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Preface

This volume is the reference manual for the HOL system. It is one of three documents
making up the documentation for HOL:

(i) TUTORIAL: a tutorial introduction to HOL, with case studies.

(ii) DESCRIPTION: a description of higher order logic, the ML programming lan-
guage, and theorem proving methods in the HOL system;

(iii) REFERENCE: the reference documentation of the tools available in HOL.

These three documents will be referred to by the short names (in small slanted capitals)
given above.

This document, REFERENCE, provides documentation on all the pre-defined ML vari-
able bindings in the HOL system. These include: general-purpose functions, such as
ML functions for list processing, arithmetic, input/output, and interface configuration;
functions for processing the types and terms of the HOL logic, for setting up theories,
and for using the subgoal package; primitive and derived forward inference rules; tac-
tics and tacticals; and pre-proved built-in theorems.

The manual entries for these ML identifiers are divided into two chapters. The first
chapter is an alphabetical sequence of manual entries for all ML identifiers in the system
except those identifiers that are bound to theorems. The theorems are listed in the
second chapter, roughly grouped into sections based on subject matter.

The REFERENCE volume is purely for reference and browsing. It is generated from the
same database that is used by the help system. For an introduction to the HOL system,
see TUTORIAL; for a systematic presentation, see DESCRIPTION.
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Chapter 1

Pre-defined ML Identifiers

This chapter provides manual entries for all the pre-defined ML identifiers in the HOL
system, except the identifiers that are bound to pre-proved theorems (for these, see
chapter two). These include: general-purpose functions, such as functions for list pro-
cessing, arithmetic, input/output, and interface configuration; functions for processing
the types and terms of the HOL logic, for setting up theories, and for using the subgoal
package; primitive and derived forward inference rules; and tactics and tacticals. The
arrangement is alphabetical.

##

Lib.## : (’a -> ’b) * (’c -> ’d) -> ’a * ’c -> ’b * ’d

Synopsis
Maps a pair of functions through a pair.

Description
## is an infix operator such that the call (f ## g) (x, y) returns the value (f x, g y).

Failure
Never fails.

Example

- ((fn x => x + 1) ## not) (3, false);
> val it = (4, true) : int * bool

See also
B, C, I, K, S, W.

++

simpLib.++ : simpset * ssdata -> simpset

1
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Synopsis
Augments simpsets with ssdata values.

Description
The ++ function combines its two arguments and creates a new simpset. This is a way
of creating simpsets that are tailored to the particular simplification task at hand.

Failure
Never fails.

Example
Here we add the UNWIND_ss ssdata value to the pure_ss simpset to exploit the former’s
point-wise elimination conversions.

- SIMP_CONV (pure_ss ++ boolSimps.UNWIND_ss) []
(Term‘!x. x ==> (?y. P(x,y) /\ (y = 5))‘);

> val it = |- (!x. x ==> (?y. P (x,y) /\ (y = 5))) = P (T,5) : thm

Comments
The ++ identifier is not an infix by default, and so needs to be declared as such at the
ML top-level loop, e.g.:

- infix ++;
> infix 0 ++

See also
mk_simpset, rewrites, SIMP_CONV, bool_ss, UNWIND_ss

ABS

ABS : (term -> thm -> thm)

Synopsis
Abstracts both sides of an equation.

Description

A |- t1 = t2
------------------------ ABS x [Where x is not free in A]
A |- (\x.t1) = (\x.t2)

Failure
If the theorem is not an equation, or if the variable x is free in the assumptions A.
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Example

- let val m = Parse.Term ‘m:num‘
in

ABS m (REFL m)
end;

> val it = |- (\m. m) = (\m. m) : thm

See also
ETA_CONV, EXT, MK_ABS.

ABS_CONV

ABS_CONV : (conv -> conv)

Synopsis
Applies a conversion to the body of an abstraction.

Description
If c is a conversion that maps a term tm to the theorem |- tm = tm’, then the conversion
ABS_CONV c maps abstractions of the form \x.tm to theorems of the form:

|- (\x.tm) = (\x.tm’)

That is, ABS_CONV c "\x.t" applies c to the body of the abstraction "\x.t".

Failure
ABS_CONV c tm fails if tm is not an abstraction or if tm has the form "\x.t" but the con-
version c fails when applied to the term t. The function returned by ABS_CONV c may
also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that
maps a term M to a theorem |- M = N).
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Example

- let val M = Parse.Term ‘\x. 1 = x‘
in
ABS_CONV SYM_CONV M
end;

|- (\x. 1 = x) = (\x. x = 1)

See also
RAND_CONV, RATOR_CONV, SUB_CONV.

ACCEPT_TAC

ACCEPT_TAC : thm_tactic

Synopsis
Solves a goal if supplied with the desired theorem (up to alpha-conversion).

Description
ACCEPT_TAC maps a given theorem th to a tactic that solves any goal whose conclusion
is alpha-convertible to the conclusion of th.

Failure
ACCEPT_TAC th (A,g) fails if the term g is not alpha-convertible to the conclusion of the
supplied theorem th.

Example
ACCEPT_TAC applied to the axiom

BOOL_CASES_AX = |- !t. (t = T) \/ (t = F)

will solve the goal

?- !x. (x = T) \/ (x = F)

but will fail on the goal

?- !x. (x = F) \/ (x = T)

Uses
Used for completing proofs by supplying an existing theorem, such as an axiom, or a
lemma already proved.



aconv 5

See also
MATCH_ACCEPT_TAC.

aconv

aconv : (term -> term -> bool)

Synopsis
Tests for alpha-convertibility of terms.

Description
When applied to two terms, aconv returns true if they are alpha-convertible, and false

otherwise.

Failure
Never fails.

Example
A simple case of alpha-convertibility is the renaming of a single quantified variable:

- let val M = Parse.Term ‘?x. x = T‘
val N = Parse.Term ‘?y. y = T‘

in
aconv M N
end;

true : bool

See also
ALPHA, ALPHA_CONV.

AC_CONV

AC_CONV : ((thm # thm) -> conv)

Synopsis
Proves equality of terms using associative and commutative laws.
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Description
Suppose _ is a function, which is assumed to be infix in the following syntax, and ath

and cth are theorems expressing its associativity and commutativity; they must be of
the following form, except that any free variables may have arbitrary names and may
be universally quantified:

ath = |- m _ (n _ p) = (m _ n) _ p
cth = |- m _ n = n _ m

Then the conversion AC_CONV(ath,cth) will prove equations whose left and right sides
can be made identical using these associative and commutative laws.

Failure
Fails if the associative or commutative law has an invalid form, or if the term is not an
equation between AC-equivalent terms.

Example

- let val M = Parse.Term
‘x + (SUC t) + ((3 + y) + z) = 3 + (SUC t) + x + y + z‘

in
AC_CONV(ADD_ASSOC,ADD_SYM) M
end;

|- (x + ((SUC t) + ((3 + y) + z)) = 3 + ((SUC t) + (x + (y + z)))) = T

Comments
Note that the preproved associative and commutative laws for the operators +, *, /\ and
\/ are already in the right form to give to AC_CONV.

See also
SYM_CONV.

ADD_ASSUM

ADD_ASSUM : (term -> thm -> thm)

Synopsis
Adds an assumption to a theorem.
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Description
When applied to a boolean term s and a theorem A |- t, the inference rule ADD_ASSUM

returns the theorem A u {s} |- t.

A |- t
-------------- ADD_ASSUM s
A u {s} |- t

ADD_ASSUM performs straightforward set union with the new assumption; it checks for
identical assumptions, but not for alpha-equivalent ones. The position at which the new
assumption is inserted into the assumption list should not be relied on.

Failure
Fails unless the given term has type bool.

See also
ASSUME, UNDISCH.

add_bare_numeral_form

Parse.add_bare_numeral_form : (char * string option) -> unit

Synopsis
Adds support for annotated numerals to the parser/pretty-printer.

Description
The function add_bare_numeral_form allows the user to give special meaning to strings of
digits that are suffixed with single characters. A call to this function with pair argument
(c, s) adds c as a possible suffix. Subsequently, if a sequence of digits is parsed, and it
has the character c directly after the digits, then the natural number corresponding to
these digits is made the argument of the “map function” corresponding to s.

This map function is computed as follows: if the s option value is NONE, then the
function is considered to be the identity and never really appears; the digits denote a
natural number. If the value of s is SOME s’, then the parser translates the string to an
application of s’ to the natural number denoted by the digits.

Failure
Fails if the suffix character is not a letter.
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Example
The following function, binary_of, defined with equations:

val bthm =
|- binary_of n = if n = 0 then 0

else n MOD 10 + 2 * binary_of (n DIV 10) : Thm.thm

can be used to convert numbers whose decimal notation is x, to numbers whose binary
notation is x (as long as x only involves zeroes and ones).

The following call to add_bare_numeral_form then sets up a numeral form that could
be used by users wanting to deal with binary numbers:

- add_bare_numeral_form(#"b", SOME "binary_of");
> val it = () : unit
- Term‘1011b‘;
> val it = ‘1011b‘ : Term.term
- dest_comb it;
> val it = {Rand = ‘1011‘, Rator = ‘binary_of‘} :

{Rand : Term.term, Rator : Term.term}

Uses
If one has a range of values that are usefully indexed by natural numbers, the function
add_bare_numeral_form provides a syntactically convenient way of reading and writing
these values. If there are other functions in the range type such that the mapping
function is a homomorphism from the natural numbers, then add_numeral_form could
be used, and the appropriate operators (+, * etc) overloaded.

See also
add_numeral_form

add_implicit_rewrites

Rewrite.add_implicit_rewrites: thm list -> unit

Synopsis
Augments the built-in database of simplifications automatically included in rewriting.

Uses
Used to build up the power of the built-in simplification set.
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See also
base_rewrites, set_implicit_rewrites.

add_infix

Parse.add_infix : string * int * HOLgrammars.associativity -> unit

Synopsis
Adds a string as an infix with the given precedence and associativity to the term gram-
mar.

Description
This function adds the given string to the global term grammar such that the string

<str1> s <str2>

will be parsed as

s <t1> <t2>

where <str1> and <str2> have been parsed to two terms <t1> and <t2>. The parsing
process does not pay any attention to whether or not s corresponds to a constant or
not. This resolution happens later in the parse, and will result in either a constant or a
variable with name s. In fact, if this name is overloaded, the eventual term generated
may have a constant of quite a different name again; the resolution of overloading
comes as a separate phase (see entries for allow_for_overloading_on and overload_on).

Failure
add_infix fails if the precedence level chosen for the new infix is the same as a different
type of grammar rule (e.g., suffix or binder), or if the specified precedence level has
infixes already but of a different associativity.

It is also possible that the choice of string s will result in subsequent attempts to call
the term parser failing due to precedence conflicts.

Example
Though we may not have + defined as a constant, we can still define it as an infix for
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the purposes of printing and parsing:

- add_infix ("+", 500, HOLgrammars.LEFT);
> val it = () : unit
- val t = Term‘x + y‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>
> val t = ‘x + y‘ : Term.term

We can confirm that this new infix has indeed been parsed that way by taking the
resulting term apart:

- dest_comb t;
> val it = {Rand = ‘y‘, Rator = ‘$+ x‘} :

{Rand : Term.term, Rator : Term.term}

With its new status, + has to be “quoted” with a dollar-sign if we wish to use it in a
position where it is not an infix, as in the binding list of an abstraction:

- Term‘\$+. x + y‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>
> val it = ‘\$+. x + y‘ : Term.term
- dest_abs it;
> val it = {Body = ‘x + y‘, Bvar = ‘$+‘}

: {Body : Term.term, Bvar : Term.term}

The generation of three new type variables in the examples above emphasises the fact
that the terms in the first example and the body of the second are really no different
from f x y (where f is a variableaddition from arithmeticTheory. The new + infix is left
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associative:

- Term‘x + y + z‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘x + y + z‘ : Term.term
- dest_comb it;
> val it =

{Rand = ‘z‘, Rator = ‘$+ (x + y)‘}
: {Rand : Term.term, Rator : Term.term}

It is also more tightly binding than /\ (which has precedence 400 by default):

- Term‘p /\ q + r‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘p /\ q + r‘ : Term.term
- dest_comb it;
> val it =

{Rand = ‘q + r‘, Rator = ‘$/\ p‘}
: {Rand : Term.term, Rator : Term.term}

An attempt to define a right associative operator at the same level fails:

Lib.try add_infix("-", 500, HOLgrammars.RIGHT);

Exception raised at Parse.add_infix:
Grammar Error: Attempt to have differently associated infixes

(RIGHT and LEFT) at same level
! Uncaught exception:
! HOL_ERR <poly>

Similarly we can’t define an infix at level 900, because this is where the (true prefix)
rule for logical negation (~) is.

- Lib.try add_infix("-", 900, HOLgrammars.RIGHT);

Exception raised at Parse.add_infix:
Grammar Error: Attempt to have different forms at same level
! Uncaught exception:
! HOL_ERR <poly>

Finally, an attempt to have a second + infix at a different precedence level causes grief
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when we later attempt to use the parser:

- add_infix("+", 400, HOLgrammars.RIGHT);
> val it = () : unit
- Term‘p + q‘;
! Uncaught exception:
! HOL_ERR <poly>
- Lib.try Term‘p + q‘;

Exception raised at Parse.Term:
Grammar introduces precedence conflict between tokens + and +
! Uncaught exception:
! HOL_ERR <poly>

Uses
Most use of infixes will want to have them associated with a particular constant in
which case the definitional principles (new_infixl_definition etc) are more likely to be
appropriate. However, a development of a theory of abstract algebra may well want to
have infix variables such as + above.

Comments
As with other functions in the Parse structure, there is a companion temp_add_infix

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

See also
add_binder, add_rule, add_listform, Term.

add_listform

Parse.add_listform :
{separator : string, leftdelim : string, rightdelim : string,
cons : string, nilstr : string} -> unit

Synopsis
Adds a “list-form” to the built-in grammar, allowing the parsing of strings such as
[a; b; c] and {}.
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Description
The add_listform function allows the user to augment the HOL parser with rules so that
it can turn a string of the form

<ld> str1 <sep> str2 <sep> ... strn <rd>

into the term

<cons> t1 (<cons> t2 ... (<cons> tn <nilstr>))

where <ld> is the left delimiter string, <rd> the right delimiter, and <sep> is the separator
string from the fields of the record argument to the function. The various stri are
strings representing the ti terms. Further, the grammar will also parse <ld> <rd> into
<nilstr>.

In common with the add_rule function, there is no requirement that the cons and
nilstr fields be the names of constants; the parser/grammar combination will generate
variables with these names if there are no corresponding constants.

The HOL pretty-printer is simultaneously aware of the new rule, and terms of the
forms above will print appropriately.

Failure
Should never fail itself, but subsequent calls to the term parser may well fail if the strings
chosen for the various fields above introduce precedence conflicts. For example, it will
almost always be impossible to use left and right delimiters that are already present in
the grammar, unless they are there as the left and right parts of a closefix.

Example
The definition of the “list-form” for lists in the HOL distribution is:

add_listform {separator = ";", leftdelim = "[", rightdelim = "]",
cons = "CONS", nilstr = "NIL"};

while the set syntax is defined similarly:

add_listform {leftdelim = "{", rightdelim = "}", separator = ";",
cons = "INSERT", nilstr = "EMPTY"};

Uses
Used to make sequential term structures print and parse more pleasingly.

Comments
As with other parsing functions, there is a temp_add_listform version of this function,
which has the same effect on the global grammar, but which does not cause this effect
to persist when the current theory is exported.
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See also
add_rule.

add_numeral_form

Parse.add_numeral_form : (char * string option) -> unit

Synopsis
Adds support for numerals of differing types to the parser/pretty-printer.

Description
This function allows the user to extend HOL’s parser and pretty-printer so that they
recognise and print numerals. A numeral in this context is a string of digits. Each such
string corresponds to a natural number (i.e., the HOL type num) but add_numeral_form

allows for numerals to stand for values in other types as well.
A call to add_numeral_form(c,s) augments the global term grammar in two ways.

Firstly, in common with the function add_bare_numeral_form (q.v.), it allows the user
to write a single letter suffix after a numeral (the argument c). The presence of this
character specifies s as the “injection function” which is to be applied to the natural
number denoted by the preceding digits.

Secondly, the constant denoted by the s argument is overloaded to be one of the
possible resolutions of the overloaded operator &. When a numeral doesn’t have a
character suffix, this means that it has been made an argument to the function fromNum,
and so might take on different types, depending on the context.

Failure
Fails if arithmeticTheory is not loaded, as this is where the basic constants implementing
natural number numerals are defined. Also fails if there is no constant with the given
name, or if it doesn’t have type ‘:num -> ’a‘ for some ’a. Fails if add_bare_numeral_form
would also fail on this input.

Example
The natural numbers are given numeral forms as follows:

val _ = add_numeral_form (#"n", NONE);

This is done in arithmeticTheory so that after it is loaded, one can write numerals and
have them parse (and print) as natural numbers. However, later in the development, in
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integerTheory, numeral forms for integers are also introduced:

val _ = add_numeral_form(#"i", SOME "int_of_num");

Here int_of_num is the name of the function which injects natural numbers into integers.
After this call is made, numeral strings can be treated as integers or natural numbers,
depending on the context.

- load "integerTheory";
> val it = () : unit
- Term‘3‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘3‘ : Term.term
- type_of it;
> val it = ‘:int‘ : Type.hol_type

The parser has chosen to give the string “3” integer type (it will prefer the most recently
specified possibility, in common with overloading in general). However, numerals can
appear with natural number type in appropriate contexts:

- Term‘(SUC 3, 4 + ~x)‘;
> val it = ‘(SUC 3,4 + ~x)‘ : Term.term
- type_of it;
> val it = ‘:num # int‘ : Type.hol_type

Moreover, one can always use the character suffixes to absolutely specify the type of the
numeral form:

- Term‘f 3 /\ p‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘f 3 /\ p‘ : Term.term
- Term‘f 3n /\ p‘;
> val it = ‘f 3 /\ p‘ : Term.term

Comments
Overloading on too many numeral forms is a sure recipe for confusion.

See also
add_bare_numeral_form, show_numeral_types
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add_rule

Parse.add_rule :
{term_name : string, fixity : fixity,
pp_elements: term_grammar.pp_element list,
paren_style : term_grammar.ParenStyle,
block_style : term_grammar.PhraseBlockStyle *

term_grammar.block_info} -> unit

Synopsis
Adds a parsing/printing rule to the global grammar.

Description
The function add_rule is a fundamental method for adding parsing (and thus printing)
rules to the global term grammar that sits behind the functions Term and --, and the
pretty-printer installed for terms. It is used to for everything except the addition of
list-forms, for which refer to the entry for add_listform.

There are five components in the record argument to add_rule. The term_name com-
ponent is the name of the term (whether a constant or a variable) that will be generated
at the head of the function application. Thus, the term_name component when specifying
parsing for conditional expressions is COND.

The following values (all in structure Parse) are useful for constructing fixity values:

val LEFT : HOLgrammars.associativity
val RIGHT : HOLgrammars.associativity
val NONASSOC : HOLgrammars.associativity

val Prefix : fixity
val Binder : fixity
val Closefix : fixity
val Infixl : int -> fixity
val Infixr : int -> fixity
val Infix : HOLgrammars.associativity * int -> fixity
val TruePrefix : int -> fixity
val Suffix : int -> fixity

The Prefix fixity has an unfortunate name, as it is a fixity corresponding to no special
treatment. In fact, when a Prefix fixity is specified, the add_rule function performs no
action. When an element list is meant to form a genuine prefix, the TruePrefix fixity
must be used instead, as is done below in the conditional expression example and as is
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also done with ~ (logical negation). The Prefix fixity is useful elsewhere, in situations
where standard interfaces require fixities to be provided, but where the user may wish
to leave an identifier as a normal symbol.

The Binder fixity is for binders such as universal and existential quantifiers (! and
?). Binders can actually be seen as (true) prefixes (should ‘!x. p /\ q‘ be parsed as
‘(!x. p) /\ q‘ or as ‘!x. (p /\ q)‘?), but the add_rule interface only allows binders
to be added at the one level (the weakest in the grammar). Further, when binders
are added using this interface, all elements of the record apart from the term_name are
ignored, so the name of the binder must be the same as the string that is parsed and
printed (but see also restricted quantifiers: associate_restriction).

The remaining fixities all cause add_rule to pay due heed to the pp_elements (“pars-
ing/printing elements”) component of the record. As far as parsing is concerned, the
only important elements are TOK and TM values, of the following types:

val TM : term_grammar.pp_element
val TOK : string -> term_grammar.pp_element

The TM value corresponds to a “hole” where a sub-term is possible. The TOK value corre-
sponds to a piece of concrete syntax, a string that is required when parsing, and which
will appear when printing. The sequence of pp_elements specified in the record passed
to add_rule specifies the “kernel” syntax of an operator in the grammar. The “kernel” of
a rule is extended (or not) by additional sub-terms depending on the fixity type, thus:

Closefix : [Kernel] (* no external arguments *)
TruePrefix : [Kernel] _ (* an argument to the right *)
Suffix : _ [Kernel] (* an argument to the left *)
Infix : _ [Kernel] _ (* arguments on both sides *)

Thus simple infixes, suffixes and prefixes would have singleton pp_element lists, con-
sisting of just the symbol desired. More complicated mix-fix syntax can be constructed
by identifying whether or not sub-term arguments exist beyond the kernel of concrete
syntax. For example, syntax for the evaluation relation of an operational semantics
( _ |- _ --> _ ) is an infix with a kernel delimited by |- and --> tokens. Syntax for
denotation brackets [| _ |] is a closefix with one internal argument in the kernel.

The remaining sorts of possible pp_element values are concerned with pretty-printing.
(The basic scheme is implemented on top of a standard Oppen-style pretty-printing
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package.) They are

(* where
type term_grammar.block_info = PP.break_style * int

*)
val BreakSpace : (int * int) -> term_grammar.pp_element
val HardSpace : int -> term_grammar.pp_element

val BeginFinalBlock : term_grammar.block_info -> term_grammar.pp_element
val EndInitialBlock : term_grammar.block_info -> term_grammar.pp_element
val PPBlock : term_grammar.pp_element list * term_grammar.block_info

-> term_grammar.pp_element

val OnlyIfNecessary : term_grammar.ParenStyle
val ParoundName : term_grammar.ParenStyle
val ParoundPrec : term_grammar.ParenStyle
val Always : term_grammar.ParenStyle

val AroundEachPhrase : term_grammar.PhraseBlockStyle
val AroundSamePrec : term_grammar.PhraseBlockStyle
val AroundSameName : term_grammar.PhraseBlockStyle

The two spacing values provide ways of specifying white-space should be added when
terms are printed. Use of HardSpace n results in n spaces being added to the term
whatever the context. On the other hand, BreakSpace(m,n) results in a break of width m

spaces unless this makes the current line too wide, in which case a line-break will occur,
and the next line will be indented an extra n spaces.

For example, the add_infix function (q.v.) is implemented in terms of add_rule in
such a way that a single token infix s, has a pp_element list of

[HardSpace 1, TOK s, BreakSpace(1,0)]

This results in chains of infixes (such as those that occur with conjunctions) that break
so as to leave the infix on the right hand side of the line. Under this constraint, printing
can’t break so as to put the infix symbol on the start of a line, because that would imply
that the HardSpace had in fact been broken. (Consequently, if a change to this behaviour
is desired, there is no global way of effecting it, but one can do it on an infix-by-infix
basis by deleting the given rule (see, for example, remove_termtok) and then “putting it
back” with different pretty-printing constraints.)

The PPBlock function allows the specification of nested blocks (blocks in the Oppen
pretty-printing sense) within the list of pp_elements. Because there are sub-terms in
all but the Closefix fixities that occur beyond the scope of the pp_element list, the
BeginFinalBlock and EndInitialBlock functions can also be used to indicate the bound-
ary of blocks whose outer extent is the term beyond the kernel represented by the
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pp_element list. There is an example of this below.
The possible ParenStyle values describe when parentheses should be added to terms.

The OnlyIfNecessary value will cause parentheses to be added only when required to
disambiguate syntax. The ParoundName will cause parentheses to be added if necessary,
or where the head symbol has the given term_name and where this term is not the ar-
gument of a function with the same head name. This style of parenthesisation is used
with tuples, for example. The ParoundPrec value is similar, but causes parentheses to be
added when the term is the argument to a function with a different precedence level.
Finally, the Always value causes parentheses always to be added.

The PhraseBlockStyle values describe when pretty-printing blocks involving this term
should be entered. The AroundEachPhrase style causes a pretty-printing block to be cre-
ated around each term. This is not appropriate for operators such as conjunction how-
ever, where all of the arguments to the conjunctions in a list are more pleasingly thought
of as being at the same level. This effect is gained by specifying either AroundSamePrec

or AroundSameName. The former will cause the creation of a new block for the phrase if
it is at a different precedence level from its parent, while the latter creates the block if
the parent name is not the same. The former is appropriate for + and - which are at the
same precedence level, while the latter is appropriate for /\.

Failure
This function will fail if the pp_element list does not have TOK values at the beginning
and the end of the list, or if there are two adjacent TM values in the list. It will fail if the
rule specifies a fixity with a precedence, and if that precedence level in the grammar is
already taken by rules with a different sort of fixity.

Example
There are two conditional expression syntaxes defined in the theory bool. The first is
the traditional HOL88/90 syntax. Because the syntax involves “dangling” terms to the
left and right, it is an infix (and one of very weak precedence at that).

val _ = add_rule{term_name = "COND",
fixity = Infix (HOLgrammars.RIGHT, 3),
pp_elements = [HardSpace 1, TOK "=>",

BreakSpace(1,0), TM,
BreakSpace(1,0), TOK "|",
HardSpace 1],

paren_style = OnlyIfNecessary,
block_style = (AroundEachPhrase,

(PP.INCONSISTENT, 0))};

The second rule added uses the more familiar if-then-else syntax. Here there is only a
“dangling” term to the right of the construction, so this rule’s fixity is of type TruePrefix.
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(If the rule was made a Closefix, strings such as ‘if P then Q else R‘ would still parse,
but so too would ‘if P then Q else‘.) This example also illustrates the use of blocks
within rules to improve pretty-printing.

val _ = add_rule{term_name = "COND", fixity = TruePrefix 70,
pp_elements = [PPBlock([TOK "if", BreakSpace(1,2),

TM, BreakSpace(1,0),
TOK "then"], (PP.CONSISTENT, 0)),

BreakSpace(1,2), TM, BreakSpace(1,0),
BeginFinalBlock(PP.CONSISTENT, 2),
TOK "else", BreakSpace(1,0)],

paren_style = OnlyIfNecessary,
block_style = (AroundEachPhrase,

(PP.INCONSISTENT, 0))};

Note that the above form is not that actually used in the system. As written, it allows
for pretty-printing some expressions as:

if P then
<very long term> else Q

because the block_style is INCONSISTENT.
The pretty-printer prefers later rules over earlier rules by default (though this choice

can be changed with prefer_form_with_tok (q.v.)), so conditional expressions print us-
ing the if-then-else syntax rather than the _ => _ | _ syntax.

Uses
For making pretty concrete syntax possible.

Comments
Because adding new rules to the grammar may result in precedence conflicts in the
operator-precedence matrix, it is as well with interactive use to test the Term parser
immediately after adding a new rule, as it is only with this call that the precedence
matrix is built.

As with other functions in the Parse structure, there is a companion temp_add_rule

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

The Prefix/TruePrefix situation may be transitory. It has the advantage of main-
taining a deal of backwards compatibility, but at the cost of confusing the terminol-
ogy. Where the Prefix value is acceptable, the fixity type should be replaced by a
fixity option type to better reflect the semantics of what is really happening.

An Isabelle-style concrete syntax for specifying rules would probably be desirable as
it would conceal the complexity of the above from most users.
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See also
add_listform, add_infix, prefer_form_with_tok

allowed_term_constant

Lexis.allowed_term_constant : string -> bool

Synopsis
Tests if a string has a permissible name for a term constant.

Description
When applied to a string, allowed_term_constant returns true if the string is a permis-
sible constant name for a term, that is, if it is an identifier (see the DESCRIPTION for
more details), and false otherwise.

Failure
Never fails.

Example
The following gives a sample of some allowed and disallowed constant names:

- map Lexis.allowed_term_constant ["pi", "@", "a name", "+++++", "10"];
> val it = [true, true, false, true, false] : bool list

Comments
Note that this function only performs a lexical test; it does not check whether there is
already a constant of that name in the current theory.

See also
constants, is_constant, new_alphanum, new_special_symbol, special_symbols,
allowed_type_constant.

allowed_type_constant

Lexis.allowed_type_constant : string -> bool
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Synopsis
Tests if a string has a permissible name for a type constant.

Description
When applied to a string, allowed_term_constant returns true if the string is a permis-
sible constant name for a type operator, and false otherwise.

Failure
Never fails.

Example
The following gives a sample of some allowed and disallowed names for type operators:

- map Lexis.allowed_type_constant ["list", "’a", "fun", "->", "#", "fun2"];
> val it = [true, false, true, false, false, true] : bool list

Comments
Note that this function only performs a lexical test; it does not check whether there is
already a type operator of that name in the current theory.

See also
allowed_term_constant

allow_for_overloading_on

Parse.allow_for_overloading_on : string * hol_type -> unit

Synopsis
Allows for overloading on the given string, with types of given form.

Description
A call to allow_for_overloading_on(s,ty) attempts to update the global term grammar
so that instances of the string s will stand for one of a list of possible constants, all of
which will have types that can be matched by ty. No actual overloadings are estab-
lished by this call, but it is a necessary prerequisite of doing any overloadings (using the
overload_on function).

Because resolution of overloading happens after the first phase of parsing, overload-
ing a string that appears only as a token and not as a term name will not produce any
useful behaviour. For example, in the theory of lists, :: is introduced as an infix form
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of CONS. If one wanted to perform some sort of overloading on this constant, then the
string passed as an argument to allow_for_overloading_on (and overload_on) would
have to be CONS, not ::, because :: entirely disappears during the first phase of parsing,
leaving only instances of CONS.

Attempts to allow for overloading on a string that has already been so allowed can
cause the range of allowed types to become broader if the new type can be instantiated
to the new type.

Failure
Fails if a string is already overloaded with a type that is either more general than or
incomparable with that provided.

Comments
There is a companion temp_allow_for_overloading_on function, which has the same
effect on the global grammar, but which does not cause this effect to persist when the
current theory is exported.

See also
Term, overload_on, add_numeral_form

ALL_CONV

ALL_CONV : conv

Synopsis
Conversion that always succeeds and leaves a term unchanged.

Description
When applied to a term ‘‘t‘‘, the conversion ALL_CONV returns the theorem |- t = t.

Failure
Never fails.

Uses
Identity element for THENC.

See also
NO_CONV, REFL.
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ALL_TAC

ALL_TAC : tactic

Synopsis
Passes on a goal unchanged.

Description
ALL_TAC applied to a goal g simply produces the subgoal list [g]. It is the identity for the
THEN tactical.

Failure
Never fails.

Example
The tactic INDUCT_TAC THENL [ALL_TAC;tac], applied to a goal g, applies INDUCT_TAC to
g to give a basis and step subgoal; it then returns the basis unchanged, along with the
subgoals produced by applying tac to the step.

Uses
Used to write tacticals such as REPEAT. Also, it is often used as a place-holder in building
compound tactics using tacticals such as THENL.

See also
NO_TAC, REPEAT, THENL.

ALL_THEN

ALL_THEN : thm_tactical

Synopsis
Passes a theorem unchanged to a theorem-tactic.

Description
For any theorem-tactic ttac and theorem th, the application ALL_THEN ttac th results
simply in ttac th, that is, the theorem is passed unchanged to the theorem-tactic.
ALL_THEN is the identity theorem-tactical.
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Failure
The application of ALL_THEN to a theorem-tactic never fails. The resulting theorem-tactic
fails under exactly the same conditions as the original one.

Uses
Writing compound tactics or tacticals, e.g. terminating list iterations of theorem-tacticals.

See also
ALL_TAC, FAIL_TAC, NO_TAC, NO_THEN, THEN_TCL, ORELSE_TCL.

ALPHA

ALPHA : term -> term -> thm

Synopsis
Proves equality of alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns
the theorem |- t1 = t1’.

------------- ALPHA t1 t1’
|- t1 = t1’

Failure
Fails unless the terms provided are alpha-equivalent.

Example

- let val M = Term‘!x:num. x = x‘
val N = Term‘!y:num. y = y‘

in
ALPHA M N

end;

> val it = |- (!x. x = x) = (!y. y = y) : Thm.thm

See also
aconv, ALPHA_CONV, GEN_ALPHA_CONV.
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ALPHA_CONV

ALPHA_CONV : (term -> conv)

Synopsis
Renames the bound variable of a lambda-abstraction.

Description
If x is a variable of type ty and M is an abstraction (with bound variable y of type ty and
body t), then ALPHA_CONV x M returns the theorem:

|- (\y.t) = (\x’. t[x’/y])

where the variable x’:ty is a primed variant of x chosen so as not to be free in \y.t.

Failure
ALPHA_CONV x tm fails if x is not a variable, if tm is not an abstraction, or if x is a variable
v and tm is a lambda abstraction \y.t but the types of v and y differ.

See also
ALPHA, GEN_ALPHA_CONV.

ancestry

ancestry : string -> string list

Synopsis
Gets a list of the (proper) ancestry of a theory.

Description
A call to ancestry "th" returns a list of all the proper ancestors (i.e. parents, parents of
parents, etc.) of the theory th.

Failure
Fails if "th" is not an ancestor of the current theory.

See also
parents.
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AND_EXISTS_CONV

AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification outwards through a conjunction.

Description
When applied to a term of the form (?x.P) /\ (?x.Q), where x is free in neither P nor
Q, AND_EXISTS_CONV returns the theorem:

|- (?x. P) /\ (?x. Q) = (?x. P /\ Q)

Failure
AND_EXISTS_CONV fails if it is applied to a term not of the form (?x.P) /\ (?x.Q), or if it
is applied to a term (?x.P) /\ (?x.Q) in which the variable x is free in either P or Q.

See also
EXISTS_AND_CONV, LEFT_AND_EXISTS_CONV, RIGHT_AND_EXISTS_CONV.

AND_FORALL_CONV

AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification outwards through a conjunction.

Description
When applied to a term of the form (!x.P) /\ (!x.Q), the conversion AND_FORALL_CONV

returns the theorem:

|- (!x.P) /\ (!x.Q) = (!x. P /\ Q)

Failure
Fails if applied to a term not of the form (!x.P) /\ (!x.Q).
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See also
FORALL_AND_CONV, LEFT_AND_FORALL_CONV, RIGHT_AND_FORALL_CONV.

ANTE_CONJ_CONV

ANTE_CONJ_CONV : conv

Synopsis
Eliminates a conjunctive antecedent in favour of implication.

Description
When applied to a term of the form (t1 /\ t2) ==> t, the conversion ANTE_CONJ_CONV

returns the theorem:

|- (t1 /\ t2 ==> t) = (t1 ==> t2 ==> t)

Failure
Fails if applied to a term not of the form "(t1 /\ t2) ==> t".

Uses
Somewhat ad-hoc, but can be used (with CONV_TAC) to transform a goal of the form
?- (P /\ Q) ==> R into the subgoal ?- P ==> (Q ==> R), so that only the antecedent P
is moved into the assumptions by DISCH_TAC.

ANTE_RES_THEN

ANTE_RES_THEN : thm_tactical

Synopsis
Resolves implicative assumptions with an antecedent.

Description
Given a theorem-tactic ttac and a theorem A |- t, the function ANTE_RES_THEN produces
a tactic that attempts to match t to the antecedent of each implication

Ai |- !x1...xn. ui ==> vi

(where Ai is just !x1...xn. ui ==> vi) that occurs among the assumptions of a goal.
If the antecedent ui of any implication matches t, then an instance of Ai u A |- vi is



AP TERM 29

obtained by specialization of the variables x1, ..., xn and type instantiation, followed
by an application of modus ponens. Because all implicative assumptions are tried, this
may result in several modus-ponens consequences of the supplied theorem and the
assumptions. Tactics are produced using ttac from all these theorems, and these tactics
are applied in sequence to the goal. That is,

ANTE_RES_THEN ttac (A |- t) g

has the effect of:

MAP_EVERY ttac [A1 u A |- v1; ...; Am u A |- vm] g

where the theorems Ai u A |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the implications that occur among the as-
sumptions of the goal g and the supplied theorem A |- t. Any negation ~v that appears
among the assumptions of the goal is treated as an implication v ==> F. The sequence in
which the theorems Ai u A |- vi are generated and the corresponding tactics applied
is unspecified.

Failure
ANTE_RES_THEN ttac (A |- t) fails when applied to a goal g if any of the tactics pro-
duced by ttac (Ai u A |- vi), where Ai u A |- vi is the ith resolvent obtained from
the theorem A |- t and the assumptions of g, fails when applied in sequence to g.

See also
IMP_RES_TAC, IMP_RES_THEN, MATCH_MP, RES_TAC, RES_THEN.

AP_TERM

AP_TERM : (term -> thm -> thm)

Synopsis
Applies a function to both sides of an equational theorem.

Description
When applied to a term f and a theorem A |- x = y, the inference rule AP_TERM returns
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the theorem A |- f x = f y.

A |- x = y
---------------- AP_TERM f
A |- f x = f y

Failure
Fails unless the theorem is equational and the supplied term is a function whose domain
type is the same as the type of both sides of the equation.

See also
AP_THM, MK_COMB.

AP_TERM_TAC

AP_TERM_TAC : tactic

Synopsis
Strips a function application from both sides of an equational goal.

Description
AP_TERM_TAC reduces a goal of the form A ?- f x = f y by stripping away the function
applications, giving the new goal A ?- x = y.

A ?- f x = f y
================ AP_TERM_TAC

A ?- x = y

Failure
Fails unless the goal is equational, with both sides being applications of the same func-
tion.

See also
AP_TERM, AP_THM.

AP_THM

AP_THM : (thm -> term -> thm)
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Synopsis
Proves equality of equal functions applied to a term.

Description
When applied to a theorem A |- f = g and a term x, the inference rule AP_THM returns
the theorem A |- f x = g x.

A |- f = g
---------------- AP_THM (A |- f = g) x
A |- f x = g x

Failure
Fails unless the conclusion of the theorem is an equation, both sides of which are func-
tions whose domain type is the same as that of the supplied term.

See also
AP_TERM, ETA_CONV, EXT, MK_COMB.

AP_THM_TAC

AP_THM_TAC : tactic

Synopsis
Strips identical operands from functions on both sides of an equation.

Description
When applied to a goal of the form A ?- f x = g x, the tactic AP_THM_TAC strips away
the operands of the function application:

A ?- f x = g x
================ AP_THM_TAC

A ?- f = g

Failure
Fails unless the goal has the above form, namely an equation both sides of which consist
of function applications to the same arguments.

See also
AP_TERM, AP_TERM_TAC, AP_THM, EXT.
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arity

arity : (string -> int)

Synopsis
Returns the arity of a type operator.

Description
arity "op" returns n if op is the name of an n-ary type operator (n can be 0), and
otherwise fails.

Failure
arity st fails if st is not the name of a type constant or type operator.

See also
is_type.

ASM_CASES_TAC

ASM_CASES_TAC : (term -> tactic)

Synopsis
Given a term, produces a case split based on whether or not that term is true.

Description
Given a term u, ASM_CASES_TAC applied to a goal produces two subgoals, one with u as
an assumption and one with ~u:

A ?- t
================================ ASM_CASES_TAC u
A u {u} ?- t A u {~u} ?- t

ASM_CASES_TAC u is implemented by DISJ_CASES_TAC(SPEC u EXCLUDED_MIDDLE), where
EXCLUDED_MIDDLE is the axiom |- !u. u \/ ~u.

Failure
By virtue of the implementation (see above), the decomposition fails if EXCLUDED_MIDDLE
cannot be instantiated to u, e.g. if u does not have boolean type.
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Example
The tactic ASM_CASES_TAC u can be used to produce a case analysis on u:

- let val u = Parse.Term ‘u:bool‘
val g = Parse.Term ‘(P:bool -> bool) u‘

in
ASM_CASES_TAC u ([],g)
end;

([([--‘u‘--], --‘P u‘--),
([--‘~u‘--], --‘P u‘--)], -) : tactic_result

Uses
Performing a case analysis according to whether a given term is true or false.

See also
BOOL_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC, SPEC, STRUCT_CASES_TAC.

ASM_MESON_TAC

mesonLib.ASM_MESON_TAC : thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using the assumptions and the the-
orems given.

Description
ASM_MESON_TAC is identical in behaviour to MESON_TAC except that it uses the assumptions
of a goal as well as the provided theorems.

Failure
ASM_MESON_TAC fails if it can not find a proof of the goal with depth less than or equal to
the mesonLib.max_depth value.

See also
GEN_MESON_TAC, MESON_TAC

ASM_REWRITE_RULE

ASM_REWRITE_RULE : (thm list -> thm -> thm)
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Synopsis
Rewrites a theorem including built-in rewrites and the theorem’s assumptions.

Description
ASM_REWRITE_RULE rewrites with the tautologies in basic_rewrites, the given list of the-
orems, and the set of hypotheses of the theorem. All hypotheses are used. No ordering
is specified among applicable rewrites. Matching subterms are searched for recursively,
starting with the entire term of the conclusion and stopping when no rewritable expres-
sions remain. For more details about the rewriting process, see GEN_REWRITE_RULE. To
avoid using the set of basic tautologies, see PURE_ASM_REWRITE_RULE.

Failure
ASM_REWRITE_RULE does not fail, but may result in divergence. To prevent divergence
where it would occur, ONCE_ASM_REWRITE_RULE can be used.

See also
GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE, PURE_ASM_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE, REWRITE_RULE.

ASM_REWRITE_TAC

ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including built-in rewrites and the goal’s assumptions.

Description
ASM_REWRITE_TAC generates rewrites with the tautologies in basic_rewrites, the set of
assumptions, and a list of theorems supplied by the user. These are applied top-down
and recursively on the goal, until no more matches are found. The order in which the
set of rewrite equations is applied is an implementation matter and the user should
not depend on any ordering. Rewriting strategies are described in more detail under
GEN_REWRITE_TAC. For omitting the common tautologies, see the tactic PURE_ASM_REWRITE_TAC.
To rewrite with only a subset of the assumptions use FILTER_ASM_REWRITE_TAC.

Failure
ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For rewriting
to a limited depth, see ONCE_ASM_REWRITE_TAC. The resulting tactic may not be valid if
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the applicable replacement introduces new assumptions into the theorem eventually
proved.

Example
The use of assumptions in rewriting, specially when they are not in an obvious equa-
tional form, is illustrated below:

- let val asm = [Parse.Term ‘(P:’a->bool) x‘]
val goal = Parse.Term ‘(P:’a->bool) x = (Q:’a -> bool) x‘

in
ASM_REWRITE_TAC[](asm, goal)
end;

val it = ([([--‘P x‘--], --‘Q x‘--)], fn) : tactic_result

- let val asm = [Parse.Term ‘~(P:’a->bool) x‘]
val goal = Parse.Term ‘(P:’a->bool) x = (Q:’a -> bool) x‘

in
ASM_REWRITE_TAC[](asm, goal)
end;

val it = ([([--‘~P x‘--], --‘~Q x‘--)], fn) : tactic_result

See also
basic_rewrites, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC, PURE_ASM_REWRITE_TAC,
PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.

ASM_SIMP_RULE

simpLib.ASM_SIMP_RULE : simpset -> thm list -> thm -> thm

Synopsis
Simplifies a theorem, using the theorem’s assumptions as rewrites in addition to the
provided rewrite theorems and simpset.

Failure
Never fails, but may diverge.
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Example

- ASM_SIMP_RULE bool_ss [] (ASSUME (Term ‘x = 3‘))
> val it = [.] |- T : thm

Uses
Not clear to this author.

See also
SIMP_CONV, SIMP_RULE.

ASM_SIMP_TAC

simpLib.ASM_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies a goal using the simpset, the provided theorems, and the goal’s assumptions.

Description
ASM_SIMP_TAC does a simplification of the goal, adding both the assumptions and the
provided theorem to the given simpset as rewrites. This simpset is then applied to the
goal in the manner explained in the entry for SIMP_CONV.
ASM_SIMP_TAC is to SIMP_TAC, as ASM_REWRITE_TAC is to REWRITE_TAC.

Failure
ASM_SIMP_TAC never fails, though it may diverge.

Example
Here, hol_ss and the one assumption are used to demonstrate the proof of a simple
arithmetic fact:

- ASM_SIMP_TAC hol_ss [] ([Term‘x < y‘], Term‘x + y < y + y‘);
> val it = ([], fn) : tactic_result

See also
++, bool_ss, FULL_SIMP_TAC, hol_ss, mk_simpset, SIMP_CONV, SIMP_TAC.
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assert

assert : (’a -> bool) -> ’a -> ’a

Synopsis
Checks that a value satisfies a predicate.

Description
assert p x returns x if the application p x yields true. Otherwise, assert p x fails.

Failure
assert p x fails with exception HOL_ERR if the predicate p yields false when applied to
the value x.

Example

- null [];
> val it = true : bool

- assert null ([]:int list);
> val it = [] : int list

- null [1];
> false : bool

- assert null [1];
! Uncaught exception:
! HOL_ERR <poly>

See also
can.

assoc

Lib.assoc : ’’a -> (’’a * ’b) list -> ’’a * ’b

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.
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Description
assoc x [(x1,y1),...,(xn,yn)] returns the first (xi,yi) in the list such that xi equals
x. The lookup is done on an eqtype, i.e., the SML implementation must be able to decide
equality for the type of x.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- assoc 2 [(1,4),(3,2),(2,5),(2,6)];
> val it = (2, 5) : (int * int)

See also
assoc1, assoc2, rev_assoc, find, mem, tryfind, exists, forall.

associate_restriction

associate_restriction : ((string * string) -> unit)

Synopsis
Associates a restriction semantics with a binder.

Description
If B is a binder and RES_B a constant then

associate_restriction("B", "RES_B")

will cause the parser and pretty-printer to support:

---- parse ---->
Bv::P. B RES_B P (\v. B)

<---- print ----

Anything can be written between the binder and ‘::‘ that could be written between
the binder and ‘.‘ in the old notation. See the examples below.

Associations between user defined binders and their restrictions are not stored in the
theory, so they have to be set up for each hol session (e.g. with a hol-init.ml file).

The flag ‘#restrict(Globals.pp_flags)‘ has default true, but if set to false will dis-
able the pretty printing. This is useful for seeing what the semantics of particular re-
stricted abstractions are.
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The following associations are predefined:

\v::P. B <----> RES_ABSTRACT P (\v. B)
!v::P. B <----> RES_FORALL P (\v. B)
?v::P. B <----> RES_EXISTS P (\v. B)
@v::P. B <----> RES_SELECT P (\v. B)

Where the constants RES_ABSTRACT, RES_FORALL, RES_EXISTS and RES_SELECT are de-
fined in the theory ‘restr_binder‘ by:

|- RES_ABSTRACT P B = \x:’a. (P x => B x | ARB:’b)

|- RES_FORALL P B = !x:’a. P x ==> B x

|- RES_EXISTS P B = ?x:’a. P x /\ B x

|- RES_SELECT P B = @x:’a. P x /\ B x

where ARB is defined in the theory ‘restr_binder‘ by:

|- ARB = @x:’a. T

Failure

Never fails.
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Example

- new_binder_definition("DURING", --‘DURING(p:num#num->bool) = $!p‘--);
|- !p. $DURING p = $! p

- --‘DURING x::(m,n). p x‘--;

Exception raised at Parse_support.restr_binder:
no restriction associated with "DURING"

- new_definition("RES_DURING",
--‘RES_DURING(m,n)p = !x. m<=x /\ x<=n ==> p x‘--);

|- !m n p. RES_DURING (m,n) p = (!x. m <= x /\ x <= n ==> p x) : thm

- associate_restriction("DURING","RES_DURING");
() : unit

- --‘DURING x::(m,n). p x‘--;
(--‘DURING x ::(m,n). p x‘--) : term

- Globals.show_restrict := false;
() : unit

- --‘DURING x::(m,n). p x‘--;
(--‘RES_DURING (m,n) (\x. p x)‘--) : term

See also
binder_restrictions, delete_restriction

ASSUME

ASSUME : (term -> thm)

Synopsis
Introduces an assumption.

Description
When applied to a term t, which must have type bool, the inference rule ASSUME returns
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the theorem t |- t.

-------- ASSUME t
t |- t

Failure
Fails unless the term t has type bool.

Comments
The type of ASSUME is shown by the system as conv.

See also
ADD_ASSUM, REFL.

ASSUME_TAC

ASSUME_TAC : thm_tactic

Synopsis
Adds an assumption to a goal.

Description
Given a theorem th of the form A’ |- u, and a goal, ASSUME_TAC th adds u to the as-
sumptions of the goal.

A ?- t
============== ASSUME_TAC (A’ |- u)
A u {u} ?- t

Note that unless A’ is a subset of A, this tactic is invalid.

Failure
Never fails.

Example
Given a goal g of the form {x = y, y = z} ?- P, where x, y and z have type :’a, the
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theorem x = y, y = z |- x = z can, first, be inferred by forward proof

let val eq1 = Parse.Term ‘(x:’a) = y‘
val eq2 = Parse.Term ‘(y:’a) = z‘

in
TRANS (ASSUME eq1) (ASSUME eq2)
end;

and then added to the assumptions. This process requires the explicit text of the as-
sumptions, as well as invocation of the rule ASSUME:

let val eq1 = Parse.Term ‘(x:’a) = y‘
val eq2 = Parse.Term ‘(y:’a) = z‘
val goal = ([eq1,eq2],Parse.Term ‘P:bool‘)

in
ASSUME_TAC (TRANS (ASSUME eq1) (ASSUME eq2)) goal
end;

val it = ([([--‘x = z‘--, --‘x = y‘--, --‘y = z‘--], --‘P‘--)], fn)
: tactic_result

This is the naive way of manipulating assumptions; there are more advanced proof
styles (more elegant and less transparent) that achieve the same effect, but this is a
perfectly correct technique in itself.

Alternatively, the axiom EQ_TRANS could be added to the assumptions of g:

let val eq1 = Parse.Term ‘(x:’a) = y‘
val eq2 = Parse.Term ‘(y:’a) = z‘
val goal = ([eq1,eq2],Parse.Term ‘P:bool‘)

in
ASSUME_TAC EQ_TRANS goal
end;

val it =
([([(--‘!x y z. (x = y) /\ (y = z) ==> (x = z)‘--),(--‘x = y‘--),

(--‘y = z‘--)],(--‘P‘--))],fn) : tactic_result

A subsequent resolution (see RES_TAC) would then be able to add the assumption "x = z"

to the subgoal shown above. (Aside from purposes of example, it would be more usual
to use IMP_RES_TAC than ASSUME_TAC followed by RES_TAC in this context.)

