LIST_BETA_CONV : conv
"(\x1 x2 ... xn. u) v1 v2 ... vn"to the theorems of the form
|- (\x1 x2 ... xn. u) v1 v2 ... vn = u[v1/x1][v2/x2] ... [vn/xn]where u[vi/xi] denotes the result of substituting vi for all free occurrences of xi in u, after renaming sufficient bound variables to avoid variable capture.
#LIST_BETA_CONV "(\x y. x+y) 1 2";; |- (\x y. x + y)1 2 = 1 + 2