):

A,A′ ` s1
`−→1 t1 ι :A,A′ ↪→ A ∪ fn(`), A′

A ` s1|As2
`−→0 t1|A∪fn(`)ιs2

A,A′ ` s1
xy−→1 t1 A,A′ ` s2

xy−→2 t2

A ` s1|As2
τ−→0 t1|At2

A, y ` s1|A,ys2
xy−→0 t1|A,yt2

A ` s1|As2
xy−→0 t1|A,yt2

It is easy to verify that the functorS0 is well defined, i.e.
that the definition ofS0(f) is independent of the choice of
representatives and of the choice of the functionsg.

Bisimilarity is defined in the usual way, but thanks to
the indexing, we can also define directly in the model the
closure under name substitutions, which for theπ-calculus
characterises the largest congruence included in bisimilar-
ity.

Definition 5.2 Define two N -LTSs T1 and T2 to be
strongly bisimilar if the LTS 〈S1, −→1, 〈I, i1〉〉 and
〈S2, −→2, 〈I, i2〉〉 are bisimilar in the usual sense of Mil-
ner [Mil89]. Say that they are strongly equivalent if, for
everyf : I→A theN -LTSs〈S1, −→1, 〈A,S1(f)i1〉〉 and
〈S2, −→2, 〈A,S2(f)i2〉〉 are strongly bisimilar.

Weak bisimilarity and equivalence are defined similarly.

Exploiting the indexing structure even more, notice that if
a bisimulation is further required to be a relation between
S1 andS2 in the categorical sense, i.e. a subobject of the
productS1×S2, one obtains anopenbisimulation [San96b].

Compositional semantics toπ-terms is given using the
operations defined above in the obvious way. For a pro-
cess termP , with free names inI, we write [[P]]I for the
correspondingN -LTS. We conclude this section by stating
the result which relates bisimulation in the model with early
bisimulation in the operational semantics.

Theorem 5.3 LetP andQ be twoπ-terms with free names
in I. ThenP ∼̇IQ if and only if[[P]]I is bisimilar to [[Q]]I .

Proof:[Sketch] First of all observe that the operational se-
mantics naturally induces for every process termP , with
free names inI, anN -LTS

([P])I = 〈π,−→, 〈I, P 〉〉 ,

8

whereπ(A) = {Q | Q is aπ-term andfn(Q) ⊆ A}, π(f)
simply relabels processes according tof , and there is a tran-

sition〈A,P 〉 `−→ 〈B,Q〉 if A ` P `−→ Q (according to the
operational semantics) andB = A ∪ fn(`). One can then
prove by structural induction that([P])I is open bisimilar
(cf. the remark after Definition 5.2) to[[P]]I . The theorem
is now an easy consequence of this last statement.

6.N -LATS

In this section we define a class of causal models by
smoothly lifting the notion of labelled asynchronous1 tran-
sition system [Bed88, Shi85, WN95] (LATS for short) to
our indexed setting. LATS are a simple extension of stan-
dard LTS in which transitions have both standard labels and
events, upon which an independence relation is defined.
Roughly speaking, concurrency is modelled by requiring
that transitions tagged with independent events might oc-
cur in any order. As discussed in the introduction, inπ-
calculi dependencies between transitions may arise from
their name usage:

Definition 6.1 If A is a set of names and̀1 and`2 are two
labels, we say that̀2 is A-dependent oǹ1 if one of the
following two cases applies:

1. val(`1) = chan(`2) 6⊆ A

2. val(`1) = val(`2) 6⊆ A, one of̀ 1, `2 is an input action
and the other is an output action.

Definition 6.2 Define an Indexed LATS (N -LATS) to be a
structure

T = 〈S :N →Set, −→, 〈I, i〉, E, I〉

where〈I, i〉 ∈ S,

−→ ⊆ S× (Lab× E)× S ,

E is a set of events,I ⊆ E×E is an independence relation
between events and the following conditions hold.

1. For every event e ∈ E, the structure
〈S :N →Set, −→

e
, 〈I, i〉〉 is a transition system

according to Definition 3.3, where−→
e

is the set

{ 〈s, `, t〉 | 〈s, `, e, t〉 ∈−→}.

2. I is irreflexive and symmetric

3. IfA ` s
`1−→
e1

t, andt
`2−→
e2

u, ande1Ie2, and moreover̀2

is notA-dependent oǹ1, then there exists a statet′

such thats
`2−→
e2

t′ andt′
`1−→
e1

u.

1There is an unfortunate clash of terminology here: this usage of ‘asyn-
chronous’ is unrelated to the usage describing process calculi without out-
put prefixing.