Uses
ASSUME_TAC is the naive way of manipulating assumptions (i.e. without recourse to ad-
vanced tacticals); and it is useful for enriching the assumption list with lemmas as a pre-
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lude to resolution (RES_TAC, IMP_RES_TAC), rewriting with assumptions (ASM_REWRITE_TAC
and so on), and other operations involving assumptions.

See also
ACCEPT_TAC, IMP_RES_TAC, RES_TAC, STRIP_ASSUME_TAC.

ASSUM_LIST

ASSUM_LIST : ((thm list -> tactic) -> tactic)

Synopsis
Applies a tactic generated from the goal’s assumption list.

Description
When applied to a function of type thm list -> tactic and a goal, ASSUM_LIST con-
structs a tactic by applying f to a list of ASSUMEd assumptions of the goal, then applies
that tactic to the goal.

ASSUM_LIST f ({A1;...;An} ?- t)
= f [A1 |- A1; ... ; An |- An] ({A1;...;An} ?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the
resulting tactic fails when applied to the goal.

Comments
There is nothing magical about ASSUM_LIST: the same effect can usually be achieved just
as conveniently by using ASSUME a wherever the assumption a is needed. If ASSUM_LIST is
used, it is extremely unwise to use a function which selects elements from its argument
list by number, since the ordering of assumptions should not be relied on.

Example
The tactic:

ASSUM_LIST SUBST_TAC

makes a single parallel substitution using all the assumptions, which can be useful if the
rewriting tactics are too blunt for the required task.
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Uses
Making more careful use of the assumption list than simply rewriting or using resolu-
tion.

See also
ASM_REWRITE_TAC, EVERY_ASSUM, IMP_RES_TAC, POP_ASSUM, POP_ASSUM_LIST,
REWRITE_TAC.

axiom

axiom : (string -> string -> thm)

Synopsis
Loads an axiom from a given theory segment of the current theory.

Description
A call of axiom "thy" "ax" returns axiom ax from the theory segment thy. The theory
segment thy must be part of the current theory. The name ax is the name given to the
axiom by the user when it was originally added to the theory segment (by a call to
new_axiom). The name of the current theory segment can be abbreviated by "-".

Failure
The call axiom "thy" "ax" will fail if the theory segment thy is not part of the current
theory. It will also fail if there does not exist an axiom of name ax in theory segment
thy.

Example

- axiom "bool" "BOOL_CASES_AX";
val it = |- !t. (t = T) \/ (t = F) : thm

See also
axioms, definition, new_axiom, print_theory, theorem.

axioms

axioms : (string -> (string # thm) list)
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Synopsis
Returns the axioms of a given theory segment of the current theory.

Description
A call axioms "thy" returns the axioms of the theory segment thy together with their
names. The theory segment thy must be part of the current theory. The names are those
given to the axioms by the user when they were originally added to the theory segment
(by a call to new_axiom). The name of the current theory segment can be abbreviated by
"-".

Failure
The call axioms "thy" will fail if the theory segment thy is not part of the current theory.

Example

- axioms"bool";

val it =
[("INFINITY_AX",|- ?f. ONE_ONE f /\ ~(ONTO f)),
("SELECT_AX",|- !P x. P x ==> P ($@ P)),
("ETA_AX",|- !t. (\x. t x) = t),
("IMP_ANTISYM_AX",|- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)),
("BOOL_CASES_AX",|- !t. (t = T) \/ (t = F))] : (string * thm) list

See also
axiom, definitions, load_axiom, load_axioms, new_axiom, print_theory, theorems.

b

b : (void -> void)

Synopsis
Restores the proof state undoing the effects of a previous expansion.

Description
The function b is part of the subgoal package. It is an abbreviation for the function
backup. For a description of the subgoal package, see set_goal.

Failure
As for backup.
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Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.

B

B : ((’a -> ’b) -> (’c -> ’a) -> ’c -> ’b)

Synopsis
Performs curried function-composition: B f g x = f (g x).

Comments
Not yet in hol90

Failure
Never fails.

See also
##, C, I, K, o, S, W.

backup

backup : (void -> void)

Synopsis
Restores the proof state, undoing the effects of a previous expansion.

Description
The function backup is part of the subgoal package. It allows backing up from the last
state change (caused by calls to expand, set_goal, rotate and their abbreviations, or
to set_state). The package maintains a backup list of previous proof states. A call to
backup restores the state to the previous state (which was on top of the backup list).
The current state and the state on top of the backup list are discarded. The maximum
number of proof states saved on the backup list is one greater than the value of the
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assignable variable backup_limit. This variable is initially set to 12. Adding new proof
states after the maximum is reached causes the earliest proof state on the list to be
discarded. The user may backup repeatedly until the list is exhausted. The state restored
includes all unproven subgoals or, if a goal had been proved in the previous state, the
corresponding theorem. backup is abbreviated by the function b. For a description of
the subgoal package, see set_goal.

Failure
The function backup will fail if the backup list is empty.

Example

#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

#e CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"

"HD[1;2;3] = 1"

() : void

#backup();;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

#e (REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])

Previous subproof:
goal proved
() : void

Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
b, backup_limit, e, expand, expandf, g, get_state, p, print_state, r, rotate,
save_top_thm, set_goal, set_state, top_goal, top_thm.



48 Chapter 1. Pre-defined ML Identifiers

BETA_CONV

BETA_CONV : conv

Synopsis
Performs a simple beta-conversion.

Description
The conversion BETA_CONV maps a beta-redex "(\x.u)v" to the theorem

|- (\x.u)v = u[v/x]

where u[v/x] denotes the result of substituting v for all free occurrences of x in u, after
renaming sufficient bound variables to avoid variable capture. This conversion is one of
the primitive inference rules of the HOL system.

Failure
BETA_CONV tm fails if tm is not a beta-redex.

Example

- let val tm = Parse.Term ‘(\x.x+1)y‘
in
BETA_CONV tm
end;
val it = |- (\x. x + 1)y = y + 1 :thm

- let val tm = Parse.Term ‘(\x y. x+y)y‘
in
BETA_CONV tm
end;

val it = |- (\x y. x + y)y = (\y’. y + y’) : thm

Comments
This primitive inference rule is actually not very primitive, since it does automatic bound
variable renaming. It would be logically cleaner for this renaming to be derived rather
than built-in, but since beta-reduction is so common this would slow the system down
a lot. It is hoped to document the exact renaming algorithm used by BETA_CONV in the
future.

See also
BETA_RULE, BETA_TAC, LIST_BETA_CONV, PAIRED_BETA_CONV, RIGHT_BETA,
RIGHT_LIST_BETA.
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BETA_RULE

BETA_RULE : (thm -> thm)

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule BETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

A |- ....((\x. s1) s2)....
---------------------------- BETA_RULE

A |- ....(s1[s2/x])....

Failure
Never fails, but will have no effect if there are no beta-redexes.

Example
The following example is a simple reduction which illustrates variable renaming:

- Globals.show_assums := true;
val it = () : unit

- local val tm = Parse.Term ‘f = ((\x y. x + y) y)‘
in
val x = ASSUME tm
end;

val x = [f = (\x y. x + y)y] |- f = (\x y. x + y)y : thm

- BETA_RULE x;
val it = [f = (\x y. x + y)y] |- f = (\y’. y + y’) : thm

See also
BETA_CONV, BETA_TAC, PAIRED_BETA_CONV, RIGHT_BETA.

BETA_TAC

BETA_TAC : tactic
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Synopsis
Beta-reduces all the beta-redexes in the conclusion of a goal.

Description
When applied to a goal A ?- t, the tactic BETA_TAC produces a new goal which results
from beta-reducing all beta-redexes, at any depth, in t. Variables are renamed where
necessary to avoid free variable capture.

A ?- ...((\x. s1) s2)...
========================== BETA_TAC
A ?- ...(s1[s2/x])...

Failure
Never fails, but will have no effect if there are no beta-redexes.

See also
BETA_CONV, BETA_TAC, PAIRED_BETA_CONV.

binders

binders : (string -> term list)

Synopsis
Lists the binders in the named theory.

Description
The function binders should be applied to a string which is the name of an ancestor
theory (including the current theory; the special string "-" is always interpreted as the
current theory). It returns a list of all the binders declared in the named theory.

Failure
Fails unless the given theory is an ancestor of the current theory.

Example

- binders "bool";
val it = [‘$?!‘, ‘$!‘, ‘$@‘] : term list

- binders "prod";
val it = [] : term list

See also
ancestors, axioms, constants, definitions, infixes, new_binder, parents, types.
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binder_restrictions

binder_restrictions : unit -> (string * string) list

Synopsis
Shows the list of binder restrictions currently in force.

Description
associate_restriction is used to control the parsing and prettyprinting of restricted
binders, which give the illusion of dependent types. The list of current restrictions is
found by calling binder_restrictions. There are always at least the following restricted
binders: [”!”,”?”,”@”,”
”].

Failure
Never fails.

Example

associate_restriction("DURING","RES_DURING");
() : unit

binder_restrictions();
[("DURING","RES_DURING"),("!","RES_FORALL"),("?","RES_EXISTS"),
("@","RES_SELECT"),("\\","RES_ABSTRACT")] : (string * string) list

See also
associate_restrictions, delete_restriction

body

body : (term -> term)

Synopsis
Returns the body of an abstraction.
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Description
body ‘\v. t‘ returns ‘t‘.

Failure
Fails unless the term is an abstraction.

See also
bvar, dest_abs.

BODY_CONJUNCTS

BODY_CONJUNCTS : (thm -> thm list)

Synopsis
Splits up conjuncts recursively, stripping away universal quantifiers.

Description
When applied to a theorem, BODY_CONJUNCTS recursively strips off universal quantifiers
by specialization, and breaks conjunctions into a list of conjuncts.

A |- !x1...xn. t1 /\ (!y1...ym. t2 /\ t3) /\ ...
-------------------------------------------------- BODY_CONJUNCTS

[A |- t1, A |- t2, A |- t3, ...]

Failure
Never fails, but has no effect if there are no top-level universal quantifiers or conjuncts.

Example
The following illustrates how a typical term will be split:

- local val tm = Parser.term_parser
‘!x:bool. A /\ (B \/ (C /\ D)) /\ ((!y:bool. E) /\ F)‘

in
val x = ASSUME tm
end;

val x = . |- !x. A /\ (B \/ C /\ D) /\ (!y. E) /\ F : thm

- BODY_CONJUNCTS x;
val it = [. |- A, . |- B \/ C /\ D, . |- E, . |- F] : thm list

See also
CONJ, CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_TAC.
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bool

Type.bool : hol_type

Synopsis
Holds the logical type constant bool.

BOOL_CASES_TAC

BOOL_CASES_TAC : (term -> tactic)

Synopsis
Performs boolean case analysis on a (free) term in the goal.

Description
When applied to a term x (which must be of type bool but need not be simply a variable),
and a goal A ?- t, the tactic BOOL_CASES_TAC generates the two subgoals corresponding
to A ?- t but with any free instances of x replaced by F and T respectively.

A ?- t
============================ BOOL_CASES_TAC "x"
A ?- t[F/x] A ?- t[T/x]

The term given does not have to be free in the goal, but if it isn’t, BOOL_CASES_TAC will
merely duplicate the original goal twice.

Failure
Fails unless the term x has type bool.

Example
The goal:

?- (b ==> ~b) ==> (b ==> a)

can be completely solved by using BOOL_CASES_TAC on the variable b, then simply rewrit-
ing the two subgoals using only the inbuilt tautologies, i.e. by applying the following
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tactic:

BOOL_CASES_TAC (Parse.Term ‘b:bool‘) THEN REWRITE_TAC[]

Uses
Avoiding fiddly logical proofs by brute-force case analysis, possibly only over a key term
as in the above example, possibly over all free boolean variables.

See also
ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC, STRUCT_CASES_TAC.

bool_EQ_CONV

bool_EQ_CONV : conv

Synopsis
Simplifies expressions involving boolean equality.

Description
The conversion bool_EQ_CONV simplifies equations of the form t1 = t2, where t1 and t2

are of type bool. When applied to a term of the form t = t, the conversion bool_EQ_CONV

returns the theorem

|- (t = t) = T

When applied to a term of the form t = T, the conversion returns

|- (t = T) = t

And when applied to a term of the form T = t, it returns

|- (T = t) = t

Failure
Fails unless applied to a term of the form t1 = t2, where t1 and t2 are boolean, and
either t1 and t2 are syntactically identical terms or one of t1 and t2 is the constant T.
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Example

- bool_EQ_CONV (Parse.Term ‘T = F‘);
val it = |- (T = F) = F : thm

- bool_EQ_CONV (Parse.Term ‘(0 < n) = T‘);
val it = |- (0 < n = T) = 0 < n : thm

bool_rewrites

bool_rewrites: unit -> rewrites

Synopsis
Contains a number of built-in tautologies used, by default, in rewriting.

Description
The variable bool_rewrites represents a kind of database of rewrite rules commonly
used to simplify expressions. These rules include the clause for reflexivity:

|- !x. (x = x) = T

as well as rules to reason about equality:

|- !t.
((T = t) = t) /\ ((t = T) = t) /\ ((F = t) = ~t) /\ ((t = F) = ~t)

Negations are manipulated by the following clauses:

|- (!t. ~~t = t) /\ (~T = F) /\ (~F = T)

The set of tautologies includes truth tables for conjunctions, disjunctions, and impli-
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cations:

|- !t.
(T /\ t = t) /\
(t /\ T = t) /\
(F /\ t = F) /\
(t /\ F = F) /\
(t /\ t = t)

|- !t.
(T \/ t = T) /\
(t \/ T = T) /\
(F \/ t = t) /\
(t \/ F = t) /\
(t \/ t = t)

|- !t.
(T ==> t = t) /\
(t ==> T = T) /\
(F ==> t = T) /\
(t ==> t = T) /\
(t ==> F = ~t)

Simple rules for reasoning about conditionals are given by:

|- !t1 t2. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2)

Rewriting with the following tautologies allows simplification of universally and exis-
tentially quantified variables and abstractions:

|- !t. (!x. t) = t
|- !t. (?x. t) = t
|- !t1 t2. (\x. t1)t2 = t1

Uses
The bool_rewrites are automatically included in the simplifications performed by some
of the rewriting tools.

The bool_rewrites used to include rules for reasoning about pairs in HOL:

|- !x. FST x,SND x = x
|- !x y. FST(x,y) = x
|- !x y. SND(x,y) = y

However, because of recent changes in the system, the theory of pairs need not be
loaded at the same time as the ”bool” theory, so the above rewrites can be accessed
through pairTheory.pair_rws.
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See also
ABS_SIMP, AND_CLAUSES, COND_CLAUSES, EQ_CLAUSES, EXISTS_SIMP, FORALL_SIMP, FST,
GEN_REWRITE_RULE, GEN_REWRITE_TAC, IMP_CLAUSES, NOT_CLAUSES, OR_CLAUSES, PAIR,
REFL_CLAUSE, REWRITE_RULE, REWRITE_TAC, SND, set_bool_rewrites,
add_bool_rewrites.

bool_ss

boolSimps.bool_ss : simpset

Synopsis
Basic simpset containing standard propositional calculus rewrites, beta conversion, and
eta conversion.

Description
The bool_ss simpset is almost at the base of the system-provided simpset hierarchy.
Though not very powerful, it does include rewrite rules such as |- T /\ P = P, conver-
sions to perform eta and beta reduction, and congruence rules to let simplification get
additional contextual information as it descends through implications and congruences.

Failure
Can’t fail, as it is not a functional value.

Uses
The bool_ss simpset is an appropriate simpset to use at the base of new user-defined
simpsets, and is also useful in its own right where a delicate simplification is desired,
where other more powerful simpsets might cause undue disruption to a goal. If even
less system rewriting is desired, the pure_ss value can be used.

See also
hol_ss, pure_ss, SIMP_CONV, SIMP_TAC.

butlast

butlast : (* list -> * list)
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Synopsis
Computes the sub-list of a list consisting of all but the last element.

Description
butlast [x1;...;xn] returns [x1;...;x(n-1)].

Failure
Fails if the list is empty.

See also
last, hd, tl, el, null.

bvar

bvar : (term -> term)

Synopsis
Returns the bound variable of an abstraction.

Description
bvar ‘\v. t‘ returns ‘v‘.

Failure
Fails unless the term is an abstraction.

See also
body, dest_abs.

C

C : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

Synopsis
Permutes first two arguments to curried function: C f x y = f y x.

Failure
Never fails.
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See also
##, B, I, K, o, S, W.

can

can : ((* -> **) -> * -> bool)

Synopsis
Tests for failure.

Description
can f x evaluates to true if the application of f to x succeeds. It evaluates to false if
the application fails.

Failure
Never fails.

Example

#hd [];;
evaluation failed hd

#can hd [];;
false : bool

See also
assert.

Cases

bossLib.Cases : tactic

Synopsis
Performs case analysis on the variable of a universally quantified goal.

Description
When applied to a universally quantified goal, Cases performs a case-split, based on the
cases theorem for the type of the universally quantified variable stored in the global
TypeBase database.
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The cases theorem for a type ty will be of the form:

|- !v:ty. (?x11...x1n1. v = C1 x11 ... x1n1) \/ .... \/
(?xm1...xmnm. v = Cm xm1 ... xmnm)

where there is no requirement for there to be more than one disjunct, nor for there to be
any particular number of existentially quantified variables in any disjunct. For example,
the cases theorem for natural numbers initially in the TypeBase is:

|- !n. (n = 0) \/ (?m. n = SUC m)

Case-splitting consists of specialising the cases theorem with the variable from the goal
and then generating as many sub-goals as there are disjuncts in the cases theorem,
where in each sub-goal (including the assumptions) the variable has been replaced by
an expression involving the given “constructor” (the Ci’s above) applied to as many
fresh variables as appropriate.

Failure
Fails if the goal is not universally quantified, or if the type of the universally quantified
variable does not have a case theorem in the TypeBase, as will happen, for example,
with variable types.

Example
If we have defined the following type:

- Hol_datatype ‘foo = Bar of num | Baz of bool‘;
> val it = () : unit

and the following function:

- val foofn_def = Define ‘(foofn (Bar n) = n + 10) /\
(foofn (Baz x) = 10)‘;

> val foofn_def =
|- (!n. foofn (Bar n) = n + 10) /\ !x. foofn (Baz x) = 10
: Thm.thm

then it is possible to make progress with the goal !x. foofn x >= 10 by applying the
tactic Cases, thus:

?- !x. foofn x >= 10
====================================================== Cases
?- foofn (Bar n) >= 10 ?- foofn (Baz b) >= 10

producing two new goals, one for each constructor of the type.
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See also
Cases_on, Induct, STRUCT_CASES_TAC

CASES_THENL

CASES_THENL : (thm_tactic list -> thm_tactic)

Synopsis
Applies the theorem-tactics in a list to corresponding disjuncts in a theorem.

Description
When given a list of theorem-tactics [ttac1;...;ttacn] and a theorem whose conclu-
sion is a top-level disjunction of n terms, CASES_THENL splits a goal into n subgoals result-
ing from applying to the original goal the result of applying the i’th theorem-tactic to
the i’th disjunct. This can be represented as follows, where the number of existentially
quantified variables in a disjunct may be zero. If the theorem th has the form:

A’ |- ?x11..x1m. t1 \/ ... \/ ?xn1..xnp. tn

where the number of existential quantifiers may be zero, and for all i from 1 to n:

A ?- s
========== ttaci (|- ti[xi1’/xi1]..[xim’/xim])
Ai ?- si

where the primed variables have the same type as their unprimed counterparts, then:

A ?- s
========================= CASES_THENL [ttac1;...;ttacn] th
A1 ?- s1 ... An ?- sn

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails if the given theorem does not, at the top level, have the same number of (possi-
bly multiply existentially quantified) disjuncts as the length of the theorem-tactic list
(this includes the case where the theorem-tactic list is empty), or if any of the tactics
generated as specified above fail when applied to the goal.

Uses
Performing very general disjunctive case splits.
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See also
DISJ_CASES_THENL, X_CASES_THENL.

CBV_CONV

CBV_CONV : comp_rws -> conv

Synopsis
Call by value rewriting.

Description
The conversion CBV_CONV expects an simplification set and a term. Its term argument
is rewritten using the equations added in the simplification set. The strategy used is
somewhat similar to ML’s, that is call-by-value (arguments of constants are completely
reduced before the rewrites associated to the constant are applied) with weak reduction
(no reduction of the function body before the function is applied). The main differences
are that beta-redexes are reduced with a call-by-name strategy (the argument is not
reduced), and reduction under binders is done when it occurs in a position where it
cannot be substituted.

The simplification sets are mutable objects, this means they are extended by side-
effect. The function new_rws will create a new set containing only reflexivity (REFL_CLAUSE).
Theorems can be added to a set with the function add_thms. The function from_list sim-
ply combines new_rws and add_thms.

It is also possible to add conversions to a simplification set with add_conv. The only
restriction is that a constant (c) and an arity (n) must be provided. The conversion will
be called only on terms in which c is applied to n arguments.

Two theorem “preprocessors” are provided to control the strictness of the arguments
of a constant. lazyfy_thm has pattern variables on the left hand side turned into ab-
stractions on the right hand side. This transformation is applied on every conjunct, and
removes prenex universal quantifications. A typical example is COND_CLAUSES:

(COND T a b = a) /\ (COND F a b = b)

Using these equations is very inefficient because both a and b are evaluated, regardless
of the value of the boolean expression. It is better to use COND_CLAUSES with the form
above

(COND T = \a b. a) /\ (COND F = \a b. b)

The call-by-name evaluation of beta redexes avoids computing the unused branch of
the conditional.
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Conversely, strictify_thm does the reverse transformation. This is particularly rele-
vant for LET_DEF:

LET = \f x. f x --> LET f x = f x

This forces the evaluation of the argument before reducing the beta-redex. Hence the
usual behaviour of LET.

It is necessary to provide rules for all the constants appearing in the expression to
reduce (all also for those that appear in the right hand side of a rule), unless the given
constant is considered as a constructor of the representation chosen. As an example,
initial_rws provides a way to create a new simplification set with all the rules needed
for basic boolean and arithmetical calculations built in.

Example

- val rws = from_list (lazyfy_thm [COND_CLAUSES]);
> val rws = RWS<hash_table> : comp_rws

- CBV_CONV rws (--‘(\x.x) ((\x.x) if T then 0+0 else 10)‘--);
> val it = |- (\x. x) ((\x. x) (if T then 0 + 0 else 10)) = 0 + 0 : Thm.thm

- CBV_CONV (initial_rws())
(--‘if 100 - 5 * 5 < 80 then 2 EXP 16 else 3‘--);

> val it = |- (if 100 - 5 * 5 < 80 then 2 EXP 16 else 3) = 65536 : Thm.thm

Failing to give enough rules may make CBV_CONV build a huge result, or even loop. The
same may occur if the initial term to reduce contains free variables.

val eqn = bossLib.Define ‘exp n p = if p=0 then 1 else n * (exp n (p-1))‘;
val rws = bossLib.initial_rws();
val _ = add_thms(true,[eqn]) rws;

- CBV_CONV rws (--‘exp 2 n‘--);
> Interrupted.
- set_skip rws "COND" (SOME 1);
> val it = () : unit
- CBV_CONV rws (--‘exp 2 n‘--);
> val it = |- exp 2 n = (if n = 0 then 1 else 2 * exp 2 (n - 1)) : Thm.thm

The first invocation of CBV_CONV loops since the exponent never reduces to 0. Below the
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first steps are computed:

exp 2 n
if n = 0 then 1 else 2 * exp 2 (n-1)
if n = 0 then 1 else 2 * if (n-1) = 0 then 1 else 2 * exp 2 (n-1-1)
...

The call to set_skip means that if the constants COND appears applied to one argument
and does not create a redex (in the example, if the condition does not reduce to T or F),
then the forthcoming arguments (the two branches of the conditional) are not reduced
at all.

Failure
Should never fail. Nonetheless, using rewrites with assumptions may cause problems
when rewriting under abstractions. The following example illustrates that issue.

- val th = ASSUME(--‘0=x‘--);
- val tm = --‘\(x:num).x=0‘--;
- val rws = from_list [th];
- CBV_CONV rws tm;

This fails because the 0 is replaced by x, making the assumption 0=x. Then, the abstrac-
tion cannot be rebuilt since x appears free in the assumptions.

See also
REDUCE_CONV, reduce_rws, initial_rws

CCONTR

CCONTR : (term -> thm -> thm)

Synopsis
Implements the classical contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CCONTR returns the
theorem A - {~t} |- t.

A |- F
--------------- CCONTR "t"
A - {~t} |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.
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Comments
The usual use will be when ~t exists in the assumption list; in this case, CCONTR corre-
sponds to the classical contradiction rule: if ~t leads to a contradiction, then t must be
true.

See also
CONTR, CONTRAPOS, CONTR_TAC, NOT_ELIM.

CCONTR_TAC

CCONTR_TAC : tactic

Synopsis
Prepares for a proof by Classical contradiction.

Description
CCONTR_TAC takes a theorem A’ |- F and completely solves the goal. This is an invalid
tactic unless A’ is a subset of A.

A ?- t
======== CCONTR_TAC (A’ |- F)

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

See also
CHECK_ASSUME_TAC, CCONTR, CCCONTR, CONTRAPOS, NOT_ELIM.

CHANGED_CONV

CHANGED_CONV : (conv -> conv)

Synopsis
Makes a conversion fail if applying it leaves a term unchanged.
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Description
If c is a conversion that maps a term "t" to a theorem |- t = t’, where t’ is alpha-
equivalent to t, then CHANGED_CONV c is a conversion that fails when applied to the
term "t". If c maps "t" to |- t = t’, where t’ is not alpha-equivalent to t, then
CHANGED_CONV c also maps "t" to |- t = t’. That is, CHANGED_CONV c is the conversion
that behaves exactly like c, except that it fails whenever the conversion c would leave
its input term unchanged (up to alpha-equivalence).

Failure
CHANGED_CONV c "t" fails if c maps "t" to |- t = t’, where t’ is alpha-equivalent to t,
or if c fails when applied to "t". The function returned by CHANGED_CONV c may also fail
if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps a
term t to a theorem |- t = t’).

Uses
CHANGED_CONV is used to transform a conversion that may leave terms unchanged, and
therefore may cause a nonterminating computation if repeated, into one that can safely
be repeated until application of it fails to substantially modify its input term.

CHANGED_TAC

CHANGED_TAC : (tactic -> tactic)

Synopsis
Makes a tactic fail if it has no effect.

Description
When applied to a tactic T, the tactical CHANGED_TAC gives a new tactic which is the same
as T if that has any effect, and otherwise fails.

Failure
The application of CHANGED_TAC to a tactic never fails. The resulting tactic fails if the
basic tactic either fails or has no effect.

See also
TRY, VALID.
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CHECK_ASSUME_TAC

CHECK_ASSUME_TAC : thm_tactic

Synopsis
Adds a theorem to the assumption list of goal, unless it solves the goal.

Description
When applied to a theorem A’ |- s and a goal A ?- t, the tactic CHECK_ASSUME_TAC

checks whether the theorem will solve the goal (this includes the possibility that the
theorem is just A’ |- F). If so, the goal is duly solved. If not, the theorem is added to
the assumptions of the goal, unless it is already there.

A ?- t
============== CHECK_ASSUME_TAC (A’ |- F) [special case 1]

A ?- t
============== CHECK_ASSUME_TAC (A’ |- t) [special case 2]

A ?- t
============== CHECK_ASSUME_TAC (A’ |- s) [general case]
A u {s} ?- t

Unless A’ is a subset of A, the tactic will be invalid, although it will not fail.

Failure
Never fails.

See also
ACCEPT_TAC, ASSUME_TAC, CONTR_TAC, DISCARD_TAC, MATCH_ACCEPT_TAC.

CHOOSE

CHOOSE : ((term # thm) -> thm -> thm)

Synopsis
Eliminates existential quantification using deduction from a particular witness.
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Description
When applied to a term-theorem pair (v,A1 |- ?x. s) and a second theorem of the
form A2 u {s[v/x]} |- t, the inference rule CHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?x. s A2 u {s[v/x]} |- t
--------------------------------------- CHOOSE ("v",(A1 |- ?x. s))

A1 u A2 |- t

Where v is not free in A1, A2 or t.

Failure
Fails unless the terms and theorems correspond as indicated above; in particular v must
have the same type as the variable existentially quantified over, and must not be free in
A1, A2 or t.

See also
CHOOSE_TAC, EXISTS, EXISTS_TAC, SELECT_ELIM.

CHOOSE_TAC

CHOOSE_TAC : thm_tactic

Synopsis
Adds the body of an existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?x. t and a goal, CHOOSE_TAC adds t[x’/x] to the
assumptions of the goal, where x’ is a variant of x which is not free in the assumption
list; normally x’ is just x.

A ?- u
==================== CHOOSE_TAC (A’ |- ?x. t)
A u {t[x’/x]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is existentially quantified.
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Example
Suppose we have a goal asserting that the output of an electrical circuit (represented as
a boolean-valued function) will become high at some time:

?- ?t. output(t)

and we have the following theorems available:

t1 = |- ?t. input(t)
t2 = !t. input(t) ==> output(t+1)

Then the goal can be solved by the application of:

CHOOSE_TAC t1 THEN EXISTS_TAC "t+1" THEN
UNDISCH_TAC "input (t:num) :bool" THEN MATCH_ACCEPT_TAC t2

See also
CHOOSE_THEN, X_CHOOSE_TAC.

CHOOSE_THEN

CHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of existentially quantified theorem.

Description
When applied to a theorem-tactic ttac, an existentially quantified theorem A’ |- ?x. t,
and a goal, CHOOSE_THEN applies the tactic ttac (t[x’/x] |- t[x’/x]) to the goal, where
x’ is a variant of x chosen not to be free in the assumption list of the goal. Thus if:

A ?- s1
========= ttac (t[x’/x] |- t[x’/x])
B ?- s2

then

A ?- s1
========== CHOOSE_THEN ttac (A’ |- ?x. t)
B ?- s2

This is invalid unless A’ is a subset of A.
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Failure
Fails unless the given theorem is existentially quantified, or if the resulting tactic fails
when applied to the goal.

Example
This theorem-tactical and its relatives are very useful for using existentially quantified
theorems. For example one might use the inbuilt theorem

LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1))

to help solve the goal

?- x < y ==> 0 < y * y

by starting with the following tactic

DISCH_THEN (CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1)

which reduces the goal to

?- 0 < ((x + (p + 1)) * (x + (p + 1)))

which can then be finished off quite easily, by, for example:

REWRITE_TAC[ADD_ASSOC, SYM (SPEC_ALL ADD1),
MULT_CLAUSES, ADD_CLAUSES, LESS_0]

See also
CHOOSE_TAC, X_CHOOSE_THEN.

clear_overloads_on

Parse.clear_overloads_on : string -> unit

Synopsis
Clears all overloading on the specified operator.

Description
This function removes all overloading associated with the given string. Not only are
all possible overloading resolutions for that string removed, but the string is not even
recorded as something that might be later overloaded (using overload_on). If a new set
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of overloading possibilities is desired for the string, the function allow_for_overloading_on

will need to be called first.

Failure
Never fails. If a string is not overloaded, this function simply has no effect.

Example

- load "realTheory";
> val it = () : unit
- realTheory.REAL_INV_LT1;
> val it = |- !x. 0 < x /\ x < 1 ==> 1 < inv x : Thm.thm
- clear_overloads_on "<";
> val it = () : unit
- realTheory.REAL_INV_LT1;
> val it = |- !x. 0 real_lt x /\ x real_lt 1 ==> 1 real_lt inv x : Thm.thm
- clear_overloads_on "&";
> val it = () : unit
- realTheory.REAL_INV_LT1;
> val it = |- !x. 0r real_lt x /\ x real_lt 1r ==> 1r real_lt inv x : Thm.thm

Uses
If overloading gets too confusing, this function should help to clear away one layer of
supposedly helpful obfuscation.

See also
allow_for_overloading_on, overload_on

clear_prefs_for_term

Parse.clear_prefs_for_term : string -> unit

Synopsis
Removes pretty-printing preference information from the global grammar.

Description
The clear_prefs_for_term function removes the information stored in the global gram-
mar as to which (if any) rule should be preferred when terms are pretty-printed. This
will cause terms of the given name to be printed using “raw” syntax.
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Failure
Never fails.

Example
The initial grammar has two rules for conditional expressions, with the if-then-else

form preferred, so that even if the old HOL88 style syntax is used for input, the term is
printed out in the if-then-else style:

- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘(if p then q else r)‘ : Term.term

If clear_prefs_for_term is applied, neither syntax will print:

- clear_prefs_for_term "COND";
> val it = () : unit
- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘COND p q r‘ : Term.term

See also
prefer_form_with_tok

combine

combine : ’a list * ’b list -> (’a * ’b) list)

Synopsis
Converts a pair of lists into a list of pairs.

Description
combine ([x1,...,xn],[y1,...,yn]) returns [(x1,y1),...,(xn,yn)].

Failure
Fails if the two lists are of different lengths.

Comments
Has much the same effect as the SML Basis function ListPair.zip except that it fails if
the arguments are not of equal length.
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See also
split.

concat

concat : string -> string -> string

Synopsis
Concatenates two ML strings.

Failure
Never fails.

Example

- concat "1" "";
> val it = "1" : string

- concat "hello" "world";
> val it = "helloworld" : string

- concat "hello" (concat " " "world");
> val it = "hello world" : string

Comments
This function is open at the top level and is not the same as the Basis function String.concat.
The latter concatenates a list of strings, replacing concatl in the HOL distribution.

concl

concl : (thm -> term)

Synopsis
Returns the conclusion of a theorem.

Description
When applied to a theorem A |- t, the function concl returns t.
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Failure
Never fails.

See also
dest_thm, hyp.

COND_CASES_TAC

COND_CASES_TAC : tactic

Synopsis
Induces a case split on a conditional expression in the goal.

Description
COND_CASES_TAC searches for a conditional sub-term in the term of a goal, i.e. a sub-term
of the form p=>u|v, choosing one by its own criteria if there is more than one. It then
induces a case split over p as follows:

A ?- t
======================================================= COND_CASES_TAC
A u {p} ?- t[u/(p=>u|v)] A u {~p} ?- t[v/(p=>u|v)]]

where p is not a constant, and the term p=>u|v is free in t. Note that it both enriches
the assumptions and inserts the assumed value into the conditional.

Failure
COND_CASES_TAC fails if there is no conditional sub-term as described above.
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Example
For "x", "y", "z1" and "z2" of type ":*", and "P:*->bool",

COND_CASES_TAC ([], "x = (P y => z1 | z2)");;
([(["P y"], "x = z1"); (["~P y"], "x = z2")], -) : subgoals

but it fails, for example, if "y" is not free in the term part of the goal:

COND_CASES_TAC ([], "!y. x = (P y => z1 | z2)");;
evaluation failed COND_CASES_TAC

In contrast, ASM_CASES_TAC does not perform the replacement:

ASM_CASES_TAC "P y" ([], "x = (P y => z1 | z2)");;
([(["P y"], "x = (P y => z1 | z2)"); (["~P y"], "x = (P y => z1 | z2)")],
-)
: subgoals

Uses
Useful for case analysis and replacement in one step, when there is a conditional sub-
term in the term part of the goal. When there is more than one such sub-term and one
in particular is to be analyzed, COND_CASES_TAC cannot be depended on to choose the
‘desired’ one. It can, however, be used repeatedly to analyze all conditional sub-terms
of a goal.

See also
ASM_CASES_TAC, DISJ_CASES_TAC, STRUCT_CASES_TAC.

COND_CONV

COND_CONV : conv

Synopsis
Simplifies conditional terms.

Description
The conversion COND_CONV simplifies a conditional term "c => u | v" if the condition c

is either the constant T or the constant F or if the two terms u and v are equivalent up
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to alpha-conversion. The theorems returned in these three cases have the forms:

|- (T => u | v) = u

|- (F => u | v) = u

|- (c => u | u) = u

Failure
COND_CONV tm fails if tm is not a conditional "c => u | v", where c is T or F, or u and v

are alpha-equivalent.

CONJ

CONJ : (thm -> thm -> thm)

Synopsis
Introduces a conjunction.

Description

A1 |- t1 A2 |- t2
------------------------ CONJ
A1 u A2 |- t1 /\ t2

Failure
Never fails.

See also
BODY_CONJUNCTS, CONJUNCT1, CONJUNCT2, CONJ_PAIR, LIST_CONJ, CONJ_LIST,
CONJUNCTS.

CONJUNCT1

CONJUNCT1 : (thm -> thm)
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Synopsis
Extracts left conjunct of theorem.

Description

A |- t1 /\ t2
--------------- CONJUNCT1

A |- t1

Failure
Fails unless the input theorem is a conjunction.

See also
BODY_CONJUNCTS, CONJUNCT2, CONJ_PAIR, CONJ, LIST_CONJ, CONJ_LIST, CONJUNCTS.

CONJUNCT2

CONJUNCT2 : (thm -> thm)

Synopsis
Extracts right conjunct of theorem.

Description

A |- t1 /\ t2
--------------- CONJUNCT2

A |- t2

Failure
Fails unless the input theorem is a conjunction.

See also
BODY_CONJUNCTS, CONJUNCT1, CONJ_PAIR, CONJ, LIST_CONJ, CONJ_LIST, CONJUNCTS.

conjuncts

hol88Lib.conjuncts : term -> term list
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Synopsis
Iteratively splits conjunctions into a list of conjuncts.

Description
Found in the hol88 library. conjuncts (--‘t1 /\ ... /\ tn‘--) returns [t1,...,tn].
The argument term may be any tree of conjunctions. It need not have the form

--‘t1 /\ (t2 /\ ( ... /\ tn)...)‘--

A term that is not a conjunction is simply returned as the sole element of a list. Note
that

conjuncts(list_mk_conj([t1,...,tn]))

will not return [t1,...,tn] if any of t1,...,tn are conjunctions.

Failure
Never fails.

Example

- list_mk_conj [(--‘a /\ b‘--),(--‘c /\ d‘--),(--‘e /\ f‘--)];
> val it = (--‘(a /\ b) /\ (c /\ d) /\ e /\ f‘--) : term

- conjuncts it,
val it = [(--‘a‘--),(--‘b‘--),(--‘c‘--),(--‘d‘--),

(--‘e‘--),(--‘f‘--)] : term list

- list_mk_conj it,
val it = (--‘a /\ b /\ c /\ d /\ e /\ f‘--) : term

- conjuncts (--‘1‘--);
val it = [--‘1‘--] : term list

Comments
The function conjuncts is equivalent to the standard function strip_conj, so called in
order to be consistent with all the other strip_ routines. Because conjuncts splits both
the left and right sides of a conjunction, this operation is not the inverse of list_mk_conj.
It may be useful to introduce list_dest_conj for splitting only the right tails of a con-
junction.

See also
list_mk_conj, dest_conj.
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CONJUNCTS

CONJUNCTS : (thm -> thm list)

Synopsis
Recursively splits conjunctions into a list of conjuncts.

Description
Flattens out all conjuncts, regardless of grouping. Returns a singleton list if the input
theorem is not a conjunction.

A |- t1 /\ t2 /\ ... /\ tn
----------------------------------- CONJUNCTS
A |- t1 A |- t2 ... A |- tn

Failure
Never fails.

Example
Suppose the identifier th is bound to the theorem:

A |- (x /\ y) /\ z /\ w

Application of CONJUNCTS to th returns the following list of theorems:

[A |- x; A |- y; A |- z; A |- w] : thm list

See also
BODY_CONJUNCTS, CONJ_LIST, LIST_CONJ, CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.

CONJUNCTS_CONV

CONJUNCTS_CONV : ((term # term) -> thm)

Synopsis
Prove equivalence under idempotence, symmetry and associativity of conjunction.
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Description
CONJUNCTS_CONV takes a pair of terms "t1" and "t2", and proves |- t1 = t2 if t1 and t2

are equivalent up to idempotence, symmetry and associativity of conjunction. That is,
if t1 and t2 are two (different) arbitrarily-nested conjunctions of the same set of terms,
then CONJUNCTS_CONV (t1,t2) returns |- t1 = t2. Otherwise, it fails.

Failure
Fails if t1 and t2 are not equivalent, as described above.

Example

#CONJUNCTS_CONV ("(P /\ Q) /\ R", "R /\ (Q /\ R) /\ P");;
|- (P /\ Q) /\ R = R /\ (Q /\ R) /\ P

Uses
Used to reorder a conjunction. First sort the conjuncts in a term t1 into the desired
order (e.g. lexicographic order, for normalization) to get a new term t2, then call
CONJUNCTS_CONV(t1,t2).

Comments
This is not a true conversion, so perhaps it ought to be called something else.

See also
CONJ_SET_CONV.

CONJUNCTS_THEN

CONJUNCTS_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each conjunct of a theorem.

Description
CONJUNCTS_THEN takes a theorem-tactic f, and a theorem t whose conclusion must be
a conjunction. CONJUNCTS_THEN breaks t into two new theorems, t1 and t2 which are
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CONJUNCT1 and CONJUNCT2 of t respectively, and then returns a new tactic: f t1 THEN f t2.
That is,

CONJUNCTS_THEN f (A |- l /\ r) = f (A |- l) THEN f (A |- r)

so if

A1 ?- t1 A2 ?- t2
========== f (A |- l) ========== f (A |- r)
A2 ?- t2 A3 ?- t3

then

A1 ?- t1
========== CONJUNCTS_THEN f (A |- l /\ r)
A3 ?- t3

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

Comments
CONJUNCTS_THEN f (A |- u1 /\ ... /\ un) results in the tactic:

f (A |- u1) THEN f (A |- u2 /\ ... /\ un)

Unfortunately, it is more likely that the user had wanted the tactic:

f (A |- u1) THEN ... THEN f(A |- un)

Such a tactic could be defined as follows:

let CONJUNCTS_THENL (f:thm_tactic) thm =
itlist $THEN (map f (CONJUNCTS thm)) ALL_TAC;;

or by using REPEAT_TCL.

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_TAC, CONJUNCTS_THEN2, STRIP_THM_THEN.

CONJUNCTS_THEN2

CONJUNCTS_THEN2 : (thm_tactic -> thm_tactic -> thm_tactic)
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Synopsis
Applies two theorem-tactics to the corresponding conjuncts of a theorem.

Description
CONJUNCTS_THEN2 takes two theorem-tactics, f1 and f2, and a theorem t whose con-
clusion must be a conjunction. CONJUNCTS_THEN2 breaks t into two new theorems, t1

and t2 which are CONJUNCT1 and CONJUNCT2 of t respectively, and then returns the tactic
f1 t1 THEN f2 t2. Thus

CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) = f1 (A |- l) THEN f2 (A |- r)

so if

A1 ?- t1 A2 ?- t2
========== f1 (A |- l) ========== f2 (A |- r)
A2 ?- t2 A3 ?- t3

then

A1 ?- t1
========== CONJUNCTS_THEN2 f1 f2 (A |- l /\ r)
A3 ?- t3

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

Comments
The system shows the type as (thm_tactic -> thm_tactical).

Uses
The construction of complex tacticals like CONJUNCTS_THEN.

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_TAC, CONJUNCTS_THEN2, STRIP_THM_THEN.

CONJ_DISCH

CONJ_DISCH : (term -> thm -> thm)

Synopsis
Discharges an assumption and conjoins it to both sides of an equation.
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Description
Given an term t and a theorem A |- t1 = t2, which is an equation between boolean
terms, CONJ_DISCH returns A - {t} |- (t /\ t1) = (t /\ t2), i.e. conjoins t to both
sides of the equation, removing t from the assumptions if it was there.

A |- t1 = t2
------------------------------ CONJ_DISCH "t"
A - {t} |- t /\ t1 = t /\ t2

Failure
Fails unless the theorem is an equation, both sides of which, and the term provided are
of type bool.

See also
CONJ_DISCHL.

CONJ_DISCHL

CONJ_DISCHL : (term list -> thm -> thm)

Synopsis
Conjoins multiple assumptions to both sides of an equation.

Description
Given a term list [t1;...;tn] and a theorem whose conclusion is an equation between
boolean terms, CONJ_DISCHL conjoins all the terms in the list to both sides of the equa-
tion, and removes any of the terms which were in the assumption list.

A |- s = t
-------------------------------------------------------- CONJ_DISCHL
A - {t1,...,tn} |- (t1/\.../\tn/\s) = (t1/\.../\tn/\t) ["t1";...;"tn"]

Failure
Fails unless the theorem is an equation, both sides of which, and all the terms provided,
are of type bool.

See also
CONJ_DISCH.



84 Chapter 1. Pre-defined ML Identifiers

CONJ_LIST

CONJ_LIST : (int -> thm -> thm list)

Synopsis

Extracts a list of conjuncts from a theorem (non-flattening version).

Description

CONJ_LIST is the proper inverse of LIST_CONJ. Unlike CONJUNCTS which recursively splits
as many conjunctions as possible both to the left and to the right, CONJ_LIST splits
the top-level conjunction and then splits (recursively) only the right conjunct. The
integer argument is required because the term tn may itself be a conjunction. A list of n
theorems is returned.

A |- t1 /\ (t2 /\ ( ... /\ tn)...)
------------------------------------ CONJ_LIST n (A |- t1 /\ ... /\ tn)
A |- t1 A |- t2 ... A |- tn

Failure

Fails if the integer argument (n) is less than one, or if the input theorem has less than n

conjuncts.
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Example
Suppose the identifier th is bound to the theorem:

A |- (x /\ y) /\ z /\ w

Here are some applications of CONJ_LIST to th:

#CONJ_LIST 0 th;;
evaluation failed CONJ_LIST

#CONJ_LIST 1 th;;
[A |- (x /\ y) /\ z /\ w] : thm list

#CONJ_LIST 2 th;;
[A |- x /\ y; A |- z /\ w] : thm list

#CONJ_LIST 3 th;;
[A |- x /\ y; A |- z; A |- w] : thm list

#CONJ_LIST 4 th;;
evaluation failed CONJ_LIST

See also
BODY_CONJUNCTS, LIST_CONJ, CONJUNCTS, CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.

CONJ_PAIR

CONJ_PAIR : (thm -> (thm # thm))

Synopsis
Extracts both conjuncts of a conjunction.

Description

A |- t1 /\ t2
---------------------- CONJ_PAIR
A |- t1 A |- t2

The two resultant theorems are returned as a pair.

Failure
Fails if the input theorem is not a conjunction.
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See also
BODY_CONJUNCTS, CONJUNCT1, CONJUNCT2, CONJ, LIST_CONJ, CONJ_LIST, CONJUNCTS.

CONJ_SET_CONV

CONJ_SET_CONV : (term list -> term list -> thm)

Synopsis
Proves the equivalence of the conjunctions of two equal sets of terms.

Description
The arguments to CONJ_SET_CONV are two lists of terms [t1;...;tn] and [u1;...;um]. If
these are equal when considered as sets, that is if the sets

{t1,...,tn} and {u1,...,um}

are equal, then CONJ_SET_CONV returns the theorem:

|- (t1 /\ ... /\ tn) = (u1 /\ ... /\ um)

Otherwise CONJ_SET_CONV fails.

Failure
CONJ_SET_CONV [t1;...;tn] [u1;...;um] fails if [t1,...,tn] and [u1,...,um], regarded
as sets of terms, are not equal. Also fails if any ti or ui does not have type bool.

Uses
Used to order conjuncts. First sort a list of conjuncts l1 into the desired order to get a
new list l2, then call CONJ_SET_CONV l1 l2.

Comments
This is not a true conversion, so perhaps it ought to be called something else.

See also
CONJUNCTS_CONV.

CONJ_TAC

CONJ_TAC : tactic
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Synopsis
Reduces a conjunctive goal to two separate subgoals.

Description
When applied to a goal A ?- t1 /\ t2, the tactic CONJ_TAC reduces it to the two subgoals
corresponding to each conjunct separately.

A ?- t1 /\ t2
====================== CONJ_TAC
A ?- t1 A ?- t2

Failure
Fails unless the conclusion of the goal is a conjunction.

See also
STRIP_TAC.

constants

constants : (string -> term list)

Synopsis
Returns a list of the constants defined in a named theory.

Description
The call

constants ‘thy‘

where thy is an ancestor theory (the special string ‘-‘ means the current theory), re-
turns a list of all the constants in that theory.

Failure
Fails if the named theory does not exist, or is not an ancestor of the current theory.

Example

#constants ‘combin‘;;
["I"; "S"; "K"; "$o"] : term list

See also
axioms, binders, definitions, infixes, theorems
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CONTR

CONTR : (term -> thm -> thm)

Synopsis
Implements the intuitionistic contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CONTR returns the
theorem A |- t.

A |- F
-------- CONTR "t"
A |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

See also
CCONTR, CONTRAPOS, CONTR_TAC, NOT_ELIM.

CONTRAPOS

CONTRAPOS : (thm -> thm)

Synopsis
Deduces the contrapositive of an implication.

Description
When applied to a theorem A |- s ==> t, the inference rule CONTRAPOS returns its con-
trapositive, A |- ~t ==> ~s.

A |- s ==> t
---------------- CONTRAPOS
A |- ~t ==> ~s

Failure
Fails unless the theorem is an implication.
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See also
CCONTR, CONTR, CONTRAPOS_CONV, NOT_ELIM.

CONTRAPOS_CONV

CONTRAPOS_CONV : conv

Synopsis
Proves the equivalence of an implication and its contrapositive.

Description
When applied to an implication P ==> Q, the conversion CONTRAPOS_CONV returns the
theorem:

|- (P ==> Q) = (~Q ==> ~P)

Failure
Fails if applied to a term that is not an implication.

See also
CONTRAPOS.

CONTR_TAC

CONTR_TAC : thm_tactic

Synopsis
Solves any goal from contradictory theorem.

Description
When applied to a contradictory theorem A’ |- F, and a goal A ?- t, the tactic CONTR_TAC
completely solves the goal. This is an invalid tactic unless A’ is a subset of A.

A ?- t
======== CONTR_TAC (A’ |- F)

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.
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See also
CHECK_ASSUME_TAC, CONTR, CCONTR, CONTRAPOS, NOT_ELIM.

CONV_RULE

CONV_RULE : (conv -> thm -> thm)

Synopsis
Makes an inference rule from a conversion.

Description
If c is a conversion, then CONV_RULE c is an inference rule that applies c to the conclu-
sion of a theorem. That is, if c maps a term "t" to the theorem |- t = t’, then the
rule CONV_RULE c infers |- t’ from the theorem |- t. More precisely, if c "t" returns
A’ |- t = t’, then:

A |- t
-------------- CONV_RULE c
A u A’ |- t’

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure
CONV_RULE c th fails if c fails when applied to the conclusion of th. The function re-
turned by CONV_RULE c will also fail if the ML function c:term->thm is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
CONV_TAC, RIGHT_CONV_RULE.

CONV_TAC

CONV_TAC : (conv -> tactic)

Synopsis
Makes a tactic from a conversion.



current theory 91

Description
If c is a conversion, then CONV_TAC c is a tactic that applies c to the goal. That is, if c
maps a term "g" to the theorem |- g = g’, then the tactic CONV_TAC c reduces a goal g
to the subgoal g’. More precisely, if c "g" returns A’ |- g = g’, then:

A ?- g
=============== CONV_TAC c

A ?- g’

Note that the conversion c should return a theorem whose assumptions are also among
the assumptions of the goal (normally, the conversion will returns a theorem with no
assumptions). CONV_TAC does not fail if this is not the case, but the resulting tactic will be
invalid, so the theorem ultimately proved using this tactic will have more assumptions
than those of the original goal.

