DISJ_CASES_UNION : (thm -> thm -> thm -> thm)
A |- t1 \/ t2 A1 u {t1} |- t3 A2 u {t2} |- t4 ------------------------------------------------------ DISJ_CASES_UNION A u A1 u A2 |- t3 \/ t4
th1 = |- m < n \/ n <= mand used with two additional theorems:
th2 = (m < n |- (m MOD n = m)) th3 = ({0 < n, n <= m} |- (m MOD n) = ((m - n) MOD n))to derive a new theorem:
#DISJ_CASES_UNION th1 th2 th3;; ["0 < n"] |- (m MOD n = m) \/ (m MOD n = (m - n) MOD n)