Often LATS are defined using more axioms (see [Bed88,
WN95]). Here we have decided to keep the axiomatisation
as light as possible, as none of the extra axioms is directly
relevant for the definability of the semantic constructions
that we consider. Moreover we allow the same event to
carry different labels. This is particularly useful in coping
with the proliferation of transitions induced by reindexing
and by the input actions. It is not difficult to devise sim-
ple variations of our definition which adhere more closely
to the traditional case.

Building on the independence relation, transitions occur-
ring in a run of a process can be given a causal partial or-
der describing which transitions are necessary conditions
for the occurrence of others. Roughly speaking one tran-
sition causes the following one if the corresponding events
are not independent of each other. As discussed in the in-
troduction, one can choose whether or not to consider name
dependencies – forN -LATS there are two natural ways of
defining partial orders out of runs, one taking account only
of the independence relation and another which also takes
name dependencies into account.

NOTATION: For every natural numbern, write [n] for the
set{k | 1 ≤ k ≤ n}. Observe that, in particular,[0] = ∅.

Definition 6.3 For every runr

A0 ` s0
`1−→
e1

s1
`2−→
e2

s2 · · ·
`n−→
en

sn

of anN -LATS we define two labelled partial orders:

1. Definepo(r)I = 〈[n],ErI , l
r〉, where

(a) n is the length of the runr.

(b) ErI is the transitive closure of�rI which is de-
fined asi �rI j if i ≤ j and¬(eiIej)

(c) lr(k) = `k, for everyk ∈ [n]

2. Definepo(r)ID = 〈[n],ErID, l
r〉, wheren and lr are

obtained as above, whileErID is the transitive closure
of �rID which is defined asi �rID j if i ≤ j and
either ¬(eiIej) or `j is Ai-dependent oǹ i, where
si = (Ai, si).

History preserving bisimulation [RT88, GG89, DDNM88b]
is a bisimulation between runs of processes which accounts
for causality by requiring related runs to originate isomor-
phic partial orders of transitions:

Definition 6.4 LetT1 andT2 be twoN -LATSs with initial
name-setI and let Run(Ti) (for i = 1, 2) be the corre-
sponding sets of runs. A relationB ⊆ Run(T1)×Run(T2)
is an history preserving bisimulation (hpb) if it satisfies the
following conditions

1. 〈I ` 〈I, i1〉, I ` 〈I, i2〉〉 ∈ B

9

2. 〈r1, r2〉 ∈ B implies

(a) po(r1)I = po(r2)I

(b) if r′1 extendsr1 with a transition sn
`n+1−→1
en+1

sn+1

then there exists a runr′2 which extendsr2 with a

transition s̄n
`n+1−→2
ēn+1

s̄n+1 such that〈r′1, r′2〉 ∈ B

(c) the symmetric condition to the above.

The relationB is a name-dependency aware hpb (ndahpb) if
the condition2(a) is changed intopo(r1)ID = po(r2)ID.

The constructions of Section 5 can be easily adapted to be-
come constructions onN -LATS. We shall now briefly in-
dicate how they need to be extended to take account of the
presence of events and of the independence relation. In all
rules where a label is carried from the premise to the con-
clusion, the event is also carried (suitably injected).

Restriction The set of events and the independence relation
does not change.

PrefixesA new event, not in the independence relation with
any other is added and it decorates all of the new transitions.

DeadlockThe set of events is empty and so is the indepen-
dence relation.

Matching and Mismatching Events and the independency
relation are left untouched.

Sum The set of events is taken to be the disjoint union of
the originals but no new independence pairs are added.

Parallel composition If E1 and E2 are the two sets of
events we defineE0 to be the disjoint unionE1](E1×E2)]
E2. Writing this as(E1 × {?}) ∪ (E1 ×E2) ∪ ({?} ×E2)
for ? 6∈ E1 ∪ E2, the independence relation is defined by
〈e1, e2〉I0〈e′1e′2〉 if both e1Î1e

′
1 ande2Î2e

′
2, whereÎk is the

union ofIk and〈?, ?〉. The newτ -transitions are decorated
by the pairs of enabling events.

Process terms can then be given a denotational semantics
and then related by (nda) history preserving bisimilarity. In
the remainder of this section we will mostly concentrate
on the relationship between our semantics and the causal
bisimulation of [BS98]. In particular we present correspon-
dence results relating our hbp semantics to causal bisimula-
tion, and further discuss name-dependency.