Failure
CONV_TAC c applied to a goal A ?- g fails if c fails when applied to the term g. The
function returned by CONV_TAC c will also fail if the ML function c:term->thm is not, in
fact, a conversion (i.e. a function that maps a term t to a theorem |- t = t’).

Uses
CONV_TAC is used to apply simplifications that can’t be expressed as equations (rewrite
rules). For example, a goal can be simplified by beta-reduction, which is not expressible
as a single equation, using the tactic

CONV_TAC(DEPTH_CONV BETA_CONV)

The conversion BETA_CONV maps a beta-redex "(\x.u)v" to the theorem

|- (\x.u)v = u[v/x]

and the ML expression (DEPTH_CONV BETA_CONV) evaluates to a conversion that maps
a term "t" to the theorem |- t=t’ where t’ is obtained from t by beta-reducing all
beta-redexes in t. Thus CONV_TAC(DEPTH_CONV BETA_CONV) is a tactic which reduces beta-
redexes anywhere in a goal.

See also
CONV_RULE.

current_theory

current_theory : (void -> string)
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Synopsis
Returns the name of the current theory.

Description
Within a HOL session there is always a current theory. It is the theory represented by the
current theory segment together with its ancestry. A call of current_theory() returns
the name of the current theory. Initially HOL has current theory scratch.

Failure
Never fails.

See also
export_theory, new_theory, print_theory.

curry

curry : ((’a * ’b) -> ’c) -> ’a -> ’b -> ’c

Synopsis
Converts a function on a pair to a corresponding curried function.

Description
The application curry f returns \x y. f(x,y), so that

curry f x y = f(x,y)

Failure
Never fails.

Example

- val increment = curry op+ 1;
> val it = increment = fn : int -> int

- increment 6;
> val it = 7 : int

See also
uncurry.
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define_new_type_bijections

define_new_type_bijections :
{name :string, ABS :string, REP :string, tyax :thm} -> thm

Synopsis
Introduces abstraction and representation functions for a defined type.

Description
The result of making a type definition using new_type_definition is a theorem of the
following form:

|- ?rep:nty->ty. TYPE_DEFINITION P rep

which asserts only the existence of a bijection from the type it defines (in this case, nty)
to the corresponding subset of an existing type (here, ty) whose characteristic function
is specified by P. To automatically introduce constants that in fact denote this bijection
and its inverse, the ML function define_new_type_bijections is provided.
name is the name under which the constant definition (a constant specification, in fact)

made by define_new_type_bijections will be stored in the current theory segment. tyax
must be a definitional axiom of the form returned by new_type_definition. ABS and
REP are the user-specified names for the two constants that are to be defined. These
constants are defined so as to denote mutually inverse bijections between the defined
type, whose definition is given by tyax, and the representing type of this defined type.

If th is a theorem of the form returned by new_type_definition:

|- ?rep:newty->ty. TYPE_DEFINITION P rep

then evaluating:

define_new_type_bijections{name="name",ABS="abs",REP="rep",tyax=th} th

automatically defines two new constants abs:ty->newty and rep:newty->ty such that:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

This theorem, which is the defining property for the constants abs and rep, is stored
under the name name in the current theory segment. It is also the value returned by
define_new_type_bijections. The theorem states that abs is the left inverse of rep and,
for values satisfying P, that rep is the left inverse of abs.
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Failure
A call to define_new_type_bijections{name=s1,ABS=s2,REP=s3,tyax=th} fails if th is not
a theorem of the form returned by new_type_definition, or if either s2 or s3 is already
the name of a constant in the current theory, or there already exists a constant definition,
constant specification, type definition or axiom named s1 in the current theory, or HOL
is not in draft mode.

See also
new_type_definition, prove_abs_fn_one_one, prove_abs_fn_onto,
prove_rep_fn_one_one, prove_rep_fn_onto.

define_type

define_type : {name :string, type_spec :term frag list,
fixities : fixity list} -> thm

Synopsis
Automatically defines a user-specified concrete recursive data type.

Description
The ML function define_type automatically defines any required concrete recursive type
in the logic. The name argument is the name under which the results of making the
definition will be stored in the current theory segment. The type_spec argument is
a user-supplied specification of the type to be defined. This specification (explained
below) simply states the names of the new type’s constructors and the logical types
of their arguments. The fixities argument gives the parsing status of the introduced
constants: it may be Prefix, Binder, or Infix <positive int>. The theorem returned
by define_type is an automatically-proved abstract characterization of the concrete data
type described by this specification.

The type_spec argument to define_type must be a quotation of the form:

‘op = C1 of ty => ... => ty | C2 of ty=> ...=>ty | ... | Cn of ty=> ... =>ty‘

where op is the name of the type constant or type operator to be defined, C1, ..., Cn are
identifiers, and each ty is either a (logical) type expression valid in the current theory
(in which case ty must not contain op) or just the identifier ‘op’ itself.

A quotation of this form describes an n-ary type operator op, where n is the number of
distinct type variables in the types ty on the right hand side of the equation. If n is zero



define type 95

then op is a type constant; otherwise op is an n-ary type operator. The type described by
the specification has n distinct constructors C1, ..., Cn. Each constructor Ci is a function
that takes arguments whose types are given by the associated type expressions ty in the
specification. If one or more of the type expressions ty is the type op itself, then the
equation specifies a recursive data type. In any specification, at least one constructor
must be non-recursive, i.e. all its arguments must have types which already exist in the
current theory.

Given a type specification of the form described above, define_type makes an appro-
priate type definition for the type operator op. It then makes appropriate definitions
for the constants C1, ..., Cn, and automatically proves a theorem that states an abstract
characterization of the newly-defined type op. This theorem, which is stored in the cur-
rent theory segment under the name supplied as the first argument and also returned
by define_type, has the form of a ‘primitive recursion theorem’ for the concrete type
op (see the examples given below). This property provides an abstract characteriza-
tion of the type op which is both succinct and complete, in the sense that it completely
determines the structure of the values of op up to isomorphism.

Failure
Evaluating

define_type{type_spec = ‘op = C1 of ty=>...=>ty | ... | Cn of ty=>...=>ty‘,
name, fixities}

fails if HOL is not in draft mode; if op is already the name of a type constant or type
operator in the current theory; if the supplied constant names C1, ..., Cn are not distinct;
if any one of C1, ..., Cn is already a constant in the current theory or is not an allowed
name for a constant; if ABS_op or REP_op are already constants in the current theory; if
there is already an axiom, definition, constant specification or type definition stored un-
der either the name op_TY_DEF or the name op_ISO_DEF in the current theory segment; if
there is already a theorem stored under the name ‘name‘ in the current theory segment;
or (finally) if the input type specification does not conform in any other respect to the
syntax described above.

Example
The following call to define_type defines tri to be a simple enumerated type with
exactly three distinct values:

- define_type{name = "tri_DEF",
type_spec = ‘tri = ONE | TWO | THREE‘,
fixities = [Prefix,Prefix,Prefix]}

|- !e0 e1 e2. ?! fn. (fn ONE = e0) /\ (fn TWO = e1) /\ (fn THREE = e2)

The theorem returned is a degenerate ‘primitive recursion’ theorem for the concrete
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type tri. An example of a recursive type that can be defined using define_type is a type
of binary trees:

- define_type {type_spec = ‘btree = LEAF of ’a
| NODE of btree => btree‘,

name = "tree_DEF",
fixities = [Prefix,Prefix]}

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

The theorem returned by define_type in this case asserts the unique existence of func-
tions defined by primitive recursion over labelled binary trees.

Note that the type being defined may not occur as a proper subtype in any of the
types of the arguments of the constructors:

- define_type{type_spec = ‘ty = NUM of num | FUN of (ty -> ty)‘,
name = "num_funcs", fixities = [Prefix, Prefix]};

Exception raised at Term.make_type_clause.check:
recursive occurrence of defined type is deeper than the first level

In this example, there is an error because ty occurs within the type expression (ty -> ty).

Comments
The ”=>” that may be used in type specifications is merely a delimiter that shows a
constructor to be Curried. It must occur at the ”top-level” in the argument list to a
constructor. i.e., parsing of the type specification will fail if the ”=>” occurs underneath
an existing type constructor.

See also
INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.

DEF_EXISTS_RULE

DEF_EXISTS_RULE : (term -> thm)
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Synopsis
Proves that a function defined by a definitional equation exists.

Description
This rule accepts a term of the form "c = ..." or "f x1 ... xn = ...", the variables of
which may be universally quantified, and returns an existential theorem. The resulting
theorem is typically used for generating HOL specifications.

Failure
DEF_EXISTS_RULE fails if the definition is not an equation, if there is any variable in the
right-hand side which does not occur in the left-hand side, if the definition is recursive, if
there is a free type variable, or if the name being defined by the function is not allowed.

Example
The effect of this rule can be understood more clearly through an example:

#DEF_EXISTS_RULE "max a b = ((a < b) => b | a)" ;;
|- ?max. !a b. max a b = (a < b => b | a)

Comments
In later versions of HOL this function may be made internal.

See also
new_definition, new_gen_definition, new_specification.

delete_restriction

delete_restriction : (string -> unit)

Synopsis
Removes a restriction semantics from a binder.

Description
Recall that if B is a binder and RES_B a constant then

associate_restriction("B", "RES_B")

will cause the parser and pretty-printer to support:

---- parse ---->
Bv::P. B RES_B P (\v. B)

<---- print ----

This behaviour may be disabled by calling delete_restriction with the binder name
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(”B” in this example).

Failure
Fails if you attempt to remove one of the builtin restrictions. These are associated with
the binders

["!","?","@","\\"]

Also fails if the named binder is not restricted, i.e., found as the first member of a pair
on the list returned by binder_restrictions.

Example

associate_restriction("DURING","RES_DURING");
() : unit

--‘DURING x::(m,n). p x‘--;
(--‘DURING x ::(m,n). p x‘--) : term

- delete_restriction "DURING";
() : unit

--‘DURING x::(m,n). p x‘--;

Exception raised at Parse_support.restr_binder:
no restriction associated with "DURING"

See also
associate_restrictions, binder_restrictions

DEPTH_CONV

DEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion repeatedly to all the sub-terms of a term, in bottom-up order.

Description
DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term tm,
including the term tm itself. The supplied conversion is applied repeatedly (zero or more
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times, as is done by REPEATC) to each subterm until it fails. The conversion is applied to
subterms in bottom-up order.

Failure
DEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeatedly
to some subterm of tm without failing.

Example
The following example shows how DEPTH_CONV applies a conversion to all subterms to
which it applies:

#DEPTH_CONV BETA_CONV "(\x. (\y. y + x) 1) 2";;
|- (\x. (\y. y + x)1)2 = 1 + 2

Here, there are two beta-redexes in the input term, one of which occurs within the other.
DEPTH_CONV BETA_CONV applies beta-conversion to innermost beta-redex (\y. y + x) 1

first. The outermost beta-redex is then (\x. 1 + x) 2, and beta-conversion of this redex
gives 1 + 2.

Because DEPTH_CONV applies a conversion bottom-up, the final result may still contain
subterms to which the supplied conversion applies. For example, in:

#DEPTH_CONV BETA_CONV "(\f x. (f x) + 1) (\y.y) 2";;
|- (\f x. (f x) + 1)(\y. y)2 = ((\y. y)2) + 1

the right-hand side of the result still contains a beta-redex, because the redex "(\y.y)2"

is introduced by virtue an application of BETA_CONV higher-up in the structure of the
input term. By contrast, in the example:

#DEPTH_CONV BETA_CONV "(\f x. (f x)) (\y.y) 2";;
|- (\f x. f x)(\y. y)2 = 2

all beta-redexes are eliminated, because DEPTH_CONV repeats the supplied conversion (in
this case, BETA_CONV) at each subterm (in this case, at the top-level term).

Uses
If the conversion c implements the evaluation of a function in logic, then DEPTH_CONV c

will do bottom-up evaluation of nested applications of it. For example, the conversion
ADD_CONV implements addition of natural number constants within the logic. Thus, the
effect of:

#DEPTH_CONV ADD_CONV "(1 + 2) + (3 + 4 + 5)";;
|- (1 + 2) + (3 + (4 + 5)) = 15

is to compute the sum represented by the input term.



100 Chapter 1. Pre-defined ML Identifiers

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the failure string ‘QCONV‘ may be generated and
later trapped. The behaviour of the function is dependent on this use of failure. So, if
the conversion given as an argument happens to generate a failure with string ‘QCONV‘,
the operation of DEPTH_CONV will be unpredictable.

See also
ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV.

dest_abs

dest_abs : term -> {Bvar :term, Body :term}

Synopsis
Breaks apart an abstraction into abstracted variable and body.

Description
dest_abs is a term destructor for abstractions: dest_abs (--‘\var. t‘--) returns Bvar
= var, Body = t.

Failure
Fails with

HOL_ERR{origin_structure = "Term", origin_function = "dest_abs",
message = "not a lambda abstraction"}

See also
mk_abs, is_abs, dest_var, dest_const, dest_comb, strip_abs.

dest_comb

dest_comb : term -> {Rator :term, Rand :term}

Synopsis
Breaks apart a combination (function application) into rator and rand.
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Description
dest_comb is a term destructor for combinations:

dest_comb (--‘t1 t2‘--)

returns Rator = t1, Rand = t2.

Failure
Fails with

HOL_ERR{origin_structure = "Term", origin_function = "dest_comb",
message = "not a comb"}

See also
mk_comb, is_comb, dest_var, dest_const, dest_abs, strip_comb.

dest_cond

dest_cond : term -> {cond :term, larm :term, rarm :term}

Synopsis
Breaks apart a conditional into the three terms involved.

Description
dest_cond is a term destructor for conditionals:

dest_cond (--‘t => t1 | t2‘--)

returns cond = t, larm = t1, rarm = t2.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_cond",
message = "not a cond"}

if term is not a conditional.

See also
mk_cond, is_cond.
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dest_conj

dest_conj : term -> {conj1 :term, conj2 :term}

Synopsis
Term destructor for conjunctions.

Description
dest_conj(--‘t1 /\ t2‘--) returns conj1 = t1, conj2 = t2.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_conj",
message = "not a conj"}

if term is not a conjunction.

See also
mk_conj, is_conj.

dest_cons

dest_cons : term -> {hd :term, tl :term}

Synopsis
Breaks apart a ‘CONS pair’ into head and tail.

Description
dest_cons is a term destructor for ‘CONS pairs’. When applied to a term representing a
nonempty list --‘[t;t1;...;tn]‘-- (which is equivalent to --‘CONS t [t1;...;tn]‘--),
it returns the pair of terms hd = t, tl = –‘[t1;...;tn]‘–.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_cons",
message = "not a cons"}

if the term is not a non-empty list.
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See also
mk_cons, is_cons, mk_list, dest_list, is_list.

dest_const

dest_const : term -> {Name :string, Ty :hol_type}

Synopsis
Breaks apart a constant into name and type.

Description
dest_const is a term destructor for constants:

dest_const (--‘const:ty‘--)

returns Name = ”const”, Ty = (==‘:ty‘==).

Failure
Fails with

HOL_ERR{origin_structure = "Term", origin_function = "dest_const",
message = "not a const"}

See also
mk_const, is_const, dest_var, dest_comb, dest_abs.

dest_disj

dest_disj : term -> {disj1 :term, disj2 :term}

Synopsis
Term destructor for disjunctions.

Description
dest_disj(--‘t1 /\ t2‘--) returns disj1 = t1, disj2 = t2.
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Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_disj",
message = "not a disj"}

if term is not a disjunction.

See also
mk_disj, is_disj.

dest_eq

dest_eq : term -> {lhs :term, rhs :term}

Synopsis
Term destructor for equality.

Description
dest_eq(--‘t1 = t2‘--) returns lhs = t1, rhs = t2.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_eq",
message = "not an ="}

See also
mk_eq, is_eq.

dest_exists

dest_exists : term -> {Bvar :term, Body :term}

Synopsis
Breaks apart a existentially quantified term into quantified variable and body.
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Description
dest_exists is a term destructor for existential quantification: dest_exists (--‘!var. t‘--)

returns Bvar = var, Body = t.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_exists",
message = "not an exists"}

if term is not a existential quantification.

See also
mk_exists, is_exists, strip_exists.

dest_forall

dest_forall : term -> {Bvar :term, Body :term}

Synopsis
Breaks apart a universally quantified term into quantified variable and body.

Description
dest_forall is a term destructor for universal quantification: dest_forall (--‘!var. t‘--)

returns Bvar = var, Body = t.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_forall",
message = "not a forall"}

if term is not a universal quantification.

See also
mk_forall, is_forall, strip_forall.

dest_imp

dest_imp : term -> {ant :term, conseq :term}
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Synopsis
Breaks apart an implication (or negation) into antecedent and consequent.

Description
dest_imp is a term destructor for implications, which treats negations as implications
with consequent F. Thus

dest_imp (--‘t1 ==> t2‘--)

returns

{ant = t1, conseq = t2}

and also

dest_imp (--‘~t‘--)

returns

{ant = t, conseq = (--‘F‘--)}

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_imp",
message = "not an ==>"}

if term is neither an implication nor a negation.

Comments
Destructs negations for increased functionality of HOL-style resolution.

See also
mk_imp, is_imp, strip_imp.

dest_let

dest_let : term -> {func :term, arg :term}

Synopsis
Breaks apart a let-expression.
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Description
dest_let is a term destructor for general let-expressions: dest_let (--‘LET f x‘--)

returns func = f, arg = x.

Example

- dest_let (--‘LET ($= 1) 2‘--);
{func=(--‘$= 1‘--), arg=(--‘2‘--)}

- dest_let (--‘let x = 2 in (x = 1)‘--);
{func=(--‘\x. x = 1‘--), arg=(--‘2‘--)}

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_let",
message = "not a let term"}

if term is not a let-expression or of the more general --‘LET f x‘-- form.

See also
mk_let, is_let.

dest_list

dest_list : term -> {els :term list, ty :type}

Synopsis
Iteratively breaks apart a list term.

Description
dest_list is a term destructor for lists: dest_list (--‘[t1;...;tn]:ty list‘--) returns
els = [t1;...;tn], ty = ty.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_list",
message = "not a list"}

if the term is not a list.
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See also
mk_list, is_list, mk_cons, dest_cons, is_cons.

dest_neg

dest_neg : (term -> term)

Synopsis
Breaks apart a negation, returning its body.

Description
dest_neg is a term destructor for negations: dest_neg "~t" returns "t".

Failure
Fails with dest_neg if term is not a negation.

See also
mk_neg, is_neg.

dest_pabs

dest_pabs : term -> {varstruct : term, body :term}

Synopsis
Breaks apart a paired abstraction into abstracted varstruct and body.

Description
dest_pabs is a term destructor for paired abstractions: dest_pabs (--‘\(v1..(..)..vn). t‘--)

returns varstruct = –‘(v1..(..)..vn)‘–, body = t.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_pabs",
message = "not a paired abstraction"}

unless the term is a paired abstraction.
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See also
mk_pabs, is_pabs, dest_abs, dest_var, dest_const, dest_comb.

dest_pair

dest_pair : term -> {fst :term, snd :term}

Synopsis
Breaks apart a pair into two separate terms.

Description
dest_pair is a term destructor for pairs: dest_pair (--‘(t1,t2)‘--) returns fst = t1,
snd = t2.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_pair",
message = "not a pair"}

if term is not a pair.

See also
mk_pair, is_pair, strip_pair.

dest_select

dest_select : term -> {Bvar :term, Body :term}

Synopsis
Breaks apart a choice term into selected variable and body.

Description
dest_select is a term destructor for choice terms:

dest_select (--‘@var. t‘--)

returns Bvar = var, Body = t.
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Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "dest_select",
message = "not a @"}

if term is not an epsilon-term.

See also
mk_select, is_select.

dest_thm

dest_thm : (thm -> goal)

Synopsis
Breaks a theorem into assumption list and conclusion.

Description
dest_thm (t1,...,tn |- t) returns (["t1";...;"tn"],"t").

Failure
Never fails.

Example

#dest_thm (ASSUME "p=T");;
(["p = T"], "p = T") : goal

See also
concl, hyp.

dest_type

dest_type : type -> {Tyop :string, Args :hol_type list}

Synopsis
Breaks apart a type (other than a variable type).
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Description
dest_type(==‘:(ty1,...,tyn)op‘==) returns

Tyop = ”op”, Args = [ty1,...,tyn].

Example

- dest_type (==‘:bool‘==);
{Tyop = "bool", Args = []}

- dest_type (==‘:bool list‘==);
{Tyop = "list", Args = [==‘:bool‘==]}

- dest_type (==‘:num -> bool‘==);
{Tyop = "fun", Args = [==‘:num‘==; ==‘:bool‘==]}

Failure
Fails with

HOL_ERR{origin_structure = "Type", origin_function = "dest_type",
message = ""}

if the type is a type variable.

See also
mk_type, dest_vartype.

dest_var

dest_var : term -> {Name :string, Ty: hol_type}

Synopsis
Breaks apart a variable into name and type.

Description
dest_var (--‘var:ty‘--) returns Name = ”var”, Ty = (==‘:ty‘==).

Failure
Fails with

HOL_ERR{origin_structure = "Term", origin_function = "dest_var",
message = "not a var"}

See also
mk_var, is_var, dest_const, dest_comb, dest_abs.
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dest_vartype

dest_vartype : (type -> string)

Synopsis
Breaks a type variable down to its name.

Description
dest_vartype ":*..." returns ‘*...‘.

Failure
Fails with dest_vartype if the type is not a type variable.

Example

#dest_vartype ":*test";;
‘*test‘ : string

#dest_vartype ":bool";;
evaluation failed dest_vartype

#dest_vartype ":* -> bool";;
evaluation failed dest_vartype

See also
mk_vartype, is_vartype, dest_type.

DISCARD_TAC

DISCARD_TAC : thm_tactic

Synopsis
Discards a theorem already present in a goal’s assumptions.
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Description
When applied to a theorem A’ |- s and a goal, DISCARD_TAC checks that s is simply T

(true), or already exists (up to alpha-conversion) in the assumption list of the goal. In
either case, the tactic has no effect. Otherwise, it fails.

A ?- t
======== DISCARD_TAC (A’ |- s)
A ?- t

Failure
Fails if the above conditions are not met, i.e. the theorem’s conclusion is not T or already
in the assumption list (up to alpha-conversion).

See also
POP_ASSUM, POP_ASSUM_LIST.

disch

disch : ((term * term list) -> term list)

Synopsis
Removes those elements of a list of terms that are alpha equivalent to a given term.

Description
Given a pair ("t",tl), disch removes those elements of tl that are alpha equivalent to
"t".

Example

disch (Term‘\x:bool.T‘, [Term‘A = T‘,Term‘B = 3‘,Term‘\y:bool.T‘]);
[‘A = T‘,‘B = 3‘] : term list

See also
filter.

DISCH

DISCH : (term -> thm -> thm)
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Synopsis
Discharges an assumption.

Description

A |- t
-------------------- DISCH "u"
A - {u} |- u ==> t

Failure
DISCH will fail if "u" is not boolean.

Comments
The term "u" need not be a hypothesis. Discharging "u" will remove all identical and
alpha-equivalent hypotheses.

See also
DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
NEG_DISCH, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH_ALL

DISCH_ALL : (thm -> thm)

Synopsis
Discharges all hypotheses of a theorem.

Description

A1, ..., An |- t
---------------------------- DISCH_ALL
|- A1 ==> ... ==> An ==> t

Failure
DISCH_ALL will not fail if there are no hypotheses to discharge, it will simply return the
theorem unchanged.

Comments
Users should not rely on the hypotheses being discharged in any particular order. Two
or more alpha-convertible hypotheses will be discharged by a single implication; users
should not rely on which hypothesis appears in the implication.
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See also
DISCH, DISCH_TAC, DISCH_THEN, NEG_DISCH, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH_TAC

DISCH_TAC : tactic

Synopsis
Moves the antecedent of an implicative goal into the assumptions.

Description

A ?- u ==> v
============== DISCH_TAC
A u {u} ?- v

Note that DISCH_TAC treats "~u" as "u ==> F", so will also work when applied to a goal
with a negated conclusion.

Failure
DISCH_TAC will fail for goals which are not implications or negations.

Uses
Solving goals of the form "u ==> v" by rewriting "v" with "u", although the use of
DISCH_THEN is usually more elegant in such cases.

Comments
If the antecedent already appears in the assumptions, it will be duplicated.

See also
DISCH, DISCH_ALL, DISCH_THEN, FILTER_DISCH_TAC, FILTER_DISCH_THEN, NEG_DISCH,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH_THEN

DISCH_THEN : (thm_tactic -> tactic)
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Synopsis
Undischarges an antecedent of an implication and passes it to a theorem-tactic.

Description
DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing it. This
new theorem is passed to the theorem-tactic given as DISCH_THEN’s argument. The con-
sequent tactic is then applied. Thus:

DISCH_THEN f (asl,"t1 ==> t2") = f(ASSUME "t1")(asl,"t2")

For example, if

A ?- t
======== f (ASSUME "u")
B ?- v

then

A ?- u ==> t
============== DISCH_THEN f

B ?- v

Note that DISCH_THEN treats "~u" as "u ==> F".

Failure
DISCH_THEN will fail for goals which are not implications or negations.

Example
The following shows how DISCH_THEN can be used to preprocess an antecedent before
adding it to the assumptions.

A ?- (x = y) ==> t
==================== DISCH_THEN (ASSUME_TAC o SYM)
A u {y = x} ?- t

In many cases, it is possible to use an antecedent and then throw it away:

A ?- (x = y) ==> t x
====================== DISCH_THEN (\th. PURE_REWRITE_TAC [th])

A ?- t y

See also
DISCH, DISCH_ALL, DISCH_TAC, NEG_DISCH, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
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DISJ1

DISJ1 : (thm -> term -> thm)

Synopsis
Introduces a right disjunct into the conclusion of a theorem.

Description

A |- t1
--------------- DISJ1 (A |- t1) "t2"
A |- t1 \/ t2

Failure
Fails unless the term argument is boolean.

Example

#DISJ1 TRUTH "F";;
|- T \/ F

Comments
The system shows the type of DISJ1 as (thm -> conv).

See also
DISJ1_TAC, DISJ2, DISJ2_TAC, DISJ_CASES.

DISJ1_TAC

DISJ1_TAC : tactic

Synopsis
Selects the left disjunct of a disjunctive goal.
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Description

A ?- t1 \/ t2
=============== DISJ1_TAC

A ?- t1

Failure
Fails if the goal is not a disjunction.

See also
DISJ1, DISJ2, DISJ2_TAC.

DISJ2

DISJ2 : (term -> thm -> thm)

Synopsis
Introduces a left disjunct into the conclusion of a theorem.

Description

A |- t2
--------------- DISJ2 "t1"
A |- t1 \/ t2

Failure
Fails if the term argument is not boolean.

Example

#DISJ2 "F" TRUTH;;
|- F \/ T

See also
DISJ1, DISJ1_TAC, DISJ2_TAC, DISJ_CASES.

DISJ2_TAC

DISJ2_TAC : tactic
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Synopsis
Selects the right disjunct of a disjunctive goal.

Description

A ?- t1 \/ t2
=============== DISJ2_TAC

A ?- t2

Failure
Fails if the goal is not a disjunction.

See also
DISJ1, DISJ1_TAC, DISJ2.

disjuncts

Compat.disjuncts : term -> term list

Synopsis
Iteratively breaks apart a disjunction.

Description
Found in the hol88 library. disjuncts (--‘t1 \/ ... \/ tn‘--) returns [(--‘t1‘--),...,(--‘tn‘--)].
The argument term may be any tree of disjunctions, it need not have the form (--‘t1 \/ (t2 \/ ( ... \/ tn)...)‘--).
A term that is not a disjunction is simply returned as the sole element of a list. Note
that

disjuncts(list_mk_disj([(--‘t1‘--),...,(--‘tn‘--)]))

will not return [(--‘t1‘--),...,(--‘tn‘--)] if any of t1,...,tn are disjunctions.

Failure
Never fails. Unless, of course, you have not loaded the hol88 library.
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Example

- list_mk_disj [(--‘a \/ b‘--),(--‘c \/ d‘--),(--‘e \/ f‘--)];
(--‘(a \/ b) \/ (c \/ d) \/ e \/ f‘--) : term

- disjuncts it;
[(--‘a‘--),(--‘b‘--),(--‘c‘--),(--‘d‘--),(--‘e‘--),(--‘f‘--)] : term list

- list_mk_disj it;
(--‘a \/ b \/ c \/ d \/ e \/ f‘--) : term

- disjuncts (--‘1‘--);
[(--‘1‘--)] : term list

Comments
disjuncts is not in hol90. There, somewhat misleadingly, it is called strip_disj, in
order to be consistent with all the other strip_ routines. Because disjuncts splits both
the left and right sides of a disjunction, this operation is not the inverse of list_mk_disj.
It may be useful to introduce list_dest_disj for splitting only the right tails of a dis-
junction.

See also
list_mk_disj, dest_disj.

DISJ_CASES

DISJ_CASES : (thm -> thm -> thm -> thm)

Synopsis
Eliminates disjunction by cases.

Description
The rule DISJ_CASES takes a disjunctive theorem, and two ‘case’ theorems, each with
one of the disjuncts as a hypothesis while sharing alpha-equivalent conclusions. A new
theorem is returned with the same conclusion as the ‘case’ theorems, and the union of
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all assumptions excepting the disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t A2 u {t2} |- t
------------------------------------------------------ DISJ_CASES

A u A1 u A2 |- t

Failure
Fails if the first argument is not a disjunctive theorem, or if the conclusions of the other
two theorems are not alpha-convertible.

Example
Specializing the built-in theorem num_CASES gives the theorem:

th = |- (m = 0) \/ (?n. m = SUC n)

Using two additional theorems, each having one disjunct as a hypothesis:

th1 = (m = 0 |- (PRE m = m) = (m = 0))
th2 = (?n. m = SUC n" |- (PRE m = m) = (m = 0))

a new theorem can be derived:

#DISJ_CASES th th1 th2;;
|- (PRE m = m) = (m = 0)

Comments
Neither of the ‘case’ theorems is required to have either disjunct as a hypothesis, but
otherwise DISJ_CASES is pointless.

See also
DISJ_CASES_TAC, DISJ_CASES_THEN, DISJ_CASES_THEN2, DISJ_CASES_UNION, DISJ1,
DISJ2.

DISJ_CASES_TAC

DISJ_CASES_TAC : thm_tactic

Synopsis
Produces a case split based on a disjunctive theorem.
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Description
Given a theorem th of the form A |- u \/ v, DISJ_CASES_TAC th applied to a goal pro-
duces two subgoals, one with u as an assumption and one with v:

A ?- t
============================ DISJ_CASES_TAC (A |- u \/ v)
A u {u} ?- t A u {v}?- t

Failure
Fails if the given theorem does not have a disjunctive conclusion.

Example
Given the simple fact about arithmetic th, |- (m = 0) \/ (?n. m = SUC n), the tactic
DISJ_CASES_TAC th can be used to produce a case split:

#DISJ_CASES_TAC th ([],"(P:num -> bool) m");;
([(["m = 0"], "P m");
(["?n. m = SUC n"], "P m")], -) : subgoals

Uses
Performing a case analysis according to a disjunctive theorem.

See also
ASSUME_TAC, ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_THEN, STRUCT_CASES_TAC.

DISJ_CASES_THEN

DISJ_CASES_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each disjunct of a disjunctive theorem.

Description
If the theorem-tactic f:thm->tactic applied to either ASSUMEd disjunct produces results
as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f (u |- u) and ========= f (v |- v)
A ?- t1 A ?- t2

then applying DISJ_CASES_THEN f (|- u \/ v) to the goal (A ?- t) produces two sub-
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goals.

A ?- t
====================== DISJ_CASES_THEN f (|- u \/ v)
A ?- t1 A ?- t2

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN ASSUME_TAC th

produces two subgoals, each with one disjunct as an added assumption:

?n. m = SUC n ?- (PRE m = m) = (m = 0)

m = 0 ?- (PRE m = m) = (m = 0)

Uses
Building cases tactics. For example, DISJ_CASES_TAC could be defined by:

let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC

Comments
Use DISJ_CASES_THEN2 to apply different tactic generating functions to each case.

See also
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_TAC,
DISJ_CASES_THEN2, DISJ_CASES_THENL.

DISJ_CASES_THEN2

DISJ_CASES_THEN2 : (thm_tactic -> thm_tactical)
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Synopsis
Applies separate theorem-tactics to the two disjuncts of a theorem.

Description
If the theorem-tactics f1 and f2, applied to the ASSUMEd left and right disjunct of a theo-
rem |- u \/ v respectively, produce results as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f1 (u |- u) and ========= f2 (v |- v)
A ?- t1 A ?- t2

then applying DISJ_CASES_THEN2 f1 f2 (|- u \/ v) to the goal (A ?- t) produces two
subgoals.

A ?- t
====================== DISJ_CASES_THEN2 f1 f2 (|- u \/ v)
A ?- t1 A ?- t2

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN2 SUBST1_TAC ASSUME_TAC th

to the goal will produce two subgoals

?n. m = SUC n ?- (PRE m = m) = (m = 0)

?- (PRE 0 = 0) = (0 = 0)

The first subgoal has had the disjunct m = 0 used for a substitution, and the second has
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added the disjunct to the assumption list. Alternatively, applying the tactic

DISJ_CASES_THEN2 SUBST1_TAC (CHOOSE_THEN SUBST1_TAC) th

to the goal produces the subgoals:

?- (PRE(SUC n) = SUC n) = (SUC n = 0)

?- (PRE 0 = 0) = (0 = 0)

Uses
Building cases tacticals. For example, DISJ_CASES_THEN could be defined by:

let DISJ_CASES_THEN f = DISJ_CASES_THEN2 f f

See also
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN,
DISJ_CASES_THENL.

DISJ_CASES_THENL

DISJ_CASES_THENL : (thm_tactic list -> thm_tactic)

Synopsis
Applies theorem-tactics in a list to the corresponding disjuncts in a theorem.

Description
If the theorem-tactics f1...fn applied to the ASSUMEd disjuncts of a theorem

|- d1 \/ d2 \/...\/ dn

produce results as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f1 (d1 |- d1) and ... and ========= fn (dn |- dn)
A ?- t1 A ?- tn

then applying DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn) to the goal (A ?- t)
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produces n subgoals.

A ?- t
======================= DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn)
A ?- t1 ... A ?- tn

DISJ_CASES_THENL is defined using iteration, hence for theorems with more than n dis-
juncts, dn would itself be disjunctive.

Failure
Fails if the number of tactic generating functions in the list exceeds the number of
disjuncts in the theorem. An invalid tactic is produced if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Uses
Used when the goal is to be split into several cases, where a different tactic-generating
function is to be applied to each case.

See also
CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN,
DISJ_CASES_THEN2, STRIP_THM_THEN.

DISJ_CASES_UNION

DISJ_CASES_UNION : (thm -> thm -> thm -> thm)

Synopsis
Makes an inference for each arm of a disjunct.

Description
Given a disjunctive theorem, and two additional theorems each having one disjunct as
a hypothesis, a new theorem with a conclusion that is the disjunction of the conclusions
of the last two theorems is produced. The hypotheses include the union of hypotheses
of all three theorems less the two disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t3 A2 u {t2} |- t4
------------------------------------------------------ DISJ_CASES_UNION

A u A1 u A2 |- t3 \/ t4

Failure
Fails if the first theorem is not a disjunction.



DISJ IMP 127

Example
The built-in theorem LESS_CASES can be specialized to:

th1 = |- m < n \/ n <= m

and used with two additional theorems:

th2 = (m < n |- (m MOD n = m))
th3 = ({0 < n, n <= m} |- (m MOD n) = ((m - n) MOD n))

to derive a new theorem:

#DISJ_CASES_UNION th1 th2 th3;;
["0 < n"] |- (m MOD n = m) \/ (m MOD n = (m - n) MOD n)

See also
DISJ_CASES, DISJ_CASES_TAC, DISJ1, DISJ2.

DISJ_IMP

DISJ_IMP : (thm -> thm)

Synopsis
Converts a disjunctive theorem to an equivalent implicative theorem.

Description
The left disjunct of a disjunctive theorem becomes the negated antecedent of the newly
generated theorem.

A |- t1 \/ t2
----------------- DISJ_IMP
A |- ~t1 ==> t2

Failure
Fails if the theorem is not a disjunction.
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Example
Specializing the built-in theorem LESS_CASES gives the theorem:

th = |- m < n \/ n <= m

to which DISJ_IMP may be applied:

#DISJ_IMP th;;
|- ~m < n ==> n <= m

See also
DISJ_CASES.

e

e : (tactic -> void)

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function e is part of the subgoal package. It is an abbreviation for expand. For a
description of the subgoal package, see set_goal.

Failure
As for expand.

Uses
Doing a step in an interactive goal-directed proof.

See also
b, backup, backup_limit, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm, VALID.

el

el : (int -> * list -> *)
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Synopsis
Extracts a specified element from a list.

Description
el i [x1;...;xn] returns xi. Note that the elements are numbered starting from 1, not
0.

Failure
Fails with el if the integer argument is less than 1 or greater than the length of the list.

Example

#el 3 [1;2;7;1];;
7 : int

See also
hd, tl.

empty_rewrites

empty_rewrites: rewrites

Synopsis
The empty database of rewrite rules.

Description
Uses Used

to build other rewrite sets.

See also
base_rewrites, add_base_rewrites, add_rewrites.

end_itlist

end_itlist : ((* -> * -> *) -> * list -> *)
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Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
end_itlist f [x1;...;xn] returns f x1 ( ... (f x(n-1) xn)...). Returns x for a one-
element list [x].

Failure
Fails with end_itlist if list is empty.

Example

#end_itlist (\x y. x + y) [1;2;3;4];;
10 : int

See also
itlist, rev_itlist.

EQF_ELIM

EQF_ELIM : (thm -> thm)

Synopsis
Replaces equality with F by negation.

Description

A |- tm = F
------------- EQF_ELIM
A |- ~tm

Failure
Fails if the argument theorem is not of the form A |- tm = F.

See also
EQF_INTRO, EQT_ELIM, EQT_INTRO.
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EQF_INTRO

EQF_INTRO : (thm -> thm)

Synopsis
Converts negation to equality with F.

Description

A |- ~tm
------------- EQF_INTRO
A |- tm = F

Failure
Fails if the argument theorem is not a negation.

See also
EQF_ELIM, EQT_ELIM, EQT_INTRO.

EQT_ELIM

EQT_ELIM : (thm -> thm)

Synopsis
Eliminates equality with T.

Description

A |- tm = T
------------- EQT_ELIM

A |- tm

Failure
Fails if the argument theorem is not of the form A |- tm = T.

See also
EQT_INTRO, EQF_ELIM, EQF_INTRO.
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EQT_INTRO

EQT_INTRO : (thm -> thm)

Synopsis
Introduces equality with T.

Description

A |- tm
------------- EQF_INTRO
A |- tm = T

Failure
Never fails.

See also
EQT_ELIM, EQF_ELIM, EQF_INTRO.

EQ_IMP_RULE

EQ_IMP_RULE : (thm -> (thm # thm))

Synopsis
Derives forward and backward implication from equality of boolean terms.

Description
When applied to a theorem A |- t1 = t2, where t1 and t2 both have type bool, the
inference rule EQ_IMP_RULE returns the theorems A |- t1 ==> t2 and A |- t2 ==> t1.

A |- t1 = t2
----------------------------------- EQ_IMP_RULE
A |- t1 ==> t2 A |- t2 ==> t1

Failure
Fails unless the conclusion of the given theorem is an equation between boolean terms.
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See also
EQ_MP, EQ_TAC, IMP_ANTISYM_RULE.

EQ_MP

EQ_MP : (thm -> thm -> thm)

Synopsis
Equality version of the Modus Ponens rule.

Description
When applied to theorems A1 |- t1 = t2 and A2 |- t1, the inference rule EQ_MP returns
the theorem A1 u A2 |- t2.

A1 |- t1 = t2 A2 |- t1
-------------------------- EQ_MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is equational and its left side is the same as the conclusion
of the second theorem (and is therefore of type bool), up to alpha-conversion.

See also
EQ_IMP_RULE, IMP_ANTISYM_RULE, MP.

EQ_TAC

EQ_TAC : tactic

Synopsis
Reduces goal of equality of boolean terms to forward and backward implication.
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Description
When applied to a goal A ?- t1 = t2, where t1 and t2 have type bool, the tactic EQ_TAC

returns the subgoals A ?- t1 ==> t2 and A ?- t2 ==> t1.

A ?- t1 = t2
================================= EQ_TAC
A ?- t1 ==> t2 A ?- t2 ==> t1

Failure
Fails unless the conclusion of the goal is an equation between boolean terms.

See also
EQ_IMP_RULE, IMP_ANTISYM_RULE.

ETA_CONV

ETA_CONV : conv

Synopsis
Performs a toplevel eta-conversion.

Description
ETA_CONV maps an eta-redex "\x. t x", where x does not occur free in t, to the theorem
|- (\x. t x) = t.

Failure
Fails if the input term is not an eta-redex.

EVERY

EVERY : (tactic list -> tactic)

Synopsis
Sequentially applies all the tactics in a given list of tactics.
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Description
When applied to a list of tactics [T1; ... ;Tn], and a goal g, the tactical EVERY applies
each tactic in sequence to every subgoal generated by the previous one. This can be
represented as:

EVERY [T1;...;Tn] = T1 THEN ... THEN Tn

If the tactic list is empty, the resulting tactic has no effect.

Failure
The application of EVERY to a tactic list never fails. The resulting tactic fails iff any of
the component tactics do.

Comments
It is possible to use EVERY instead of THEN, but probably stylistically inferior. EVERY is
more useful when applied to a list of tactics generated by a function.

See also
FIRST, MAP_EVERY, THEN.

EVERY_ASSUM

EVERY_ASSUM : (thm_tactic -> tactic)

Synopsis
Sequentially applies all tactics given by mapping a function over the assumptions of a
goal.

Description
When applied to a theorem-tactic f and a goal ({A1;...;An} ?- C), the EVERY_ASSUM

tactical maps f over a list of ASSUMEd assumptions then applies the resulting tactics, in
sequence, to the goal:

EVERY_ASSUM f ({A1;...;An} ?- C)
= (f(A1 |- A1) THEN ... THEN f(An |- An)) ({A1;...;An} ?- C)

If the goal has no assumptions, then EVERY_ASSUM has no effect.

Failure
The application of EVERY_ASSUM to a theorem-tactic and a goal fails if the theorem-tactic
fails when applied to any of the ASSUMEd assumptions of the goal, or if any of the result-
ing tactics fail when applied sequentially.
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See also
ASSUM_LIST, MAP_EVERY, MAP_FIRST, THEN.

EVERY_CONV

EVERY_CONV : (conv list -> conv)

Synopsis
Applies in sequence all the conversions in a given list of conversions.

Description
EVERY_CONV [c1;...;cn] "t" returns the result of applying the conversions c1, ..., cn in
sequence to the term "t". The conversions are applied in the order in which they are
given in the list. In particular, if ci "ti" returns |- ti=ti+1 for i from 1 to n, then
EVERY_CONV [c1;...;cn] "t1" returns |- t1=t(n+1). If the supplied list of conversions
is empty, then EVERY_CONV returns the identity conversion. That is, EVERY_CONV [] "t"

returns |- t=t.

Failure
EVERY_CONV [c1;...;cn] "t" fails if any one of the conversions c1, ..., cn fails when
applied in sequence as specified above.

See also
THENC.

EVERY_TCL

EVERY_TCL : (thm_tactical list -> thm_tactical)

Synopsis
Composes a list of theorem-tacticals.
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Description
When given a list of theorem-tacticals and a theorem, EVERY_TCL simply composes their
effects on the theorem. The effect is:

EVERY_TCL [ttl1;...;ttln] = ttl1 THEN_TCL ... THEN_TCL ttln

In other words, if:

ttl1 ttac th1 = ttac th2 ... ttln ttac thn = ttac thn’

then:

EVERY_TCL [ttl1;...;ttln] ttac th1 = ttac thn’

If the theorem-tactical list is empty, the resulting theorem-tactical behaves in the same
way as ALL_THEN, the identity theorem-tactical.

Failure
The application to a list of theorem-tacticals never fails.

See also
FIRST_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.

EXISTENCE

EXISTENCE : (thm -> thm)

Synopsis
Deduces existence from unique existence.

Description
When applied to a theorem with a unique-existentially quantified conclusion, EXISTENCE
returns the same theorem with normal existential quantification over the same variable.

A |- ?!x. p
------------- EXISTENCE
A |- ?x. p

Failure
Fails unless the conclusion of the theorem is unique-existentially quantified.
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See also
EXISTS_UNIQUE_CONV.

exists

exists : ((* -> bool) -> * list -> bool)

Synopsis
Tests a list to see if it has at least one element satisfying a predicate.

Description
exists p l applies p to the elements of l in order until one is found which satisfies p,
or until the list is exhausted, returning true or false accordingly.

Failure
Never fails.

See also
forall, find, tryfind, mem, assoc, rev_assoc.

EXISTS

EXISTS : ((term # term) -> thm -> thm)

Synopsis
Introduces existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, the first term an existentially quantified
pattern indicating the desired form of the result, and the second a witness whose sub-
stitution for the quantified variable gives a term which is the same as the conclusion of
the theorem, EXISTS gives the desired theorem.

A |- p[u/x]
------------- EXISTS ("?x. p","u")
A |- ?x. p

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.



EXISTS AND CONV 139

Example
The following examples illustrate how it is possible to deduce different things from the
same theorem:

#EXISTS ("?x. x=T","T") (REFL "T");;
|- ?x. x = T

#EXISTS ("?x:bool. x=x","T") (REFL "T");;
|- ?x. x = x

See also
CHOOSE, EXISTS_TAC.

EXISTS_AND_CONV

EXISTS_AND_CONV : conv

Synopsis
Moves an existential quantification inwards through a conjunction.

Description
When applied to a term of the form ?x. P /\ Q, where x is not free in both P and Q,
EXISTS_AND_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (?x. P /\ Q) = (?x.P) /\ Q

is returned. If x is free in Q but not in P, then the result is:

|- (?x. P /\ Q) = P /\ (?x.Q)

And if x is free in neither P nor Q, then the result is:

|- (?x. P /\ Q) = (?x.P) /\ (?x.Q)

Failure
EXISTS_AND_CONV fails if it is applied to a term not of the form ?x. P /\ Q, or if it is
applied to a term ?x. P /\ Q in which the variable x is free in both P and Q.

See also
AND_EXISTS_CONV, LEFT_AND_EXISTS_CONV, RIGHT_AND_EXISTS_CONV.
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EXISTS_EQ

EXISTS_EQ : (term -> thm -> thm)

Synopsis
Existentially quantifies both sides of an equational theorem.

Description
When applied to a variable x and a theorem whose conclusion is equational, A |- t1 = t2,
the inference rule EXISTS_EQ returns the theorem A |- (?x. t1) = (?x. t2), provided
the variable x is not free in any of the assumptions.

A |- t1 = t2
------------------------ EXISTS_EQ "x" [where x is not free in A]
A |- (?x.t1) = (?x.t2)

Failure
Fails unless the theorem is equational with both sides having type bool, or if the term is
not a variable, or if the variable to be quantified over is free in any of the assumptions.

See also
AP_TERM, EXISTS_IMP, FORALL_EQ, MK_EXISTS, SELECT_EQ.

EXISTS_IMP

EXISTS_IMP : (term -> thm -> thm)

Synopsis
Existentially quantifies both the antecedent and consequent of an implication.

Description
When applied to a variable x and a theorem A |- t1 ==> t2, the inference rule EXISTS_IMP
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returns the theorem A |- (?x. t1) ==> (?x. t2), provided x is not free in the assump-
tions.

A |- t1 ==> t2
-------------------------- EXISTS_IMP "x" [where x is not free in A]
A |- (?x.t1) ==> (?x.t2)

Failure
Fails if the theorem is not implicative, or if the term is not a variable, or if the term is a
variable but is free in the assumption list.

See also
EXISTS_EQ.

EXISTS_IMP_CONV

EXISTS_IMP_CONV : conv

Synopsis
Moves an existential quantification inwards through an implication.

Description
When applied to a term of the form ?x. P ==> Q, where x is not free in both P and Q,
EXISTS_IMP_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (?x. P ==> Q) = (!x.P) ==> Q

is returned. If x is free in Q but not in P, then the result is:

|- (?x. P ==> Q) = P ==> (?x.Q)

And if x is free in neither P nor Q, then the result is:

|- (?x. P ==> Q) = (!x.P) ==> (?x.Q)

Failure
EXISTS_IMP_CONV fails if it is applied to a term not of the form ?x. P ==> Q, or if it is
applied to a term ?x. P ==> Q in which the variable x is free in both P and Q.
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See also
LEFT_IMP_FORALL_CONV, RIGHT_IMP_EXISTS_CONV.

EXISTS_NOT_CONV

EXISTS_NOT_CONV : conv

Synopsis
Moves an existential quantification inwards through a negation.

Description
When applied to a term of the form ?x.~P, the conversion EXISTS_NOT_CONV returns the
theorem:

|- (?x.~P) = ~(!x. P)

Failure
Fails if applied to a term not of the form ?x.~P.

See also
FORALL_NOT_CONV, NOT_EXISTS_CONV, NOT_FORALL_CONV.

EXISTS_OR_CONV

EXISTS_OR_CONV : conv

Synopsis
Moves an existential quantification inwards through a disjunction.

Description
When applied to a term of the form ?x. P \/ Q, the conversion EXISTS_OR_CONV returns
the theorem:

|- (?x. P \/ Q) = (?x.P) \/ (?x.Q)

Failure
Fails if applied to a term not of the form ?x. P \/ Q.
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See also
OR_EXISTS_CONV, LEFT_OR_EXISTS_CONV, RIGHT_OR_EXISTS_CONV.

EXISTS_TAC

EXISTS_TAC : (term -> tactic)

Synopsis
Reduces existentially quantified goal to one involving a specific witness.

Description
When applied to a term u and a goal ?x. t, the tactic EXISTS_TAC reduces the goal to
t[u/x] (substituting u for all free instances of x in t, with variable renaming if necessary
to avoid free variable capture).

A ?- ?x. t
============= EXISTS_TAC "u"
A ?- t[u/x]

Failure
Fails unless the goal’s conclusion is existentially quantified and the term supplied has
the same type as the quantified variable in the goal.

Example
The goal:

?- ?x. x=T

can be solved by:

EXISTS_TAC "T" THEN REFL_TAC

See also
EXISTS.

EXISTS_UNIQUE_CONV

EXISTS_UNIQUE_CONV : conv
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Synopsis
Expands with the definition of unique existence.