In the paper [BS98], no notion of strong bisimulation is
defined. The authors in fact defined directly causal bisim-
ulation in the weak, i.e. abstracting away fromτ actions,
form. To match with our definitions we therefore need ei-
ther to define weak history-preserving bisimulation or to
modify their setting in order to makeτ actions, and not their
effect only, visible. We will in fact do both, ending up with
two correspondence results, one for strong and one for weak

bisimulation. Due to space constraints we cannot report the
definition of causal bisimulation here and therefore refer to
loc. cit. for definitions and discussions of the relevance of
their approach. We simply mention here, using their nota-
tion, what modifications are needed in order to define strong
causal bisimulation.

Definition 6.5 An operational semantics forstrong causal
bisimulation is obtained by modifying the definition
of [BS98, table 3, page 365] in the rules which derive silent
actions in the following way:

T-PRE, T-SUM, T-PAR, T-RES, T-CAU, T-REP: These are
all subsumed in the homologous rules,OUT, SUM, PAR,
RES, CAU, REP, respectively, which were originally defined
for non-τ actions.

COM: This is changed as follows (recall that we are dealing
with the monadicπ-calculus):

A1
(νz)xy−→K1:k A

′
1 A2

xy−→K2:kA
′
2

A1 | A2
τ−→K1∪K2:k(νz)(A′1[k (K2, k)] | A′2[k (K1, k)])

with conditionsz 6∈ fn(A2) andk 6∈ K(A1, A2).2

Strong causal bisimulation can now be defined in the usual
way, by requiring transitions to agree not only on the la-
bels but on the causes too. We can now state our first non-
interleaving correspondence result:

Theorem 6.6 LetP andQ be two terms of theπ-calculus
with free names inI and let[[P]]cI and [[Q]]cI be their inter-
pretations asN -LATS’s. Then[[P]]cI is history preserving
bisimilar to [[Q]]cI if and only ifP is strongly causal bisimi-
lar to Q.

A weak version of history preserving bisimulation can be
given in the spirit of [Vog95].

Definition 6.7 Letr be a run in an asynchronous transition
system, letn be the length ofr and letnτ be the number of
transitions inr which are not labelledτ . For everyi ≤ nτ ,
defineni ≤ n inductively as follows:n1 is the smallest
numberh such that theh-th transition ofr has label̀ h 6= τ ;
nj+1 is the smallest numberh such that theh-th transition
of r has label`h 6= τ and that moreover is strictly bigger
thannj .

Starting with a runr of anN -LATS, by means of the above
definition, we can define partial orders of observable events
in runs as follows:

2In [BS98] the notation(νz)xy is employed for possibly-bound out-
puts.

10

Definition 6.8 Letr be a run of anN -LATS and letpo(r)I
andpo(r)ID be the corresponding partial orders as in Def-
inition 6.3. Definepo(r)wI andpo(r)wID to be the partial
orders 〈[nτ],EwI , lrw〉 and 〈[nτ],EwID, lrw〉, respectively,
wherelrw(i) = lr(ni), iEwI j if ni EI nj andiEwID j if
ni EID nj .

Weak history preserving bisimulations are now defined
as relations between runs as in Definition 6.4 but where,
as usual, “strong” transitionss1

`−→1
e1

t1 are simulated by

“weak” oness2

ˆ̀
=⇒2
e2

t2 (and symmetrically) and with con-

dition 2(a) replaced bypo(r)wI = po(r′)wI or by
po(r)wID = po(r′)wID, for the name-dependency aware
case. We can then prove the following result:

Theorem 6.9 LetP andQ be two terms of theπ-calculus
with free names inI and let[[P]]cI and [[Q]]cI be their inter-
pretations asN -LATSs. Then[[P]]cI is weak history preserv-
ing bisimilar to [[Q]]cI if and only ifP is causal bisimilar to
Q in the sense of [BS98].

In [BS98] it is argued that, because of the dependencies due
to the binding of names, processes like(νy)(xy.yz) and
(νy)(xy|yz) should be indistinguishable by an external ob-
server. Nonetheless causal bisimulation distinguishes them,
as it only tracks the dependencies due to the structure of
processes – in the example, one output is prefixing the other
in the first process but not in the second. The paper leaves
open the possibility of a further refinement of the treatment
of causes in the operational semantics to identify the above
two processes.

Their remark has been tackled in [JJ95], where a do-
main model ofπ-terms based on Kahn networks is pre-
sented. There the induced equivalence equates the two
processes, but it seems to us that the equivalence is any-
way a traced-based rather than a bisimulation based one.
In [DP99], the authors use the combination of different par-
tial orders to achieve the effect of equating the two pro-
cesses above. In this paper we instead refined the way the
causal order of events in a run is determined. This has led
to the notion of name-dependency aware history preserv-
ing bisimulation defined above. It is easy to verify that
name-dependency aware history preserving bisimilarity is
a coarser relation than history preserving bisimilarity and
that the former equates the two example processes:

Proposition 6.10 If two asynchronous transition systems
are history preserving bisimilar than they are name-
dependency aware history preserving bisimilar.