Description
Given a term of the form "?!x.P[x]", the conversion EXISTS_UNIQUE_CONV proves that
this assertion is equivalent to the conjunction of two statements, namely that there
exists at least one value x such that P[x], and that there is at most one value x for which
P[x] holds. The theorem returned is:

|- (?! x. P[x]) = (?x. P[x]) /\ (!x x’. P[x] /\ P[x’] ==> (x = x’))

where x’ is a primed variant of x that does not appear free in the input term. Note that
the quantified variable x need not in fact appear free in the body of the input term. For
example, EXISTS_UNIQUE_CONV "?!x.T" returns the theorem:

|- (?! x. T) = (?x. T) /\ (!x x’. T /\ T ==> (x = x’))

Failure
EXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!x.P".

See also
EXISTENCE.

expand

expand : (tactic -> void)

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function expand is part of the subgoal package. It may be abbreviated by the func-
tion e. It applies a tactic to the current goal to give a new proof state. The previous
state is stored on the backup list. If the tactic produces subgoals, the new proof state is
formed from the old one by removing the current goal from the goal stack and adding
a new level consisting of its subgoals. The corresponding justification is placed on the
justification stack. The new subgoals are printed. If more than one subgoal is produced,
they are printed from the bottom of the stack so that the new current goal is printed
last.
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If a tactic solves the current goal (returns an empty subgoal list), then its justification
is used to prove a corresponding theorem. This theorem is incorporated into the justi-
fication of the parent goal and printed. If the subgoal was the last subgoal of the level,
the level is removed and the parent goal is proved using its (new) justification. This
process is repeated until a level with unproven subgoals is reached. The next goal on
the goal stack then becomes the current goal. This goal is printed. If all the subgoals
are proved, the resulting proof state consists of the theorem proved by the justifications.

The tactic applied is a validating version of the tactic given. It ensures that the justifi-
cation of the tactic does provide a proof of the goal from the subgoals generated by the
tactic. It will cause failure if this is not so. The tactical VALID performs this validation.

For a description of the subgoal package, see set_goal.

Failure

expand tac fails if the tactic tac fails for the top goal. It will diverge if the tactic diverges
for the goal. It will fail if there are no unproven goals. This could be because no goal
has been set using set_goal or because the last goal set has been completely proved. It
will also fail in cases when the tactic is invalid.
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Example

#expand CONJ_TAC;;
OK..
evaluation failed no goals to expand

#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

#expand CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"

"HD[1;2;3] = 1"

() : void

#expand (REWRITE_TAC[HD]);;
OK..
goal proved
|- HD[1;2;3] = 1

Previous subproof:
"TL[1;2;3] = [2;3]"

() : void

#expand (REWRITE_TAC[TL]);;
OK..
goal proved
|- TL[1;2;3] = [2;3]
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])

Previous subproof:
goal proved
() : void

In the following example an invalid tactic is used. It is invalid because it assumes
something that is not on the assumption list of the goal. The justification adds this
assumption to the assumption list so the justification would not prove the goal that was
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set.

#set_goal([],"1=2");;
"1 = 2"

() : void

#expand (REWRITE_TAC[ASSUME "1=2"]);;
OK..
evaluation failed Invalid tactic

Uses
Doing a step in an interactive goal-directed proof.

See also
b, backup, backup_limit, e, expandf, g, get_state, p, print_state, r, rotate,
save_top_thm, set_goal, set_state, top_goal, top_thm, VALID.

expandf

expandf : (tactic -> unit)

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function expandf is a faster version of expand. It does not use a validated version of
the tactic. That is, no check is made that the justification of the tactic does prove the
goal from the subgoals it generates. If an invalid tactic is used, the theorem ultimately
proved may not match the goal originally set. Alternatively, failure may occur when
the justifications are applied in which case the theorem would not be proved. For a
description of the subgoal package, see under set_goal.

Failure
Calling expandf tac fails if the tactic tac fails for the top goal. It will diverge if the tactic
diverges for the goal. It will fail if there are no unproven goals. This could be because
no goal has been set using set_goal or because the last goal set has been completely
proved. If an invalid tactic, whose justification actually fails, has been used earlier in
the proof, expandf tac may succeed in applying tac and apparently prove the current
goal. It may then fail as it applies the justifications of the tactics applied earlier.
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Example

- g ‘HD[1;2;3] = 1‘;

‘HD[1;2;3] = 1‘

() : void

- expandf (REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- HD[1;2;3] = 1

Previous subproof:
goal proved
() : void

The following example shows how the use of an invalid tactic can yield a theorem which
does not correspond to the goal set.

- set_goal([], Term ‘1=2‘);
‘1 = 2‘

() : void

- expandf (REWRITE_TAC[ASSUME (Term‘1=2‘)]);
OK..
goal proved
. |- 1 = 2

Previous subproof:
goal proved
() : void

The proof assumed something which was not on the assumption list. This assumption
appears in the assumption list of the theorem proved, even though it was not in the
goal. An attempt to perform the proof using expand fails. The validated version of the
tactic detects that the justification produces a theorem which does not correspond to
the goal set. It therefore fails.

Uses
Saving CPU time when doing goal-directed proofs, since the extra validation is not done.
Redoing proofs quickly that are already known to work.

Comments
The CPU time saved may cause misery later. If an invalid tactic is used, this will only
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be discovered when the proof has apparently been finished and the justifications are
applied.

See also
b, backup, backup_limit, e, expand, g, get_state, p, print_state, r, rotate,
save_top_thm, set_goal, set_state, top_goal, top_thm, VALID.

EXT

EXT : (thm -> thm)

Synopsis
Derives equality of functions from extentional equivalence.

Description
When applied to a theorem A |- !x. t1 x = t2 x, the inference rule EXT returns the
theorem A |- t1 = t2.

A |- !x. t1 x = t2 x
---------------------- EXT [where x is not free in t1 or t2]

A |- t1 = t2

Failure
Fails if the theorem does not have the form indicated above, or if the variable x is free
either of the functions t1 or t2.

See also
AP_THM, ETA_CONV, FUN_EQ_CONV.

FAIL_TAC

FAIL_TAC : (string -> tactic)

Synopsis
Tactic which always fails, with the supplied string.
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Description
Whatever goal it is applied to, FAIL_TAC s always fails with the string s.

Failure
The application of FAIL_TAC to a string never fails; the resulting tactic always fails.

Example
The following example uses the fact that if a tactic t1 solves a goal, then the tactic
t1 THEN t2 never results in the application of t2 to anything, because t1 produces no
subgoals. In attempting to solve the following goal:

?- x => T | T

the tactic

REWRITE_TAC[] THEN FAIL_TAC ‘Simple rewriting failed to solve goal‘

will fail with the message provided, whereas:

CONV_TAC COND_CONV THEN FAIL_TAC ‘Using COND_CONV failed to solve goal‘

will silently solve the goal because COND_CONV reduces it to just ?- T.

See also
ALL_TAC, NO_TAC.

filter

filter : ((* -> bool) -> * list -> * list)

Synopsis
Filters a list to the sublist of elements satisfying a predicate.

Description
filter p l applies p to every element of l, returning a list of those that satisfy p, in the
order they appeared in the original list.

Failure
Never fails.

See also
mapfilter, partition, remove.
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FILTER_ASM_REWRITE_RULE

FILTER_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem including built-in rewrites and some of the theorem’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
theorem. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used (along with the set of basic tautologies and the
given theorem list) to rewrite the theorem. See GEN_REWRITE_RULE for more information
on rewriting.

Failure
FILTER_ASM_REWRITE_RULE does not fail. Using FILTER_ASM_REWRITE_RULE may result in
a diverging sequence of rewrites. In such cases FILTER_ONCE_ASM_REWRITE_RULE may be
used.

Uses
This rule can be applied when rewriting with all assumptions results in divergence.
Typically, the predicate can model checks as to whether a certain variable appears on the
left-hand side of an equational assumption, or whether the assumption is in disjunctive
form.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE, FILTER_PURE_ASM_REWRITE_RULE,
FILTER_PURE_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.

FILTER_ASM_REWRITE_TAC

FILTER_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)
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Synopsis
Rewrites a goal including built-in rewrites and some of the goal’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
goal. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used (along with the set of basic tautologies and the
given theorem list) to rewrite the goal. See GEN_REWRITE_TAC for more information on
rewriting.

Failure
FILTER_ASM_REWRITE_TAC does not fail, but it can result in an invalid tactic if the rewrite
is invalid. This happens when a theorem used for rewriting has assumptions which are
not alpha-convertible to assumptions of the goal. Using FILTER_ASM_REWRITE_TAC may
result in a diverging sequence of rewrites. In such cases FILTER_ONCE_ASM_REWRITE_TAC

may be used.

Uses
This tactic can be applied when rewriting with all assumptions results in divergence, or
in an unwanted proof state. Typically, the predicate can model checks as to whether a
certain variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form. Thus it allows choice of assumptions to rewrite
with in a position-independent fashion.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC, FILTER_PURE_ASM_REWRITE_TAC,
FILTER_PURE_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.

FILTER_DISCH_TAC

FILTER_DISCH_TAC : (term -> tactic)

Synopsis
Conditionally moves the antecedent of an implicative goal into the assumptions.
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Description
FILTER_DISCH_TAC will move the antecedent of an implication into the assumptions, pro-
vided its parameter does not occur in the antecedent.

A ?- u ==> v
============== FILTER_DISCH_TAC "w"
A u {u} ?- v

Note that DISCH_TAC treats "~u" as "u ==> F". Unlike DISCH_TAC, the antecedent will be
STRIPed into its various components before being ASSUMEd. This stripping includes gen-
erating multiple goals for case-analysis of disjunctions. Also, unlike DISCH_TAC, should
any component of the discharged antecedent directly imply or contradict the goal, then
this simplification will also be made. Again, unlike DISCH_TAC, FILTER_DISCH_TAC will
not duplicate identical or alpha-equivalent assumptions.

Failure
FILTER_DISCH_TAC will fail if a term which is identical, or alpha-equivalent to "w" occurs
free in the antecedent, or if the theorem is not an implication or a negation.

Comments
FILTER_DISCH_TAC "w" behaves like FILTER_DISCH_THEN STRIP_ASSUME_TAC "w".

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_THEN, NEG_DISCH,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

FILTER_DISCH_THEN

FILTER_DISCH_THEN : (thm_tactic -> term -> tactic)

Synopsis
Conditionally gives to a theorem-tactic the antecedent of an implicative goal.

Description
If FILTER_DISCH_THEN’s second argument, a term, does not occur in the antecedent, then
FILTER_DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing



154 Chapter 1. Pre-defined ML Identifiers

it. This new theorem is passed to FILTER_DISCH_THEN’s first argument, which is subse-
quently expanded. For example, if

A ?- t
======== f (ASSUME "u")
B ?- v

then

A ?- u ==> t
============== FILTER_DISCH_THEN f

B ?- v

Note that FILTER_DISCH_THEN treats "~u" as "u ==> F".

Failure
FILTER_DISCH_THEN will fail if a term which is identical, or alpha-equivalent to "w" occurs
free in the antecedent. FILTER_DISCH_THEN will also fail if the theorem is an implication
or a negation.

Comments
FILTER_DISCH_THEN is most easily understood by first understanding DISCH_THEN.

Uses
For preprocessing an antecedent before moving it to the assumptions, or for using an-
tecedents and then throwing them away.

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_TAC, NEG_DISCH,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

FILTER_GEN_TAC

FILTER_GEN_TAC : (term -> tactic)

Synopsis
Strips off a universal quantifier, but fails for a given quantified variable.

Description
When applied to a term s and a goal A ?- !x. t, the tactic FILTER_GEN_TAC fails if the
quantified variable x is the same as s, but otherwise advances the goal in the same way
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as GEN_TAC, i.e. returns the goal A ?- t[x’/x] where x’ is a variant of x chosen to avoid
clashing with any variables free in the goal’s assumption list. Normally x’ is just x.

A ?- !x. t
============== FILTER_GEN_TAC "s"
A ?- t[x’/x]

Failure
Fails if the goal’s conclusion is not universally quantified or the quantified variable is
equal to the given term.

See also
GEN, GEN_TAC, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC.

FILTER_ONCE_ASM_REWRITE_RULE

FILTER_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem once including built-in rewrites and some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The theorem is rewritten
with the assumptions for which the predicate returns true, the given list of theorems,
and the tautologies stored in basic_rewrites. It searches the term of the theorem once,
without applying rewrites recursively. Thus it avoids the divergence which can result
from the application of FILTER_ASM_REWRITE_RULE. For more information on rewriting
rules, see GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a theorem, al-
lowing control of the number of rewriting passes.

See also
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_PURE_ASM_REWRITE_RULE,
FILTER_PURE_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
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ONCE_DEPTH_CONV, PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.

FILTER_ONCE_ASM_REWRITE_TAC

FILTER_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal once including built-in rewrites and some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The goal is rewritten with
the assumptions for which the predicate returns true, the given list of theorems, and
the tautologies stored in basic_rewrites. It searches the term of the goal once, without
applying rewrites recursively. Thus it avoids the divergence which can result from the
application of FILTER_ASM_REWRITE_TAC. For more information on rewriting tactics, see
GEN_REWRITE_TAC.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a goal, allowing
control of the number of rewriting passes.

See also
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_PURE_ASM_REWRITE_TAC,
FILTER_PURE_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.

FILTER_PURE_ASM_REWRITE_RULE

FILTER_PURE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm ->thm)

Synopsis
Rewrites a theorem with some of the theorem’s assumptions.
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Description
This function implements selective rewriting with a subset of the assumptions of the
theorem. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used to rewrite the goal. See GEN_REWRITE_RULE for more
information on rewriting.

Failure
FILTER_PURE_ASM_REWRITE_RULE does not fail. Using FILTER_PURE_ASM_REWRITE_RULE may
result in a diverging sequence of rewrites. In such cases FILTER_PURE_ONCE_ASM_REWRITE_RULE
may be used.

Uses
This rule can be applied when rewriting with all assumptions results in divergence.
Typically, the predicate can model checks as to whether a certain variable appears on the
left-hand side of an equational assumption, or whether the assumption is in disjunctive
form.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE,
FILTER_PURE_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.

FILTER_PURE_ASM_REWRITE_TAC

FILTER_PURE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal with some of the goal’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
goal. The first argument (a predicate on terms) is applied to all assumptions, and the
ones which return true are used to rewrite the goal. See GEN_REWRITE_TAC for more
information on rewriting.
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Failure
FILTER_PURE_ASM_REWRITE_TAC does not fail, but it can result in an invalid tactic if the
rewrite is invalid. This happens when a theorem used for rewriting has assumptions
which are not alpha-convertible to assumptions of the goal. Using FILTER_PURE_ASM_REWRITE_TAC

may result in a diverging sequence of rewrites. In such cases FILTER_PURE_ONCE_ASM_REWRITE_TAC
may be used.

Uses
This tactic can be applied when rewriting with all assumptions results in divergence, or
in an unwanted proof state. Typically, the predicate can model checks as to whether a
certain variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form. Thus it allows choice of assumptions to rewrite
with in a position-independent fashion.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
FILTER_PURE_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.

FILTER_PURE_ONCE_ASM_REWRITE_RULE

FILTER_PURE_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem once using some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The theorem is rewritten
with the assumptions for which the predicate returns true and the given list of theorems.
It searches the term of the theorem once, without applying rewrites recursively. Thus it
avoids the divergence which can result from the application of FILTER_PURE_ASM_REWRITE_RULE.
For more information on rewriting rules, see GEN_REWRITE_RULE.

Failure
Never fails.
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Uses
This function is useful when rewriting with a subset of assumptions of a theorem, al-
lowing control of the number of rewriting passes.

See also
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE,
FILTER_PURE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.

FILTER_PURE_ONCE_ASM_REWRITE_TAC

FILTER_PURE_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal once using some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The goal is rewritten with
the assumptions for which the predicate returns true and the given list of theorems. It
searches the term of the goal once, without applying rewrites recursively. Thus it avoids
the divergence which can result from the application of FILTER_PURE_ASM_REWRITE_TAC.
For more information on rewriting tactics, see GEN_REWRITE_TAC.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a goal, allowing
control of the number of rewriting passes.

See also
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
FILTER_PURE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.

FILTER_STRIP_TAC

FILTER_STRIP_TAC : (term -> tactic)
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Synopsis
Conditionally strips apart a goal by eliminating the outermost connective.

Description
Stripping apart a goal in a more careful way than is done by STRIP_TAC may be necessary
when dealing with quantified terms and implications. FILTER_STRIP_TAC behaves like
STRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_STRIP_TAC u is a tactic that removes one outermost oc-
currence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t,
provided the term being stripped does not contain u. A negation ~t is treated as the im-
plication t ==> F. FILTER_STRIP_TAC u also breaks apart conjunctions without applying
any filtering.

If t is a universally quantified term, FILTER_STRIP_TAC u strips off the quantifier:

A ?- !x.v
================ FILTER_STRIP_TAC "u" [where x is not u]
A ?- v[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, no filtering is done and FILTER_STRIP_TAC u simply splits the conjunction:

A ?- v /\ w
================= FILTER_STRIP_TAC "u"
A ?- v A ?- w

If t is an implication and the antecedent does not contain a free instance of u, then
FILTER_STRIP_TAC u moves the antecedent into the assumptions and recursively splits
the antecedent according to the following rules (see STRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v
====================
A u {w[x’/x]} ?- v

where x’ is a variant of x.

Failure
FILTER_STRIP_TAC u (A,t) fails if t is not a universally quantified term, an implication, a
negation or a conjunction; or if the term being stripped contains u in the sense described
above (conjunction excluded).



FILTER STRIP THEN 161

Example
When trying to solve the goal

?- !n. m <= n /\ n <= m ==> (m = n)

the universally quantified variable n can be stripped off by using

FILTER_STRIP_TAC "m:num"

and then the implication can be stripped apart by using

FILTER_STRIP_TAC "m:num = n"

Uses
FILTER_STRIP_TAC is used when stripping outer connectives from a goal in a more del-
icate way than STRIP_TAC. A typical application is to keep stripping by using the tactic
REPEAT (FILTER_STRIP_TAC u) until one hits the term u at which stripping is to stop.

See also
CONJ_TAC, FILTER_DISCH_TAC, FILTER_DISCH_THEN, FILTER_GEN_TAC,
STRIP_ASSUME_TAC, STRIP_TAC.

FILTER_STRIP_THEN

FILTER_STRIP_THEN : (thm_tactic -> term -> tactic)

Synopsis
Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description
Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u re-
moves one outer connective (!, ==>, or ~) from t, if the term being stripped does not
contain a free instance of u. A negation ~t is treated as the implication t ==> F. The
theorem-tactic ttac is applied only when stripping an implication, by using the an-
tecedent stripped off. FILTER_STRIP_THEN also breaks conjunctions.
FILTER_STRIP_THEN behaves like STRIP_GOAL_THEN, if the term being stripped does not

contain a free instance of u. In particular, FILTER_STRIP_THEN STRIP_ASSUME_TAC behaves
like FILTER_STRIP_TAC.
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Failure
FILTER_STRIP_THEN ttac u (A,t) fails if t is not a universally quantified term, an impli-
cation, a negation or a conjunction; or if the term being stripped contains the term u

(conjunction excluded); or if the application of ttac fails, after stripping the goal.

Example
When solving the goal

?- (n = 1) ==> (n * n = n)

the application of FILTER_STRIP_THEN SUBST1_TAC "m:num" results in the goal

?- 1 * 1 = 1

Uses
FILTER_STRIP_THEN is used when manipulating intermediate results using theorem-tactics,
after stripping outer connectives from a goal in a more delicate way than STRIP_GOAL_THEN.

See also
CONJ_TAC, FILTER_DISCH_TAC, FILTER_DISCH_THEN, FILTER_GEN_TAC,
FILTER_STRIP_TAC, STRIP_ASSUME_TAC, STRIP_GOAL_THEN.

find

Compat.find : (’a -> bool) -> ’a list -> ’a

Synopsis
Returns the first element of a list which satisfies a predicate.

Description
Found in the hol88 library. find p [x1;...;xn] returns the first xi in the list such that
(p xi) is true.

Failure
Fails with find if no element satisfies the predicate. This will always be the case if the
list is empty.

Comments
find is in Compat, because is is not found in hol90 (Lib.first is equivalent and is used
instead).
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See also
tryfind, mem, exists, forall, assoc, rev_assoc.

FIRST

FIRST : (tactic list -> tactic)

Synopsis
Applies the first tactic in a tactic list which succeeds.

Description
When applied to a list of tactics [T1;...;Tn], and a goal g, the tactical FIRST tries ap-
plying the tactics to the goal until one succeeds. If the first tactic which succeeds is Tm,
then the effect is the same as just Tm. Thus FIRST effectively behaves as follows:

FIRST [T1;...;Tn] = T1 ORELSE ... ORELSE Tn

Failure
The application of FIRST to a tactic list never fails. The resulting tactic fails iff all the
component tactics do when applied to the goal, or if the tactic list is empty.

See also
EVERY, ORELSE.

FIRST_ASSUM

FIRST_ASSUM : (thm_tactic -> tactic)

Synopsis
Maps a theorem-tactic over the assumptions, applying first successful tactic.

Description
The tactic

FIRST_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the ASSUMEd
assumptions (A1 |- A1), ..., (An |- An) and which succeeds when applied to the goal.
Failures of ttac to produce a tactic are ignored.
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Failure
Fails if ttac (Ai |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_ASSUM (\asm. CONTR_TAC asm ORELSE ACCEPT_TAC asm)

searches the assumptions for either a contradiction or the desired conclusion. The tactic

FIRST_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal,
reducing the goal to the antecedent of the corresponding instance of this implication.

See also
ASSUM_LIST, EVERY, EVERY_ASSUM, FIRST, MAP_EVERY, MAP_FIRST.

FIRST_CONV

FIRST_CONV : (conv list -> conv)

Synopsis
Apply the first of the conversions in a given list that succeeds.

Description
FIRST_CONV [c1;...;cn] "t" returns the result of applying to the term "t" the first con-
version ci that succeeds when applied to "t". The conversions are tried in the order in
which they are given in the list.

Failure
FIRST_CONV [c1;...;cn] "t" fails if all the conversions c1, ..., cn fail when applied to
the term "t". FIRST_CONV cs "t" also fails if cs is the empty list.

See also
ORELSEC.
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FIRST_TCL

FIRST_TCL : (thm_tactical list -> thm_tactical)

Synopsis
Applies the first theorem-tactical in a list which succeeds.

Description
When applied to a list of theorem-tacticals, a theorem-tactic and a theorem, FIRST_TCL
returns the tactic resulting from the application of the first theorem-tactical to the
theorem-tactic and theorem which succeeds. The effect is the same as:

FIRST_TCL [ttl1;...;ttln] = ttl1 ORELSE_TCL ... ORELSE_TCL ttln

Failure
FIRST_TCL fails iff each tactic in the list fails when applied to the theorem-tactic and
theorem. This is trivially the case if the list is empty.

See also
EVERY_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.

FIRST_X_ASSUM

Tactical.FIRST_X_ASSUM : thm_tactic -> tactic

Synopsis
Maps a theorem-tactic over the assumptions, applying first successful tactic and remov-
ing the assumption that gave rise to the successful tactic.

Description
The tactic

FIRST_X_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the ASSUMEd
assumptions (A1 |- A1), ..., (An |- An) and which succeeds when applied to the goal.
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The assumption which produced the successful theorem-tactic is removed from the as-
sumption list (before ttac is applied). Failures of ttac to produce a tactic are ignored.

Failure
Fails if ttac (Ai |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_X_ASSUM SUBST_ALL_TAC

searches the assumptions for an equality and causes its right hand side to be substituted
for its left hand side throughout the goal and assumptions. It also removes the equality
from the assumption list. Using FIRST_ASSUM above would leave an equality on the
assumption list of the form x = x. The tactic

FIRST_X_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal,
reducing the goal to the antecedent of the corresponding instance of this implication
and removing the implication from the assumption list.

Comments
The “X” in the name of this tactic is a mnemonic for the “crossing out” or removal of the
assumption found.

See also
ASSUM_LIST, EVERY, PAT_ASSUM, EVERY_ASSUM, FIRST, MAP_EVERY, MAP_FIRST,
UNDISCH_THEN.

FORALL_AND_CONV

FORALL_AND_CONV : conv

Synopsis
Moves a universal quantification inwards through a conjunction.
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Description
When applied to a term of the form !x. P /\ Q, the conversion FORALL_AND_CONV returns
the theorem:

|- (!x. P /\ Q) = (!x.P) /\ (!x.Q)

Failure
Fails if applied to a term not of the form !x. P /\ Q.

See also
AND_FORALL_CONV, LEFT_AND_FORALL_CONV, RIGHT_AND_FORALL_CONV.

FORALL_EQ

FORALL_EQ : (term -> thm -> thm)

Synopsis
Universally quantifies both sides of an equational theorem.

Description
When applied to a variable x and a theorem A |- t1 = t2, whose conclusion is an equa-
tion between boolean terms, FORALL_EQ returns the theorem A |- (!x. t1) = (!x. t2),
unless the variable x is free in any of the assumptions.

A |- t1 = t2
------------------------ FORALL_EQ "x" [where x is not free in A]
A |- (!x.t1) = (!x.t2)

Failure
Fails if the theorem is not an equation between boolean terms, or if the supplied term is
not simply a variable, or if the variable is free in any of the assumptions.

See also
AP_TERM, EXISTS_EQ, SELECT_EQ.

FORALL_IMP_CONV

FORALL_IMP_CONV : conv
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Synopsis
Moves a universal quantification inwards through an implication.

Description
When applied to a term of the form !x. P ==> Q, where x is not free in both P and Q,
FORALL_IMP_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (!x. P ==> Q) = (?x.P) ==> Q

is returned. If x is free in Q but not in P, then the result is:

|- (!x. P ==> Q) = P ==> (!x.Q)

And if x is free in neither P nor Q, then the result is:

|- (!x. P ==> Q) = (?x.P) ==> (!x.Q)

Failure
FORALL_IMP_CONV fails if it is applied to a term not of the form !x. P ==> Q, or if it is
applied to a term !x. P ==> Q in which the variable x is free in both P and Q.

See also
LEFT_IMP_EXISTS_CONV, RIGHT_IMP_FORALL_CONV.

FORALL_NOT_CONV

FORALL_NOT_CONV : conv

Synopsis
Moves a universal quantification inwards through a negation.

Description
When applied to a term of the form !x.~P, the conversion FORALL_NOT_CONV returns the
theorem:

|- (!x.~P) = ~(?x. P)

Failure
Fails if applied to a term not of the form !x.~P.
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See also
EXISTS_NOT_CONV, NOT_EXISTS_CONV, NOT_FORALL_CONV.

FORALL_OR_CONV

FORALL_OR_CONV : conv

Synopsis
Moves a universal quantification inwards through a disjunction.

Description
When applied to a term of the form !x. P \/ Q, where x is not free in both P and Q,
FORALL_OR_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (!x. P \/ Q) = (!x.P) \/ Q

is returned. If x is free in Q but not in P, then the result is:

|- (!x. P \/ Q) = P \/ (!x.Q)

And if x is free in neither P nor Q, then the result is:

|- (!x. P \/ Q) = (!x.P) \/ (!x.Q)

Failure
FORALL_OR_CONV fails if it is applied to a term not of the form !x. P \/ Q, or if it is applied
to a term !x. P \/ Q in which the variable x is free in both P and Q.

See also
OR_FORALL_CONV, LEFT_OR_FORALL_CONV, RIGHT_OR_FORALL_CONV.

frees

hol88Lib.frees : term -> term list

Synopsis
Returns a list of the variables which are free in a term.
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Description
Found in the hol88 library. When applied to a term, frees returns a list of the free
variables in that term. There are no repetitions in the list produced even if there are
multiple free instances of some variables.

Failure
Never fails, unless the hol88 library has not been loaded.

Example
Clearly in the following term, x and y are free, whereas z is bound:

- frees (--‘(x=1) /\ (y=2) /\ (!z. z >= 0)‘--);
val it = [(--‘x‘--),(--‘y‘--)] : term list

Comments
frees is not in hol90; the function free_vars is used instead. WARNING: the order of
the list returned by frees and free_vars is different.

- val tm = (--‘x (y:num):bool‘--);
> val tm = (--‘x y‘--) : term
- free_vars tm
> val it = [(--‘y‘--),(--‘x‘--)] : term list
- frees tm;
> val it = [(--‘x‘--),(--‘y‘--)] : term list

It ought to be the case that the result of a call to frees (or free_vars) is treated as
a set, that is, the order of the free variables should be immaterial. This is sometimes
not possible; for example the result of gen_all (and hence the results of GEN_ALL and
new_axiom) necessarily depends on the order of the variables returned from frees. The
problem comes when users write code that depends on the order of quantification. For
example, contrary to some expectations, it is not the case that (tm being a closed term
already)

GEN_ALL (SPEC_ALL tm) = tm

where ”=” is interpreted as identity or alpha-convertibility.

See also
freesl, free_in, thm_frees.

freesl

Compat.freesl : term list -> term list
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Synopsis
Returns a list of the free variables in a list of terms.

Description
Found in the hol88 library. When applied to a list of terms, freesl returns a list of
the variables which are free in any of those terms. There are no repetitions in the list
produced even if several terms contain the same free variable.

Failure
Never fails, unless the hol88 library has not been loaded.

Example
In the following example there are two free instances each of x and y, whereas the only
instances of z are bound:

- freesl [(--‘x+y=2‘--), (--‘!z. z >= (x-y)‘--)];
val it = [(--‘x‘--),(--‘y‘--)] : term list

Comments
freesl is not in hol90; use free_varsl instead. WARNING: One can not depend on the
order of the list returned by freesl to be identical to that returned by free_varsl. They
are coded in terms of frees and free_vars, and thus the discussion in the documentation
for frees applies by extension.

See also
frees, free_in, thm_frees.

FREEZE_THEN

FREEZE_THEN : thm_tactical

Synopsis
‘Freezes’ a theorem to prevent instantiation of its free variables.

Description
FREEZE_THEN expects a tactic-generating function f:thm->tactic and a theorem (A1 |- w)

as arguments. The tactic-generating function f is applied to the theorem (w |- w). If
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this tactic generates the subgoal:

A ?- t
========= f (w |- w)
A ?- t1

then applying FREEZE_THEN f (A1 |- w) to the goal (A ?- t) produces the subgoal:

A ?- t
========= FREEZE_THEN f (A1 |- w)
A ?- t1

Since the term w is a hypothesis of the argument to the function f, none of the free
variables present in w may be instantiated or generalized. The hypothesis is discharged
by PROVE_HYP upon the completion of the proof of the subgoal.

Failure
Failures may arise from the tactic-generating function. An invalid tactic arises if the
hypotheses of the theorem are not alpha-convertible to assumptions of the goal.

Example
Given the goal ([ "b < c"; "a < b" ], "(SUC a) <= c"), and the specialized variant of
the theorem LESS_TRANS:

th = |- !p. a < b /\ b < p ==> a < p

IMP_RES_TAC th will generate several unneeded assumptions:

{b < c, a < b, a < c, !p. c < p ==> b < p, !a’. a’ < a ==> a’ < b}
?- (SUC a) <= c

which can be avoided by first ‘freezing’ the theorem, using the tactic

FREEZE_THEN IMP_RES_TAC th

This prevents the variables a and b from being instantiated.

{b < c, a < b, a < c} ?- (SUC a) <= c

Uses
Used in serious proof hacking to limit the matches achievable by resolution and rewrit-
ing.

See also
ASSUME, IMP_RES_TAC, PROVE_HYP, RES_TAC, REWR_CONV.
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free_in

free_in : (term -> term -> bool)

Synopsis
Tests if one term is free in another.

Description
When applied to two terms t1 and t2, the function free_in returns true if t1 is free in
t2, and false otherwise. It is not necessary that t1 be simply a variable.

Failure
Never fails.

Example
In the following example free_in returns false because the x in SUC x in the second
term is bound:

#free_in "SUC x" "!x. SUC x = x + 1";;
false : bool

whereas the following call returns true because the first instance of x in the second term
is free, even though there is also a bound instance:

#free_in "x:bool" "x /\ (?x. x=T)";;
true : bool

See also
frees, freesl, thm_frees.

FRONT_CONJ_CONV

FRONT_CONJ_CONV: (term list -> term -> thm)

Synopsis
Moves a specified conjunct to the beginning of a conjunction.
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Description
Given a list of boolean terms [t1;...;t;...;tn] and a term t which occurs in the list,
FRONT_CONJ_CONV returns:

|- (t1 /\ ... /\ t /\ ... /\ tn) = (t /\ t1 /\ ... /\ tn)

That is, FRONT_CONJ_CONV proves that t can be moved to the ‘front’ of a conjunction of
several terms.

Failure
FRONT_CONJ_CONV ["t1";...;"tn"] "t" fails if t does not occur in the list [t1,...,tn] or
if any of t1, ..., tn do not have type bool.

Comments
This is not a true conversion, so perhaps it ought to be called something else. The
system shows its type as (term list -> conv).

front_last

Lib.front_last : ’a list -> ’a list * ’a

Synopsis
Takes a list L of length ¿ 0 and returns a pair (front,last) such that front@[last] = L.

Failure
Fails if the list is empty.

Example

- front_last [1];
([],1)

- front_last [1,2,3];
([1,2],3)

fst

fst : ((* # **) -> *)
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Synopsis
Extracts the first component of a pair.

Description
fst (x,y) returns x.

Failure
Never fails.

See also
snd, pair.

FULL_SIMP_TAC

simpLib.FULL_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies the goal (assumptions as well as conclusion) with the given simpset.

Description
FULL_SIMP_TAC is a powerful simplification tactic that simplifies all of a goal. It proceeds
by applying simplification to each assumption of the goal in turn, accumulating simpli-
fied assumptions as it goes. These simplified assumptions are used to simplify further
assumptions, and all of the simplified assumptions are used as additional rewrites when
the conclusion of the goal is simplified.

In addition, simplified assumptions are added back onto the goal using the equivalent
of STRIP_ASSUME_TAC and this causes automatic skolemization of existential assumptions,
case splits on disjunctions, and the separate assumption of conjunctions. If an assump-
tion is simplified to TRUTH, then this is left on the assumption list. If it an assumption is
simplified to falsity, this proves the goal.

Failure
FULL_SIMP_TAC never fails, but it may diverge.

Example
Here FULL_SIMP_TAC is used to prove a goal:

> FULL_SIMP_TAC hol_ss [] (map Term [‘x = 3‘, ‘x < 2‘],
Term ‘?y. x * y = 51‘)

- val it = ([], fn) : tactic_result

Using LESS_OR_EQ |- !m n. m <= n = m < n \/ (m = n), a useful case split can be in-
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duced in the next goal:

> FULL_SIMP_TAC bool_ss [LESS_OR_EQ] (map Term [‘x <= y‘, ‘x < z‘],
Term ‘x + y < z‘);

- val it =
([([‘x < y‘, ‘x < z‘], ‘x + y < z‘),

([‘x = y‘, ‘x < z‘], ‘y + y < z‘)], fn)
: tactic_result

Note that the equality x = y is not used to simplify the subsequent assumptions, but is
used to simplify the conclusion of the goal.

Comments
The application of STRIP_ASSUME_TAC to simplified assumptions means that FULL_SIMP_TAC
can cause unwanted case-splits and other undesirable transformations to occur in one’s
assumption list. If one wants to apply the simplifier to assumptions without this occur-
ring, the best approach seems to be the use of RULE_ASSUM_TAC and SIMP_RULE.

See also
ASM_SIMP_TAC, hol_ss, SIMP_CONV, SIMP_RULE, SIMP_TAC.

funpow

funpow : int -> (’a -> ’a) -> ’a -> ’a

Synopsis
Iterates a function a fixed number of times.

Description
funpow n f x applies f to x, n times, giving the result f (f ... (f x)...) where the
number of f’s is n. funpow 0 f x returns x. If n is negative, funpow n f x returns x.

Failure
funpow n f x fails if any of the n applications of f fail.
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Example
Apply tl three times to a list:

- funpow 3 tl [1,2,3,4,5];
> [4, 5] : int list

Apply tl zero times:

- funpow 0 tl [1,2,3,4,5];
> [1; 2; 3; 4; 5] : int list

Apply tl six times to a list of only five elements:

- funpow 6 tl [1,2,3,4,5];
! Uncaught exception:
! List.Empty

FUN_EQ_CONV

FUN_EQ_CONV : conv

Synopsis
Equates normal and extensional equality for two functions.

Description
The conversion FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. When
supplied with a term argument of the form f = g, where f and g are functions of type
ty1->ty2, FUN_EQ_CONV returns the theorem:

|- (f = g) = (!x. f x = g x)

where x is a variable of type ty1 chosen by the conversion.

Failure
FUN_EQ_CONV tm fails if tm is not an equation f = g, where f and g are functions.

Uses
Used for proving equality of functions.

See also
EXT, X_FUN_EQ_CONV.
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g

g : (term -> void)

Synopsis
Initializes the subgoal package with a new goal which has no assumptions.

Description
The call

g "tm"

is equivalent to

set_goal([],"tm")

and clearly more convenient if a goal has no assumptions. For a description of the
subgoal package, see set_goal.

Failure
Fails unless the argument term has type bool.

Example

g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

See also
b, backup, backup_limit, e, expand, expandf, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.

GEN

GEN : (term -> thm -> thm)

Synopsis
Generalizes the conclusion of a theorem.



GENL 179

Description
When applied to a term x and a theorem A |- t, the inference rule GEN returns the
theorem A |- !x. t, provided x is a variable not free in any of the assumptions. There
is no compulsion that x should be free in t.

A |- t
------------ GEN "x" [where x is not free in A]
A |- !x. t

Failure
Fails if x is not a variable, or if it is free in any of the assumptions.

Example
The following example shows how the above side-condition prevents the derivation of
the theorem x=T |- !x. x=T, which is clearly invalid.

#top_print print_all_thm;;
- : (thm -> void)

#let t = ASSUME "x=T";;
t = x = T |- x = T

#GEN "x:bool" t;;
evaluation failed GEN

See also
GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GENL

GENL : (term list -> thm -> thm)

Synopsis
Generalizes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [x1;...;xn] and a theorem A |- t, the inference rule GENL

returns the theorem A |- !x1...xn. t, provided none of the variables xi are free in any
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of the assumptions. It is not necessary that any or all of the xi should be free in t.

A |- t
------------------ GENL "[x1;...;xn]" [where no xi is free in A]
A |- !x1...xn. t

Failure
Fails unless all the terms in the list are variables, none of which are free in the assump-
tion list.

See also
GEN, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

genvar

genvar : (type -> term)

Synopsis
Returns a variable whose name has not been used previously.

Description
When given a type, genvar returns a variable of that type whose name has not been
used for a variable or constant in the HOL session so far.

Failure
Never fails.

Example
The following indicates the typical stylized form of the names (this should not be relied
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on, of course):

#genvar ":bool";;
"GEN%VAR%357" : term

#genvar ":num";;
"GEN%VAR%358" : term

Trying to anticipate genvar doesn’t work:

#let v = mk_var(‘GEN%VAR%359‘,":bool");;
v = "GEN%VAR%359" : term

#genvar ":bool";;
"GEN%VAR%360" : term

Uses
The unique variables are useful in writing derived rules, for specializing terms without
having to worry about such things as free variable capture. If the names are to be visible
to a typical user, the function variant can provide rather more meaningful names.

See also
GSPEC, variant.

GEN_ALL

Drule.GEN_ALL : thm -> thm

Synopsis
Generalizes the conclusion of a theorem over its own free variables.

Description
When applied to a theorem A |- t, the inference rule GEN_ALL returns the theorem
A |- !x1...xn. t, where the xi are all the variables, if any, which are free in t but not
in the assumptions.

A |- t
------------------ GEN_ALL
A |- !x1...xn. t

Failure
Never fails.
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Comments
WARNING: hol90 GEN_ALL does not always return the same result as GEN_ALL in hol88.

Sometimes people write code that depends on the order of the quantification. They
shouldn’t.

See also
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GEN_ALPHA_CONV

GEN_ALPHA_CONV : (term -> conv)

Synopsis
Renames the bound variable of an abstraction, a quantified term, or other binder appli-
cation.

Description
The conversion GEN_ALPHA_CONV provides alpha conversion for lambda abstractions of
the form "\y.t", quantified terms of the forms "!y.t", "?y.t" or "?!y.t", and epsilon
terms of the form "@y.t". In general, if B is a binder constant, then GEN_ALPHA_CONV im-
plements alpha conversion for applications of the form "B y.t". The function is_binder

determines what is regarded as a binder in this context.
If tm is an abstraction "\y.t" or an application of a binder to an abstraction "B y.t",

where the bound variable y has type ":ty", and if "x" is a variable also of type :ty, then
GEN_ALPHA_CONV "x" tm returns one of the theorems:

|- (\y.t) = (\x’. t[x’/y])
|- (B y.t) = (!x’. t[x’/y])

depending on whether the input term is "\y.t" or "B y.t" respectively. The variable
x’:ty in the resulting theorem is a primed variant of x chosen so as not to be free in the
term provided as the second argument to GEN_ALPHA_CONV.

Failure
GEN_ALPHA_CONV x tm fails if x is not a variable, or if tm does not have one of the
forms "\y.t" or "B y.t", where B is a binder (that is, is_binder ‘B‘ returns true).
GEN_ALPHA_CONV x tm also fails if tm does have one of these forms, but types of the vari-
ables x and y differ.
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See also
ALPHA, ALPHA_CONV, is_binder.

GEN_BETA_CONV

GEN_BETA_CONV : conv

Synopsis
Beta-reduces single or paired beta-redexes, creating a paired argument if needed.

Description
The conversion GEN_BETA_CONV will perform beta-reduction of simple beta-redexes in
the manner of BETA_CONV, or of tupled beta-redexes in the manner of PAIRED_BETA_CONV.
Unlike the latter, it will force through a beta-reduction by introducing arbitrarily nested
pair destructors if necessary. The following shows the action for one level of pairing;
others are similar.

GEN_BETA_CONV "(\(x,y). t) p" = t[(FST p)/x, (SND p)/y]

Failure
GEN_BETA_CONV tm fails if tm is neither a simple nor a tupled beta-redex.

Example
The following examples show the action of GEN_BETA_CONV on tupled redexes. In the
following, it acts in the same way as PAIRED_BETA_CONV:

#GEN_BETA_CONV "(\(x,y). x + y) (1,2)";;
|- (\(x,y). x + y)(1,2) = 1 + 2

whereas in the following, the operand of the beta-redex is not a pair, so FST and SND are
introduced:

#GEN_BETA_CONV "(\(x,y). x + y) numpair";;
|- (\(x,y). x + y)numpair = (FST numpair) + (SND numpair)

The introduction of FST and SND will be done more than once as necessary:

#GEN_BETA_CONV "(\(w,x,y,z). w + x + y + z) (1,triple)";;
|- (\(w,x,y,z). w + (x + (y + z)))(1,triple) =

1 + ((FST triple) + ((FST(SND triple)) + (SND(SND triple))))

See also
BETA_CONV, PAIRED_BETA_CONV.
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GEN_MESON_TAC

mesonLib.GEN_MESON_TAC : int -> int -> int -> thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using both the given theorems and
the assumptions in the search.

Description
GEN_MESON_TAC is the function which provides the underlying implementation of the
model elimination solver used by both MESON_TAC and ASM_MESON_TAC. The three integer
parameters correspond to various ways in which the search can be tuned.

The first is the minimum depth at which to search. Setting this to a number greater
than zero can save time if its clear that there will not be a proof of such a small depth.
ASM_MESON_TAC and MESON_TAC always use a value of 0 for this parameter.

The second is the maximum depth to which to search. Setting this low will stop the
search taking too long, but may cause the engine to miss proofs it would otherwise
find. The setting of this variable for ASM_MESON_TAC and MESON_TAC is done through the
reference variable mesonLib.max_depth. This is set to 30 by default, but most proofs do
not need anything like this depth.

The third parameter is the increment used to increase the depth of search done by
the proof search procedure.

The approach used is iterative deepening, so with a call to

GEN_MESON_TAC mn mx inc

the algorithm looks for a proof of depth mn, then for one of depth mn + inc, then at
depth mn + 2 * inc etc. Once the depth gets greater than mx, the proof search stops.

Failure
GEN_MESON_TAC fails if it searches to a depth equal to the second integer parameter with-
out finding a proof. Shouldn’t fail otherwise.

Uses
The construction of tailored versions of MESON_TAC and ASM_MESON_TAC.

See also
ASM_MESON_TAC, MESON_TAC



GEN REWRITE CONV 185

GEN_REWRITE_CONV

GEN_REWRITE_CONV : ((conv -> conv) -> thm list -> thm list -> conv)

Synopsis
Rewrites a term, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replace-
ments on the subterms of an object theorem. This replacement is mediated by the use
of REWR_CONV, which finds matches between left-hand sides of given equations in a term
and applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments
to the function. These are at first transformed into a form suitable for rewriting. Con-
junctions are separated into individual rewrites. Theorems with conclusions of the form
"~t" are transformed into the corresponding equations "t = F". Theorems "t" which
are not equations are cast as equations of form "t = T".

If a theorem is used to rewrite a term, its assumptions are added to the assumptions
of the returned theorem. The matching involved uses variable instantiation. Thus, all
free variables are generalized, and terms are instantiated before substitution. Theorems
may have universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facili-
tate implementing other rewriting tools. However, they are considered in an order-
independent fashion. (That is, the ordering is an implementation detail which is not
specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_CONV fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses
This conversion is used in the system to implement all other rewritings conversions, and
may provide a user with a method to fine-tune rewriting of terms.



186 Chapter 1. Pre-defined ML Identifiers

Example
Suppose we have a term of the form:

"(1 + 2) + 3 = (3 + 1) + 2"

and we would like to rewrite the left-hand side with the theorem ADD_SYM without chang-
ing the right hand side. This can be done by using:

GEN_REWRITE_CONV (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_CONV, would match and substitute on both sides,
which would not be the desirable result.

As another example, REWRITE_CONV could be implemented as

GEN_REWRITE_CONV TOP_DEPTH_CONV basic_rewrites

which specifies that matches should be searched recursively starting from the whole
term of the theorem, and basic_rewrites must be added to the user defined set of
theorems employed in rewriting.

See also
ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWR_CONV, REWRITE_CONV.

GEN_REWRITE_RULE

GEN_REWRITE_RULE : ((conv -> conv) -> thm list -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replace-
ments on the subterms of an object theorem. This replacement is mediated by the use
of REWR_CONV, which finds matches between left-hand sides of given equations in a term
and applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments
to the function. These are at first transformed into a form suitable for rewriting. Con-
junctions are separated into individual rewrites. Theorems with conclusions of the form
"~t" are transformed into the corresponding equations "t = F". Theorems "t" which
are not equations are cast as equations of form "t = T".
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If a theorem is used to rewrite the object theorem, its assumptions are added to
the assumptions of the returned theorem, unless they are alpha-convertible to existing
assumptions. The matching involved uses variable instantiation. Thus, all free variables
are generalized, and terms are instantiated before substitution. Theorems may have
universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facili-
tate implementing other rewriting tools. However, they are considered in an order-
independent fashion. (That is, the ordering is an implementation detail which is not
specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_RULE fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses
This rule is used in the system to implement all other rewriting rules, and may provide
a user with a method to fine-tune rewriting of theorems.

Example
Suppose we have a theorem of the form:

thm = |- (1 + 2) + 3 = (3 + 1) + 2

and we would like to rewrite the left-hand side with the theorem ADD_SYM without chang-
ing the right hand side. This can be done by using:

GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_RULE, would match and substitute on both sides,
which would not be the desirable result.

As another example, REWRITE_RULE could be implemented as

GEN_REWRITE_RULE TOP_DEPTH_CONV basic_rewrites

which specifies that matches should be searched recursively starting from the whole
term of the theorem, and basic_rewrites must be added to the user defined set of
theorems employed in rewriting.
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See also
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWR_CONV, REWRITE_RULE.

GEN_REWRITE_TAC

GEN_REWRITE_TAC : ((conv -> conv) -> thm list -> thm list -> tactic)

Synopsis
Rewrites a goal, selecting terms according to a user-specified strategy.

Description
Distinct rewriting tactics differ in the search strategies used in finding subterms on
which to apply substitutions, and the built-in theorems used in rewriting. In the case of
REWRITE_TAC, this is a recursive traversal starting from the body of the goal’s conclusion
part, while in the case of ONCE_REWRITE_TAC, for example, the search stops as soon as
a term on which a substitution is possible is found. GEN_REWRITE_TAC allows a user to
specify a more complex strategy for rewriting.

The basis of pattern-matching for rewriting is the notion of conversions, through
the application of REWR_CONV. Conversions are rules for mapping terms with theorems
equating the given terms to other semantically equivalent ones.

When attempting to rewrite subterms recursively, the use of conversions (and there-
fore rewrites) can be automated further by using functions which take a conversion
and search for instances at which they are applicable. Examples of these functions
are ONCE_DEPTH_CONV and RAND_CONV. The first argument to GEN_REWRITE_TAC is such a
function, which specifies a search strategy; i.e. it specifies how subterms (on which
substitutions are allowed) should be searched for.

The second and third arguments are lists of theorems used for rewriting. The or-
der in which these are used is not specified. The theorems need not be in equational
form: negated terms, say "~ t", are transformed into the equivalent equational form
"t = F", while other non-equational theorems with conclusion of form "t" are cast as
the corresponding equations "t = T". Conjunctions are separated into the individual
components, which are used as distinct rewrites.

Failure
GEN_REWRITE_TAC fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used. The resulting tactic is
invalid when a theorem which matches the goal (and which is thus used for rewriting it
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with) has a hypothesis which is not alpha-convertible to any of the assumptions of the
goal. Applying such an invalid tactic may result in a proof of a theorem which does not
correspond to the original goal.

Uses
Detailed control of rewriting strategy, allowing a user to specify a search strategy.

Example
Given a goal such as:

?- a - (b + c) = a - (c + b)

we may want to rewrite only one side of it with a theorem, say ADD_SYM. Rewriting tactics
which operate recursively result in divergence; the tactic ONCE_REWRITE_TAC [ADD_SYM]

rewrites on both sides to produce the following goal:

?- a - (c + b) = a - (b + c)

as ADD_SYM matches at two positions. To rewrite on only one side of the equation, the
following tactic can be used:

GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM]

which produces the desired goal:

?- a - (c + b) = a - (c + b)

As another example, one can write a tactic which will behave similarly to REWRITE_TAC

but will also include ADD_CLAUSES in the set of theorems to use always:

let ADD_REWRITE_TAC = GEN_REWRITE_TAC TOP_DEPTH_CONV
(ADD_CLAUSES . basic_rewrites) ;;

See also
ASM_REWRITE_TAC, GEN_REWRITE_RULE, ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWR_CONV, REWRITE_TAC,

GEN_TAC

GEN_TAC : tactic
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Synopsis
Strips the outermost universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x. t, the tactic GEN_TAC reduces it to A ?- t[x’/x] where
x’ is a variant of x chosen to avoid clashing with any variables free in the goal’s assump-
tion list. Normally x’ is just x.

A ?- !x. t
============== GEN_TAC
A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified.

Uses
The tactic REPEAT GEN_TAC strips away any universal quantifiers, and is commonly used
before tactics relying on the underlying term structure.

See also
FILTER_GEN_TAC, GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC,
X_GEN_TAC.

GSPEC

GSPEC : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with unique variables.

Description
When applied to a theorem A |- !x1...xn. t, where the number of universally quan-
tified variables may be zero, GSPEC returns A |- t[g1/x1]...[gn/xn], where the gi are
distinct variable names of the appropriate type, chosen by genvar.

A |- !x1...xn. t
------------------------- GSPEC
A |- t[g1/x1]...[gn/xn]

Failure
Never fails.
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Uses
GSPEC is useful in writing derived inference rules which need to specialize theorems
while avoiding using any variables that may be present elsewhere.

See also
GEN, GENL, genvar, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GSUBST_TAC

GSUBST_TAC : ((term * term) list -> term -> term) -> thm list -> tactic

Synopsis
Makes term substitutions in a goal using a supplied substitution function.

Description
GSUBST_TAC is the basic substitution tactic by means of which other tactics such as

SUBST_OCCS_TAC and SUBST_TAC are defined. Given a list [(v1,w1),...,(vk,wk)] of pairs
of terms and a term w, a substitution function replaces occurrences of wj in w with vj

according to a specific substitution criterion. Such a criterion may be, for example, to
substitute all the occurrences or only some selected ones of each wj in w.

Given a substitution function sfn, GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un] (A,t)

replaces occurrences of ti in t with ui according to sfn.

A ?- t
============================= GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un]
A ?- t[u1,...,un/t1,...,tn]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, while they are recorded in the proof. If any Ai is not a subset of
A (up to alpha-conversion), then GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un] results in
an invalid tactic.
GSUBST_TAC automatically renames bound variables to prevent free variables in ui

becoming bound after substitution.

Failure
GSUBST_TAC sfn [th1,...,thn] (A,t) fails if the conclusion of each theorem in the list
is not an equation. No change is made to the goal if the occurrences to be substituted
according to the substitution function sfn do not appear in t.
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Uses
GSUBST_TAC is used to define substitution tactics such as SUBST_OCCS_TAC and SUBST_TAC.
It may also provide the user with a tool for tailoring substitution tactics.

See also
SUBST1_TAC, SUBST_OCCS_TAC, SUBST_TAC.

GSYM

GSYM : (thm -> thm)

Synopsis
Reverses the first equation(s) encountered in a top-down search.

Description
The inference rule GSYM reverses the first equation(s) encountered in a top-down search
of the conclusion of the argument theorem. An equation will be reversed iff it is not
a proper subterm of another equation. If a theorem contains no equations, it will be
returned unchanged.

A |- ..(s1 = s2)...(t1 = t2)..
-------------------------------- GSYM
A |- ..(s2 = s1)...(t2 = t1)..

Failure
Never fails, and never loops infinitely.

Example

#ADD;;
|- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n))
Run time: 0.0s

#GSYM ADD;;
|- (!n. n = 0 + n) /\ (!m n. SUC(m + n) = (SUC m) + n)

See also
NOT_EQ_SYM, REFL, SYM.
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HALF_MK_ABS

HALF_MK_ABS : (thm -> thm)

Synopsis
Converts a function definition to lambda-form.

Description
When applied to a theorem A |- !x. t1 x = t2, whose conclusion is a universally quan-
tified equation, HALF_MK_ABS returns the theorem A |- t1 = \x. t2.

A |- !x. t1 x = t2
-------------------- HALF_MK_ABS [where x is not free in t1]
A |- t1 = (\x. t2)

Failure
Fails unless the theorem is a singly universally quantified equation whose left-hand side
is a function applied to the quantified variable, or if the variable is free in that function.

See also
ETA_CONV, MK_ABS, MK_COMB, MK_EXISTS.

hidden

hidden : string -> bool

Synopsis
Checks to see if a given name has been hidden.

Description
A call hidden "c" where c is the name of a constant, will check to see if the given name
has been hidden, via a previous call to Parse.hide.

Failure
Never fails.
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Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory.

See also
Parse.reveal, Parse.hide.

hide

hide : string -> unit

Synopsis
Stops the quotation parser from recognizing a constant.

Description
A call hide "c" where c is the name of a constant, will prevent the quotation parser
from parsing it as such; it will just be parsed as a variable. The effect can be reversed
by Parse.reveal "c".

Failure
Never fails.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory.

See also
Parse.reveal, Parse.hidden.

hide_constant

hide_constant : (string -> void)

Synopsis
Stops the quotation parser from recognizing a constant.
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Description
A call hide_constant ‘c‘ where c is the name of a constant, will prevent the quotation
parser from parsing it as such; it will just be parsed as a variable. The effect can be
reversed by unhide_constant ‘c‘.

Failure
Fails if the given name is not a constant of the current theory, or if the named constant
is already hidden.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory, and may not be redefined.

See also
unhide_constant.

hol_ss

HOLSimps.hol_ss : simpset

Synopsis
The most powerful simpset provided by the HOL system.

Description
The hol_ss simpset includes simplifications appropriate for use with the theories of
pairs, sums, options, lists, and numbers. It includes an arithmetic decision procedure for
linear arithmetic over the natural numbers (ARITH_CONV) and a variety of other powerful
techniques. The way in which these components are applied to terms is described in the
entry for SIMP_CONV.

Failure
Can’t fail as it is not a functional value.
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Example

- SIMP_CONV hol_ss []
(Term‘P (2 * 2) /\ (P 4 ==> (x = y + 3)) ==> P x /\ y < x‘);

> val it =
|- P (2 * 2) /\ (P 4 ==> (x = y + 3)) ==> P x /\ y < x =

P 4 /\ (P 4 ==> (x = y + 3)) ==> P (y + 3)
: thm

Comments
It can be very difficult to predict what simplification will manage to do to one’s terms.

See also
++, ASM_SIMP_TAC, bool_ss, FULL_SIMP_TAC, pure_ss, SIMP_CONV, SIMP_TAC.

hyp

hyp : (thm -> term list)

Synopsis
Returns the hypotheses of a theorem.

Description
When applied to a theorem A |- t, the function hyp returns A, the list of hypotheses of
the theorem.

Failure
Never fails.

See also
dest_thm, concl.

hyp_union

hyp_union : (thm list -> term list)
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Synopsis
Returns union of assumption lists of the given theorems.

Description
When applied to a list of theorems, hyp_union returns the union (see union) of their
assumption lists. Straight repetitions only arise if there were multiple instances of an
assumption in a single assumption list. There is no elimination of alpha-equivalent pairs
of assumptions, only ones which are actually equal.

hyp_union [A1 |- t1; ... ; An |- tn] = A1 u...u An

Failure
Never fails.

Uses
Designed for internal use, in writing primitive inference rules.

See also
union.

I

I : (* -> *)

Synopsis
Performs identity operation: I x = x.

Failure
Never fails.

See also
#, B, C, CB, Co, K, KI, o, oo, S, W.

IMP_ANTISYM_RULE

IMP_ANTISYM_RULE : (thm -> thm -> thm)
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Synopsis
Deduces equality of boolean terms from forward and backward implications.

Description
When applied to the theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t1, the inference rule
IMP_ANTISYM_RULE returns the theorem A1 u A2 |- t1 = t2.

A1 |- t1 ==> t2 A2 |- t2 ==> t1
------------------------------------- IMP_ANTISYM_RULE

A1 u A2 |- t1 = t2

Failure
Fails unless the theorems supplied are a complementary implicative pair as indicated
above.

See also
EQ_IMP_RULE, EQ_MP, EQ_TAC.

IMP_CANON

IMP_CANON : (thm -> thm list)

Synopsis
Puts theorem into a ‘canonical’ form.

Description
IMP_CANON puts a theorem in ‘canonical’ form by removing quantifiers and breaking apart
conjunctions, as well as disjunctions which form the antecedent of implications. It
applies the following transformation rules:

A |- t1 /\ t2 A |- !x. t A |- (t1 /\ t2) ==> t
------------------- ------------ ------------------------
A |- t1 A |- t2 A |- t A |- t1 ==> (t2 ==> t)

A |- (t1 \/ t2) ==> t A |- (?x. t1) ==> t2
------------------------------- ----------------------
A |- t1 ==> t A |- t2 ==> t A |- t1[x’/x] ==> t2

Failure
Never fails, but if there is no scope for one of the above reductions, merely gives a list
whose only member is the original theorem.
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Comments
This is a rather ad-hoc inference rule, and its use is not recommended.

See also
CONJ1, CONJ2, CONJUNCTS, DISJ1, DISJ2, EXISTS, SPEC.

IMP_CONJ

IMP_CONJ : (thm -> thm -> thm)

Synopsis
Conjoins antecedents and consequents of two implications.

Description
When applied to theorems A1 |- p ==> r and A2 |- q ==> s, the IMP_CONJ inference
rule returns the theorem A1 u A2 |- p /\ q ==> r /\ s.

A1 |- p ==> r A2 |- q ==> s
-------------------------------- IMP_CONJ

A1 u A2 |- p /\ q ==> r /\ s

Failure
Fails unless the conclusions of both theorems are implicative.

See also
CONJ.

IMP_ELIM

IMP_ELIM : (thm -> thm)

Synopsis
Transforms |- s ==> t into |- ~s \/ t.
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Description
When applied to a theorem A |- s ==> t, the inference rule IMP_ELIM returns the theo-
rem A |- ~s \/ t.

A |- s ==> t
-------------- IMP_ELIM
A |- ~s \/ t

Failure
Fails unless the theorem is implicative.

See also
NOT_INTRO, NOT_ELIM.

IMP_RES_TAC

IMP_RES_TAC : thm_tactic

Synopsis
Enriches assumptions by repeatedly resolving an implication with them.

Description
Given a theorem th, the theorem-tactic IMP_RES_TAC uses RES_CANON to derive a canonical
list of implications, each of which has the form:

A |- u1 ==> u2 ==> ... ==> un ==> v

IMP_RES_TAC then tries to repeatedly ‘resolve’ these theorems against the assumptions
of a goal by attempting to match the antecedents u1, u2, ..., un (in that order) to some
assumption of the goal (i.e. to some candidate antecedents among the assumptions). If
all the antecedents can be matched to assumptions of the goal, then an instance of the
theorem

A u {a1,...,an} |- v

called a ‘final resolvent’ is obtained by repeated specialization of the variables in the im-
plicative theorem, type instantiation, and applications of modus ponens. If only the first
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i antecedents u1, ..., ui can be matched to assumptions and then no further matching is
possible, then the final resolvent is an instance of the theorem:

A u {a1,...,ai} |- u(i+1) ==> ... ==> v

All the final resolvents obtained in this way (there may be several, since an antecedent
ui may match several assumptions) are added to the assumptions of the goal, in the
stripped form produced by using STRIP_ASSUME_TAC. If the conclusion of any final re-
solvent is a contradiction ‘F’ or is alpha-equivalent to the conclusion of the goal, then
IMP_RES_TAC solves the goal.

Failure
Never fails.

See also
IMP_RES_THEN, RES_CANON, RES_TAC, RES_THEN.

IMP_RES_THEN

IMP_RES_THEN : thm_tactical

Synopsis
Resolves an implication with the assumptions of a goal.

Description
The function IMP_RES_THEN is the basic building block for resolution in HOL. This is not
full higher-order, or even first-order, resolution with unification, but simply one way
simultaneous pattern-matching (resulting in term and type instantiation) of the an-
tecedent of an implicative theorem to the conclusion of another theorem (the candidate
antecedent).

Given a theorem-tactic ttac and a theorem th, the theorem-tactical IMP_RES_THEN uses
RES_CANON to derive a canonical list of implications from th, each of which has the form:

Ai |- !x1...xn. ui ==> vi

IMP_RES_THEN then produces a tactic that, when applied to a goal A ?- g attempts to
match each antecedent ui to each assumption aj |- aj in the assumptions A. If the an-
tecedent ui of any implication matches the conclusion aj of any assumption, then an
instance of the theorem Ai u {aj} |- vi, called a ‘resolvent’, is obtained by special-
ization of the variables x1, ..., xn and type instantiation, followed by an application of
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modus ponens. There may be more than one canonical implication and each implica-
tion is tried against every assumption of the goal, so there may be several resolvents
(or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified
sequence to the goal. That is,

IMP_RES_THEN ttac th (A ?- g)

has the effect of:

MAP_EVERY (mapfilter ttac [... , (Ai u {aj} |- vi) , ...]) (A ?- g)

where the theorems Ai u {aj} |- vi are all the consequences that can be drawn by
a (single) matching modus-ponens inference from the assumptions of the goal A ?- g

and the implications derived from the supplied theorem th. The sequence in which
the theorems Ai u {aj} |- vi are generated and the corresponding tactics applied is
unspecified.

Failure
Evaluating IMP_RES_THEN ttac th fails with ‘no implication’ if the supplied theorem th

is not an implication, or if no implications can be derived from th by the transformation
process described under the entry for RES_CANON. Evaluating IMP_RES_THEN ttac th (A ?- g)

fails with ‘no resolvents’ if no assumption of the goal A ?- g can be resolved with the
implication or implications derived from th. Evaluation also fails, with ‘no tactics’,
if there are resolvents, but for every resolvent Ai u {aj} |- vi evaluating the applica-
tion ttac (Ai u {aj} |- vi) fails—that is, if for every resolvent ttac fails to produce
a tactic. Finally, failure is propagated if any of the tactics that are produced from the
resolvents by ttac fails when applied in sequence to the goal.

Example
The following example shows a straightforward use of IMP_RES_THEN to infer an equa-
tional consequence of the assumptions of a goal, use it once as a substitution in the
conclusion of goal, and then ‘throw it away’. Suppose the goal is:

a + n = a ?- !k. k - n = k

By the built-in theorem:

ADD_INV_0 = |- !m n. (m + n = m) ==> (n = 0)

the assumption of this goal implies that n equals 0. A single-step resolution with this
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theorem followed by substitution:

IMP_RES_THEN SUBST1_TAC ADD_INV_0

can therefore be used to reduce the goal to:

a + n = a ?- !k. k - 0 = m

Here, a single resolvent a + n = a |- n = 0 is obtained by matching the antecedent of
ADD_INV_0 to the assumption of the goal. This is then used to substitute 0 for n in the
conclusion of the goal.

See also
IMP_RES_TAC, MATCH_MP, RES_CANON, RES_TAC, RES_THEN.

IMP_TRANS

IMP_TRANS : (thm -> thm -> thm)

Synopsis
Implements the transitivity of implication.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t3, the inference rule
IMP_TRANS returns the theorem A1 u A2 |- t1 ==> t3.

A1 |- t1 ==> t2 A2 |- t2 ==> t3
----------------------------------- IMP_TRANS

A1 u A2 |- t1 ==> t3

Failure
Fails unless the theorems are both implicative, with the consequent of the first being the
same as the antecedent of the second (up to alpha-conversion).

See also
IMP_ANTISYM_RULE, SYM, TRANS.

Induct

bossLib.Induct : tactic
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Synopsis
Performs tactical proof by induction over the type of the goal’s outermost universally
quantified variable.

Description
Given a universally quantified goal, Induct attempts to perform an induction on the
variable that is universally quantified. The induction theorem to be used is looked up
in the TypeBase database of theorems about the system’s defined types.

Failure
Induct fails if the goal is not universally quantified, or if the type of the variable uni-
versally quantified does not have an induction theorem in the TypeBase database (as
necessarily happens, for example, with all variable types).

Example
If attempting to prove that

‘‘!list. LENGTH (REVERSE list) = LENGTH list‘‘

one can begin the proof by doing an induction on the list, thus:

- Induct ([], ‘‘!list. LENGTH (REVERSE list) = LENGTH list‘‘);
> val it =

([([], ‘LENGTH (REVERSE []) = LENGTH []‘),
([‘LENGTH (REVERSE list) = LENGTH list‘],
‘!h. LENGTH (REVERSE (CONS h list)) =

LENGTH (CONS h list)‘)],
fn)

: goal list * validation

where the two subgoals in the list above are the base case and step case respectively of
the induction theorem for lists.

The same tactic can be used for induction over numbers, thus:

- Induct ([], ‘‘!n. n > 2 ==>
!x y z. ~(x EXP n + y EXP n = z EXP n)‘‘);

> val it =
([([], ‘0 > 2 ==> !x y z. ~(x EXP 0 + y EXP 0 = z EXP 0)‘),
([‘n > 2 ==> !x y z. ~(x EXP n + y EXP n = z EXP n)‘],
‘SUC n > 2 ==>
!x y z. ~(x EXP SUC n + y EXP SUC n = z EXP SUC n)‘)],

fn)
: goal list * validation

See also
Induct_on, completeInduct_on, measureInduct_on
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INDUCT

INDUCT : ((thm # thm) -> thm)

Synopsis
Performs a proof by mathematical induction on the natural numbers.

Description
The derived inference rule INDUCT implements the rule of mathematical induction:

A1 |- P[0] A2 |- !n. P[n] ==> P[SUC n]
----------------------------------------------- INDUCT

A1 u A2 |- !n. P[n]

When supplied with a theorem A1 |- P[0], which asserts the base case of a proof of
the proposition P[n] by induction on n, and the theorem A2 |- !n. P[n] ==> P[SUC n],
which asserts the step case in the induction on n, the inference rule INDUCT returns
A1 u A2 |- !n. P[n].

Failure
INDUCT th1 th2 fails if the theorems th1 and th2 do not have the forms A1 |- P[0] and
A2 |- !n. P[n] ==> P[SUC n] respectively.

See also
INDUCT_TAC.

INDUCT_TAC

INDUCT_TAC : tactic

Synopsis
Performs tactical proof by mathematical induction on the natural numbers.

Description
INDUCT_TAC reduces a goal !n.P[n], where n has type num, to two subgoals corresponding
to the base and step cases in a proof by mathematical induction on n. The induction
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hypothesis appears among the assumptions of the subgoal for the step case. The speci-
fication of INDUCT_TAC is:

A ?- !n. P
======================================== INDUCT_TAC
A ?- P[0/n] A u {P} ?- P[SUC n’/n]

where n’ is a primed variant of n that does not appear free in the assumptions A (usually,
n’ just equals n). When INDUCT_TAC is applied to a goal of the form !n.P, where n does
not appear free in P, the subgoals are just A ?- P and A u {P} ?- P.

Failure
INDUCT_TAC g fails unless the conclusion of the goal g has the form !n.t, where the
variable n has type num.

See also
INDUCT.

INDUCT_THEN

INDUCT_THEN : (thm -> thm_tactic -> tactic)

Synopsis
Structural induction tactic for automatically-defined concrete types.

Description
The function INDUCT_THEN implements structural induction tactics for arbitrary concrete
recursive types of the kind definable by define_type. The first argument to INDUCT_THEN

is a structural induction theorem for the concrete type in question. This theorem must
have the form of an induction theorem of the kind returned by prove_induction_thm.
When applied to such a theorem, the function INDUCT_THEN constructs specialized tactic
for doing structural induction on the concrete type in question.

The second argument to INDUCT_THEN is a function that determines what is be done
with the induction hypotheses in the goal-directed proof by structural induction. Sup-
pose that th is a structural induction theorem for a concrete data type ty, and that
A ?- !x.P is a universally-quantified goal in which the variable x ranges over values of
type ty. If the type ty has n constructors C1, ..., Cn and ‘Ci(vs)’ represents a (curried)
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application of the ith constructor to a sequence of variables, then if ttac is a function
that maps the induction hypotheses hypi of the ith subgoal to the tactic:

A ?- P[Ci(vs)/x]
====================== MAP_EVERY ttac hypi

A1 ?- Gi

then INDUCT_THEN th ttac is an induction tactic that decomposes the goal A ?- !x.P

into a set of n subgoals, one for each constructor, as follows:

A ?- !x.P
================================ INDUCT_THEN th ttac

A1 ?- G1 ... An ?- Gn

The resulting subgoals correspond to the cases in a structural induction on the variable
x of type ty, with induction hypotheses treated as determined by ttac.

Failure
INDUCT_THEN th ttac g fails if th is not a structural induction theorem of the form re-
turned by prove_induction_thm, or if the goal does not have the form A ?- !x:ty.P

where ty is the type for which th is the induction theorem, or if ttac fails for any
subgoal in the induction.

Example
The built-in structural induction theorem for lists is:

|- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l)

When INDUCT_THEN is applied to this theorem, it constructs and returns a specialized
induction tactic (parameterized by a theorem-tactic) for doing induction on lists:

#let LIST_INDUCT_THEN = INDUCT_THEN list_INDUCT;;
LIST_INDUCT_THEN = - : (thm_tactic -> tactic)

The resulting function, when supplied with the thm_tactic ASSUME_TAC, returns a tac-
tic that decomposes a goal ?- !l.P[l] into the base case ?- P[NIL] and a step case
P[l] ?- !h. P[CONS h l], where the induction hypothesis P[l] in the step case has been
put on the assumption list. That is, the tactic:

LIST_INDUCT_THEN ASSUME_TAC

does structural induction on lists, putting any induction hypotheses that arise onto the
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assumption list:

A ?- !l. P
=======================================================
A |- P[NIL/l] A u {P[l’/l]} ?- !h. P[(CONS h l’)/l]

Likewise LIST_INDUCT_THEN STRIP_ASSUME_TAC will also do induction on lists, but will
strip induction hypotheses apart before adding them to the assumptions (this may be
useful if P is a conjunction or a disjunction, or is existentially quantified). By contrast,
the tactic:

LIST_INDUCT_THEN MP_TAC

will decompose the goal as follows:

A ?- !l. P
=====================================================
A |- P[NIL/l] A ?- P[l’/l] ==> !h. P[CONS h l’/l]

That is, the induction hypothesis becomes the antecedent of an implication expressing
the step case in the induction, rather than an assumption of the step-case subgoal.

See also
define_type, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.

initial_rws

initial_rws : unit -> computeLib.comp_rws

Synopsis
Creates a new simplification set to use with computeLib.CBV_CONV for basic computa-
tions.

DESCRIPTIONThis function creates a new simplification set to use with the compute
library performing computations about operations on primitive booleans and numerals
(in binary representation) such as LET, conditional, implication, conjunction, disjunc-
tion, negation, FST, SND, addition, subtraction, multiplication, division, modulo, expo-
nentiation, etc.
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We assume here that the canonical representation of the naturals is the binary one.
Therefore, defining function by pattern matching using SUC will not be recognized. For
instance, defining the exponentaition function as

|- (n EXP 0 = 1) /\ (n EXP (SUC p) = n * n EXP p)

It is possible to make this definition work by using the following lemma:

|- (exp n p = if n = 0 then 1 else n * (exp n (p-1)))

Example

- CBV_CONV (initial_rws()) (--‘EVERY (\n. EVEN n) [4;6;8;10;12;14;16]‘--);
> val it = |- EVERY (\n. EVEN n) [4; 6; 8; 10; 12; 14; 16] = T : Thm.thm

See also
CBV_CONV, REDUCE_CONV

inst

inst : hol_type subst -> term -> term

Synopsis
Performs type instantiations in a term. NOT the same as the hol88 inst; the first ar-
gument (the ”away-from” list) used in hol88 inst is unnecessary and hence dispensed
with, PLUS hol90 insists that all redexes be type variables.

Description
The function inst should be used as follows:

inst [{redex_1, residue_1},...,{redex_n, residue_n}] tm

where the redexes are all hol_type variables, and the residues all hol_types and tm a
term to be type-instantiated. This call will replace each occurrence of a redex in tm

by its associated residue. Replacement is done in parallel, i.e., once a redex has been
replaced by its residue, at some place in the term, that residue at that place will not
itself be replaced in the current call. Bound term variables may be renamed in order to
preserve the term structure.
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Failure
Fails if there exists a redex in the substition that is not a type variable.

Example

- show_types := true;
> val it = () : unit

- let val tm = --‘(x:’a) = (x:’a)‘--
in inst [{redex = ==‘:’a‘==, residue = ==‘:num‘==}] tm
end;

> val it = (--‘(x :num) = (x :num)‘--) : term

- inst [{redex = ==‘:bool‘==, residue = ==‘:num‘==}] (--‘x:bool‘--)
handle e => Raise e;

Exception raised at Term.inst:
redex in type substitution not a variable

- let val x = --‘x:bool‘--
in inst [{redex = ==‘:’a‘==, residue = ==‘:bool‘==}]

(--‘\x:’a. ^x‘--)
end;

(--‘\(x’ :bool). (x :bool)‘--) : term

Uses
Performing internal functions connected with type instantiation.

See also
type_subst, Compat.inst_type, INST_TYPE.

INST

INST : (term,term) subst -> thm -> thm

Synopsis
Instantiates free variables in a theorem.
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Description
INST is a rule for substituting arbitrary terms for free variables in a theorem:

A |- t INST [x1 |-> t1,...,xn |-> tn]
-----------------------------
A |- t[t1,...,tn/x1,...,xn]

where the variables x1, ..., xn are not free in the assumptions A.

Failure
INST fails if a variable being instantiated is free in the assumptions.

Example
In the following example a theorem is instantiated for a specific term:

- load"arithmeticTheory";

- CONJUNCT1 arithmeticTheory.ADD_CLAUSES;
|- 0 + m = m

- INST [‘‘m:num‘‘ |-> ‘‘2*x‘‘]
(CONJUNCT1 arithmeticTheory.ADD_CLAUSES);

val it = |- 0 + (2 * x) = 2 * x : thm

See also
INST_TY_TERM, INST_TYPE, ISPEC, ISPECL, SPEC, SPECL, SUBS, subst, SUBST.

INST_TYPE

INST_TYPE : (hol_type,hol_type) subst -> thm -> thm

Synopsis
Instantiates types in a theorem.

Description
INST_TYPE is a primitive rule in the HOL logic, which allows instantiation of type vari-



212 Chapter 1. Pre-defined ML Identifiers

ables.

A |- t
----------------------------------- INST_TYPE[vty1|->ty1,..., vtyn|->tyn]
A |- t[ty1,...,tyn/vty1,...,vtyn]

where none of the types vtyi are free in the assumption list. Variables will be renamed
if necessary to prevent distinct variables becoming identical after the instantiation.

Failure
INST_TYPE fails if any of the type variables occurs free in the hypotheses of the theorem,
or if upon instantiation two distinct variables (with the same name) become equal.

Uses
INST_TYPE is employed to make use of polymorphic theorems.

Example
Suppose one wanted to specialize the theorem EQ_SYM_EQ for particular values, the first
attempt could be to use SPECL as follows:

- SPECL [‘‘a:num‘‘, ‘‘b:num‘‘] EQ_SYM_EQ;
uncaught exception HOL_ERR

The failure occurred because EQ_SYM_EQ contains polymorphic types. The desired spe-
cialization can be obtained by using INST_TYPE:

- load "numTheory";
> val it = () : unit

- SPECL [(--‘a:num‘--), (--‘b:num‘--)]
(INST_TYPE [‘‘:’a‘‘ |-> ‘‘:num‘‘] EQ_SYM_EQ);

> val it = |- (a = b) = (b = a) : Thm.thm

See also
INST, INST_TY_TERM.
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INST_TY_TERM

INST_TY_TERM :
(term,term)subst * (hol_type,hol_type)subst -> thm -> thm

Synopsis
Instantiates terms and types of a theorem.

Description
INST_TY_TERM instantiates types in a theorem, in the same way INST_TYPE does. Then it
instantiates some or all of the free variables in the resulting theorem, in the same way
as INST.

Failure
INST_TY_TERM fails under the same conditions as either INST or INST_TYPE fail.

See also
INST, INST_TYPE, ISPEC, SPEC, SUBS, SUBST.

intersect

intersect : (* list -> * list -> * list)

Synopsis
Computes the intersection of two ‘sets’.

Description
intersect l1 l2 returns a list consisting of those elements of l1 that also appear in l2.

Failure
Never fails.

Example

#intersect [1;2;3] [3;5;4;1];;
[1; 3] : int list

#intersect [1;2;4;1] [1;2;3;2];;
[1; 2; 1] : int list

See also
setify, set_equal, union, subtract.
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int_of_string

Compat.int_of_string : string -> int

Synopsis
Maps a string of numbers to the corresponding integer.

Description
Found in the hol88 library. Given a string representing an integer in standard decimal
notation, possibly including a leading plus sign or minus sign and/or leading zeros,
int_of_string returns the corresponding integer constant.

Failure
Fails unless the string is a valid decimal representation as specified above. It will not be
found unless the hol88 library has been loaded.

Comments
Not found in hol90, since the author always got it backwards; use string_to_int in-
stead. Likewise, string_of_int is not found in hol90; use int_to_string.

See also
ascii, ascii_code, string_of_int, int_to_string, string_to_int.

ISPEC

ISPEC : (term -> thm -> thm)

Synopsis
Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a quantified variable as does SPEC; it differs from it in also instanti-
ating the type if needed:

A |- !x:ty.tm
----------------------- ISPEC "t:ty’"

A |- tm[t/x]

(where t is free for x in tm, and ty’ is an instance of ty).
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Failure
ISPEC fails if the input theorem is not universally quantified, if the type of the given
term is not an instance of the type of the quantified variable, or if the type variable is
free in the assumptions.

See also
INST_TY_TERM, INST_TYPE, ISPECL, SPEC, match_term.

ISPECL

ISPECL : (term list -> thm -> thm)

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
ISPECL is an iterative version of ISPEC

A |- !x1...xn.t
---------------------------- ISPECL ["t1",...,"tn"]
A |- t[t1,...tn/x1,...,xn]

(where ti is free for xi in tm).

Failure
ISPECL fails if the list of terms is longer than the number of quantified variables in the
term, if the type instantiation fails, or if the type variable being instantiated is free in
the assumptions.

See also
INST_TYPE, INST_TY_TERM, ISPEC, MATCH, SPEC, SPECL.

is_abs

is_abs : (term -> bool)

Synopsis
Tests a term to see if it is an abstraction.
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Description
is_abs "\var. t" returns true. If the term is not an abstraction the result is false.

Failure
Never fails.

See also
mk_abs, dest_abs, is_var, is_const, is_comb.

is_axiom

is_axiom : ((string # string) -> bool)

Synopsis
Tests if there is an axiom with the given name in the given theory.

Description
The call is_axiom(‘th‘,‘ax‘), where th is the name of a theory (as usual ‘-‘ means the
current theory), tests if there is an axiom called ax in that theory.

Failure
Fails unless the given theory is an ancestor.

Example

#is_axiom(‘bool‘,‘BOOL_CASES_AX‘);;
true : bool

#is_axiom(‘bool‘,‘INFINITY_AX‘);;
false : bool

#is_axiom(‘ind‘,‘INFINITY_AX‘);;
true : bool

See also
axioms, new_axiom.

is_binder

is_binder : (string -> bool)
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Synopsis
Determines whether a given string represents a binder.

Description
This predicate returns true if the given string argument is the name of a binder: it
returns false otherwise.

Example

#binders ‘bool‘;;
["$?!"; "$!"; "$@"] : term list

#is_binder ‘$?!‘;;
false : bool

#is_binder ‘?!‘;;
true : bool

See also
binders, is_binder_type, is_infix, is_constant

is_comb

is_comb : (term -> bool)

Synopsis
Tests a term to see if it is a combination (function application).

Description
is_comb "t1 t2" returns true. If the term is not a combination the result is false.

Failure
Never fails

See also
mk_comb, dest_comb, is_var, is_const, is_abs.

is_cond

is_cond : (term -> bool)
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Synopsis
Tests a term to see if it is a conditional.

Description
is_cond "t => t1 | t2" returns true. If the term is not a conditional the result is false.

Failure
Never fails.

See also
mk_cond, dest_cond.

is_conj

is_conj : (term -> bool)

Synopsis
Tests a term to see if it is a conjunction.

Description
is_conj "t1 /\ t2" returns true. If the term is not a conjunction the result is false.

Failure
Never fails.

See also
mk_conj, dest_conj.

is_cons

is_cons : (term -> bool)

Synopsis
Tests a term to see if it is an application of CONS.

Description
is_cons returns true of a term representing a non-empty list. Otherwise it returns false.
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Failure
Never fails.

See also
mk_cons, dest_cons, mk_list, dest_list, is_list.

is_const

is_const : (term -> bool)

Synopsis
Tests a term to see if it is a constant.

Description
is_const "const:ty" returns true. If the term is not a constant the result is false.

Failure
Never fails.

See also
mk_const, dest_const, is_var, is_comb, is_abs.

is_constant

is_constant : (string -> bool)

Synopsis
Determines whether a string is the name of a constant.

Description
This predicate returns true if the given string argument is the name of a constant de-
fined in the current theory or its ancestors: it returns false otherwise.
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Example

#is_constant ‘SUC‘;;
true : bool

#is_constant ‘3‘;;
true : bool

#is_constant ‘$!‘;;
false : bool

#is_constant ‘!‘;;
true : bool

#is_constant ‘xx‘;;
false : bool

See also
is_infix, is_binder

is_disj

is_disj : (term -> bool)

Synopsis
Tests a term to see if it is a disjunction.

Description
is_disj "t1 \/ t2" returns true. If the term is not a disjunction the result is false.

Failure
Never fails.

See also
mk_disj, dest_disj.

is_eq

is_eq : (term -> bool)
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Synopsis
Tests a term to see if it is an equation.

Description
is_eq "t1 = t2" returns true. If the term is not an equation the result is false.

Failure
Never fails.

See also
mk_eq, dest_eq.

is_exists

is_exists : (term -> bool)

Synopsis
Tests a term to see if it as an existential quantification.

Description
is_exists "?var. t" returns true. If the term is not an existential quantification the
result is false.

Failure
Never fails.

See also
mk_exists, dest_exists.

is_forall

is_forall : (term -> bool)

Synopsis
Tests a term to see if it is a universal quantification.
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Description
is_forall "!var. t" returns true. If the term is not a universal quantification the result
is false.

Failure
Never fails.

See also
mk_forall, dest_forall.

is_hidden

is_hidden : (string -> bool)

Synopsis
Determines whether a constant is hidden.

Description
This predicate returns true if the named ML constant has been hidden by the function
hide_constant; it returns false if the constant is not hidden. Hiding a constant forces
the quotation parser to treat the constant as a variable (lexical rules permitting).

Example

#is_hidden ‘0‘;;
false : bool

#hide_constant ‘0‘;;
() : void

#is_hidden ‘0‘;;
true : bool

#unhide_constant ‘0‘;;
() : void

#is_hidden ‘0‘;;
false : bool

See also
hide_constant, unhide_constant
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is_imp

is_imp : (term -> bool)

Synopsis
Tests a term to see if it is an implication (or a negation).

Description
is_imp "t1 ==> t2" returns true. is_imp "~t" returns true. If the term is neither an
implication nor a negation the result is false.

Failure
Never fails.

Comments
Yields true of negations because dest_imp destructs negations (for compatibility with
PPLAMBDA code).

See also
mk_imp, dest_imp.

is_infix

is_infix : (string -> bool)

Synopsis
Determines whether an operator is infix.

Description
This predicate returns true if the given string argument is the name of an infix operator
(a constant); it returns false otherwise.
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Example

#is_infix ‘$+‘;;
false : bool

#is_infix ‘+‘;;
true : bool

#is_infix ‘SUC‘;;
false : bool

See also
infixes, is_binder, is_constant.

is_let

is_let : (term -> bool)

Synopsis
Tests a term to see if it is a let-expression.

Description
is_let "LET f x" returns true. If the term is not a let-expression (or of the more
general "LET f x" form) the result is false.

Failure
Never fails.

Example

#is_let "LET ($= 1) 2";;
true : bool

#is_let "let x = 2 in (x = 1)";;
true : bool

See also
mk_let, dest_let.



is list 225

is_list

is_list : (term -> bool)

Synopsis
Tests a term to see if it is a list.

Description
is_list returns true of a term representing a list. Otherwise it returns false.

Failure
Never fails.

See also
mk_list, dest_list, mk_cons, dest_cons, is_cons.

is_neg

is_neg : (term -> bool)

Synopsis
Tests a term to see if it is a negation.

Description
is_neg "~t" returns true. If the term is not a negation the result is false.

Failure
Never fails.

See also
mk_neg, dest_neg.

is_pabs

is_pabs : (term -> bool)
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Synopsis
Tests a term to see if it is a paired abstraction.

Description
is_pabs "\(v1..(..)..vn). t" returns true. If the term is not a paired abstraction the
result is false.

Failure
Never fails.

See also
mk_pabs, dest_pabs, is_abs, is_var, is_const, is_comb.

is_pair

is_pair : (term -> bool)

Synopsis
Tests a term to see if it is a pair.

Description
is_pair "(t1,t2)" returns true. If the term is not a pair the result is false.

Failure
Never fails.

See also
mk_pair, dest_pair.

is_select

is_select : (term -> bool)

Synopsis
Tests a term to see if it is a choice binding.
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Description
is_select "@var. t" returns true. If the term is not an epsilon-term the result is false.

Failure
Never fails.

See also
mk_select, dest_select.

is_type

is_type : (string -> bool)

Synopsis
Tests whether a string is the name of a type.

Description
is_type ‘op‘ returns true if ‘op’ is the name of a type or type operator and false

otherwise.

Failure
Never fails.

See also
arity.

is_var

is_var : (term -> bool)

Synopsis
Tests a term to see if it is a variable.

Description
is_var "var:ty" returns true. If the term is not a variable the result is false.
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Failure
Never fails.

See also
mk_var, dest_var, is_const, is_comb, is_abs.

is_vartype

is_vartype : (type -> bool)

Synopsis
Tests a type to see if it is a type variable.

Description
is_vartype(":*...") returns true. For types which are not type variables it returns
false.

Failure
Never fails.

Example

#is_vartype ":*test";;
true : bool

#is_vartype ":bool";;
false : bool

#is_vartype ":* -> bool";;
false : bool

See also
mk_vartype, dest_vartype.

itlist

itlist : ((* -> ** -> **) -> * list -> ** -> **)
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Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
itlist f [x1;...;xn] y returns

f x1 (f x2 ... (f xn y)...)

It returns y if list is empty.

Failure
Never fails.

Example

#itlist (\x y. x + y) [1;2;3;4] 0;;
10 : int

See also
rev_itlist, end_itlist.

itlist2

itlist2 : (((* # **) -> *** -> ***) -> (* list # ** list) -> *** -> ***)

Synopsis
Applies a paired function between adjacent elements of 2 lists.

Description
itlist2 f ([x1;...;xn],[y1;...;yn]) z returns

f (x1,y1) (f (x2,y2) ... (f (xn,yn) z)...)

It returns z if both lists are empty.

Failure
Fails with itlist2 if the two lists are of different lengths.
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Example

#itlist2 (\(x,y) z. (x * y) + z) ([1;2],[3;4]) 0;;
11 : int

See also
itlist, rev_itlist, end_itlist, uncurry.

K

K : (* -> ** -> *)

Synopsis
Forms a constant function: (K x) y = x.

Failure
Never fails.

See also
#, B, C, CB, Co, I, KI, o, oo, S, W.

last

Compat.last : ’a list -> ’a

Synopsis
Computes the last element of a list.

Description
last [x1,...,xn] returns xn.

Failure
Found in the hol88 library. Fails with last if the list is empty. It will not be found unless
the hol88 library has been loaded.

Comments
Not in hol90, since it was never used in the implementation.
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See also
butlast, hd, tl, el, null.

LEFT_AND_EXISTS_CONV

LEFT_AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the left conjunct outwards through a conjunction.

Description
When applied to a term of the form (?x.P) /\ Q, the conversion LEFT_AND_EXISTS_CONV

returns the theorem:

|- (?x.P) /\ Q = (?x’. P[x’/x] /\ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) /\ Q.

See also
AND_EXISTS_CONV, EXISTS_AND_CONV, RIGHT_AND_EXISTS_CONV.

LEFT_AND_FORALL_CONV

LEFT_AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the left conjunct outwards through a conjunction.

Description
When applied to a term of the form (!x.P) /\ Q, the conversion LEFT_AND_FORALL_CONV

returns the theorem:

|- (!x.P) /\ Q = (!x’. P[x’/x] /\ Q)

where x’ is a primed variant of x that does not appear free in the input term.
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Failure
Fails if applied to a term not of the form (!x.P) /\ Q.

See also
AND_FORALL_CONV, FORALL_AND_CONV, RIGHT_AND_FORALL_CONV.

LEFT_IMP_EXISTS_CONV

LEFT_IMP_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the antecedent outwards through an implication.

Description
When applied to a term of the form (?x.P) ==> Q, the conversion LEFT_IMP_EXISTS_CONV

returns the theorem:

|- (?x.P) ==> Q = (!x’. P[x’/x] ==> Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) ==> Q.

See also
FORALL_IMP_CONV, RIGHT_IMP_FORALL_CONV.

LEFT_IMP_FORALL_CONV

LEFT_IMP_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the antecedent outwards through an implication.

Description
When applied to a term of the form (!x.P) ==> Q, the conversion LEFT_IMP_FORALL_CONV

returns the theorem:

|- (!x.P) ==> Q = (?x’. P[x’/x] ==> Q)

where x’ is a primed variant of x that does not appear free in the input term.
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Failure
Fails if applied to a term not of the form (!x.P) ==> Q.

See also
EXISTS_IMP_CONV, RIGHT_IMP_FORALL_CONV.

LEFT_OR_EXISTS_CONV

LEFT_OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the left disjunct outwards through a disjunction.

Description
When applied to a term of the form (?x.P) \/ Q, the conversion LEFT_OR_EXISTS_CONV

returns the theorem:

|- (?x.P) \/ Q = (?x’. P[x’/x] \/ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) \/ Q.

See also
EXISTS_OR_CONV, OR_EXISTS_CONV, RIGHT_OR_EXISTS_CONV.

LEFT_OR_FORALL_CONV

LEFT_OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the left disjunct outwards through a disjunction.

Description
When applied to a term of the form (!x.P) \/ Q, the conversion LEFT_OR_FORALL_CONV

returns the theorem:

|- (!x.P) \/ Q = (!x’. P[x’/x] \/ Q)

where x’ is a primed variant of x that does not appear free in the input term.
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Failure
Fails if applied to a term not of the form (!x.P) \/ Q.

See also
OR_FORALL_CONV, FORALL_OR_CONV, RIGHT_OR_FORALL_CONV.

lhs

lhs : (term -> term)

Synopsis
Returns the left-hand side of an equation.

Description
lhs "t1 = t2" returns "t1".

Failure
Fails with lhs if the term is not an equation.

See also
rhs, dest_eq.

libraries

libraries : (void -> string list)

Synopsis
Evaluating libraries() returns a list of the libraries that have been successfully loaded
during the current session.

Failure
Never fails.

See also
library_pathname, load_library.
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LIST_BETA_CONV

LIST_BETA_CONV : conv

Synopsis
Performs an iterated beta conversion.

Description
The conversion LIST_BETA_CONV maps terms of the form

"(\x1 x2 ... xn. u) v1 v2 ... vn"

to the theorems of the form

|- (\x1 x2 ... xn. u) v1 v2 ... vn = u[v1/x1][v2/x2] ... [vn/xn]

where u[vi/xi] denotes the result of substituting vi for all free occurrences of xi in u,
after renaming sufficient bound variables to avoid variable capture.

Failure
LIST_BETA_CONV tm fails if tm does not have the form "(\x1 ... xn. u) v1 ... vn" for n
greater than 0.

Example

#LIST_BETA_CONV "(\x y. x+y) 1 2";;
|- (\x y. x + y)1 2 = 1 + 2

See also
BETA_CONV, BETA_RULE, BETA_TAC, RIGHT_BETA, RIGHT_LIST_BETA.

LIST_CONJ

LIST_CONJ : (thm list -> thm)

Synopsis
Conjoins the conclusions of a list of theorems.
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Description

A1 |- t1 ... An |- tn
---------------------------------- LIST_CONJ
A1 u ... u An |- t1 /\ ... /\ tn

Failure
LIST_CONJ will fail with ‘end_itlist‘ if applied to an empty list of theorems.

Comments
The system shows the type as proof.
LIST_CONJ does not check for alpha-equivalence of assumptions when forming their

union. If a particular assumption is duplicated within one of the input theorems as-
sumption lists, then it may be duplicated in the resulting assumption list.

See also
BODY_CONJUNCTS, CONJ, CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_PAIR, CONJ_TAC.

LIST_INDUCT

LIST_INDUCT : ((thm # thm) -> thm)

Synopsis
Performs proof by structural induction on lists.

Description
The derived inference rule LIST_INDUCT implements the rule of mathematical induction:

A1 |- P[NIL/l] A2 |- !t. P[t/l] ==> !h. P[CONS h t/l]
------------------------------------------------------------ LIST_INDUCT

A1 u A2 |- !l. P

When supplied with a theorem A1 |- P[NIL], which asserts the base case of a proof of
the proposition P[l] by structural induction on the list l, and the theorem

A2 |- !t. P[t] ==> !h. P[CONS h t]

which asserts the step case in the induction on l, the inference rule LIST_INDUCT returns
A1 u A2 |- !l. P[l].
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Failure
LIST_INDUCT th1 th2 fails if the theorems th1 and th2 do not have the forms A1 |- P[NIL]

and A2 |- !t. P[t] ==> !h. P[CONS h t] respectively (where the empty list NIL in th1

and the list CONS h t in th2 have the same type).

See also
LIST_INDUCT_TAC.

LIST_INDUCT_TAC

LIST_INDUCT_TAC : tactic

Synopsis
Performs tactical proof by structural induction on lists.

Description
LIST_INDUCT_TAC reduces a goal !l.P[l], where l ranges over lists, to two subgoals
corresponding to the base and step cases in a proof by structural induction on l. The
induction hypothesis appears among the assumptions of the subgoal for the step case.
The specification of LIST_INDUCT_TAC is:

A ?- !l. P
===================================================== LIST_INDUCT_TAC
A |- P[NIL/l] A u {P[l’/l]} ?- !h. P[CONS h l’/l]

where l’ is a primed variant of l that does not appear free in the assumptions A (usually,
l’ is just l). When LIST_INDUCT_TAC is applied to a goal of the form !l.P, where l does
not appear free in P, the subgoals are just A ?- P and A u {P} ?- !h.P.

Failure
LIST_INDUCT_TAC g fails unless the conclusion of the goal g has the form !l.t, where the
variable l has type (ty)list for some type ty.

See also
LIST_INDUCT.

list_mk_abs

list_mk_abs : ((term list # term) -> term)
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Synopsis
Iteratively constructs abstractions.

Description
list_mk_abs(["x1";...;"xn"],"t") returns "\x1 ... xn. t".

Failure
Fails with list_mk_abs if the terms in the list are not variables.

Comments
The system shows the type as goal -> term.

See also
strip_abs, mk_abs.

list_mk_comb

list_mk_comb : ((term # term list) -> term)

Synopsis
Iteratively constructs combinations (function applications).

Description
list_mk_comb("t",["t1";...;"tn"]) returns "t t1 ... tn".

Failure
Fails with list_mk_comb if the types of t1,...,tn are not equal to the argument types of t.
It is not necessary for all the arguments of t to be given. In particular the list of terms
t1,...,tn may be empty.

Example

#list_mk_comb("1",[]);;
"1" : term

#list_mk_comb("$/\",["T"]);;
"$/\ T" : term

#list_mk_comb("$/\",["1"]);;
evaluation failed list_mk_comb

See also
strip_comb, mk_comb.
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list_mk_conj

list_mk_conj : (term list -> term)

Synopsis
Constructs the conjunction of a list of terms.

Description
list_mk_conj(["t1";...;"tn"]) returns "t1 /\ ... /\ tn".

Failure
Fails with list_mk_conj if the list is empty or if the list has more than one element, one
or more of which are not of type ":bool".

Example

#list_mk_conj ["T";"F";"T"];;
"T /\ F /\ T" : term

#list_mk_conj ["T";"1";"F"];;
evaluation failed list_mk_conj

#list_mk_conj ["1"];;
"1" : term

See also
conjuncts, mk_conj.

list_mk_disj

list_mk_disj : (term list -> term)

Synopsis
Constructs the disjunction of a list of terms.

Description
list_mk_disj(["t1";...;"tn"]) returns "t1 \/ ... \/ tn".
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Failure
Fails with list_mk_disj if the list is empty or if the list has more than one element, one
or more of which are not of type ":bool".

Example

#list_mk_disj ["T";"F";"T"];;
"T \/ F \/ T" : term

#list_mk_disj ["T";"1";"F"];;
evaluation failed list_mk_disj

#list_mk_disj ["1"];;
"1" : term

See also
disjuncts, mk_disj.

list_mk_exists

list_mk_exists : ((term list # term) -> term)

Synopsis
Iteratively constructs existential quantifications.

Description
list_mk_exists(["x1";...;"xn"],"t") returns "?x1 ... xn. t".

Failure
Fails with list_mk_exists if the terms in the list are not variables or if t is not of type
":bool" and the list of terms is non-empty. If the list of terms is empty the type of t can
be anything.

Comments
The system shows the type as (goal -> term).

See also
strip_exists, mk_exists.
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LIST_MK_EXISTS

LIST_MK_EXISTS : (term list -> thm -> thm)

Synopsis
Multiply existentially quantifies both sides of an equation using the given variables.

Description
When applied to a list of terms [x1;...;xn], where the xi are all variables, and a theo-
rem A |- t1 = t2, the inference rule LIST_MK_EXISTS existentially quantifies both sides
of the equation using the variables given, none of which should be free in the assump-
tion list.

A |- t1 = t2
-------------------------------------- LIST_MK_EXISTS ["x1";...;"xn"]
A |- (?x1...xn. t1) = (?x1...xn. t2)

Failure
Fails if any term in the list is not a variable or is free in the assumption list, or if the
theorem is not equational.

See also
EXISTS_EQ, MK_EXISTS.

list_mk_forall

list_mk_forall : ((term list # term) -> term)

Synopsis
Iteratively constructs a universal quantification.

Description
list_mk_forall(["x1";...;"xn"],"t") returns "!x1 ... xn. t".

Failure
Fails with list_mk_forall if the terms in the list are not variables or if t is not of type
":bool" and the list of terms is non-empty. If the list of terms is empty the type of t can
be anything.
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Comments
The system shows the type as (goal -> term).

See also
strip_forall, mk_forall.

list_mk_imp

list_mk_imp : (goal -> term)

Synopsis
Iteratively constructs implications.

Description
list_mk_imp(["t1";...;"tn"],"t") returns "t1 ==> ( ... (tn ==> t)...)".

Failure
Fails with list_mk_imp if any of t1,...,tn are not of type ":bool" or if the list of terms is
non-empty and t is not of type ":bool". If the list of terms is empty the type of t can be
anything.

Example

#list_mk_imp (["T";"F"],"T");;
"T ==> F ==> T" : term

#list_mk_imp (["T";"1"],"T");;
evaluation failed list_mk_imp

#list_mk_imp (["T";"F"],"1");;
evaluation failed list_mk_imp

#list_mk_imp ([],"1");;
"1" : term

See also
strip_imp, mk_imp.
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list_mk_pair

list_mk_pair : (term list -> term)

Synopsis
Constructs a tuple from a list of terms.