Proposition 6.11 The denotations of the process terms
(νy)(xy.yz) and (νy)(xy|yz) are name-dependency
aware history preserving bisimilar but not history preserv-
ing bisimilar.

References

[BC88] G. Boudol and I. Castellani. Permutation of tran-
sitions: an event structure semantics for CCS and
SCCS. InProceedings of REX School/Workshop,
volume 354 ofLNCS, pages 411–427, 1988.

[BDN95] M. Boreale and R. De Nicola. Testing equivalences
for mobile processes.Information and Computa-
tion, 120:279–303, 1995.

[Bed88] M. Bednarczyk.Categories of Asynchronous Sys-
tems. PhD thesis, University of Sussex, 1988.

[BG95] N. Busi and R. Gorrieri. A petri net semantics forπ-
calculus. InProceedings of CONCUR’95, volume
962 ofLNCS, pages 145–159, 1995.

[Bou92] G. Boudol. Asynchrony and theπ-calculus. Tech-
nical Report 1702, INRIA, Sophia Antipolis, 1992.

[BS98] M. Boreale and D. Sangiorgi. A fully abstract se-
mantics for causality in theπ-calculus.Acta Infor-
matica, 35:353–400, 1998.

[Cat99] G. L. Cattani. Presheaf Models for Concurrency.
PhD thesis, University of Aarhus, 1999.

[CS00] G. L. Cattani and P. Sewell. Models for name-
passing processes: Interleaving and causal. Tech-
nical report, Cambridge University Computer Lab-
oratory, 2000.

[CSW97] G. L. Cattani, I. Stark, and G. Winskel. Presheaf
models for theπ-calculus. In Proceedings of
CTCS’97, volume 1290 ofLNCS, pages 106–126,
1997.

[CW97] G. L. Cattani and G. Winskel. Presheaf models for
concurrency. InProceedings of CSL’96, volume
1258 ofLNCS, pages 58–75, 1997.

[CW99] G. L. Cattani and G. Winskel. Presheaf models for
CCS-like languages. Technical Report 477, Cam-
bridge University Computer Laboratory, 1999. Sub-
mitted for publication.

[DD89] Ph. Darondeau and P. Degano. Causal trees. InPro-
ceedings of ICALP’89, volume 372 ofLNCS, pages
234–248, 1989.

[DDNM88a] P. Degano, R. De Nicola, and U. Montanari. On the
consistency of “truly concurrent” operational and
denotational semantics (extended abstract). InPro-
ceedings of LICS’88, pages 133–141. IEEE, 1988.

[DDNM88b] P. Degano, R. De Nicola, and U. Montanari. Partial
orderings descriptions and observations of nonde-
terministic concurrent processes. InProceedings of
REX School/Workshop, volume 354 ofLNCS, pages
438–496, 1988.

[DP99] P. Degano and C. Priami. Non-interleaving seman-
tics for mobile processes.Theoretical Computer
Science, 216(1-2):237–270, 1999.

[FCW99] M. P. Fiore, G. L. Cattani, and G. Winskel. Weak
bisimulation and open maps (extended abstract). In
Proceedings of LICS’99, pages 67–76. IEEE, 1999.

11

[FMS96] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-
abstract model for theπ-calculus (extended ab-
stract). InProceedings of LICS’96, pages 43–54.
IEEE, 1996.

[FPT99] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract
syntax and variable binding. InProceedings of
LICS’99, pages 193–202. IEEE, 1999.

[GG89] R. van Glabbeek and U. Goltz. Equivalence notions
for concurrent systems and refinement of actions.
In Proceedings of MFCS’89, volume 379 ofLNCS,
pages 237–248, 1989.

[GP99] M. Gabbay and A. Pitts. A new approach to ab-
stract syntax involving binders. InProceedings of
LICS’99, pages 214–224. IEEE, 1999.

[Hen96] M. Hennessy. A fully abstract denotational seman-
tics for theπ-calculus. Technical Report 96:04,
School of Cognitive and Computing Sciences, Uni-
versity of Sussex, 1996. To appear inTheoretical
Computer Science.

[Hof99] M. Hofmann. Semantical analysis of higher-order
abstract syntax. InProceedings of LICS’99, pages
204–213. IEEE, 1999.

[Hon99] K. Honda. Behavioural subtyping in name
passing synchronisation trees. Available at
http://www.dcs.qmw.ac.uk/ ∼kohei/ ,
1999.

[HT91] K. Honda and M. Tokoro. An object calculus for
asynchronous communication. InProceedings of
ECOOP’91, volume 512 ofLNCS, pages 133–147,
1991.

[JJ95] L. J. Jagadeesan and R. Jagadeesan. Causality and
true concurrency: A data-flow analysis of the pi-
calculus (extended abstract). InProceedings of
AMAST’95, volume 936 ofLNCS, pages 277–291,
1995.

[JNW96] A. Joyal, M. Nielsen, and G. Winskel. Bisimula-
tion from open maps.Information and Computa-
tion, 127(2):164–185, 1996.

[Kie94] A. Kiehn. Comparing locality and causality based
equivalences.Acta Informatica, 31:697–718, 1994.

[Mil89] R. Milner. Communication and Concurrency. Pren-
tice Hall, 1989.

[MLM92] S. Mac Lane and I. Moerdijk.Sheaves in Geometry
and Logic: A First Introduction to Topos Theory.
Springer-Verlag, 1992.

[MP95] U. Montanari and M. Pistore. Concurrent semantics
for theπ-calculus. InProceedings of MFPS XI, vol-
ume 1 ofENTCS, pages 337–356. Elsevier, 1995.

[MP98] U. Montanari and M. Pistore. An introduction
to history dependent automata. InSecond Work-
shop on Higher-Order Operational Techniques in
Semantics (HOOTS II), volume 10 ofENTCS. El-
sevier, 1998.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes. Part I and II.Information and
Computation, 100(1):1–77, 1992.

[MPW93] R. Milner, J. Parrow, and D. Walker. Modal logics
for mobile processes.Theoretical Computer Sci-
ence, 114(1):149–171, 1993.

[Pau98] L. Paulson. The inductive approach to verifying
cryptographic protocols.Journal of Computer Se-
curity, 6:85–128, 1998.

[RT88] A. Rabinovitch and B. Traktenbrot. Behaviour
structures and nets. Fundamenta Informatica,
11(4):357–404, 1988.

[San93] D. Sangiorgi.Expressing Mobility in Process Al-
gebras: First-Order and Higher-Order Paradigms.
PhD thesis, University of Edinburgh, 1993.

[San96a] D. Sangiorgi. π-calculus, internal mobility, and
agent-passing calculi.Theoretical Computer Sci-
ence, 167(2):235–274, 1996.

[San96b] D. Sangiorgi. A theory of bisimulation for theπ-
calculus.Acta Informatica, 33(1):69–97, 1996.

[Sel97] P. Selinger. First order axioms for asynchrony.
In Proceedings of CONCUR’97, volume 1243 of
LNCS, pages 376–390, 1997.

[Sew97] P. Sewell. On implementations and semantics of a
concurrent programming language. InProceedings
of CONCUR’97, volume 1243 ofLNCS, pages 391–
405, 1997.

[Sew00] P. Sewell. Pi calculi. In H. Bowman and J. Der-
rick, editors,Formal Methods for Distributed Pro-
cessing, An Object Oriented Approach. CUP, 2000.
To appear.

[Shi85] M. W. Shields. Concurrent machines.Theoretical
Computer Science, 28:449–465, 1985.

[SNW96] V. Sassone, M. Nielsen, and G. Winskel. Models for
concurrency: towards a classification.Theoretical
Computer Science, 170(1-2):297–348, 1996.

[Sta96] I. Stark. A fully abstract domain model for theπ-
calculus. InProceedings of LICS’96, pages 36–42.
IEEE, 1996.

[SV99a] P. Sewell and J. Vitek. Secure composition of inse-
cure components. InProceedings of the 12th IEEE
Computer Security Foundations Workshop, pages
136–150. IEEE, 1999. Extended version as Uni-
versity of Cambridge TR 463, 1999.

[SV99b] P. Sewell and J. Vitek. Secure composition of un-
trusted code: Wrappers and causality types. Techni-
cal Report 478, Computer Laboratory, University of
Cambridge, 1999. To appear inProceedings of the
13th IEEE Computer Security Foundations Work-
shop.

[Vog95] W. Vogler. Generalized OM-bisimulation.Informa-
tion and Computation, 118(1):38–47, 1995.

[WN95] G. Winskel and M. Nielsen. Models for concur-
rency. InHandbook of logic in computer science,
Vol. 4, Oxford Sci. Publ., pages 1–148. OUP, 1995.

12