Description
list_mk_pair(["t1";...;"tn"]) returns "(t1,...,tn)".

Failure
Fails with list_mk_pair if the list is empty.

Example

#list_mk_pair ["1";"T";"2"];;
"1,T,2" : term

#list_mk_pair ["1"];;
"1" : term

See also
strip_pair, mk_pair.

LIST_MP

LIST_MP : (thm list -> thm -> thm)

Synopsis
Performs a chain of Modus Ponens inferences.

Description
When applied to theorems A1 |- t1, ..., An |- tn and a theorem which is a chain of
implications with the successive antecedents the same as the conclusions of the theo-
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rems in the list (up to alpha-conversion), A |- t1 ==> ... ==> tn ==> t, the LIST_MP

inference rule performs a chain of MP inferences to deduce A u A1 u ... u An |- t.

A1 |- t1 ... An |- tn A |- t1 ==> ... ==> tn ==> t
--------------------------------------------------------- LIST_MP

A u A1 u ... u An |- t

Failure
Fails unless the theorem is a chain of implications whose consequents are the same as
the conclusions of the list of theorems (up to alpha-conversion), in sequence.

See also
EQ_MP, MATCH_MP, MATCH_MP_TAC, MP, MP_TAC.

list_of_binders

list_of_binders : term list

Synopsis
List of binders in the current theory.

Description
For implementation reasons, a list containing the binders in the current theory is main-
tained in the assignable ML variable list_of_binders. This variable is not for general
use, and users should never make assignments to it.

Failure
Evaluating the assignable variable list_of_binders never fails.

map2

map2 : (((* # **) -> ***) -> (* list # ** list) -> *** list)

Synopsis
Maps a binary function over two lists to create one new list.
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Description
map2 f ([x1;...;xn],[y1;...;yn]) returns [f(x1,y1);...;f(xn,yn)].

Failure
Fails with map2 if the two lists are of different lengths.

Example

#map2 $+ ([1;2;3],[3;2;1]);;
[4; 4; 4] : int list

See also
map, uncurry.

mapfilter

mapfilter : ((* -> **) -> * list -> ** list)

Synopsis
Applies a function to every element of a list, returning a list of results for those elements
for which application succeeds.

Failure
Never fails.

Example

#mapfilter hd [[1;2;3];[4;5];[];[6;7;8];[]];;
[1; 4; 6] : int list

See also
filter, map.

MAP_EVERY

MAP_EVERY : ((* -> tactic) -> * list -> tactic)
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Synopsis
Sequentially applies all tactics given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the
elements of which have the same type as f’s domain type, MAP_EVERY maps the function
f over the list, producing a list of tactics, then applies these tactics in sequence as in the
case of EVERY. The effect is:

MAP_EVERY f [x1;...;xn] = (f x1) THEN ... THEN (f xn)

If the operand list is empty, then MAP_EVERY has no effect.

Failure
The application of MAP_EVERY to a function and operand list fails iff the function fails
when applied to any element in the list. The resulting tactic fails iff any of the resulting
tactics fails.

Example
A convenient way of doing case analysis over several boolean variables is:

MAP_EVERY BOOL_CASES_TAC ["var1:bool";...;"varn:bool"]

See also
EVERY, FIRST, MAP_FIRST, THEN.

MAP_FIRST

MAP_FIRST : ((* -> tactic) -> * list -> tactic)

Synopsis
Applies first tactic that succeeds in a list given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the
elements of which have the same type as f’s domain type, MAP_FIRST maps the function
f over the list, producing a list of tactics, then tries applying these tactics to the goal
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till one succeeds. If f(xm) is the first to succeed, then the overall effect is the same as
applying f(xm). Thus:

MAP_FIRST f [x1;...;xn] = (f x1) ORELSE ... ORELSE (f xn)

Failure
The application of MAP_FIRST to a function and tactic list fails iff the function does when
applied to any of the elements of the list. The resulting tactic fails iff all the resulting
tactics fail when applied to the goal.

See also
EVERY, FIRST, MAP_EVERY, ORELSE.

MATCH_ACCEPT_TAC

MATCH_ACCEPT_TAC : thm_tactic

Synopsis
Solves a goal which is an instance of the supplied theorem.

Description
When given a theorem A’ |- t and a goal A ?- t’ where t can be matched to t’ by
instantiating variables which are either free or universally quantified at the outer level,
including appropriate type instantiation, MATCH_ACCEPT_TAC completely solves the goal.

A ?- t’
========= MATCH_ACCEPT_TAC (A’ |- t)

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has a conclusion which is instantiable to match that of the goal.

Example
The following example shows variable and type instantiation at work. We can use the
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polymorphic list theorem HD:

HD = |- !h t. HD(CONS h t) = h

to solve the goal:

?- HD [1;2] = 1

simply by:

MATCH_ACCEPT_TAC HD

See also
ACCEPT_TAC.

MATCH_MP

MATCH_MP : (thm -> thm -> thm)

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !x1...xn. t1 ==> t2 and A2 |- t1’, the inference
rule MATCH_MP matches t1 to t1’ by instantiating free or universally quantified variables
in the first theorem (only), and returns a theorem A1 u A2 |- !xa..xk. t2’, where t2’

is a correspondingly instantiated version of t2. Polymorphic types are also instantiated
if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any which were universally quantified over in the first argument theorem
will be universally quantified over in the result, and in the same order.

A1 |- !x1..xn. t1 ==> t2 A2 |- t1’
-------------------------------------- MATCH_MP

A1 u A2 |- !xa..xk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly universally quantified) implication
whose antecedent can be instantiated to match the conclusion of the second theorem,
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without instantiating any variables which are free in A1, the first theorem’s assumption
list.

Example
In this example, automatic renaming occurs to maintain the most general form of the
theorem, and the variant corresponding to z is universally quantified over, since it was
universally quantified over in the first argument theorem.

#let ith =
# (GENL ["x:num"; "z:num"] o DISCH_ALL o AP_TERM "$+ (w + z)")
# (ASSUME "x:num = y");;
ith = |- !x z. (x = y) ==> ((w + z) + x = (w + z) + y)

#let th = ASSUME "w:num = z";;
th = w = z |- w = z

#MATCH_MP5 ith th;;
w = z |- !z’. (w’ + z’) + w = (w’ + z’) + z

See also
EQ_MP, MATCH_MP_TAC, MP, MP_TAC.

MATCH_MP_TAC

MATCH_MP_TAC : thm_tactic

Synopsis
Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

A’ |- !x1...xn. s ==> !y1...ym. t

MATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitution
and/or type instance of t to the corresponding instance of s. Any variables free in s but
not in t will be existentially quantified in the resulting subgoal:

A ?- !v1...vi. t’
====================== MATCH_MP_TAC (A’ |- !x1...xn. s ==> !y1...tm. t)

A ?- ?z1...zp. s’

where z1, ..., zp are (type instances of) those variables among x1, ..., xn that do not
occur free in t. Note that this is not a valid tactic unless A’ is a subset of A.
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Failure
Fails unless the theorem is an (optionally universally quantified) implication whose con-
sequent can be instantiated to match the goal. The generalized variables v1, ..., vi must
occur in s’ in order for the conclusion t of the supplied theorem to match t’.

See also
EQ_MP, MATCH_MP, MP, MP_TAC.

match_term

match_term :
term -> term -> (term,term) subst * (hol_type,hol_type) subst

Synopsis
Finds instantiations to match one term to another.

Description
When applied to two terms, match_term attempts to find a set of type and term in-

stantiations for the first term (only) to make it alpha-convertible to the second. If it
succeeds, it returns the instantiations in the form of a pair containing a term substitu-
tion and a type substitution. If the first term represents the conclusion of a theorem, the
returned instantiations are of the appropriate form to be passed to INST_TY_TERM.

Failure
Fails if the term cannot be matched by one-way instantiation.

Example
The following shows how match_term could be used to match the conclusion of a theo-
rem to a term.

- val th = REFL ‘‘x:’a‘‘;
th = |- x = x

- match_term (concl th) ‘‘1 = 1‘‘;
val it = ([{redex = ‘‘x‘‘, residue = ‘‘1‘‘}],

[{redex = ‘‘:’a‘‘, residue= ‘‘:num‘‘}])
: term subst * hol_type subst

- INST_TY_TERM it th;
val it = |- 1 = 1

Comments
Note that there is no guarantee that the returned instantiations will be possible for
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INST_TY_TERM to achieve, because some of the variables (term or type) which need to be
instantiated may be free in the assumptions, eg:

- (show_types := true; show_assums := true);
() : unit

- val th = ASSUME ‘‘x:’a = x‘‘;
val th = [(x :’a) = (x :’a)] |- (x :’a) = (x :’a) : thm

- match_term (concl th) (--‘1 = 1‘--);
val it = ([{redex = ‘‘x :num‘‘, residue = ‘‘1‘‘}],

[{redex = ‘‘:’a‘‘, residue = ‘‘:num‘‘}])
: term subst * hol_type subst

- INST_TY_TERM it th handle e => Raise e;
Exception raised at Thm.INST_TYPE:
type variable(s) in assumptions would be instantiated in concl

In fact, for instantiating a theorem, PART_MATCH is usually easier.

See also
match_type, INST_TY_TERM, PART_MATCH.

match_type

match_type : hol_type -> hol_type -> hol_type subst

Synopsis
Finds a substitution theta such that instantiating the first argument with theta equals
the second argument.

Description
If match_type ty1 ty2 succeeds, then

Type.type_subst (match_type ty1 ty2) ty1 = ty2

match_type is not found in hol88.

Failure
It fails if no such substitution can be found.
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Example

- match_type (==‘:’a‘==) (==‘:num‘==);
> val it =

[{redex = (==‘:’a‘==), residue = (==‘:num‘==)}] : hol_type subst

- let val patt = ==‘:(’a -> bool) -> ’b‘==
= val ty = ==‘:(num -> bool) -> bool‘==
= in
= type_subst (match_type patt ty) patt = ty
= end;
> val it = true : bool

See also
match_term

max_print_depth

max_print_depth : (int -> int)

Synopsis
Sets depth of block nesting.

Description
The function max_print_depth is used to define the maximum depth of nesting that the
pretty printer will allow. If the number of blocks is greater than the the value set by
max_print_depth then the blocks are truncated and this is indicated by the holophrast &.
The function always returns the previous maximum depth setting.

Failure
Never fails.

Example
If the maximum depth setting is the default (500) and we want to change this to 20 the
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command will be:

#max_print_depth 20;;

The system will then return the following:

500 : int

See also
print_begin, print_ibegin, print_end, set_margin, print_break

mem

mem : (* -> * list -> bool)

Synopsis
Tests whether a list contains a certain member.

Description
mem x [x1;...;xn] returns true if some xi in the list is equal to x. Otherwise it returns
false.

Failure
Never fails.

See also
find, tryfind, exists, forall, assoc, rev_assoc.

MESON_TAC

mesonLib.MESON_TAC : thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using the given theorems as addi-
tional assumptions in the search.
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Description
MESON_TAC performs first order proof using the model elimination algorithm. This algo-
rithm is semi-complete for pure first order logic. It makes special provision for handling
polymorphic and higher-order values, and often this is sufficient. It does not handle
conditional expressions at all, and these should be eliminated before MESON_TAC is ap-
plied.
MESON_TAC works by first converting the problem instance it is given into an internal

format where it can do proof search efficiently, without having to do proof search at the
level of HOL inference. If a proof is found, this is translated back into applications of
HOL inference rules, proving the goal.

The feedback given by MESON_TAC is controlled by the level of the integer reference
variable mesonLib.chatting. At level zero, nothing is printed. At the default level of
one, a line of dots is printed out as the proof progresses. At all other values for this
variable, MESON_TAC is most verbose. If the proof is progressing quickly then it is often
worth waiting for it to go quite deep into its search. Once a proof slows down, it is not
usually worth waiting for it after it has gone through a few (no more than five or six)
levels. (At level one, a “level” is represented by the printing of a single dot.)

Failure
MESON_TAC fails if it searches to a depth equal to the contents of the reference variable
mesonLib.max_depth (set to 30 by default, but changeable by the user) without finding
a proof. Shouldn’t fail otherwise.

Uses
MESON_TAC can only progress the goal to a successful proof of the (whole) goal or not at
all. In this respect it differs from tactics such as simplification and rewriting. Its ability
to solve existential goals and to make effective use of transitivity theorems make it a
particularly powerful tactic.

Comments
The assumptions of a goal are ignored when MESON_TAC is applied. To include assump-
tions use ASM_MESON_TAC.

See also
ASM_MESON_TAC, GEN_MESON_TAC

mk_abs

mk_abs : {Bvar: term, Body : term} -> term
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Synopsis
Constructs an abstraction.

Description
mk_abs {Bvar = v, Body = t} returns the abstraction --‘\v. t‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Term", origin_function = "mk_abs",
message = "Bvar not a variable"}

See also
dest_abs, is_abs, list_mk_abs, mk_var, mk_const, mk_comb.

MK_ABS

MK_ABS : (thm -> thm)

Synopsis
Abstracts both sides of an equation.

Description
When applied to a theorem A |- !x. t1 = t2, whose conclusion is a universally quan-
tified equation, MK_ABS returns the theorem A |- \x. t1 = \x. t2.

A |- !x. t1 = t2
-------------------------- MK_ABS
A |- (\x. t1) = (\x. t2)

Failure
Fails unless the theorem is a (singly) universally quantified equation.

See also
ABS, HALF_MK_ABS, MK_COMB, MK_EXISTS.

mk_comb

mk_comb : {Rator : term, Rand : term} -> term
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Synopsis
Constructs a combination (function application).

Description
mk_comb {Rator = t1, Rand = t2} returns the combination --‘t1 t2‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Term", origin_function = "mk_comb",
message = "incompatible types"}

where t1 does not have a function type, orif t1 has a function type, but its domain does
not equal the type of t2.

Example

- mk_comb{Rator = --‘$~‘--, Rand = --‘T‘--};
> val (--‘~T‘--) : term

- mk_comb{Rator = --‘T‘--, Rand = --‘T‘--} handle e => Raise e;

Exception raised at Term.mk_comb:
incompatible types
! Uncaught exception:
! HOL_ERR <poly>

See also
dest_comb, is_comb, list_mk_comb, mk_var, mk_const, mk_abs.

MK_COMB

MK_COMB : ((thm # thm) -> thm)

Synopsis
Proves equality of combinations constructed from equal functions and operands.
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Description
When applied to theorems A1 |- f = g and A2 |- x = y, the inference rule MK_COMB

returns the theorem A1 u A2 |- f x = g y.

A1 |- f = g A2 |- x = y
--------------------------- MK_COMB

A1 u A2 |- f x = g y

Failure
Fails unless both theorems are equational and f and g are functions whose domain types
are the same as the types of x and y respectively.

See also
AP_TERM, AP_THM.

mk_cond

mk_cond : {cond :term, larm :term, rarm :term} -> term

Synopsis
Constructs a conditional term.

Description
mk_cond{cond = t, larm = t1, rarm = t2} returns --‘t => t1 | t2‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_cond",
message = ""}

if cond is not of type ==‘:bool‘== or if larm and rarm are of different types.

See also
dest_cond, is_cond.

mk_conj

mk_conj : {conj1 :term, conj2 : term} -> term
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Synopsis
Constructs a conjunction.

Description
mk_conj{conj1 = t1, conj2 = t2} returns --‘t1 /\ t2‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_conj",
message = "Non-boolean argument"}

See also
dest_conj, is_conj, list_mk_conj.

mk_cons

mk_cons : {hd :term, tl :term} -> term

Synopsis
Constructs a CONS pair.

Description
mk_cons{hd = t, tl = --‘[t1;...;tn]‘--} returns --‘[t;t1;...;tn]‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_cons",
message = ""}

if tl is not a list or if hd is not of the same type as the elements of the list.

See also
dest_cons, is_cons, mk_list, dest_list, is_list.

mk_const

mk_const : {Name:string, Ty : hol_type} -> term



mk disj 259

Synopsis
Constructs a constant.

Description
mk_const{Name = "const", Ty = ty} returns the constant –‘const:ty‘–.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_const",
message}

where message is prefixed with "not in term signature" if the string supplied is not
the name of a known constant, or "not a type instance" if the string is known as a
constant but the type supplied is not an instance of the declared type of that constant.

Example

- mk_const {Name = "T", Ty = ==‘:bool‘==};
> val it = (--‘T‘--) : term

- Dsyntax.mk_const {Name = "T", Ty = ==‘:num‘==} handle e => Raise e;
Exception raised at Dsyntax.mk_const:
not a type instance: T

- mk_const {Name = "test", Ty = ==‘:bool‘==} handle e => Raise e;
Exception raised at Dsyntax.mk_const:
not in term signature: test

See also
dest_const, is_const, mk_var, mk_comb, mk_abs.

mk_disj

mk_disj : {disj1 :term, disj2 : term} -> term

Synopsis
Constructs a disjunction.

Description
mk_disj{disj1 = t1, disj2 = t2} returns --‘t1 \/ t2‘--.
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Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_disj",
message = "Non-boolean argument"}

See also
dest_disj, is_disj, list_mk_disj.

mk_eq

mk_eq : {lhs : term, rhs: term} -> term

Synopsis
Constructs an equation.

Description
mk_eq{lhs = t1, rhs = t2} returns --‘t1 = t2‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_eq",
message = "lhs and rhs have different types"}

See also
dest_eq, is_eq.

mk_exists

mk_exists : {Bvar : term, Body : term} -> term

Synopsis
Term constructor for existential quantification.

Description
mk_exists{Bvar = v, Body = t} returns --‘?v. t‘--.
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Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_exists",
message = ""}

if Bvar is not a variable or if Body is not of type ==‘:bool‘==.

See also
dest_exists, is_exists, list_mk_exists.

MK_EXISTS

MK_EXISTS : (thm -> thm)

Synopsis
Existentially quantifies both sides of a universally quantified equational theorem.

Description
When applied to a theorem A |- !x. t1 = t2, the inference rule MK_EXISTS returns the
theorem A |- (?x. t1) = (?x. t2).

A |- !x. t1 = t2
-------------------------- MK_EXISTS
A |- (?x. t1) = (?x. t2)

Failure
Fails unless the theorem is a singly universally quantified equation.

See also
AP_TERM, EXISTS_EQ, GEN, LIST_MK_EXISTS, MK_ABS.

mk_forall

mk_forall : {Bvar : term, Body : term} -> term

Synopsis
Term constructor for universal quantification.
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Description
mk_forall{Bvar = v, Body = t} returns --‘!v. t‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_forall",
message = ""}

if Bvar is not a variable or if Body is not of type ==‘:bool‘==.

See also
dest_forall, is_forall, list_mk_forall.

mk_imp

mk_imp : {ant : term, conseq : term} -> term

Synopsis
Constructs an implication.

Description
mk_imp{ant = t1, conseq = t2} returns --‘t1 ==> t2‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_imp",
message = "Non-boolean argument"}

See also
dest_imp, is_imp, list_mk_imp.

mk_let

mk_let : {func : term, arg : term} -> term



mk list 263

Synopsis
Constructs a let term.

Description
mk_let {func = f, arg = x) returns --‘LET f x‘--. If func is of the form --‘\y. t‘--

then the result will be pretty-printed as --‘let y = x in t‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_let",
message = ""}

if the types of func and arg are such that --‘LET func arg‘-- is not well-typed. --‘LET‘--
has most general type:

==‘:(’a -> ’b) -> ’a -> ’b‘==

Example

- mk_let{func = --‘$= 1‘--, arg = --‘2‘--};
> val it = (--‘LET ($= 1) 2‘--) : term

- mk_let{func= --‘\y. y = 1‘--, arg = --‘2‘--};
> val it = (--‘let y = 2 in (y = 1)‘--) : term

See also
dest_let, is_let.

mk_list

mk_list : {els : term list, ty : hol_type} -> term

Synopsis
Constructs an object-level (HOL) list from an ML list of terms.

Description
mk_list{els = [t1, ..., tn], ty = ty} returns --‘[t1;...;tn]:ty list‘--. The type
argument is required so that empty lists can be constructed.
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Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_list",
message = ""}

if any term in the list is not of the type specified as the second argument.

See also
dest_list, is_list, mk_cons, dest_cons, is_cons.

mk_neg

mk_neg : (term -> term)

Synopsis
Constructs a negation.

Description
mk_neg "t" returns "~t".

Failure
Fails with mk_neg unless t is of type bool.

See also
dest_neg, is_neg.

mk_pabs

mk_pabs : {varstruct :term, body :term} -> term

Synopsis
Constructs a paired abstraction.

Description
mk_pabs {varstruct = --‘(v1,..(..)..,vn)‘--, body = t} returns the abstraction --‘\(v1,..(..)..,vn). t‘--.
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Failure
Fails unless varstruct is an arbitrarily nested pair composed from variables.

See also
dest_pabs, is_pabs, mk_abs.

mk_pair

mk_pair : {fst :term, snd :term} -> term

Synopsis
Constructs object-level pair from a pair of terms.

Description
mk_pair{fst = t1, snd = t2} returns --‘(t1,t2)‘--.

Failure
Never fails.

See also
dest_pair, is_pair, list_mk_pair.

mk_primed_var

mk_primed_var : {Name : string, Ty : hol_type} -> term

Synopsis
Primes a variable name sufficiently to make it distinct from all constants.

Description
When applied to a record made from string "v" and a type ty, the function mk_primed_var

constructs a variable whose name consists of v followed by however many primes are
necessary to make it distinct from any constants in the current theory.

Failure
Never fails.
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Example

- new_theory "wombat";
> val it = () : unit

- mk_primed_var{Name = "x", Ty = ==‘:bool‘==};
> val it = (--‘x‘--) : term

- new_constant{Name = "x", Ty = ==‘:num‘==};
> val it = () : unit

- mk_primed_var{Name = "x",Ty = ==‘:bool‘==};
> val it = (--‘x’‘--) : term

See also
genvar, variant.

mk_select

mk_select : {Bvar : term, Body : term} -> term

Synopsis
Constructs a choice-term.

Description
mk_select{Bvar = v, Body = t} returns --‘@var. t‘--.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax", origin_function = "mk_select",
message = ""}

if Bvar is not a variable or if Body is not of type ==‘:bool‘==.

See also
dest_select, is_select.

mk_simpset

simpLib.mk_simpset : ssdata list -> simpset
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Synopsis
Creates a simpset by combining a list of ssdata values.

Failure
Never fails.

Uses
Creates simpsets, which are a necessary argument to any simplification function.

See also
++, rewrites, SIMP_CONV

mk_thm

mk_thm : (((term list # term) -> thm))

Synopsis
Creates an arbitrary theorem (dangerous!)

Description
The function mk_thm can be used to construct an arbitrary theorem. It is applied to a
pair consisting of the desired assumption list (possibly empty) and conclusion. All the
terms therein should be of type bool.

mk_thm(["a1";...;"an"],"c") = ({a1,...,an} |- c)

Failure
Fails unless all the terms provided for assumptions and conclusion are of type bool.

Example
The following shows how to create a simple contradiction:

#mk_thm([],"F");;
|- F

Comments
Although mk_thm can be useful for experimentation or temporarily plugging gaps, its use
should be avoided if at all possible in important proofs, because it can be used to create



268 Chapter 1. Pre-defined ML Identifiers

theorems leading to contradictions. The example above is a trivial case, but it is all too
easy to create a contradiction by asserting ‘obviously sound’ theorems.

All theorems which are likely to be needed can be derived using only HOL’s inbuilt
5 axioms and 8 primitive inference rules, which are provably sound (see the DESCRIP-
TION). Basing all proofs, normally via derived rules and tactics, on just these axioms
and inference rules gives proofs which are (apart from bugs in HOL or the underlying
system) completely secure. This is one of the great strengths of HOL, and it is foolish to
sacrifice it to save a little work.

Note that the system shows the type of mk_thm as (goal -> thm).

See also
new_axiom.

mk_type

mk_type : {Tyop :string, Args :hol_type list} -> hol_type

Synopsis
Constructs a type (other than a variable type).

Description
mk_type{Tyop = "op", Args = [ty1,...,tyn]} returns

==‘:(ty1,...,tyn)op‘==

where op is the name of a known n-ary type constructor.

Failure
Fails with

HOL_ERR{origin_structure = "Dsyntax",origin_function="mk_type", message}

where message is ”type op not defined”, if Tyop is not the name of a known type, or
”arities don’t match” if the type is known but the length of the list of argument types is
not equal to the arity of the type constructor.



mk var 269

Example

- mk_type {Tyop = "bool", Args = []};
> val it = (==‘:bool‘==) : hol_type

- mk_type {Tyop = "list", Args = [==‘:bool‘==]};
> val it = (==‘:bool list‘==) : hol_type

- mk_type {Tyop = "fun", Args = [==‘:num‘==, ==‘:bool‘==]};
> val it = (==‘:num -> bool‘==) : hol_type

See also
dest_type, mk_vartype.

mk_var

mk_var : {Name:string, Ty: hol_type} -> term

Synopsis
Constructs a variable of given name and type.

Description
mk_var{Name = "var", Ty = ty} returns the variable --‘var:ty‘--.

Failure
Never fails.

Comments
mk_var can be used to construct variables with names which are not acceptable to the
term parser. In particular, a variable with the name of a known constant can be con-
structed using mk_var.

See also
dest_var, is_var, mk_const, mk_comb, mk_abs.

mk_vartype

mk_vartype : (string -> type)
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Synopsis
Constructs a type variable of the given name.

Description
mk_vartype(‘*...‘) returns ":*...".

Failure
Fails with mk_vartype if the string does not begin with ‘*‘.

Example

#mk_vartype ‘*test‘;;
":*test" : type

#mk_vartype ‘test‘;;
evaluation failed mk_vartype

Comments
mk_vartype can be used to create type variables with names which will not parse, i.e.
they cannot be entered by quotation.

See also
dest_vartype, is_vartype, mk_type.

ML_eval

ML_eval : (string -> void)

Synopsis
Passes a string to the ML interpreter.

Description
When applied to a string, ML_eval will pass it to the ML interpreter, which, after evalu-
ating other pending phrases, will interpret it as if it had been typed at toplevel.

Failure
The call itself never fails, but of course the subsequent interpretation may do.
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Example

#ML_eval(‘let greeting = \‘Hi there!\‘ in tty_write greeting;;
#‘);;
() : void

Hi there!() : void

See also
inject_input, let_after, let_before.

MP

MP : (thm -> thm -> thm)

Synopsis
Implements the Modus Ponens inference rule.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t1, the inference rule MP returns
the theorem A1 u A2 |- t2.

A1 |- t1 ==> t2 A2 |- t1
---------------------------- MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is an implication whose antecedent is the same as the
conclusion of the second theorem (up to alpha-conversion).

See also
EQ_MP, LIST_MP, MATCH_MP, MATCH_MP_TAC, MP_TAC.

MP_TAC

MP_TAC : thm_tactic
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Synopsis
Reduces a goal to implication from a known theorem.

Description
When applied to the theorem A’ |- s and the goal A ?- t, the tactic MP_TAC reduces the
goal to A ?- s ==> t. Unless A’ is a subset of A, this is an invalid tactic.

A ?- t
============== MP_TAC (A’ |- s)
A ?- s ==> t

Failure
Never fails.

See also
MATCH_MP_TAC, MP, UNDISCH_TAC.

NEG_DISCH

NEG_DISCH : (term -> thm -> thm)

Synopsis
Discharges an assumption, transforming |- s ==> F into |- ~s.

Description
When applied to a term s and a theorem A |- t, the inference rule NEG_DISCH returns
the theorem A - {s} |- s ==> t, or if t is just F, returns the theorem A - {s} |- ~s.

A |- F
-------------------- NEG_DISCH [special case]

A - {s} |- ~s

A |- t
-------------------- NEG_DISCH [general case]
A - {s} |- s ==> t

Failure
Fails unless the supplied term has type bool.
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See also
DISCH, NOT_ELIM, NOT_INTRO.

new_axiom

Compat.new_axiom : (string * term) -> thm

Synopsis
Sets up a new axiom in the current theory.

Description
Found in the hol88 library. If tm is a term of type bool, a call new_axiom("name",tm)

creates a theorem

|- !x1..xn. tm

and stores it away in the theory file. Note that all free variables in tm are generalized
automatically before the axiom is set up.

Failure
Fails if HOL is not in draft mode, or there is already an axiom or definition of that name
in the current theory, or it the given term does not have type bool. The function will not
be available unless the hol88 library is loaded.

Example

- new_theory "gurk";
() : unit

- new_axiom("untrue",--‘x = 1‘--));
|- !x. x = 1

Comments
hol90 doesn’t have new_axiom; use new_open_axiom instead, which does not automati-
cally generalize the term being asserted as an axiom. For most purposes, it is unneces-
sary to declare new axioms: all of classical mathematics can be derived by definitional
extension alone. Proceeding by definition is not only more elegant, but also guarantees
the consistency of the deductions made. However, there are certain entities which can-
not be modelled in simple type theory without further axioms, such as higher transfinite
ordinals.
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See also
mk_thm, new_definition.

new_binder

new_binder : {Name :string, Ty :hol_type} -> unit

Synopsis
Sets up a new binder in the current theory.

Description
A call new_binder{Name ="bnd",Ty = ty} declares a new binder bnd in the current theory.
The type must be of the form (’a -> ’b) -> ’c, because being a binder, bnd will apply
to an abstraction; for example
--‘!x:bool. (x=T) \/ (x=F)‘--

is actually a prettyprinting of
--‘$! (\x. (x=T) \/ (x=F))‘--.

Failure
Fails if HOL is not in draft mode, or there is already a constant of some sort of that name
in the current theory, or if the type does not correspond to the above pattern.

Example

- new_theory "anorak";
() : unit

- new_binder{Name = "!!", Ty = ==‘:(bool->bool)->bool‘==};
() : unit

- --‘!!x. T‘--;
(--‘!! x. T‘--) : term

See also
binders, is_binder, constants, infixes, new_constant, new_infix,
new_definition, new_infix_definition, new_binder_definition.

new_binder_definition

new_binder_definition : ((string # term) -> thm)
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Synopsis
Defines a new constant, giving it the syntactic status of a binder.

Description
The function new_binder_definition provides a facility for making definitional exten-
sions to the current theory by introducing a constant definition. It takes a pair of argu-
ments, consisting of the name under which the resulting theorem will be saved in the
current theory segment and a term giving the desired definition. The value returned by
new_binder_definition is a theorem which states the definition requested by the user.

Let v1, ..., vn be syntactically distinct tuples constructed from the variables x1,...,xm.
A binder is defined by evaluating

new_binder_definition (‘name‘, "b v1 ... vn = t")

where b is not already a constant, b does not occur in t, all the free variables that occur
in t are a subset of x1,...,xn, and the type of b has the form ‘(ty1->ty2)->ty3’. This
declares b to be a new constant with the syntactic status of a binder in the current
theory, and with the definitional theorem

|- !x1...xn. b v1 ... vn = t

as its specification. This constant specification for b is saved in the current theory under
the name name and is returned as a theorem.

The equation supplied to new_binder_definition may optionally have any of its free
variables universally quantified at the outermost level. The constant b has binder status
only after the definition has been made.

Failure
new_binder_definition fails if called when HOL is not in draft mode. It also fails if
there is already an axiom, definition or specification with the given name in the current
theory segment, if ‘b‘ is already a constant in the current theory or is not an allowed
name for a constant, if t contains free variables that are not in any one of the variable
structures v1, ..., vn or if any variable occurs more than once in v1, ..., v2. Failure
also occurs if the type of b is not of the form appropriate for a binder, namely a type of
teh form ‘(ty1->ty2)->ty3’. Finally, failure occurs if there is a type variable in v1, ..., vn
or t that does not occur in the type of b.
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Example
The unique-existence quantifier ?! is defined as follows.

#new_binder_definition
(‘EXISTS_UNIQUE_DEF‘,
"$?! = \P:(*->bool). ($? P) /\ (!x y. ((P x) /\ (P y)) ==> (x=y))");;

|- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y)))

Comments
It is a common practice among HOL users to write a $ before the constant being defined
as a binder to indicate that it will have a special syntactic status after the definition is
made:

new_binder_definition(‘name‘, "$b = ... ");;

This use of $ is not necessary; but after the definition has been made $ must, of course,
be used if the syntactic status of b needs to be suppressed.

See also
new_definition, new_gen_definition, new_infix_definition,
new_infix_list_rec_definition, new_prim_rec_definition,
new_list_rec_definition, new_prim_rec_definition.

new_constant

new_constant : {Name :string, Ty :hol_type} -> unit

Synopsis
Declares a new constant in the current theory.

Description
A call new_constant{Name="c", Ty = ty} makes c a constant in the current theory. Note
that it does not specify its value. The constant may have a polymorphic type, which can
be used in arbitrary instantiations.

Failure
Fails if HOL is not in draft mode, or if the name is not a valid constant name, or there is
already a constant of that name in the current theory.
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Example

- new_theory "zonk";
() : unit

- new_constant{Name = "graham’s_number", Ty = ==‘:num‘==};
() : unit

See also
constants, infixes, binders, is_constant, is_infix, is_binder, new_infix,
new_binder, new_definition, new_infix_definition, new_binder_definition.

new_definition

new_definition : ((string # term) -> thm)

Synopsis
Declare a new constant and install a definitional axiom in the current theory.

Description
The function new_definition provides a facility for definitional extensions to the cur-
rent theory. It takes a pair argument consisting of the name under which the resulting
definition will be saved in the current theory segment, and a term giving the desired def-
inition. The value returned by new_definition is a theorem which states the definition
requested by the user.

Let v_1,...,v_n be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_definition (‘name‘, "c v_1 ... v_n = t"), where c is not already a
constant, declares the sequent ({},"\v_1 ... v_n. t") to be a definition in the current
theory, and declares c to be a new constant in the current theory with this definition as
its specification. This constant specification is returned as a theorem with the form

|- !x_1 ... x_m. c v_1 ... v_n = t

and is saved in the current theory under (the name) name. Optionally, the definitional
term argument may have any of its variables universally quantified.

Failure
new_definition fails if called when HOL is not in draft mode. It also fails if there is
already an axiom, definition or specification of the given name in the current theory
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segment; if ‘c‘ is already a constant in the current theory or is not an allowed name
for a constant; if t contains free variables that are not in any of the variable structures
v_1, ..., v_n (this is equivalent to requiring \v_1 ... v_n. t to be a closed term); or if
any variable occurs more than once in v_1, ..., v_n. Finally, failure occurs if there is
a type variable in v_1, ..., v_n or t that does not occur in the type of c.

Example
A NAND relation can be defined as follows.

- new_definition (
"NAND2",
Term‘NAND2 (in_1,in_2) out = !t:num. out t = ~(in_1 t /\ in_2 t)‘);

> val it =
|- !in_1 in_2 out.

NAND2 (in_1,in_2) out = !t. out t = ~(in_1 t /\ in_2 t)
: Thm.thm

See also
new_binder_definition, new_gen_definition, new_infix_definition,
new_infix_list_rec_definition, new_prim_rec_definition,
new_list_rec_definition, new_prim_rec_definition, new_recursive_definition,
new_specification.

new_gen_definition

Parse.new_gen_definition : (string * term * fixity) -> thm

Synopsis
Defines a new constant and associates it with a parsing fixity.

Description
The function new_gen_definition provides a facility for definitional extensions to the

current theory. It takes a tuple of three arguments. The first component of this tuple
is the name under which the resulting definition will be saved in the current theory
segment. The second component is a term giving the desired definition. The third com-
ponent is a fixity (typically one of Binder, Infixl n, Infixr n, Suffix n, TruePrefix n

or Closefix). The value returned by new_gen_definition is a theorem which states the
definition requested by the user.

Let v_1,...,v_n be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_gen_definition flag (‘name‘, "c v_1 ... v_n = t"), where c is not
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already a constant, declares the sequent ({},"\v_1 ... v_n. t") to be a definition in
the current theory, and declares c to be a new constant in the current theory with this
definition as its specification. This constant specification is returned as a theorem, gen-
erally of the form |- !x_1 ... x_m. c v_1 ... v_n = t , and is saved in the current
theory under (the name) name. If flag is ‘infix‘ or ‘binder‘, the constant is given infix
or binder status accordingly. Optionally, the definitional term argument may have any
of its variables universally quantified.

Failure
new_gen_definition fails if there is already an axiom, definition or specification of the

given name in an ancestral theory segment; if c is not an allowed name for a constant; if
t contains free variables that are not in any of the variable structures v_1, ..., v_n (this is
equivalent to requiring \v_1 ... v_n. t to be a closed term); or if any variable occurs
more than once in v_1, ..., v_n. Finally, failure occurs if there is a type variable in
v_1, ..., v_n or t that does not occur in the type of c.

See also
DEF_EXISTS_RULE, new_binder_definition, new_definition, new_infix_definition,
new_specification.

new_infix

new_infix : {Name :string, Ty :hol_type, Prec :int} -> unit

Synopsis
Declares a new infix constant in the current theory.

Description
A call new_infix{Name = "i",Ty = ty, Prec = n} makes i a right associative infix

constant in the current theory. It has binding strength of n, the larger this number,
the more tightly the infix will attempt to “grab” arguments to its left and right. Note
that the call to new_infix does not specify the value of the constant. The constant may
have a polymorphic type, which may be arbitrarily instantiated. Like any other infix or
binder, its special parse status may be suppressed by preceding it with a dollar sign.

Comments
Infixes defined with new_infix associate to the right, i.e., A <op> B <op> C is equiva-
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lent to A op (B <op> C). The initial infixes (and their precedences) in the system are:

$, ---> 50
$= ---> 100

$==> ---> 200
$\/ ---> 300
$/\ ---> 400

$>, $< ---> 450
$>=, $<= ---> 450

$+, $- ---> 500
$*, $DIV ---> 600

$MOD ---> 650
$EXP ---> 700
$o ---> 800

Note that the arithmetic operators +, -, *, DIV and MOD are left associative in hol98
releases from Taupo onwards.

Failure
Fails if the name is not a valid constant name.

Example
The following shows the use of the infix and the prefix form of an infix constant. It also
shows binding resolution between infixes of different precedence.

- new_theory "groke";
<<HOL message: Created theory "groke".>>

> val it = () : unit

- new_infix{Name = "orelse", Ty = ==‘:bool->bool->bool‘==, Prec = 50};
val it = () : unit

- --‘T orelse F‘--;
val it = (--‘T \/ T orelse F‘--) : term

- --‘$orelse T F‘--;
val it = (--‘T orelse F‘--) : term

- dest_comb (--‘T \/ T orelse F‘--);
> val it = {Rator = (--‘$orelse (T \/ T)‘--), Rand = (--‘F‘--)} : ...

See also
add_infix, precedence, constants, infixes, binders, is_constant, is_infix,
is_binder, new_constant, new_binder, new_definition, new_infix_definition,
new_binder_definition.
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new_infixl_definition

Parse.new_infixl_definition : (string * term * int) -> thm

Synopsis
Declares a new left associative infix constant and installs a definition in the current
theory.

Description
The function new_infix_definition provides a facility for definitional extensions to
the current theory. It takes a triple consisting of the name under which the result-
ing definition will be saved in the current theory segment, a term giving the desired
definition and an integer giving the precedence of the infix. The value returned by
new_infix_definition is a theorem which states the definition requested by the user.

Let v_1 and v_2 be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_infix_definition (‘name‘, "ix v_1 v_2 = t"), where ix is not already
a constant, declares the sequent ({},"\v_1 v_2. t") to be a definition in the current
theory, and declares ix to be a new constant in the current theory with this definition
as its specification. This constant specification is returned as a theorem with the form

|- !x_1 ... x_m. v_1 ix v_2 = t

and is saved in the current theory under (the name) name. Optionally, the definitional
term argument may have any of its variables universally quantified. The constant ix has
infix status only after the infix declaration has been processed. It is therefore necessary
to use the constant in normal prefix position when making the definition.

Failure
new_infixl_definition fails if there is already an axiom, definition or specification of
the given name in an ancestral theory segment; if ‘ix‘ is not an allowed name for a
constant; if t contains free variables that are not in either of the variable structures
v_1 and v_2 (this is equivalent to requiring \v_1 v_2. t to be a closed term); or if
any variable occurs more than once in v_1, v_2. It also fails if the precedence level
chosen for the infix is already home to parsing rules of a different form of fixity (infixes
associating in a different way, or suffixes, prefixes etc). Finally, failure occurs if there is
a type variable in v_1, ..., v_n or t that does not occur in the type of ix.
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Example
The nand function can be defined as follows.

- new_infix_definition
("nand", --‘$nand in_1 in_2 = ~(in_1 /\ in_2)‘--, 500);;
> val it = |- !in_1 in_2. in_1 nand in_2 = ~(in_1 /\ in_2) : thm

Comments
It is a common practice among HOL users to write a $ before the constant being defined
as an infix to indicate that after the definition is made, it will have a special syntactic
status; ie. to write:

new_infixl_definition(‘ix_DEF‘, "$ix m n = ... ")

This use of $ is not necessary; but after the definition has been made $ must, of course,
be used if the syntactic status needs to be suppressed.

In releases of hol98 past Taupo 1, new_infixl_definition and its sister new_infixr_definition
replace the old new_infix_definition, which has been superseded. Its behaviour was
to define a right associative infix, so can be freely replaced by new_infixr_definition.

See also
new_binder_definition, new_definition, new_gen_definition,
new_infixr_definition, new_infix_list_rec_definition, new_prim_rec_definition,
new_list_rec_definition, new_prim_rec_definition.

new_infixr_definition

Parse.new_infixr_definition : (string * term * int) -> thm

Synopsis
Declares a new right associative infix constant and installs a definition in the current
theory.

Description
The function new_infixr_definition has exactly the same effect as new_infixl_definition
except that the infix constant defined will associate to the right.

Failure
new_infixr_definition fails if there is already an axiom, definition or specification of
the given name in an ancestral theory segment; if ‘ix‘ is not an allowed name for a
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constant; if t contains free variables that are not in either of the variable structures
v_1 and v_2 (this is equivalent to requiring \v_1 v_2. t to be a closed term); or if
any variable occurs more than once in v_1, v_2. It also fails if the precedence level
chosen for the infix is already home to parsing rules of a different form of fixity (infixes
associating in a different way, or suffixes, prefixes etc). Finally, failure occurs if there is
a type variable in v_1, ..., v_n or t that does not occur in the type of ix.

See also
new_definition, new_infix, new_infixl_definition

new_infix_prim_rec_definition

Compat.new_infix_prim_rec_definition : (string * term) -> thm

Synopsis
Defines an infix primitive recursive function over the type num.

Description
Found in the hol88 library. The function new_infix_prim_rec_definition provides the
facility for defining primitive recursive functions with infix status on the type num. It
takes a pair argument, consisting of the name under which the resulting definition will
be saved in the current theory segment, and a term giving the desired definition. The
value returned by new_infix_prim_rec_definition is a theorem which states the defini-
tion requested by the user. This theorem is derived by formal proof from an instance of
the theorem num_Axiom:

|- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n)

Evaluating

new_infix_prim_rec_definition
("fun_DEF",
(--‘(fun 0 x = f_1[x]) /\

(fun (SUC n) x = f_2[fun n x’, n, x])‘--));;

where all the free variables in the term x’ are contained in {n, x}, automatically proves
the theorem:

|- ?fun. !x. fun 0 x = f_1[x] /\
!x. fun (SUC n) x = f_2[fun n x’, n, x]

and then declares a new constant fun with this property and infix status as its speci-
fication. This constant specification is returned as a theorem and is saved with name
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fun_DEF in the current theory segment.
The ML function new_infix_prim_rec_definition is, in fact, slightly more general

than is indicated above. In particular, a curried primitive recursive function can be
defined by primitive recursion on either one of its arguments using this ML function.
The ML function new_infix_prim_rec_definition also allows the user to partially specify
the value of a function defined (possibly recursively) on the natural numbers by giving
its value for only one of 0 or SUC n.

Failure
Failure occurs if HOL cannot prove there is a function satisfying the specification (ie.
if the term supplied to new_prim_rec_definition is not a well-formed primitive recur-
sive definition); if the type of fun is not of the form ty_1->ty_2->ty_3, or if any other
condition for making a constant specification is violated (see the failure conditions for
new_specification). The function will not be accessible unless the hol88 library has
been loaded.

Example
Here is the recursive definition of the constant + used by the system:

new_infix_prim_rec_definition
("ADD",
(--‘($+ 0 n = n) /\

($+ (SUC m) n = SUC($+ m n))‘--))

The $’s are there (as documentation) to indicate that the constant + is being declared to
be an infix. Evaluating this ML expression will create the following constant specifica-
tion in the current theory segment:

ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n))

Comments
new_infix_prim_rec_definition is not in hol90; it has been superceded by new_recursive_definition

See also
new_definition, new_infix_definition, new_infix_list_rec_definition,
new_prim_rec_definition, new_list_rec_definition, new_recursive_definition,
new_type_definition, new_specification, num_Axiom.

new_list_rec_definition

new_list_rec_definition : ((string # term) -> thm)
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Synopsis
Defines a primitive recursive function over the type of lists.

Description
The function new_list_rec_definition provides the facility for defining primitive recur-
sive functions on the type of lists. It takes a pair argument, consisting of the name
under which the resulting definition will be saved in the current theory segment, and a
term giving the desired definition. The value returned by new_list_rec_definition is a
theorem which states the definition requested by the user. This theorem is derived by
formal proof from an instance of the theorem list_Axiom:

|- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t)

Evaluating

new_list_rec_definition
(‘fun_DEF‘,
"(fun x_1 ... [] ... x_i = f_1[x_1, ..., x_i]) /\
(fun x_1 ... (CONS h t) ... x_i =

f_2[fun t_1 ... t ... t_i, x_1, ..., h, t, ..., x_i])");;

where all the free variables in the terms t_1, ..., t_i are contained in {h,t,x_1,...,x_i},
automatically proves the theorem:

|- ?fun. !x_1 ... x_i. fun x_1 ... [] ... x_i = f_1[x_1, ..., x_i] /\
!x_1 ... x_i. fun (CONS h t) x_1 ... x_i =

f_2[fun t_1 ... t ... t_i, x_1, ..., h, t, ...,x_i]

and then declares a new constant fun with this property as its specification. This con-
stant specification is returned as a theorem by new_list_rec_definition and is saved
with name fun_DEF in the current theory segment.

The ML function new_list_rec_definition also allows the user to partially specify the
value of a function defined (possibly recursively) on lists by giving its value for only one
of [] or CONS h t. See the examples below.

Failure
Failure occurs if HOL cannot prove there is a function satisfying the specification (ie. if
the term supplied to mlnew_list_rec_definition is not a well-formed primitive recur-
sive definition), or if any other condition for making a constant specification is violated
(see the failure conditions for new_specification).

Example
The HOL system defines a length function, LENGTH, on lists by the primitive recursive
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definition on lists shown below:

new_list_rec_definition
(‘LENGTH‘,
"(LENGTH NIL = 0) /\
(!h:*. !t. LENGTH (CONS h t) = SUC (LENGTH t))")

When this ML expression is evaluated, HOL uses list_Axiom to prove existence of a
function that satisfies the given primitive recursive definition, introduces a constant to
name this function using a constant specification, and stores the resulting theorem:

LENGTH |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t))

in the current theory segment (in this case, the theory list).
Using new_list_rec_definition, the predicate NULL and the selectors HD and TL are

defined in the theory list by the specifications:

NULL |- NULL[] /\ (!h t. ~NULL(CONS h t))

HD |- !(h:*) t. HD(CONS h t) = h

TL |- !(h:*) t. TL(CONS h t) = t

See also
new_definition, new_infix_definition, new_infix_list_rec_definition,
new_infix_prim_rec_definition, new_prim_rec_definition,
new_recursive_definition, new_type_definition, new_specification, list_Axiom.

new_axiom

new_open_axiom : (string * term) -> thm

Synopsis
Sets up a new axiom in the current theory.

Description
If tm is a term of type bool, a call new_open_axiom("name",tm) creates a theorem

|- tm

and stores it away in the current theory.
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Failure
Fails if HOL is not in draft mode, or there is already an axiom or definition of that name
in the current theory, or it the given term does not have type bool.

Example

- new_theory "gurk";
() : unit

- new_axiom("untrue",--‘x = 1‘--));
|- x = 1

Comments
For most purposes, it is unnecessary to declare new axioms: all of classical mathematics
can be derived by definitional extension alone. Proceeding by definition is not only more
elegant, but also guarantees the consistency of the deductions made. However, there
are certain entities which cannot be modelled in simple type theory without further
axioms, such as higher transfinite ordinals.

See also
mk_thm, new_definition.

new_prim_rec_definition

Compat.new_prim_rec_definition : (string * term) -> thm

Synopsis
Define a primitive recursive function over the type :num.

Description
Found in the hol88 library. The function new_prim_rec_definition provides the facility
for defining primitive recursive functions on the type num. It takes a pair argument,
consisting of the name under which the resulting definition will be saved in the cur-
rent theory segment, and a term giving the desired definition. The value returned by
new_prim_rec_definition is a theorem which states the definition requested by the user.
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This theorem is derived by formal proof from an instance of the theorem num_Axiom:

|- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n)

Evaluating

new_prim_rec_definition
("fun_DEF",
--‘(fun x_1 ... 0 ... x_i = f_1[x_1, ..., x_i]) /\

(fun x_1 ... (SUC n) ... x_i =
f_2[fun t_1 ... n ... t_i, x_1, ..., n, ..., x_i])‘--);

where all the free variables in the terms t_1, ..., t_i are contained in {n, x_1, ..., x_i},
automatically proves the theorem:

|- ?fun. !x_1 ... x_i. fun x_1 ... 0 ... x_i = f_1[x_1, ..., x_i] /\
!x_1 ... x_i. fun (SUC n) x_1 ... x_i =

f_2[fun t_1 ... n ... t_i, x_1, ..., n, ...,x_i]

and then declares a new constant fun with this property as its specification. This con-
stant specification is returned as a theorem by new_prim_rec_definition and is saved
with name fun_DEF in the current theory segment.

The ML function new_prim_rec_definition also allows the user to partially specify the
value of a function defined (possibly recursively) on the natural numbers by giving its
value for only one of 0 or SUC n. See the example below.

Failure
Failure occurs if HOL cannot prove there is a function satisfying the specification (ie. if
the term supplied to new_prim_rec_definition is not a well-formed primitive recursive
definition), or if any other condition for making a constant specification is violated (see
the failure conditions for new_specification). The function will not be available unless
the hol88 library has been loaded.

Example
A curried addition function plus:num->num->num can be defined by primitive recursion
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on its first argument:

- val PLUS = new_prim_rec_definition
= (‘PLUS‘,
= (--‘(plus 0 n = n) /\
= (plus (SUC m) n = SUC(plus m n))‘--));
PLUS = |- (!n. plus 0 n = n) /\ (!m n. plus(SUC m)n = SUC(plus m n))

or by primitive recursion on its second argument:

- val PLUS = new_prim_rec_definition
= (‘PLUS‘,
= (--‘(plus m 0 = m) /\
= (plus m (SUC n) = SUC(plus m n))‘--));
PLUS = |- (!m. plus m 0 = m) /\ (!m n. plus m(SUC n) = SUC(plus m n))

A decrement function DEC, whose value is specified for only positive natural numbers,
can be defined using new_prim_rec_definition as follows

- val DEC = new_prim_rec_definition
= (‘DEC‘, (--‘DEC (SUC n) = n‘--));
DEC = |- !n. DEC(SUC n) = n

This definition specifies the value of the function DEC only for positive natural numbers.
In particular, the value of DEC 0 is left unspecified, and the only non-trivial property that
can be proved to hold of the constant DEC is the property stated by the theorem returned
by the call to new_prim_rec_definition shown in the session above.

Comments
new_prim_rec_definition is not in hol90; it has been superceded by new_recursive_definition.

See also
new_definition, new_infix_definition, new_infix_list_rec_definition,
new_infix_prim_rec_definition, new_list_rec_definition,
new_recursive_definition, new_type_definition, new_specification, num_Axiom.

new_recursive_definition

new_recursive_definition :
{name:string,def:term,fixity:fixity,rec_axiom:thm} -> thm

Synopsis
Defines a primitive recursive function over a concrete recursive type.
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Description
new_recursive_definition provides the facility for defining primitive recursive func-

tions on arbitrary concrete recursive types. name is a name under which the resulting
definition will be saved in the current theory segment. def is a term giving the desired
primitive recursive function definition. fixity is a value of type :fixity which indicates
whether the defined function will be a prefix, binder, or infix. rec_axiom is the primitive
recursion theorem for the concrete type in question; this must be a theorem obtained
from define_type. The value returned by new_recursive_definition is a theorem which
states the primitive recursive definition requested by the user. This theorem is derived
by formal proof from an instance of the general primitive recursion theorem given as
the second argument.

A theorem th of the form returned by define_type is a primitive recursion theorem for
an automatically-defined concrete type ty. Let C1, ..., Cn be the constructors of this type,
and let ‘(Ci vs)’ represent a (curried) application of the ith constructor to a sequence
of variables. Then a curried primitive recursive function fn over ty can be specified by
a conjunction of (optionally universally-quantified) clauses of the form:

fn v1 ... (C1 vs1) ... vm = body1 /\
fn v1 ... (C2 vs2) ... vm = body2 /\

.

.
fn v1 ... (Cn vsn) ... vm = bodyn

where the variables v1, ..., vm, vs are distinct in each clause, and where in the ith clause
fn appears (free) in bodyi only as part of an application of the form:

"fn t1 ... v ... tm"

in which the variable v of type ty also occurs among the variables vsi.
If tm is a conjunction of clauses, as described above, then evaluating:

new_recursive_definition{name="name", fixity=f, rec_axiom=th,def=tm}

automatically proves the existence of a function fn that satisfies the defining equations
supplied as the fourth argument, and then declares a new constant in the current the-
ory with this definition as its specification. This constant specification is returned as a
theorem and is saved in the current theory segment under the name name. The constant
is given the parsing status defined by f (one of Prefix, Infix ¡int¿, or Binder).
new_recursive_definition also allows the supplied definition to omit clauses for any

number of constructors. If a defining equation for the ith constructor is omitted, then
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the value of fn at that constructor:

fn v1 ... (Ci vsi) ... vn

is left unspecified (fn, however, is still a total function).

Failure
A call to new_recursive_definition fails if the supplied theorem is not a primitive re-
cursion theorem of the form returned by define_type; if the term argument supplied is
not a well-formed primitive recursive definition; or if any other condition for making a
constant specification is violated (see the failure conditions for new_specification).

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

new_recursive_definition can be used to define primitive recursive functions over bi-
nary trees. Suppose the value of th is this theorem. Then a recursive function Leaves,
which computes the number of leaves in a binary tree, can be defined recursively as
shown below:

- val Leaves = new_recursive_definition
= {name = "Leaves",
= fixity = Prefix,
= rec_axiom = th,
= def= --‘(Leaves (LEAF (x:’a)) = 1) /\
= (Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))‘--};
Leaves =
|- (!x. Leaves(LEAF x) = 1) /\

(!t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))

The result is a theorem which states that the constant Leaves satisfies the primitive-
recursive defining equations supplied by the user.

The function defined using new_recursive_definition need not, in fact, be recursive.
Here is the definition of a predicate IsLeaf, which is true of binary trees which are



292 Chapter 1. Pre-defined ML Identifiers

leaves, but is false of the internal nodes in a binary tree:

- val IsLeaf = new_recursive_definition
= {name = "IsLeaf",
= fixity = Prefix,
= rec_axiom = th,
= def = --‘(IsLeaf (NODE t1 t2) = F) /\
= (IsLeaf (LEAF (x:’a)) = T)‘--};
IsLeaf = |- (!t1 t2. IsLeaf(NODE t1 t2) = F) /\ (!x. IsLeaf(LEAF x) = T)

Note that the equations defining a (recursive or non-recursive) function on binary trees
by cases can be given in either order. Here, the NODE case is given first, and the LEAF

case second. The reverse order was used in the above definition of Leaves.
new_recursive_definition also allows the user to partially specify the value of a func-

tion defined on a concrete type, by allowing defining equations for some of the con-
structors to be omitted. Here, for example, is the definition of a function Label which
extracts the label from a leaf node. The value of Label applied to an internal node is
left unspecified:

- val Label = new_recursive_definition
= {name = "Label",
= fixity = Prefix,
= rec_axiom = th,
= def = --‘Label (LEAF (x:’a)) = x‘--};
Label = |- !x. Label(LEAF x) = x

Curried functions can also be defined, and the recursion can be on any argument. The
next definition defines an infix function << which expresses the idea that one tree is a
proper subtree of another.

- val Subtree = new_recursive_definition
= {name = "Subtree",
= fixity = Infix 120,
= rec_axiom = th,
= def = --‘(<< (t:’a bintree) (LEAF (x:’a)) = F) /\
= (<< t (NODE t1 t2) = (t = t1) \/
= (t = t2) \/
= (<< t t1) \/
= (<< t t2))‘--};
Subtree =
|- (!t x. t << (LEAF x) = F) /\

(!t t1 t2.
t << (NODE t1 t2) = (t = t1) \/ (t = t2) \/ (t << t1) \/ (t << t2))

Note that the constant << is an infix only after the definition has been made. Further-
more, the function << is recursive on its second argument.
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See also
define_type, prove_rec_fn_exists.

new_specification

new_specification :
{name:string, sat_thm:thm,
consts:{const_name:string, fixity:fixity} list} -> thm

Synopsis
Introduces a constant or constants satisfying a given property.

Description
The ML function new_specification implements the primitive rule of constant specifi-
cation for the HOL logic. Evaluating:

new_specification {name = "name", sat_thm = |- ?x1...xn. t,
consts = [{const_name = "c1", fixity = f1}, ...,

{const_name = "cn", fixity = fn}]}

simultaneously introduces new constants named c1, ..., cn satisfying the property:

|- t[c1,...,cn/x1,...,xn]

This theorem is stored, with name name, as a definition in the current theory segment. It
is also returned by the call to new_specification The fixities f1, ..., fn are values which
determine whether the new constants are infixes or binders or neither. If fi is Prefix

then ci is declared an ordinary constant, if it is Infix i then ci is declared an infix with
precedence i, and if it is Binder then ci is declared a binder.

Failure
new_specification fails if called when HOL is not in draft mode. It also fails if there
is already an axiom, definition or specification of the given name in the current theory
segment; if the theorem argument has assumptions or free variables; if the supplied
constant names ‘c1‘, ..., ‘cn‘ are not distinct; if any one of ‘c1‘, ..., ‘cn‘ is already a
constant in the current theory or is not an allowed name for a constant. Failure also
occurs if the type of ci is not suitable for a constant with the syntactic status specified
by the fixity fi. Finally, failure occurs if some ci does not contain all the type variables
that occur in the term ?x1...xn. t.
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Uses
new_specification can be used to introduce constants that satisfy a given property with-
out having to make explicit equational constant definitions for them. For example, the
built-in constants MOD and DIV are defined in the system by first proving the theorem:

th |- ?MOD DIV.
!n. (0 < n) ==>

!k. ((k = (((DIV k n) * n) + (MOD k n))) /\ ((MOD k n) < n))

and then making the constant specification:

- val DIVISION = new_specification
{name = "DIVISION",
consts = [{fixity = Infix 650, const_name = "MOD"},

{fixity = Infix 600, const_name = "DIV"}],
sat_thm = th};

This introduces the constants MOD and DIV with the defining property shown above.

See also
new_definition, new_binder_definition, new_gen_definition,
new_infix_definition.

new_theory

new_theory : (string -> void)

Synopsis
Creates a new theory by extending the current theory with a new theory segment.

Description
A theory consists of a hierarchy of named parts called theory segments. The theory
segment at the top of the hierarchy tree in each theory is said to be current. All theory
segments have a theory of the same name associated with them consisting of the theory
segment itself and all its ancestors. Each axiom, definition, specification and theorem
belongs to a particular theory segment.

Calling new_theory ‘thy‘ creates a new theory segment and associated theory having
name thy. The theory segment which was current before the call becomes a parent
of the new theory segment. The new theory therefore consists of the current theory
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extended with the new theory segment. The new theory segment replaces its parent
as the current theory segment. The call switches the system into draft mode. This
allows new axioms, constants, types, constant specifications, infix constants, binders
and parents to be added to the theory segment. Inconsistencies will be introduced into
the theory if inconsistent axioms are asserted. New theorems can also be added as
when in proof mode. The theory file in which the data of the new theory segment is
ultimately stored will have name thy.th in the directory from which HOL was called.
The theory segment might not be written to this file until the session is finished with a
call to close_theory. If HOL is quitted without closing the session with close_theory,
parts of the theory segment created during the session may be lost. If the system is in
draft mode when a call to new_theory is made, the previous session is closed; all changes
made in it will be written to the associated theory file.

Failure
The call new_theory ‘thy‘ will fail if there already exists a file thy.th in the current
search path. It will also fail if the name thy.th is unsuitable for a filename. Since it
could involve writing to the file system, if a write fails for any reason new_theory will
fail.

Uses
Hierarchically extending the current theory. By splitting a theory into theory segments
using new_theory, the work required if definitions, etc., need to be changed is mini-
mized. Only the associated segment and its descendants need be redefined.

See also
close_theory, current_theory, extend_theory, load_theory, new_axiom,
new_binder, new_constant, new_definition, new_infix, new_parent,
new_specification, new_type, print_theory, save_thm, search_path.

new_type

new_type : {Name :string, Arity :int} -> unit

Synopsis
Declares a new type or type constructor.

Description
A call new_type{Name = "t", Arity = n} declares a new n-ary type constructor called t

in the current theory segment. If n is zero, this is just a new base type.
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Failure
Fails if HOL is not in draft mode, or if the name is not a valid type name, or there is
already a type operator of that name in the current theory.

Example
A non-definitional version of ZF set theory might declare a new type set and start using
it as follows:

- new_theory ‘ZF‘;;
() : unit

- new_type{Name="set", Arity=0};
() : unit

- new_infix{Name="mem",Ty = ==‘:set->set->bool‘==};
() : unit

- new_open_axiom("ext", --‘(!z. z mem x = z mem y) ==> (x = y)‘--);
|- (!z. z mem x = z mem y) ==> (x = y)

See also
types, type_abbrevs, new_type_abbrev.

new_type_definition

new_type_definition : {name :string, pred :term, inhab_thm} -> thm

Synopsis
Defines a new type constant or type operator.

Description
The ML function new_type_definition implements the primitive HOL rule of definition
for introducing new type constants or type operators into the logic. If "t" is a term of
type ty->bool containing n distinct type variables, then evaluating:

new_type_definition{name = "op", pred = "t", inhab_thm = |- ?x. t x}

results in op being declared as a new n-ary type operator in the current theory and
returned by the call to new_type_definition. This new type operator is characterized by
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a definitional axiom of the form:

|- ?rep:(’a,...,’n)op->ty. TYPE_DEFINITION t rep

which is stored as a definition in the current theory segment under the automatically-
generated name ‘op_TY_DEF‘. The constant TYPE_DEFINITION in this axiomatic charac-
terization of op is defined by:

|- TYPE_DEFINITION (P:’a->bool) (rep:’b->’a) =
(!x’ x’’. (rep x’ = rep x’’) ==> (x’ = x’’)) /\
(!x. P x = (?x’. x = rep x’))

Thus |- ?rep. TYPE_DEFINITION P rep asserts that there is a bijection between the newly
defined type (’a,...,’n)op and the set of values of type ty that satisfy P.

Failure
Executing new_type_definition{name="op",pred="t",inhab_thm=th} fails if op is already
the name of a type or type operator in the current theory, if "t" does not have a type
of the form ty->bool or th is not an assumption-free theorem of the form |- ?x. t x,
if there already exists a constant definition, constant specification, type definition or
axiom named op_TY_DEF in the current theory segment, or if HOL is not in draft mode.

See also
define_new_type_bijections, prove_abs_fn_one_one, prove_abs_fn_onto,
prove_rep_fn_one_one, prove_rep_fn_onto.

NOT_ELIM

NOT_ELIM : (thm -> thm)

Synopsis
Transforms |- ~t into |- t ==> F.

Description
When applied to a theorem A |- ~t, the inference rule NOT_ELIM returns the theorem
A |- t ==> F.

A |- ~t
-------------- NOT_ELIM
A |- t ==> F

Failure
Fails unless the theorem has a negated conclusion.
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See also
IMP_ELIM, NOT_INTRO.

NOT_EQ_SYM

NOT_EQ_SYM : (thm -> thm)

Synopsis
Swaps left-hand and right-hand sides of a negated equation.

Description
When applied to a theorem A |- ~(t1 = t2), the inference rule NOT_EQ_SYM returns the
theorem A |- ~(t2 = t1).

A |- ~(t1 = t2)
----------------- NOT_EQ_SYM
A |- ~(t2 = t1)

Failure
Fails unless the theorem’s conclusion is a negated equation.

See also
DEPTH_CONV, REFL, SYM.

NOT_EXISTS_CONV

NOT_EXISTS_CONV : conv

Synopsis
Moves negation inwards through an existential quantification.

Description
When applied to a term of the form ~(?x.P), the conversion NOT_EXISTS_CONV returns
the theorem:

|- ~(?x.P) = !x.~P

Failure
Fails if applied to a term not of the form ~(?x.P).
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See also
EXISTS_NOT_CONV, FORALL_NOT_CONV, NOT_FORALL_CONV.

NOT_FORALL_CONV

NOT_FORALL_CONV : conv

Synopsis
Moves negation inwards through a universal quantification.

Description
When applied to a term of the form ~(!x.P), the conversion NOT_FORALL_CONV returns
the theorem:

|- ~(!x.P) = ?x.~P

It is irrelevant whether x occurs free in P.

Failure
Fails if applied to a term not of the form ~(!x.P).

See also
EXISTS_NOT_CONV, FORALL_NOT_CONV, NOT_EXISTS_CONV.

NOT_INTRO

NOT_INTRO : (thm -> thm)

Synopsis
Transforms |- t ==> F into |- ~t.

Description
When applied to a theorem A |- t ==> F, the inference rule NOT_INTRO returns the the-
orem A |- ~t.

A |- t ==> F
-------------- NOT_INTRO

A |- ~t

Failure
Fails unless the theorem has an implicative conclusion with F as the consequent.
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See also
IMP_ELIM, NOT_ELIM.

NO_CONV

NO_CONV : conv

Synopsis
Conversion that always fails.

Failure
NO_CONV always fails.

See also
ALL_CONV.

NO_TAC

NO_TAC : tactic

Synopsis
Tactic which always fails.

Description
Whatever goal it is applied to, NO_TAC always fails with string ‘NO_TAC‘.

Failure
Always fails.

See also
ALL_TAC, ALL_THEN, FAIL_TAC, NO_THEN.

NO_THEN

NO_THEN : thm_tactical
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Synopsis
Theorem-tactical which always fails.

Description
When applied to a theorem-tactic and a theorem, the theorem-tactical NO_THEN always
fails with string ‘NO_THEN‘.

Failure
Always fails when applied to a theorem-tactic and a theorem (note that it never gets as
far as being applied to a goal!)

Uses
Writing compound tactics or tacticals.

See also
ALL_TAC, ALL_THEN, FAIL_TAC, NO_TAC.

ONCE_ASM_REWRITE_RULE

ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once including built-in rewrites and the theorem’s assumptions.

Description
ONCE_ASM_REWRITE_RULE applies all possible rewrites in one step over the subterms in
the conclusion of the theorem, but stops after rewriting at most once at each subterm.
This strategy is specified as for ONCE_DEPTH_CONV. For more details see ASM_REWRITE_RULE,
which does search recursively (to any depth) for matching subterms. The general strat-
egy for rewriting theorems is described under GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This tactic is used when rewriting with the hypotheses of a theorem (as well as a given
list of theorems and basic_rewrites), when more than one pass is not required or would
result in divergence.
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See also
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE,
GEN_REWRITE_RULE, ONCE_DEPTH_CONV, ONCE_REWRITE_RULE, PURE_ASM_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.

ONCE_ASM_REWRITE_TAC

ONCE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal once including built-in rewrites and the goal’s assumptions.

Description
ONCE_ASM_REWRITE_TAC behaves in the same way as ASM_REWRITE_TAC, but makes one pass
only through the term of the goal. The order in which the given theorems are applied
is an implementation matter and the user should not depend on any ordering. See
GEN_REWRITE_TAC for more information on rewriting a goal in HOL.

Failure
ONCE_ASM_REWRITE_TAC does not fail and, unlike ASM_REWRITE_TAC, does not diverge. The
resulting tactic may not be valid, if the rewrites performed add new assumptions to the
theorem eventually proved.

Example
The use of ONCE_ASM_REWRITE_TAC to control the amount of rewriting performed is illus-
trated below:

#ONCE_ASM_REWRITE_TAC []
# (["(a:*) = b"; "(b:*) = c"], "P (a:*): bool") ;;
([(["a = b"; "b = c"], "P b")], -) : subgoals

#(ONCE_ASM_REWRITE_TAC [] THEN ONCE_ASM_REWRITE_TAC [])
# (["(a:*) = b"; "(b:*) = c"], "P (a:*): bool") ;;
([(["a = b"; "b = c"], "P c")], -) : subgoals

Uses
ONCE_ASM_REWRITE_TAC can be applied once or iterated as required to give the effect of
ASM_REWRITE_TAC, either to avoid divergence or to save inference steps.
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See also
basic_rewrites, ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_REWRITE_TAC, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.

ONCE_DEPTH_CONV

ONCE_DEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion once to the first suitable sub-term(s) encountered in top-down
order.

Description
ONCE_DEPTH_CONV c tm applies the conversion c once to the first subterm or subterms
encountered in a top-down ‘parallel’ search of the term tm for which c succeeds. If the
conversion c fails on all subterms of tm, the theorem returned is |- tm = tm.

Failure
Never fails.

Example
The following example shows how ONCE_DEPTH_CONV applies a conversion to only the
first suitable subterm(s) found in a top-down search:

#ONCE_DEPTH_CONV BETA_CONV "(\x. (\y. y + x) 1) 2";;
|- (\x. (\y. y + x)1)2 = (\y. y + 2)1

Here, there are two beta-redexes in the input term. One of these occurs within the
other, so BETA_CONV is applied only to the outermost one.

Note that the supplied conversion is applied by ONCE_DEPTH_CONV to all independent
subterms at which it succeeds. That is, the conversion is applied to every suitable sub-
term not contained in some other subterm for which the conversions also succeeds, as
illustrated by the following example:

#ONCE_DEPTH_CONV num_CONV "(\x. (\y. y + x) 1) 2";;
|- (\x. (\y. y + x)1)2 = (\x. (\y. y + x)(SUC 0))(SUC 1)

Here num_CONV is applied to both 1 and 2, since neither term occurs within a larger
subterm for which the conversion num_CONV succeeds.
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Uses
ONCE_DEPTH_CONV is frequently used when there is only one subterm to which the desired
conversion applies. This can be much faster than using other functions that attempt to
apply a conversion to all subterms of a term (e.g. DEPTH_CONV). If, for example, the
current goal in a goal-directed proof contains only one beta-redex, and one wishes to
apply BETA_CONV to it, then the tactic

CONV_TAC (ONCE_DEPTH_CONV BETA_CONV)

may, depending on where the beta-redex occurs, be much faster than

CONV_TAC (TOP_DEPTH_CONV BETA_CONV)

ONCE_DEPTH_CONV c may also be used when the supplied conversion c never fails, in
which case using a conversion such as DEPTH_CONV c, which applies c repeatedly would
never terminate.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the failure string ‘QCONV‘ may be generated and
later trapped. The behaviour of the function is dependent on this use of failure. So, if
the conversion given as argument happens to generate a failure with string ‘QCONV‘, the
operation of ONCE_DEPTH_CONV will be unpredictable.

See also
DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV.

ONCE_REWRITE_CONV

ONCE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_CONV searches for matching subterms and applies rewrites once at each
subterm, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used are
obtained from the given list of theorems and the set of tautologies stored in basic_rewrites.
See GEN_REWRITE_CONV for the general method of using theorems to rewrite a term.
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Failure
ONCE_REWRITE_CONV does not fail; it does not diverge.

Uses
ONCE_REWRITE_CONV can be used to rewrite a term when recursive rewriting is not de-
sired.

See also
GEN_REWRITE_CONV, PURE_ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWRITE_CONV.

ONCE_REWRITE_RULE

ONCE_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_RULE searches for matching subterms and applies rewrites once at each
subterm, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used are
obtained from the given list of theorems and the set of tautologies stored in basic_rewrites.
See GEN_REWRITE_RULE for the general method of using theorems to rewrite an object
theorem.

Failure
ONCE_REWRITE_RULE does not fail; it does not diverge.

Uses
ONCE_REWRITE_RULE can be used to rewrite a theorem when recursive rewriting is not
desired.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
PURE_ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.

ONCE_REWRITE_TAC

ONCE_REWRITE_TAC : (thm list -> tactic)
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Synopsis
Rewrites a goal only once with basic_rewrites and the supplied list of theorems.

Description
A set of equational rewrites is generated from the theorems supplied by the user and
the set of basic tautologies, and these are used to rewrite the goal at all subterms at
which a match is found in one pass over the term part of the goal. The result is returned
without recursively applying the rewrite theorems to it. The order in which the given
theorems are applied is an implementation matter and the user should not depend on
any ordering. More details about rewriting can be found under GEN_REWRITE_TAC.

Failure
ONCE_REWRITE_TAC does not fail and does not diverge. It results in an invalid tactic if any
of the applied rewrites introduces new assumptions to the theorem eventually proved.

Example
Given a theorem list:

th1 = [ |- a = b; |- b = c; |- c = a]

the tactic ONCE_REWRITE_TAC thl can be iterated as required without diverging:

#ONCE_REWRITE_TAC thl ([], "P a");;
([([], "P b")], -) : subgoals

#(ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl) ([], "P a");;
([([], "P c")], -) : subgoals

#(ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl)
#([], "P a");;
([([], "P a")], -) : subgoals

Uses
ONCE_REWRITE_TAC can be used iteratively to rewrite when recursive rewriting would
diverge. It can also be used to save inference steps.

See also
ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, PURE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.

ORELSE

$ORELSE : (tactic -> tactic -> tactic)
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Synopsis
Applies first tactic, and iff it fails, applies the second instead.

Description
If T1 and T2 are tactics, T1 ORELSE T2 is a tactic which applies T1 to a goal, and iff it fails,
applies T2 to the goal instead.

Failure
The application of ORELSE to a pair of tactics never fails. The resulting tactic fails if both
T1 and T2 fail when applied to the relevant goal.

See also
EVERY, FIRST, THEN.

ORELSEC

$ORELSEC : (conv -> conv -> conv)

Synopsis
Applies the first of two conversions that succeeds.

Description
(c1 ORELSEC c2) "t" returns the result of applying the conversion c1 to the term "t" if
this succeeds. Otherwise (c1 ORELSEC c2) "t" returns the result of applying the con-
version c2 to the term "t".

Failure
(c1 ORELSEC c2) "t" fails both c1 and c2 fail when applied to "t".

See also
FIRST_CONV.

ORELSE_TCL

$ORELSE_TCL : (thm_tactical -> thm_tactical -> thm_tactical)
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Synopsis
Applies a theorem-tactical, and if it fails, tries a second.

Description
When applied to two theorem-tacticals, ttl1 and ttl2, a theorem-tactic ttac, and a
theorem th, if ttl1 ttac th succeeds, that gives the result. If it fails, the result is
ttl2 ttac th, which may itself fail.

Failure
ORELSE_TCL fails if both the theorem-tacticals fail when applied to the given theorem-
tactic and theorem.

See also
EVERY_TCL, FIRST_TCL, THEN_TCL.

OR_EXISTS_CONV

OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification outwards through a disjunction.

Description
When applied to a term of the form (?x.P) \/ (?x.Q), the conversion OR_EXISTS_CONV

returns the theorem:

|- (?x.P) \/ (?x.Q) = (?x. P \/ Q)

Failure
Fails if applied to a term not of the form (?x.P) \/ (?x.Q).

See also
EXISTS_OR_CONV, LEFT_OR_EXISTS_CONV, RIGHT_OR_EXISTS_CONV.

OR_FORALL_CONV

OR_FORALL_CONV : conv
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Synopsis
Moves a universal quantification outwards through a disjunction.

Description
When applied to a term of the form (!x.P) \/ (!x.Q), where x is free in neither P nor
Q, OR_FORALL_CONV returns the theorem:

|- (!x. P) \/ (!x. Q) = (!x. P \/ Q)

Failure
OR_FORALL_CONV fails if it is applied to a term not of the form (!x.P) \/ (!x.Q), or if it
is applied to a term (!x.P) \/ (!x.Q) in which the variable x is free in either P or Q.

See also
FORALL_OR_CONV, LEFT_OR_FORALL_CONV, RIGHT_OR_FORALL_CONV.

overload_on

Parse.overload_on : string * term -> unit

Synopsis
Establishes a constant as one of the overloading possibilities for a string.

Description
Calling overload_on(name,tm) establishes tm as a possible resolution of the overloaded
name. The term tm must be a constant, and must also have a type that is an instantiation
of the type established as the general form for name (something which must have been
done with a call to allow_for_overloading_on (q.v.)).

The call to overload_on also ensures that tm is the first in the list of possible resolutions
chosen when a string might be parsed into a term in more than one way.

Failure
Fails if the term argument is not a constant, if the string has not already been established
as one that can be overloaded, or if the type of the constant is not an instantiation of
the basic type prescribed for the string.
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Example
We define the equivalent of intersection over predicates:

- val inter = new_definition("inter", Term‘inter p q x = p x /\ q x‘);
<<HOL message: inventing new type variable names: ’a.>>
> val inter = |- !p q x. inter p q x = p x /\ q x : Thm.thm
- allow_for_overloading_on ("/\\", Type‘:’a -> ’a -> ’a‘);
> val it = () : unit

Having come this far, one can no longer input normal boolean conjunction as Term‘$/\‘
because this name has been marked as being overloaded, and there are, as yet, no
possible resolutions for it:

- Term‘$/\‘;

No possible type for overloaded constant /\
! Uncaught exception:
! HOL_ERR <poly>

Wanting to allow boolean conjunction as one of the possible overloadings for this name,
we must be slightly involved to specify the constant required by overload_on (better
practice would be to bind the term to Term‘$/\‘ before the call to allow_for_overloading_on):

- overload_on ("/\\", mk_const("/\\", Type‘:bool -> bool -> bool‘));
> val it = () : unit

We also overload on our new intersection constant, and can be sure that in ambiguous
situations, it will be preferred:

- overload_on ("/\\", Term‘inter‘);
<<HOL message: inventing new type variable names: ’a.>>
> val it = () : unit
- Term‘p /\ q‘;
<<HOL message: more than one resolution of overloading was possible.>>
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘p /\ q‘ : Term.term
- type_of it;
> val it = ‘:’a -> bool‘ : Type.hol_type

In order to make normal conjunction the preferred choice, we can repeat the call to
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overload_on:

- overload_on ("/\\", mk_const("/\\", Type‘:bool -> bool -> bool‘));
> val it = () : unit
- Term‘p /\ q‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘p /\ q‘ : Term.term
- type_of it;
> val it = ‘:bool‘ : Type.hol_type

Comments
Overloading with abandon can lead to input that is very hard to make sense of, and so
should be used with caution.

See also
allow_for_overloading_on, clear_overloads_on

p

p : (int -> void)

Synopsis
Prints the top levels of the subgoal package goal stack.

Description
The function p is part of the subgoal package. It is an abbreviation for the function
print_state. For a description of the subgoal package, see set_goal.

Failure
Never fails.

Uses
Examining the proof state during an interactive proof session.

See also
b, backup, backup_limit, e, expand, expandf, g, get_state, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
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pair

pair : (* -> ** -> (* # **))

Synopsis
Makes two values into a pair.

Description
pair x y returns (x,y).

Failure
Never fails.

See also
fst, snd, curry, uncurry.

PAIRED_BETA_CONV

PAIRED_BETA_CONV : conv

Synopsis
Performs generalized beta conversion for tupled beta-redexes.

Description
The conversion PAIRED_BETA_CONV implements beta-reduction for certain applications of
tupled lambda abstractions called ‘tupled beta-redexes’. Tupled lambda abstractions
have the form "\<vs>.tm", where <vs> is an arbitrarily-nested tuple of variables called a
‘varstruct’. For the purposes of PAIRED_BETA_CONV, the syntax of varstructs is given by:

<vs> ::= (v1,v2) | (<vs>,v) | (v,<vs>) | (<vs>,<vs>)

where v, v1, and v2 range over variables. A tupled beta-redex is an application of the
form "(\<vs>.tm) t", where the term "t" is a nested tuple of values having the same
structure as the varstruct <vs>. For example, the term:

"(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))"

is a tupled beta-redex, but the term:

"(\((a,b),(c,d)). a + b + c + d) ((1,2),p)"

is not, since p is not a pair of terms.
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Given a tupled beta-redex "(\<vs>.tm) t", the conversion PAIRED_BETA_CONV performs
generalized beta-reduction and returns the theorem

|- (\<vs>.tm) t = t[t1,...,tn/v1,...,vn]

where ti is the subterm of the tuple t that corresponds to the variable vi in the varstruct
<vs>. In the simplest case, the varstruct <vs> is flat, as in the term:

"(\(v1,...,vn).t) (t1,...,tn)"

When applied to a term of this form, PAIRED_BETA_CONV returns:

|- (\(v1, ... ,vn).t) (t1, ... ,tn) = t[t1,...,tn/v1,...,vn]

As with ordinary beta-conversion, bound variables may be renamed to prevent free
variable capture. That is, the term t[t1,...,tn/v1,...,vn] in this theorem is the result
of substituting ti for vi in parallel in t, with suitable renaming of variables to prevent
free variables in t1, ..., tn becoming bound in the result.

Failure
PAIRED_BETA_CONV tm fails if tm is not a tupled beta-redex, as described above. Note that
ordinary beta-redexes are specifically excluded: PAIRED_BETA_CONV fails when applied to
"(\v.t)u". For these beta-redexes, use BETA_CONV.

Example
The following is a typical use of the conversion:

#PAIRED_BETA_CONV "(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))";;
|- (\((a,b),c,d). a + (b + (c + d)))((1,2),3,4) = 1 + (2 + (3 + 4))

Note that the term to which the tupled lambda abstraction is applied must have the
same structure as the varstruct. For example, the following succeeds:

#PAIRED_BETA_CONV "(\((a,b),p). a + b) ((1,2),(3+5,4))";;
|- (\((a,b),p). a + b)((1,2),3 + 5,4) = 1 + 2

but the following call to PAIRED_BETA_CONV fails:

#PAIRED_BETA_CONV "(\((a,b),(c,d)). a + b + c + d) ((1,2),p)";;
evaluation failed PAIRED_BETA_CONV

because p is not a pair.

See also
BETA_CONV, BETA_RULE, BETA_TAC, LIST_BETA_CONV, RIGHT_BETA, RIGHT_LIST_BETA.
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PAIRED_ETA_CONV

PAIRED_ETA_CONV : conv

Synopsis
Performs generalized eta conversion for tupled eta-redexes.

Description
The conversion PAIRED_ETA_CONV generalizes ETA_CONV to eta-redexes with tupled ab-
stractions.

PAIRED_ETA_CONV "\(v1..(..)..vn). f (v1..(..)..vn)"
= |- \(v1..(..)..vn). f (v1..(..)..vn) = f

Failure
Fails unless the given term is a paired eta-redex as illustrated above.

Comments
Note that this result cannot be achieved by ordinary eta-reduction because the tupled
abstraction is a surface syntax for a term which does not correspond to a normal pattern
for eta reduction. Disabling the relevant prettyprinting reveals the true form of a paired
eta redex:

#set_flag(‘print_uncurry‘,false);;
true : bool

#let tm = "\(x:num,y:num). FST (x,y)";;
tm = "UNCURRY(\x y. FST(x,y))" : term

Example
The following is a typical use of the conversion:

let SELECT_PAIR_EQ = PROVE
("(@(x:*,y:**). (a,b) = (x,y)) = (a,b)",
CONV_TAC (ONCE_DEPTH_CONV PAIRED_ETA_CONV) THEN
ACCEPT_TAC (SYM (MATCH_MP SELECT_AX (REFL "(a:*,b:**)"))));;

See also
ETA_CONV.
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parents

parents : (string -> string list)

Synopsis

Lists the parent theories of a named theory.

Description

The function parents returns a list of strings that identify the parent theories of a named
theory. The function does not recursively descend the theory hierarchy in search of the
‘leaf’ theories. The named theory must be the current theory or an ancestor of the
current theory.

Failure

Fails if the named theory is not an ancestor of the current theory.
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Example

Initially, the only parent is the main HOL theory:

#new_theory ‘my-theory‘;;
() : void

#parents ‘my-theory‘;;
[‘HOL‘] : string list

#parents ‘HOL‘;;
[‘tydefs‘; ‘sum‘; ‘one‘; ‘BASIC-HOL‘] : string list

#parents ‘tydefs‘;;
[‘ltree‘; ‘BASIC-HOL‘] : string list

#parents ‘string‘;;
evaluation failed parents -- string is not an ancestor

However, loading the string library creates several additional ancestor theories:

#load_library ‘string‘;;
Loading library ‘string‘ ...
Updating search path
.Updating help search path
.Declaring theory string a new parent
Theory string loaded
......
Library ‘string‘ loaded.
() : void

#parents ‘string‘;;
[‘ascii‘; ‘HOL‘] : string list

#parents ‘my-theory‘;;
[‘string‘; ‘HOL‘] : string list

See also
ancestors, ancestry.
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parse_from_grammars

Parse.parse_from_grammars :
(parse_type.grammar * term_grammar.grammar) ->
((hol_type frag list -> hol_type) * (term frag list -> term))

Synopsis
Returns parsing functions based on the supplied grammars.

Description
When given a pair consisting of a type and a term grammar, this function returns parsing
functions that use those grammars to turn strings (strictly, quotations) into types and
terms respectively.

Failure
Can’t fail immediately. However, when the precedence matrix for the term parser is
built on first application of the term parser, this may generate precedence conflict errors
depending on the rules in the grammar.

Example
First the user loads arithmeticTheory to augment the built-in grammar with the ability
to lex numerals and deal with symbols such as + and -:

- load "arithmeticTheory";
> val it = () : unit
- val t = Term‘2 + 3‘;
> val t = ‘2 + 3‘ : Term.term

Then the parse_from_grammars function is used to make the values Type and Term use
the grammar present in the simpler theory of booleans. Using this function fails to parse
numerals or even the + infix:

- val (Type,Term) = parse_from_grammars boolTheory.bool_grammars;
> val Type = fn : Type.hol_type frag list -> Type.hol_type

val Term = fn : Term.term frag list -> Term.term
- Term‘2 + 3‘;
<<HOL message: No numerals currently allowed.>>
! Uncaught exception:
! HOL_ERR <poly>
- Term‘x + y‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘x $+ y‘ : Term.term

But, as the last example above also demonstrates, the pretty-printer is still dependent
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on the global grammar, and the global value of Term can still be accessed through the
Parse structure:

- t;
> val it = ‘2 + 3‘ : Term.term
- Parse.Term‘2 + 3‘;
> val it = ‘2 + 3‘ : Term.term

Uses
This function is used to ensure that library code has access to a term parser that is a
known quantity. In particular, it is not good form to have library code that depends on
the default parsers Term and Type. When the library is loaded, which may happen at any
stage, these global values may be such that the parsing causes quite unexpected results
or failures.

See also
add_rule, Term, Type

parse_in_context

Parse.parse_in_context : term list -> term quotation -> term

Synopsis
Parses a quotation into a term, using the terms as typing context.

Description
Where the Term function parses a quotation in isolation of all possible contexts (except
inasmuch as the global grammar provides a form of context), this function uses the
additional parameter, a list of terms, to help in giving variables in the quotation types.

Thus, Term‘x‘ will either guess the type ‘‘:’a‘‘ for this quotation, or refuse to parse
it at all, depending on the value of the guessing_tyvars flag. The parse_in_context

function, in contrast, will attempt to find a type for x from the list of free variables.
If the quotation already provides enough context in itself to determine a type for

a variable, then the context is not consulted, and a conflicting type there for a given
variable is ignored.

Failure
Fails if the quotation doesn’t make syntactic sense, or if the assignment of context types
to otherwise unconstrained variables in the quotation causes overloading resolution to
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fail. The latter would happen if the variable x was given boolean type in the context, if
+ was overloaded to be over either :num or :int, and if the quotation was x + y.

Example

<< There should be an example here >>

Uses
Used in many of the Q module’s variants of the standard tactics in order to have a goal
provide contextual information to the parsing of arguments to tactics.

See also
Term

parse_preTerm

Parse.parse_preTerm : term quotation -> parse_term.preterm

Synopsis
Implements the first phase of term parsing; the removal of special syntax.

Description
The “let” expression ‘let x = e1 in e2‘ will turn into COMB(COMB(VAR "LET", ABS(SIMPLE "x", VAR "e2")), VAR "e1").
The record syntax ‘rec.fld1‘ is converted into something of the form COMB(VAR "....fld1", VAR "rec")

where the dots will actually be equal to the value of GrammarSpecials.recsel_special
(a string).

Failure

Example

Uses

Comments

See also

PART_MATCH

PART_MATCH : ((term -> term) -> thm -> term -> thm)
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Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !x1...xn. t) tm

the function PART_MATCH applies fn to t’ (the result of specializing universally quantified
variables in the conclusion of the theorem), and attempts to match the resulting term
to the argument term tm. If it succeeds, the appropriately instantiated version of the
theorem is returned.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

Example
Suppose that we have the following theorem:

th = |- !x. x==>x

then the following:

PART_MATCH (fst o dest_imp) th "T"

results in the theorem:

|- T ==> T

because the selector function picks the antecedent of the implication (the inbuilt spe-
cialization gets rid of the universal quantifier), and matches it to T.

See also
INST_TYPE, INST_TY_TERM, match.

PAT_ASSUM

Ho_tactics.PAT_ASSUM : term -> thm_tactic -> tactic
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Synopsis
Finds the first assumption that matches the term argument, applies the theorem tactic
to it, and removes this assumption.

Description
The tactic

PAT_ASSUM tm ttac ([A1; ...; An], g)

finds the first Ai which matches tm using higher-order matching in the sense of Ho_match.match_term.
Unless there is just one match otherwise, free variables in the pattern that are also free
in the assumptions or the goal must not be bound by the match. In effect, these variables
are being treated as local constants.

Failure
Fails if the term doesn’t match any of the assumptions, or if the theorem-tactic fails
when applied to the first assumption that does match the term.

Example
The tactic

PAT_ASSUM ‘‘x:num = y‘‘ SUBST_ALL_TAC

searches the assumptions for an equality over numbers and causes its right hand side
to be substituted for its left hand side throughout the goal and assumptions. It also
removes the equality from the assumption list. Trying to use FIRST_ASSUM above (i.e.,
replacing PAT_ASSUM with FIRST_ASSUM and dropping the term argument entirely) would
require that the desired equality was the first such on the list of assumptions, and would
leave an equality on the assumption list of the form x = x.

If one is trying to solve the goal

{ !x. f x = g (x + 1), !x. g x = f0 (f x)} ?- f x = g y

rewriting with the assumptions directly will cause a loop. Instead, one might want to
rewrite with the formula for f. This can be done in an assumption-order-indepedent
way with

PAT_ASSUM (Term‘!x. f x = f’ x‘) (fn th => REWRITE_TAC [th])

This use of the tactic exploits higher order matching to match the RHS of the assump-
tion, and the fact that f is effectively a local constant in the goal to find the correct
assumption.
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See also
ASSUM_LIST, EVERY, PAT_ASSUM, EVERY_ASSUM, FIRST, MAP_EVERY, MAP_FIRST,
UNDISCH_THEN, match_term.

POP_ASSUM

POP_ASSUM : (thm_tactic -> tactic)

Synopsis
Applies tactic generated from the first element of a goal’s assumption list.

Description
When applied to a theorem-tactic and a goal, POP_ASSUM applies the theorem-tactic to
the ASSUMEd first element of the assumption list, and applies the resulting tactic to the
goal without the first assumption in its assumption list:

POP_ASSUM f ({A1;...;An} ?- t) = f (A1 |- A1) ({A2;...;An} ?- t)

Failure
Fails if the assumption list of the goal is empty, or the theorem-tactic fails when applied
to the popped assumption, or if the resulting tactic fails when applied to the goal (with
depleted assumption list).

Comments
It is possible simply to use the theorem ASSUME A1 as required rather than use POP_ASSUM;
this will also maintain A1 in the assumption list, which is generally useful. In addition,
this approach can equally well be applied to assumptions other than the first.

There are admittedly times when POP_ASSUM is convenient, but it is most unwise to
use it if there is more than one assumption in the assumption list, since this introduces
a dependency on the ordering, which is vulnerable to changes in the HOL system.

Another point to consider is that if the relevant assumption has been obtained by
DISCH_TAC, it is often cleaner to use DISCH_THEN with a theorem-tactic. For example,
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instead of:

DISCH_TAC THEN POP_ASSUM (\th. SUBST1_TAC (SYM th))

one might use

DISCH_THEN (SUBST1_TAC o SYM)

Example
The goal:

{4 = SUC x} ?- x = 3

can be solved by:

POP_ASSUM (\th. REWRITE_TAC[REWRITE_RULE[num_CONV "4"; INV_SUC_EQ] th]))

Uses
Making more delicate use of an assumption than rewriting or resolution using it.

See also
ASSUM_LIST, EVERY_ASSUM, IMP_RES_TAC, POP_ASSUM_LIST, REWRITE_TAC.

POP_ASSUM_LIST

POP_ASSUM_LIST : ((thm list -> tactic) -> tactic)

Synopsis
Generates a tactic from the assumptions, discards the assumptions and applies the tac-
tic.

Description
When applied to a function and a goal, POP_ASSUM_LIST applies the function to a list
of theorems corresponding to the ASSUMEd assumptions of the goal, then applies the
resulting tactic to the goal with an empty assumption list.

POP_ASSUM_LIST f ({A1;...;An} ?- t) = f [A1 |- A1; ... ; An |- An] (?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the
resulting tactic fails when applied to the goal with no assumptions.
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Comments
There is nothing magical about POP_ASSUM_LIST: the same effect can be achieved by
using ASSUME a explicitly wherever the assumption a is used. If POP_ASSUM_LIST is used,
it is unwise to select elements by number from the ASSUMEd-assumption list, since this
introduces a dependency on ordering.

Example
Suppose we have a goal of the following form:

{a /\ b, c, (d /\ e) /\ f} ?- t

Then we can split the conjunctions in the assumption list apart by applying the tactic:

POP_ASSUM_LIST (MAP_EVERY STRIP_ASSUME_TAC)

which results in the new goal:

{a, b, c, d, e, f} ?- t

Uses
Making more delicate use of the assumption list than simply rewriting or using resolu-
tion.

See also
ASSUM_LIST, EVERY_ASSUM, IMP_RES_TAC, POP_ASSUM, REWRITE_TAC.

prefer_form_with_tok

Parse.prefer_form_with_tok : {term_name : string, tok : string} -> unit

Synopsis
Sets a grammar rule’s preferred flag, causing it to be preferentially printed.

Description
A call to prefer_form_with_tok causes the parsing/pretty-printing rule specified by the
term_name-tok combination to be the preferred rule for pretty-printing purposes. This
change affects the global grammar.

Failure
Never fails.
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Example
The initially preferred rule for conditional expressions causes them to print using the
if-then-else syntax. If the user prefers the “traditional” syntax with =>-|, this change
can be brought about as follows:

- prefer_form_with_tok {term_name = "COND", tok = "=>"};
> val it = () : unit
- Term‘if p then q else r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘p => q | r‘ : Term.term

Comments
As the example above demonstrates, using this function does not affect the parser at all.

There is a companion temp_prefer_form_with_tok function, which has the same effect
on the global grammar, but which does not cause this effect to persist when the current
theory is exported.

See also
clear_prefs_for_term

print_term

Parse.print_term : term -> unit

Synopsis
Prints a term to the screen (standard out).

Description
The function print_term prints a term to the screen. It first converts the term into a
string, and then outputs that string to the standard output stream.

The conversion to the string is done by term_to_string. The term is printed using the
pretty-printing information contained in the global grammar.

Failure
Should never fail.

See also
term_to_string
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prove

prove : ((term # tactic) -> thm)

Synopsis
Attempts to prove a boolean term using the supplied tactic.

Description
When applied to a term-tactic pair (tm,tac), the function prove attempts to prove the
goal ?- tm, that is, the term tm with no assumptions, using the tactic tac. If prove

succeeds, it returns the corresponding theorem A |- tm, where the assumption list A

may not be empty if the tactic is invalid; prove has no inbuilt validity-checking.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal.

Comments
The function PROVE provides almost identical functionality, and will also list unsolved
goals if the tactic fails. It is therefore preferable for most purposes.

See also
PROVE, prove_thm, TAC_PROOF, VALID.

PROVE

Compat.PROVE : (term * tactic) -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic.

Description
Found in the hol88 library. When applied to a term-tactic pair (tm,tac), the function

PROVE attempts to prove the goal ?- tm, that is, the term tm with no assumptions, using
the tactic tac. If PROVE succeeds, it returns the corresponding theorem A |- tm, where
the assumption list A may not be empty if the tactic is invalid; PROVE has no inbuilt
validity-checking.
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Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal. Also fails if the hol88 library has not
been loaded.

Comments
In hol90, use prove instead; in hol90 PROVE has been replaced by prove and prove_thm

has been replaced by store_thm.

See also
TAC_PROOF, prove, prove_thm, VALID.

prove_abs_fn_one_one

prove_abs_fn_one_one : (thm -> thm)

Synopsis
Proves that a type abstraction function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_one_one th proves from this theorem that the function abs is one-to-
one for values that satisfy P, returning the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

Failure
Fails if applied to a theorem not of the form shown above.

See also
new_type_definition, define_new_type_bijections, prove_abs_fn_onto,
prove_rep_fn_one_one, prove_rep_fn_onto.

prove_abs_fn_onto

prove_abs_fn_onto : (thm -> thm)
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Synopsis
Proves that a type abstraction function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_onto th proves from this theorem that the function abs is onto, re-
turning the theorem:

|- !a. ?r. (a = abs r) /\ P r

Failure
Fails if applied to a theorem not of the form shown above.

See also
new_type_definition, define_new_type_bijections, prove_abs_fn_one_one,
prove_rep_fn_one_one, prove_rep_fn_onto.

prove_cases_thm

prove_cases_thm : (thm -> thm)

Synopsis
Proves a structural cases theorem for an automatically-defined concrete type.

Description
prove_cases_thm takes as its argument a structural induction theorem, in the form re-
turned by prove_induction_thm for an automatically-defined concrete type. When ap-
plied to such a theorem, prove_cases_thm automatically proves and returns a theorem
which states that every value the concrete type in question is denoted by the value
returned by some constructor of the type.

Failure
Fails if the argument is not a theorem of the form returned by prove_induction_thm



prove constructors distinct 329

Example
Given the following structural induction theorem for labelled binary trees:

|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)

prove_cases_thm proves and returns the theorem:

|- !b. (?x. b = LEAF x) \/ (?b1 b2. b = NODE b1 b2)

This states that every labelled binary tree b is either a leaf node with a label x or a tree
with two subtrees b1 and b2.

See also
define_type, INDUCT_THEN, new_recursive_definition,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.

prove_constructors_distinct

prove_constructors_distinct : (thm -> thm)

Synopsis
Proves that the constructors of an automatically-defined concrete type yield distinct
values.

Description
prove_constructors_distinct takes as its argument a primitive recursion theorem, in
the form returned by define_type for an automatically-defined concrete type. When
applied to such a theorem, prove_constructors_distinct automatically proves and re-
turns a theorem which states that distinct constructors of the concrete type in question
yield distinct values of this type.

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if the
concrete type in question has only one constructor.
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Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_constructors_distinct proves and returns the theorem:

|- !x b1 b2. ~(LEAF x = NODE b1 b2)

This states that leaf nodes are different from internal nodes. When the concrete type in
question has more than two constructors, the resulting theorem is just conjunction of
inequalities of this kind.

See also
define_type, INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_one_one, prove_induction_thm, prove_rec_fn_exists.

prove_constructors_one_one

prove_constructors_one_one : (thm -> thm)

Synopsis
Proves that the constructors of an automatically-defined concrete type are injective.

Description
prove_constructors_one_one takes as its argument a primitive recursion theorem, in
the form returned by define_type for an automatically-defined concrete type. When
applied to such a theorem, prove_constructors_one_one automatically proves and re-
turns a theorem which states that the constructors of the concrete type in question are
injective (one-to-one). The resulting theorem covers only those constructors that take
arguments (i.e. that are not just constant values).

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if all the
constructors of the concrete type in question are simply constants of that type.
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Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_constructors_one_one proves and returns the theorem:

|- (!x x’. (LEAF x = LEAF x’) = (x = x’)) /\
(!b1 b2 b1’ b2’.

(NODE b1 b2 = NODE b1’ b2’) = (b1 = b1’) /\ (b2 = b2’))

This states that the constructors LEAF and NODE are both injective.

See also
define_type, INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_induction_thm, prove_rec_fn_exists.

PROVE_HYP

PROVE_HYP : (thm -> thm -> thm)

Synopsis
Eliminates a provable assumption from a theorem.

Description
When applied to two theorems, PROVE_HYP returns a theorem having the conclusion of

the second. The new hypotheses are the union of the two hypothesis sets (first deleting,
however, the conclusion of the first theorem from the hypotheses of the second).

A1 |- t1 A2 |- t2
------------------------ PROVE_HYP
A1 u (A2 - {t1}) |- t2

Failure
Never fails.

Comments
This is the Cut rule. It is not necessary for the conclusion of the first theorem to be the
same as an assumption of the second, but PROVE_HYP is otherwise of doubtful value.
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See also
DISCH, MP, UNDISCH.

prove_induction_thm

prove_induction_thm : (thm -> thm)

Synopsis
Derives structural induction for an automatically-defined concrete type.

Description
prove_induction_thm takes as its argument a primitive recursion theorem, in the form
returned by define_type for an automatically-defined concrete type. When applied to
such a theorem, prove_induction_thm automatically proves and returns a theorem that
states a structural induction principle for the concrete type described by the argument
theorem. The theorem returned by prove_induction_thm is in a form suitable for use
with the general structural induction tactic INDUCT_THEN.

Failure
Fails if the argument is not a theorem of the form returned by define_type.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_induction_thm proves and returns the theorem:

|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)

This theorem states the principle of structural induction on labelled binary trees: if a
predicate P is true of all leaf nodes, and if whenever it is true of two subtrees b1 and b2

it is also true of the tree NODE b1 b2, then P is true of all labelled binary trees.

See also
define_type, INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_rec_fn_exists.



prove rec fn exists 333

prove_rec_fn_exists

prove_rec_fn_exists : (thm -> term -> thm)

Synopsis
Proves the existence of a primitive recursive function over a concrete recursive type.

Description
prove_rec_fn_exists is a version of new_recursive_definition which proves only that
the required function exists; it does not make a constant specification. The first ar-
gument is a theorem of the form returned by define_type, and the second is a user-
supplied primitive recursive function definition. The theorem which is returned asserts
the existence of the recursively-defined function in question (if it is primitive recursive
over the type characterized by the theorem given as the first argument). See the entry
for new_recursive_definition for details.

Failure
As for new_recursive_definition.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_rec_fn_exists can be used to prove the existence of primitive recursive functions
over binary trees. Suppose the value of th is this theorem. Then the existence of a
recursive function Leaves, which computes the number of leaves in a binary tree, can
be proved as shown below:

#prove_rec_fn_exists th
# "(Leaves (LEAF (x:*)) = 1) /\
# (Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))";;
|- ?Leaves. (!x. Leaves(LEAF x) = 1) /\

(!t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))

The result should be compared with the example given under new_recursive_definition.

See also
define_type, new_recursive_definition.
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prove_rep_fn_one_one

prove_rep_fn_one_one : (thm -> thm)

Synopsis
Proves that a type representation function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_rep_fn_one_one th proves from this theorem that the function rep is one-to-
one, returning the theorem:

|- !a a’. (rep a = rep a’) = (a = a’)

Failure
Fails if applied to a theorem not of the form shown above.

See also
new_type_definition, define_new_type_bijections, prove_abs_fn_one_one,
prove_abs_fn_onto, prove_rep_fn_onto.

prove_rep_fn_onto

prove_rep_fn_onto : (thm -> thm)

Synopsis
Proves that a type representation function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_rep_fn_onto th proves from this theorem that the function rep is onto the
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set of values that satisfy P, returning the theorem:

|- !r. P r = (?a. r = rep a)

Failure
Fails if applied to a theorem not of the form shown above.

See also
new_type_definition, define_new_type_bijections, prove_abs_fn_one_one,
prove_abs_fn_onto, prove_rep_fn_one_one.

prove_thm

Compat.prove_thm : (string * term * tactic) -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic, then save the theorem.

Description
Found in the hol88 library. When applied to a triple (s,tm,tac), giving the name to save
the theorem under, the term to prove (with no assumptions) and the tactic to perform
the proof, the function prove_thm attempts to prove the goal ?- tm, that is, the term tm

with no assumptions, using the tactic tac. If prove_thm succeeds, it attempts to save
the resulting theorem in the current theory segment, and if this succeeds, the saved
theorem is returned.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal. In addition, prove_thm will fail if the
theorem cannot be saved, e.g. because there is already a theorem of that name in the
current theory segment, or if the resulting theorem has assumptions; clearly this can
only happen if the tactic was invalid, so this gives some measure of validity checking.
The function is not available unless the hol88 library has been loaded.

Comments
In hol90, use store_thm instead; the cognitive dissonance between prove, PROVE, and
prove_thm proved to be too much for the author, so in hol90 PROVE doesn’t exist: there
is only prove; and prove_thm doesn’t exist: it has been replaced by store_thm.
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See also
prove, PROVE, TAC_PROOF, VALID.

Psyntax

Psyntax : Psyntax_sig

Synopsis
A structure that provides a tuple-style environment for term manipulation.

Description
A lot of the familiar term construction and decomposition functions from hol88 have
different types in hol90. For those longing for the good old days, Psyntax provides
hol88-style types. The functions provided by Psyntax return exactly the same results as
their hol90 counterparts.

Each function in the Psyntax structure has a corresponding function in the Rsyntax
structure, and vice versa. One can flip-flop between the two structures by opening one
and then the other. One can also use long identifiers in order to use both syntaxes at
once.

Failure
Never fails.

Example
The following shows how to open the Psyntax structure and the functions that subse-
quently become available in the top level environment. Documentation for each of these
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functions is available online.

- open Psyntax;
open Psyntax

val mk_var = fn : string * hol_type -> term
val mk_const = fn : string * hol_type -> term
val mk_comb = fn : term * term -> term
val mk_abs = fn : term * term -> term
val mk_primed_var = fn : string * hol_type -> term
val mk_eq = fn : term * term -> term
val mk_imp = fn : term * term -> term
val mk_select = fn : term * term -> term
val mk_forall = fn : term * term -> term
val mk_exists = fn : term * term -> term
val mk_conj = fn : term * term -> term
val mk_disj = fn : term * term -> term
val mk_cond = fn : term * term * term -> term
val mk_pair = fn : term * term -> term
val mk_let = fn : term * term -> term
val mk_cons = fn : term * term -> term
val mk_list = fn : term list * hol_type -> term
val mk_pabs = fn : term * term -> term
val dest_var = fn : term -> string * hol_type
val dest_const = fn : term -> string * hol_type
val dest_comb = fn : term -> term * term
val dest_abs = fn : term -> term * term
val dest_eq = fn : term -> term * term
val dest_imp = fn : term -> term * term
val dest_select = fn : term -> term * term
val dest_forall = fn : term -> term * term
val dest_exists = fn : term -> term * term
val dest_conj = fn : term -> term * term
val dest_disj = fn : term -> term * term
val dest_cond = fn : term -> term * term * term
val dest_pair = fn : term -> term * term
val dest_let = fn : term -> term * term
val dest_cons = fn : term -> term * term
val dest_list = fn : term -> term list * term
val dest_pabs = fn : term -> term * term
val mk_type = fn : string * hol_type list -> hol_type
val dest_type = fn : hol_type -> string * hol_type list
val subst = fn : (term * term) list -> term -> term
val subst_occs = fn : int list list -> (term * term) list -> term -> term
val inst = fn : term list -> (hol_type * hol_type) list -> term -> term
val INST = fn : (term * term) list -> thm -> thm
val match_type = fn : hol_type -> hol_type -> (hol_type * hol_type) list
val match_term = fn

: term -> term -> (term * term) list * (hol_type * hol_type) list
val SUBST = fn : (thm * term) list -> term -> thm -> thm
val SUBST_CONV = fn : (thm * term) list -> term -> term -> thm
val INST_TYPE = fn : (hol_type * hol_type) list -> thm -> thm
val INST_TY_TERM = fn

: (term * term) list * (hol_type * hol_type) list -> thm -> thm
val new_type = fn : int -> string -> unit
val new_constant = fn : string * hol_type -> unit
val new_infix = fn : string * hol_type * int -> unit
val new_binder = fn : string * hol_type -> unit
val new_specification = fn

: string -> (string * string * int) list -> thm -> thm
val new_type_definition = fn : string * term * thm -> thm
val new_recursive_definition = fn

: bool * int -> thm -> string -> term -> thm
val define_new_type_bijections = fn

: string -> string -> string -> thm -> thm

See also
Rsyntax.
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PURE_ASM_REWRITE_RULE

PURE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem including the theorem’s assumptions as rewrites.

Description
The list of theorems supplied by the user and the assumptions of the object theorem
are used to generate a set of rewrites, without adding implicitly the basic tautologies
stored under basic_rewrites. The rule searches for matching subterms in a top-down
recursive fashion, stopping only when no more rewrites apply. For a general description
of rewriting strategies see GEN_REWRITE_RULE.

Failure
Rewriting with PURE_ASM_REWRITE_RULE does not result in failure. It may diverge, in
which case PURE_ONCE_ASM_REWRITE_RULE may be used.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE, PURE_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE.

PURE_ASM_REWRITE_TAC

PURE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including the goal’s assumptions as rewrites.

Description
PURE_ASM_REWRITE_TAC generates a set of rewrites from the supplied theorems and the
assumptions of the goal, and applies these in a top-down recursive manner until no
match is found. See GEN_REWRITE_TAC for more information on the group of rewriting
tactics.

Failure
PURE_ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For limited
depth rewriting, see PURE_ONCE_ASM_REWRITE_TAC. It can also result in an invalid tactic.
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Uses
To advance or solve a goal when the current assumptions are expected to be useful in
reducing the goal.

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.

PURE_ONCE_ASM_REWRITE_RULE

PURE_ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once, including the theorem’s assumptions as rewrites.

Description
PURE_ONCE_ASM_REWRITE_RULE excludes the basic tautologies in basic_rewrites from the
theorems used for rewriting. It searches for matching subterms once only, without
recursing over already rewritten subterms. For a general introduction to rewriting tools
see GEN_REWRITE_RULE.

Failure
PURE_ONCE_ASM_REWRITE_RULE does not fail and does not diverge.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_ASM_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.

PURE_ONCE_ASM_REWRITE_TAC

PURE_ONCE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal once, including the goal’s assumptions as rewrites.
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Description
A set of rewrites generated from the assumptions of the goal and the supplied theorems
is used to rewrite the term part of the goal, making only one pass over the goal. The
basic tautologies are not included as rewrite theorems. The order in which the given
theorems are applied is an implementation matter and the user should not depend on
any ordering. See GEN_REWRITE_TAC for more information on rewriting tactics in general.

Failure
PURE_ONCE_ASM_REWRITE_TAC does not fail and does not diverge.

Uses
Manipulation of the goal by rewriting with its assumptions, in instances where rewriting
with tautologies and recursive rewriting is undesirable.

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC,
SUBST_TAC.

PURE_ONCE_REWRITE_CONV

PURE_ONCE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_CONV generates rewrites from the list of theorems supplied by the
user, without including the tautologies given in basic_rewrites. The applicable rewrites
are employeded once, without entailing in a recursive search for matches over the term.
See GEN_REWRITE_CONV for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
GEN_REWRITE_CONV, ONCE_DEPTH_CONV, ONCE_REWRITE_CONV, PURE_REWRITE_CONV,
REWRITE_CONV.
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PURE_ONCE_REWRITE_RULE

PURE_ONCE_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_RULE generates rewrites from the list of theorems supplied by the
user, without including the tautologies given in basic_rewrites. The applicable rewrites
are employeded once, without entailing in a recursive search for matches over the the-
orem. See GEN_REWRITE_RULE for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_DEPTH_CONV, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.

PURE_ONCE_REWRITE_TAC

PURE_ONCE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal using a supplied list of theorems, making one rewriting pass over the
goal.

Description
PURE_ONCE_REWRITE_TAC generates a set of rewrites from the given list of theorems, and
applies them at every match found through searching once over the term part of the
goal, without recursing. It does not include the basic tautologies as rewrite theorems.
The order in which the rewrites are applied is unspecified. For more information on
rewriting tactics see GEN_REWRITE_TAC.

Failure
PURE_ONCE_REWRITE_TAC does not fail and does not diverge.
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Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations
and recursive rewriting is not desired.

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC,
SUBST_TAC.

PURE_REWRITE_CONV

PURE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term with only the given list of rewrites.

Description
This conversion provides a method for rewriting a term with the theorems given, and
excluding simplification with tautologies in basic_rewrites. Matching subterms are
found recursively, until no more matches are found. For more details on rewriting see
GEN_REWRITE_CONV.

Uses
PURE_REWRITE_CONV is useful when the simplifications that arise by rewriting a theorem
with basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_CONV can be
used.

See also
GEN_REWRITE_CONV, ONCE_REWRITE_CONV, PURE_ONCE_REWRITE_CONV, REWRITE_CONV.

PURE_REWRITE_RULE

PURE_REWRITE_RULE : (thm list -> thm -> thm)
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Synopsis
Rewrites a theorem with only the given list of rewrites.

Description
This rule provides a method for rewriting a theorem with the theorems given, and
excluding simplification with tautologies in basic_rewrites. Matching subterms are
found recursively starting from the term in the conclusion part of the theorem, until no
more matches are found. For more details on rewriting see GEN_REWRITE_RULE.

Uses
PURE_REWRITE_RULE is useful when the simplifications that arise by rewriting a theorem
with basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_RULE can be
used.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE, PURE_ASM_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE, PURE_ONCE_REWRITE_RULE, REWRITE_RULE.

PURE_REWRITE_TAC

PURE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal with only the given list of rewrites.

Description
PURE_REWRITE_TAC behaves in the same way as REWRITE_TAC, but without the effects of the
built-in tautologies. The order in which the given theorems are applied is an implemen-
tation matter and the user should not depend on any ordering. For more information
on rewriting strategies see GEN_REWRITE_TAC.

Failure
PURE_REWRITE_TAC does not fail, but it can diverge in certain situations; in such cases
PURE_ONCE_REWRITE_TAC may be used.
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Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations.
It is sometimes useful in making more time-efficient replacements according to equa-
tions for which it is clear that no extra reduction via tautology will be needed. (The
difference in efficiency is only apparent, however, in quite large examples.)
PURE_REWRITE_TAC advances goals but solves them less frequently than REWRITE_TAC;

to be precise, PURE_REWRITE_TAC only solves goals which are rewritten to "T" (i.e. TRUTH)
without recourse to any other tautologies.

Example
It might be necessary, say for subsequent application of an induction hypothesis, to
resist reducing a term "b = T" to "b".

#PURE_REWRITE_TAC[]([],"b = T");;
([([], "b = T")], -) : subgoals

#REWRITE_TAC[]([],"b = T");;
([([], "b")], -) : subgoals

See also
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC, PURE_ASM_REWRITE_TAC,
PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.

pure_ss

pureSimps.pure_ss : simpset

Synopsis
A simpset containing only the conditional rewrite generator and no additional rewrites.

Description
This simpset sits at the root of the simpset hierarchy. It contains no rewrites, con-
gruences, conversions or decision procedures. Instead it contains just the code which
converts theorems passed to it as context into (possibly conditional) rewrites.

Simplification with pure_ss is analogous to rewriting with PURE_REWRITE_TAC and oth-
ers. The only difference is that the theorems passed to SIMP_TAC pure_ss are interpreted
as conditional rewrite rules. Though the pure_ss can’t take advantage of extra contex-
tual information garnered through congruences, it can still discharge side conditions.
(This is demonstrated in the examples below.)
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Failure
Can’t fail, as it is not a functional value.

Example
The theorem ADD_EQ_SUB from arithmeticTheory states that

|- !m n p. n <= p ==> ((m + n = p) = m = p - n)

We can use this result to make progress with the following goal in conjunction with
pure_ss in a way that no form of REWRITE_TAC could:

- ASM_SIMP_TAC pure_ss [ADD_EQ_SUB] ([--‘x <= y‘--], --‘z + x = y‘--);
> val it = ([([‘x <= y‘], ‘z = y - x‘)], fn) : tactic_result

This example illustrates the way in which the simplifier can do conditional rewriting.
However, the lack of the congruence for implications, means that using pure_ss will not
be able to discharge the side condition in the goal below:

- SIMP_TAC pure_ss [ADD_EQ_SUB] ([], --‘x <= y ==> (z + x = y)‘--);
> val it = ([([], ‘x <= y ==> (z + x = y)‘)], fn) : tactic_result

As bool_ss has the relevant congruence included, it does make progress in the same
situation:

- SIMP_TAC bool_ss [ADD_EQ_SUB] ([], --‘x <= y ==> (z + x = y)‘--);
> val it = ([([], ‘x <= y ==> (z = y - x)‘)], fn) : tactic_result

Uses
The pure_ss simpset might be used in the most delicate simplification situations, or,
mimicking the way it is used within the distribution itself, as a basis for the construction
of other simpsets.

Comments
There is also a PURE_ss ssdata value in the same pureSimps structure that I can’t be
bothered giving its own special manual entry. It plausibly doesn’t need to be there at
all.

See also
bool_ss, hol_ss, PURE_REWRITE_TAC, SIMP_CONV, SIMP_TAC

r

r : (int -> void)
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Synopsis
Reorders the subgoals on top of the subgoal package goal stack.

Description
The function r is part of the subgoal package. It is an abbreviation for rotate. For a
description of the subgoal package, see set_goal.

Failure
As for rotate.

Uses
Proving subgoals in a different order to that generated by the subgoal package.

See also
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.

rand

rand : (term -> term)

Synopsis
Returns the operand from a combination (function application).

Description
rand "t1 t2" returns "t2".

Failure
Fails with rand if term is not a combination.

See also
rator, dest_comb.

RAND_CONV

RAND_CONV : (conv -> conv)
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Synopsis
Applies a conversion to the operand of an application.

Description
If c is a conversion that maps a term "t2" to the theorem |- t2 = t2’, then the conver-
sion RAND_CONV c maps applications of the form "t1 t2" to theorems of the form:

|- (t1 t2) = (t1 t2’)

That is, RAND_CONV c "t1 t2" applies c to the operand of the application "t1 t2".

Failure
RAND_CONV c tm fails if tm is not an application or if tm has the form "t1 t2" but the
conversion c fails when applied to the term t2. The function returned by RAND_CONV c

may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function
that maps a term t to a theorem |- t = t’).

Example

#RAND_CONV num_CONV "SUC 2";;
|- SUC 2 = SUC(SUC 1)

See also
ABS_CONV, RATOR_CONV, SUB_CONV.

rator

rator : (term -> term)

Synopsis
Returns the operator from a combination (function application).

Description
rator("t1 t2") returns "t1".

Failure
Fails with rator if term is not a combination.

See also
rand, dest_comb.
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RATOR_CONV

RATOR_CONV : (conv -> conv)

Synopsis
Applies a conversion to the operator of an application.

Description
If c is a conversion that maps a term "t1" to the theorem |- t1 = t1’, then the conver-
sion RATOR_CONV c maps applications of the form "t1 t2" to theorems of the form:

|- (t1 t2) = (t1’ t2)

That is, RATOR_CONV c "t1 t2" applies c to the operand of the application "t1 t2".

Failure
RATOR_CONV c tm fails if tm is not an application or if tm has the form "t1 t2" but the
conversion c fails when applied to the term t1. The function returned by RATOR_CONV c

may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function
that maps a term t to a theorem |- t = t’).

Example

#RATOR_CONV BETA_CONV "(\x y. x + y) 1 2";;
|- (\x y. x + y)1 2 = (\y. 1 + y)2

See also
ABS_CONV, RAND_CONV, SUB_CONV.

REDEPTH_CONV

REDEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion bottom-up to all subterms, retraversing changed ones.
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Description
REDEPTH_CONV c tm applies the conversion c repeatedly to all subterms of the term tm

and recursively applies REDEPTH_CONV c to each subterm at which c succeeds, until there
is no subterm remaining for which application of c succeeds.

More precisely, REDEPTH_CONV c tm repeatedly applies the conversion c to all the sub-
terms of the term tm, including the term tm itself. The supplied conversion c is applied
to the subterms of tm in bottom-up order and is applied repeatedly (zero or more times,
as is done by REPEATC) to each subterm until it fails. If c is successfully applied at least
once to a subterm, t say, then the term into which t is transformed is retraversed by
applying REDEPTH_CONV c to it.

Failure
REDEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeat-
edly to some subterm of tm without failing.

Example
The following example shows how REDEPTH_CONV retraverses subterms:

#REDEPTH_CONV BETA_CONV "(\f x. (f x) + 1) (\y.y) 2";;
|- (\f x. (f x) + 1)(\y. y)2 = 2 + 1

Here, BETA_CONV is first applied successfully to the (beta-redex) subterm:

"(\f x. (f x) + 1) (\y.y)"

This application reduces this subterm to:

"(\x. ((\y.y) x) + 1)"

REDEPTH_CONV BETA_CONV is then recursively applied to this transformed subterm, even-
tually reducing it to "(\x. x + 1)". Finally, a beta-reduction of the top-level term, now
the simplified beta-redex "(\x. x + 1) 2", produces "2 + 1".

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the failure string ‘QCONV‘ may be generated and
later trapped. The behaviour of the function is dependent on this use of failure. So, if
the conversion given as argument happens to generate a failure with string ‘QCONV‘, the
operation of REDEPTH_CONV will be unpredictable.

See also
DEPTH_CONV, ONCE_DEPTH_CONV, TOP_DEPTH_CONV.
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REFL

REFL : conv

Synopsis
Returns theorem expressing reflexivity of equality.

Description
REFL maps any term "t" to the corresponding theorem |- t = t.

Failure
Never fails.

See also
ALL_CONV, REFL_TAC.

REFL_TAC

REFL_TAC : tactic

Synopsis
Solves a goal which is an equation between alpha-equivalent terms.

Description
When applied to a goal A ?- t = t’, where t and t’ are alpha-equivalent, REFL_TAC

completely solves it.

A ?- t = t’
============= REFL_TAC

Failure
Fails unless the goal is an equation between alpha-equivalent terms.

See also
ACCEPT_TAC, MATCH_ACCEPT_TAC, REWRITE_TAC.



remove rules for term 351

remove_rules_for_term

Parse.remove_rules_for_term : string -> unit

Synopsis
Removes parsing/pretty-printing rules from the global grammar.

Description
Calling remove_rules_for_term s removes all those rules (if any) in the global grammar
that are for the term s. The string specifies the name of the term that the rule is for, not
a token that may happen to be used in concrete syntax for the term.

Failure
Never fails.

Example
The universal quantifier can have its special binder status removed using this function:

- val t = Term‘!x. P x /\ ~Q x‘;
<<HOL message: inventing new type variable names: ’a.>>
> val t = ‘!x. P x /\ ~Q x‘ : Term.term
- remove_rules_for_term "!";
> val it = () : unit
- t;
> val it = ‘! (\x. P x /\ ~Q x)‘ : Term.term

Similarly, one can remove the two rules for conditional expressions and see the raw
syntax as follows:

- val t = Term‘if p then q else r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val t = ‘if p then q else r‘ : Term.term
- remove_rules_for_term "COND";
> val it = () : unit
- t;
> val it = ‘COND p q r‘ : Term.term

Comments
There is a companion temp_remove_rules_for_term function, which has the same effect
on the global grammar, but which does not cause this effect to persist when the current
theory is exported.
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See also
remove_termtok

remove_termtok

Parse.remove_termtok : {term_name : string, tok : string} -> unit

Synopsis
Removes a rule from the global grammar.

Description
The remove_termtok removes parsing/printing rules from the global grammar. Rules to
be removed are those that are for the term with the given name (term_name) and which
include the string tok as part of their concrete representation. If multiple rules satisfy
this criterion, they are all removed. If none match, the grammar is not changed.

Failure
Never fails.

Example
If one wished to revert to the traditional HOL syntax for conditional expressions, this
would be achievable as follows:

- remove_termtok {term_name = "COND", tok = "if"};
> val it = () : unit
- Term‘if p then q else r‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d, ’e, ’f.>>
> val it = ‘if p then q else r‘ : Term.term
- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘COND p q r‘ : Term.term

The second invocation of the parser above demonstrates that once the rule for the
if-then-else syntax has been removed, a string that used to parse as a conditional
expression then parses as a big function application (the function if applied to five
arguments).

The fact that the pretty-printer does not print the term using the old-style syntax, even
after the if-then-else rule has been removed, is due to the fact that the corresponding
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rule in the grammar does not have its preferred flag set. This can be accomplished with
prefer_form_with_tok as follows:

- prefer_form_with_tok {term_name = "COND", tok = "=>"};
> val it = () : unit
- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘p => q | r‘ : Term.term

Uses
Used to modify the global parsing/pretty-printing grammar by removing a rule, possibly
as a prelude to adding another rule which would otherwise clash.

Comments
As with other functions in the Parse structure, there is a companion temp_remove_termtok

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

The specification of a rule by term_name and one of its tokens is not perfect, but seems
adequate in practice.

See also
remove_rules_for_term, prefer_form_with_tok

REPEAT

REPEAT : (tactic -> tactic)

Synopsis
Repeatedly applies a tactic until it fails.

Description
The tactic REPEAT T is a tactic which applies T to a goal, and while it succeeds, continues
applying it to all subgoals generated.

Failure
The application of REPEAT to a tactic never fails, and neither does the composite tactic,
even if the basic tactic fails immediately.

See also
EVERY, FIRST, ORELSE, THEN, THENL.
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REPEATC

REPEATC : (conv -> conv)

Synopsis
Repeatedly apply a conversion (zero or more times) until it fails.

Description
If c is a conversion effects a transformation of a term t to a term t’, that is if c maps
t to the theorem |- t = t‘, then REPEATC c is the conversion that repeats this transfor-
mation as often as possible. More exactly, if c maps the term "ti" to |- ti=t(i+1) for
i from 1 to n, but fails when applied to the n+1th term "t(n+1)", then REPEATC c "t1"

returns |- t1 = t(n+1). And if c "t" fails, them REPEATC c "t" returns |- t = t.

Failure
Never fails, but can diverge if the supplied conversion never fails.

REPEAT_GTCL

REPEAT_GTCL : (thm_tactical -> thm_tactical)

Synopsis
Applies a theorem-tactical until it fails when applied to a goal.

Description
When applied to a theorem-tactical, a theorem-tactic, a theorem and a goal:

REPEAT_GTCL ttl ttac th goal

REPEAT_GTCL repeatedly modifies the theorem according to ttl till the result of handing
it to ttac and applying it to the goal fails (this may be no times at all).

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem and the goal.
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Example
The following tactic matches th’s antecedents against the assumptions of the goal until
it can do so no longer, then puts the resolvents onto the assumption list:

REPEAT_GTCL (IMP_RES_THEN ASSUME_TAC) th

See also
REPEAT_TCL, THEN_TCL.

REPEAT_TCL

REPEAT_TCL : (thm_tactical -> thm_tactical)

Synopsis
Repeatedly applies a theorem-tactical until it fails when applied to the theorem.

Description
When applied to a theorem-tactical, a theorem-tactic and a theorem:

REPEAT_TCL ttl ttac th

REPEAT_TCL repeatedly modifies the theorem according to ttl until it fails when given
to the theorem-tactic ttac.

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem.

Example
It is often desirable to repeat the action of basic theorem-tactics. For example CHOOSE_THEN

strips off a single existential quantification, so one might use REPEAT_TCL CHOOSE_THEN

to get rid of them all.
Alternatively, one might want to repeatedly break apart a theorem which is a nested

conjunction and apply the same theorem-tactic to each conjunct. For example the fol-
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lowing goal:

?- ((0 = w) /\ (0 = x)) /\ (0 = y) /\ (0 = z) ==> (w + x + y + z = 0)

might be solved by

DISCH_THEN (REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
REWRITE_TAC[ADD_CLAUSES]

See also
REPEAT_GTCL, THEN_TCL.

RES_CANON

RES_CANON : (thm -> thm list)

Synopsis
Put an implication into canonical form for resolution.

Description
All the HOL resolution tactics (e.g. IMP_RES_TAC) work by using modus ponens to draw
consequences from an implicative theorem and the assumptions of the goal. Some
of these tactics derive this implication from a theorem supplied explicitly the user (or
otherwise from ‘outside’ the goal) and some obtain it from the assumptions of the goal
itself. But in either case, the supplied theorem or assumption is first transformed into a
list of implications in ‘canonical’ form by the function RES_CANON.

The theorem argument to RES_CANON should be either be an implication (which can
be universally quantified) or a theorem from which an implication can be derived using
the transformation rules discussed below. Given such a theorem, RES_CANON returns a
list of implications in canonical form. It is the implications in this resulting list that are
used by the various resolution tactics to infer consequences from the assumptions of a
goal.

The transformations done by RES_CANON th to the theorem th are as follows. First, if th
is a negation A |- ~t, this is converted to the implication A |- t ==> F. The following
inference rules are then applied repeatedly, until no further rule applies. Conjunctions
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are split into their components and equivalence (boolean equality) is split into implica-
tion in both directions:

A |- t1 /\ t2 A |- t1 = t2
-------------------- ----------------------------------
A |- t1 A |- t2 A |- t1 ==> t2 A |- t2 ==> t1

Conjunctive antecedents are transformed by:

A |- (t1 /\ t2) ==> t
---------------------------------------------------
A |- t1 ==> (t2 ==> t) A |- t2 ==> (t1 ==> t)

and disjunctive antecedents by:

A |- (t1 \/ t2) ==> t
--------------------------------
A |- t1 ==> t A |- t2 ==> t

The scope of universal quantifiers is restricted, if possible:

A |- !x. t1 ==> t2
-------------------- [if x is not free in t1]
A |- t1 ==> !x. t2

and existentially-quantified antecedents are eliminated by:

A |- (?x. t1) ==> t2
--------------------------- [x’ chosen so as not to be free in t2]
A |- !x’. t1[x’/x] ==> t2

Finally, when no further applications of the above rules are possible, and the theorem is
an implication:

A |- !x1...xn. t1 ==> t2

then the theorem A u {t1} |- t2 is transformed by a recursive application of RES_CANON
to get a list of theorems:

[A u {t1} |- t21 ; ... ; A u {t1} |- t2n]

and the result of discharging t1 from these theorems:

[A |- !x1...xn. t1 ==> t21 ; ... ; A |- !x1...xn. t1 ==> t2n]

is returned. That is, the transformation rules are recursively applied to the conclusions
of all implications.
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Failure
RES_CANON th fails if no implication(s) can be derived from th using the transformation
rules shown above.

Example
The uniqueness of the remainder k MOD n is expressed in HOL by the built-in theorem
MOD_UNIQUE:

|- !n k r. (?q. (k = (q * n) + r) /\ r < n) ==> (k MOD n = r)

For this theorem, the canonical list of implications returned by RES_CANON is as follows:

#RES_CANON MOD_UNIQUE;;
[|- !k q n r. (k = (q * n) + r) ==> r < n ==> (k MOD n = r);
|- !r n. r < n ==> (!k q. (k = (q * n) + r) ==> (k MOD n = r))]
: thm list

The existentially-quantified, conjunctive, antecedent has given rise to two implications,
and the scope of universal quantifiers has been restricted to the conclusions of the re-
sulting implications wherever possible.

Uses
The primary use of RES_CANON is for the (internal) pre-processing phase of the built-in
resolution tactics IMP_RES_TAC, IMP_RES_THEN, RES_TAC, and RES_THEN. But the function
RES_CANON is also made available at top-level so that users can call it to see the actual
form of the implications used for resolution in any particular case.

See also
IMP_RES_TAC, IMP_RES_THEN, RES_TAC, RES_THEN.

RES_TAC

RES_TAC : tactic

Synopsis
Enriches assumptions by repeatedly resolving them against each other.

Description
RES_TAC searches for pairs of assumed assumptions of a goal (that is, for a candidate im-
plication and a candidate antecedent, respectively) which can be ‘resolved’ to yield new
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results. The conclusions of all the new results are returned as additional assumptions
of the subgoal(s). The effect of RES_TAC on a goal is to enrich the assumptions set with
some of its collective consequences.

When applied to a goal A ?- g, the tactic RES_TAC uses RES_CANON to obtain a set of
implicative theorems in canonical form from the assumptions A of the goal. Each of the
resulting theorems (if there are any) will have the form:

A |- u1 ==> u2 ==> ... ==> un ==> v

RES_TAC then tries to repeatedly ‘resolve’ these theorems against the assumptions of
a goal by attempting to match the antecedents u1, u2, ..., un (in that order) to some
assumption of the goal (i.e. to some candidate antecedents among the assumptions). If
all the antecedents can be matched to assumptions of the goal, then an instance of the
theorem

A u {a1,...,an} |- v

called a ‘final resolvent’ is obtained by repeated specialization of the variables in the im-
plicative theorem, type instantiation, and applications of modus ponens. If only the first
i antecedents u1, ..., ui can be matched to assumptions and then no further matching is
possible, then the final resolvent is an instance of the theorem:

A u {a1,...,ai} |- u(i+1) ==> ... ==> v

All the final resolvents obtained in this way (there may be several, since an antecedent
ui may match several assumptions) are added to the assumptions of the goal, in the
stripped form produced by using STRIP_ASSUME_TAC. If the conclusion of any final re-
solvent is a contradiction ‘F’ or is alpha-equivalent to the conclusion of the goal, then
RES_TAC solves the goal.

Failure
RES_TAC cannot fail and so should not be unconditionally REPEATed. However, since
the final resolvents added to the original assumptions are never used as ‘candidate
antecedents’ it is sometimes necessary to apply RES_TAC more than once to derive the
desired result.

See also
IMP_RES_TAC, IMP_RES_THEN, RES_CANON, RES_THEN.

RES_THEN

RES_THEN : (thm_tactic -> tactic)
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Synopsis
Resolves all implicative assumptions against the rest.

Description
Like the basic resolution function IMP_RES_THEN, the resolution tactic RES_THEN performs
a single-step resolution of an implication and the assumptions of a goal. RES_THEN differs
from IMP_RES_THEN only in that the implications used for resolution are taken from the
assumptions of the goal itself, rather than supplied as an argument.

When applied to a goal A ?- g, the tactic RES_THEN ttac uses RES_CANON to obtain a
set of implicative theorems in canonical form from the assumptions A of the goal. Each
of the resulting theorems (if there are any) will have the form:

ai |- !x1...xn. ui ==> vi

where ai is one of the assumptions of the goal. Having obtained these implications,
RES_THEN then attempts to match each antecedent ui to each assumption aj |- aj in
the assumptions A. If the antecedent ui of any implication matches the conclusion aj of
any assumption, then an instance of the theorem ai, aj |- vi, called a ‘resolvent’, is
obtained by specialization of the variables x1, ..., xn and type instantiation, followed by
an application of modus ponens. There may be more than one canonical implication
derivable from the assumptions of the goal and each such implication is tried against
every assumption, so there may be several resolvents (or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified
sequence to the goal. That is,

RES_THEN ttac (A ?- g)

has the effect of:

MAP_EVERY (mapfilter ttac [... ; (ai,aj |- vi) ; ...]) (A ?- g)

where the theorems ai,aj |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the assumptions A and the implications
derived using RES_CANON from the assumptions. The sequence in which the theorems
ai,aj |- vi are generated and the corresponding tactics applied is unspecified.

Failure
Evaluating RES_THEN ttac th fails with ‘no implication’ if no implication(s) can be de-
rived from the assumptions of the goal by the transformation process described under
the entry for RES_CANON. Evaluating RES_THEN ttac (A ?- g) fails with ‘no resolvents’ if
no assumption of the goal A ?- g can be resolved with the derived implication or im-
plications. Evaluation also fails, with ‘no tactics’, if there are resolvents, but for every
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resolvent ai,aj |- vi evaluating the application ttac (ai,aj |- vi) fails—that is, if
for every resolvent ttac fails to produce a tactic. Finally, failure is propagated if any of
the tactics that are produced from the resolvents by ttac fails when applied in sequence
to the goal.

See also
IMP_RES_TAC, IMP_RES_THEN, MATCH_MP, RES_CANON, RES_TAC.

reveal

Parse.reveal : string -> unit

Synopsis
Restores recognition of a constant by the quotation parser.

Description
A call reveal "c", where c is a (perhaps) hidden constant, will unhide the constant,
that is, will make the quotation parser recognize it as such rather than treating it as a
variable. It reverses the effect of the call Parse.hide "c".

Failure
Never fails.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there

in a theory.

See also
Parse.hide, Parse.hidden.

rev_assoc

Compat.rev_assoc : ’’a -> (’b * ’’a) list -> (’b * ’’a)

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.
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Description
Found in the hol88 library. rev_assoc y [(x1,y1),...,(xn,yn)] returns the first (xi,yi)
in the list such that yi equals y. The lookup is done on an eqtype, i.e., the SML imple-
mentation must be able to decide equality for the type of y.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty. The
function will not be available if the hol88 library has not been loaded.

Example

- rev_assoc 2 [(1,4),(3,2),(2,5),(2,6)];
(3, 2) : (int * int)

Comments
Not found in hol90, since we use an option type instead of exceptions.

assoc1; val it = fn : ”a -¿ (”a * ’b) list -¿ (”a * ’b) option - assoc2; val it = fn : ”a -¿ (’b
* ”a) list -¿ (’b * ”a) option

See also
assoc, find, mem, tryfind, exists, forall.

rev_itlist

rev_itlist : ((* -> ** -> **) -> * list -> ** -> **)

Synopsis
Applies a binary function between adjacent elements of the reverse of a list.

Description
rev_itlist f [x1;...;xn] y returns f xn ( ... (f x2 (f x1 y))...). It returns y if
the list is empty.

Failure
Never fails.

Example

#rev_itlist (\x y. x * y) [1;2;3;4] 1;;
24 : int

See also
itlist, end_itlist.
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rewrites

simpLib.rewrites : thm list -> ssdata

Synopsis
Creates an ssdata value consisting of the given theorems as rewrites.

Failure
Never fails.

Example
Instead of writing the simpler SIMP_CONV hol_ss thmlist, one could write

SIMP_CONV (hol_ss ++ rewrites thmlist) []

More plausibly, rewrites can be used to create commonly used ssdata values containing
a great number of rewrites. This is how the basic system’s various ssdata values are
constructed where those values consist only of rewrite theorems.

See also
++, mk_simpset, SIMPSET, SIMP_CONV.

REWRITE_CONV

REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term including built-in tautologies in the list of rewrites.

Description
Rewriting a term using REWRITE_CONV utilizes as rewrites two sets of theorems: the tau-
tologies in the ML list basic_rewrites and the ones supplied by the user. The rule
searches top-down and recursively for subterms which match the left-hand side of any
of the possible rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.

Variants of this conversion allow changes in the set of equations used: PURE_REWRITE_CONV
and others in its family do not rewrite with the theorems in basic_rewrites.
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The top-down recursive search for matches may not be desirable, as this may increase
the number of inferences being made or may result in divergence. In this case other
rewriting tools such as ONCE_REWRITE_CONV and GEN_REWRITE_CONV can be used, or the set
of theorems given may be reduced.

See GEN_REWRITE_CONV for the general strategy for simplifying theorems in HOL using
equational theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate terms by rewriting them with theorems. While resulting in high
degree of automation, REWRITE_CONV can spawn a large number of inference steps. Thus,
variants such as PURE_REWRITE_CONV, or other rules such as SUBST_CONV, may be used
instead to improve efficiency.

See also
basic_rewrites, GEN_REWRITE_CONV, ONCE_REWRITE_CONV, PURE_REWRITE_CONV,
REWR_CONV, SUBST_CONV.

REWRITE_RULE

REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem including built-in tautologies in the list of rewrites.

Description
Rewriting a theorem using REWRITE_RULE utilizes as rewrites two sets of theorems: the
tautologies in the ML list basic_rewrites and the ones supplied by the user. The rule
searches top-down and recursively for subterms which match the left-hand side of any
of the possible rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.

Variants of this rule allow changes in the set of equations used: PURE_REWRITE_RULE

and others in its family do not rewrite with the theorems in basic_rewrites. Rules such
as ASM_REWRITE_RULE add the assumptions of the object theorem (or a specified subset
of these assumptions) to the set of possible rewrites.

The top-down recursive search for matches may not be desirable, as this may increase
the number of inferences being made or may result in divergence. In this case other
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rewriting tools such as ONCE_REWRITE_RULE and GEN_REWRITE_RULE can be used, or the set
of theorems given may be reduced.

See GEN_REWRITE_RULE for the general strategy for simplifying theorems in HOL using
equational theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate theorems by rewriting them with other theorems. While resulting in
high degree of automation, REWRITE_RULE can spawn a large number of inference steps.
Thus, variants such as PURE_REWRITE_RULE, or other rules such as SUBST, may be used
instead to improve efficiency.

See also
ASM_REWRITE_RULE, basic_rewrites, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWR_CONV, REWRITE_CONV, SUBST.

REWRITE_TAC

REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including built-in tautologies in the list of rewrites.

Description
Rewriting tactics in HOL provide a recursive left-to-right matching and rewriting facil-
ity that automatically decomposes subgoals and justifies segments of proof in which
equational theorems are used, singly or collectively. These include the unfolding of def-
initions, and the substitution of equals for equals. Rewriting is used either to advance
or to complete the decomposition of subgoals.
REWRITE_TAC transforms (or solves) a goal by using as rewrite rules (i.e. as left-to-right

replacement rules) the conclusions of the given list of (equational) theorems, as well as
a set of built-in theorems (common tautologies) held in the ML variable basic_rewrites.
Recognition of a tautology often terminates the subgoaling process (i.e. solves the goal).

The equational rewrites generated are applied recursively and to arbitrary depth, with
matching and instantiation of variables and type variables. A list of rewrites can set off
an infinite rewriting process, and it is not, of course, decidable in general whether a
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rewrite set has that property. The order in which the rewrite theorems are applied is
unspecified, and the user should not depend on any ordering.

See GEN_REWRITE_TAC for more details on the rewriting process. Variants of REWRITE_TAC
allow the use of a different set of rewrites. Some of them, such as PURE_REWRITE_TAC,
exclude the basic tautologies from the possible transformations. ASM_REWRITE_TAC and
others include the assumptions at the goal in the set of possible rewrites.

Still other tactics allow greater control over the search for rewritable subterms. Sev-
eral of them such as ONCE_REWRITE_TAC do not apply rewrites recursively. GEN_REWRITE_TAC
allows a rewrite to be applied at a particular subterm.

Failure
REWRITE_TAC does not fail. Certain sets of rewriting theorems on certain goals may cause
a non-terminating sequence of rewrites. Divergent rewriting behaviour results from a
term t being immediately or eventually rewritten to a term containing t as a sub-term.
The exact behaviour depends on the HOL implementation.

Example
The arithmetic theorem GREATER_DEF, |- !m n. m > n = n < m, is used below to advance
a goal:

- REWRITE_TAC [GREATER_DEF] ([],‘‘5 > 4‘‘);
> ([([], ‘‘4 < 5‘‘)], -) : subgoals

It is used below with the theorem LESS_0, |- !n. 0 < (SUC n), to solve a goal:

- val (gl,p) =
REWRITE_TAC [GREATER_DEF, LESS_0] ([],‘‘(SUC n) > 0‘‘);

> val gl = [] : goal list
> val p = fn : proof

- p[];
> val it = |- (SUC n) > 0 : thm

Uses
Rewriting is a powerful and general mechanism in HOL, and an important part of many
proofs. It relieves the user of the burden of directing and justifying a large number of
minor proof steps. REWRITE_TAC fits a forward proof sequence smoothly into the general
goal-oriented framework. That is, (within one subgoaling step) it produces and justifies
certain forward inferences, none of which are necessarily on a direct path to the desired
goal.
REWRITE_TAC may be more powerful a tactic than is needed in certain situations; if ef-

ficiency is at stake, alternatives might be considered. On the other hand, if more power
is required, the simplification functions (SIMP_TAC and others) may be appropriate.
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See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC,
PURE_REWRITE_TAC, REWR_CONV, REWRITE_CONV, SIMP_TAC, SUBST_TAC.

REWR_CONV

REWR_CONV : (thm -> conv)

Synopsis
Uses an instance of a given equation to rewrite a term.

Description
REWR_CONV is one of the basic building blocks for the implementation of rewriting in the
HOL system. In particular, the term replacement or rewriting done by all the built-in
rewriting rules and tactics is ultimately done by applications of REWR_CONV to appropri-
ate subterms. The description given here for REWR_CONV may therefore be taken as a
specification of the atomic action of replacing equals by equals that is used in all these
higher level rewriting tools.

The first argument to REWR_CONV is expected to be an equational theorem which is to
be used as a left-to-right rewrite rule. The general form of this theorem is:

A |- t[x1,...,xn] = u[x1,...,xn]

where x1, ..., xn are all the variables that occur free in the left-hand side of the conclu-
sion of the theorem but do not occur free in the assumptions. Any of these variables
may also be universally quantified at the outermost level of the equation, as for example
in:

A |- !x1...xn. t[x1,...,xn] = u[x1,...,xn]

Note that REWR_CONV will also work, but will give a generally undesirable result (see
below), if the right-hand side of the equation contains free variables that do not also
occur free on the left-hand side, as for example in:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in t[x1,...,xn].
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If th is an equational theorem of the kind shown above, then REWR_CONV th returns a
conversion that maps terms of the form t[e1,...,en/x1,...,xn], in which the terms e1,
..., en are free for x1, ..., xn in t, to theorems of the form:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en/x1,...,xn]

That is, REWR_CONV th tm attempts to match the left-hand side of the rewrite rule th

to the term tm. If such a match is possible, then REWR_CONV returns the corresponding
substitution instance of th.

If REWR_CONV is given a theorem th:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in the left-hand side, then the result of
applying the conversion REWR_CONV th to a term t[e1,...,en/x1,...,xn] will be:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en,v1,...,vm/x1,...,xn,y1,...,ym]

where v1, ..., vm are variables chosen so as to be free nowhere in th or in the input term.
The user has no control over the choice of the variables v1, ..., vm, and the variables
actually chosen may well be inconvenient for other purposes. This situation is, however,
relatively rare; in most equations the free variables on the right-hand side are a subset
of the free variables on the left-hand side.

In addition to doing substitution for free variables in the supplied equational theorem
(or ‘rewrite rule’), REWR_CONV th tm also does type instantiation, if this is necessary in
order to match the left-hand side of the given rewrite rule th to the term argument tm.
If, for example, th is the theorem:

A |- t[x1,...,xn] = u[x1,...,xn]

and the input term tm is (a substitution instance of) an instance of t[x1,...,xn] in
which the types ty1, ..., tyi are substituted for the type variables vty1, ..., vtyi, that is
if:

tm = t[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

then REWR_CONV th tm returns:

A |- (t = u)[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

Note that, in this case, the type variables vty1, ..., vtyi must not occur anywhere in the
hypotheses A. Otherwise, the conversion will fail.
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Failure
REWR_CONV th fails if th is not an equation or an equation universally quantified at the
outermost level. If th is such an equation:

th = A |- !v1....vi. t[x1,...,xn] = u[x1,...,xn,y1,...,yn]

then REWR_CONV th tm fails unless the term tm is alpha-equivalent to an instance of the
left-hand side t[x1,...,xn] which can be obtained by instantiation of free type variables
(i.e. type variables not occurring in the assumptions A) and substitution for the free
variables x1, ..., xn.

Example
The following example illustrates a straightforward use of REWR_CONV. The supplied
rewrite rule is polymorphic, and both substitution for free variables and type instan-
tiation may take place. EQ_SYM_EQ is the theorem:

|- !x:*. !y. (x = y) = (y = x)

and REWR_CONV EQ_SYM behaves as follows:

#REWR_CONV EQ_SYM_EQ "1 = 2";;
|- (1 = 2) = (2 = 1)

#REWR_CONV EQ_SYM_EQ "1 < 2";;
evaluation failed REWR_CONV: lhs of theorem doesn’t match term

The second application fails because the left-hand side "x = y" of the rewrite rule does
not match the term to be rewritten, namely "1 < 2".

In the following example, one might expect the result to be the theorem A |- f 2 = 2,
where A is the assumption of the supplied rewrite rule:

#REWR_CONV (ASSUME "!x:*. f x = x") "f 2:num";;
evaluation failed REWR_CONV: lhs of theorem doesn’t match term

The application fails, however, because the type variable * appears in the assumption of
the theorem returned by ASSUME "!x:*. f x = x".

Failure will also occur in situations like:

#REWR_CONV (ASSUME "f (n:num) = n") "f 2:num";;
evaluation failed REWR_CONV: lhs of theorem doesn’t match term

where the left-hand side of the supplied equation contains a free variable (in this case n)
which is also free in the assumptions, but which must be instantiated in order to match
the input term.
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See also
REWRITE_CONV.

rhs

rhs : (term -> term)

Synopsis
Returns the right-hand side of an equation.

Description
rhs "t1 = t2" returns "t2".

Failure
Fails with rhs if term is not an equality.

See also
lhs, dest_eq.

RIGHT_AND_EXISTS_CONV

RIGHT_AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the right conjunct outwards through a conjunc-
tion.

Description
When applied to a term of the form P /\ (?x.Q), the conversion RIGHT_AND_EXISTS_CONV

returns the theorem:

|- P /\ (?x.Q) = (?x’. P /\ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P /\ (?x.Q).
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See also
AND_EXISTS_CONV, EXISTS_AND_CONV, LEFT_AND_EXISTS_CONV.

RIGHT_AND_FORALL_CONV

RIGHT_AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the right conjunct outwards through a conjunction.

Description
When applied to a term of the form P /\ (!x.Q), the conversion RIGHT_AND_FORALL_CONV

returns the theorem:

|- P /\ (!x.Q) = (!x’. P /\ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P /\ (!x.Q).

See also
AND_FORALL_CONV, FORALL_AND_CONV, LEFT_AND_FORALL_CONV.

RIGHT_BETA

RIGHT_BETA : (thm -> thm)

Synopsis
Beta-reduces a top-level beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_BETA applies beta-reduction at top level
to the right-hand side (only). Variables are renamed if necessary to avoid free variable
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capture.

A |- s = (\x. t1) t2
---------------------- RIGHT_BETA
A |- s = t1[t2/x]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level beta-
redex.

See also
BETA_CONV, BETA_RULE, BETA_TAC, RIGHT_LIST_BETA.

RIGHT_CONV_RULE

RIGHT_CONV_RULE : (conv -> thm -> thm)

Synopsis
Applies a conversion to the right-hand side of an equational theorem.

Description
If c is a conversion that maps a term "t2" to the theorem |- t2 = t2’, then the rule
RIGHT_CONV_RULE c infers |- t1 = t2’ from the theorem |- t1 = t2. That is, if c "t2"

returns A’ |- t2 = t2’, then:

A |- t1 = t2
--------------------- RIGHT_CONV_RULE c
A u A’ |- t1 = t2’

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure
RIGHT_CONV_RULE c th fails if the conclusion of the theorem th is not an equation, or if
th is an equation but c fails when applied its right-hand side. The function returned
by RIGHT_CONV_RULE c will also fail if the ML function c:term->thm is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
CONV_RULE.
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RIGHT_IMP_EXISTS_CONV

RIGHT_IMP_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the consequent outwards through an implication.

Description
When applied to a term of the form P ==> (?x.Q), the conversion RIGHT_IMP_EXISTS_CONV

returns the theorem:

|- P ==> (?x.Q) = (?x’. P ==> (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P ==> (?x.Q).

See also
EXISTS_IMP_CONV, LEFT_IMP_FORALL_CONV.

RIGHT_IMP_FORALL_CONV

RIGHT_IMP_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the consequent outwards through an implication.

Description
When applied to a term of the form P ==> (!x.Q), the conversion RIGHT_IMP_FORALL_CONV

returns the theorem:

|- P ==> (!x.Q) = (!x’. P ==> (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P ==> (!x.Q).
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See also
FORALL_IMP_CONV, LEFT_IMP_EXISTS_CONV.

RIGHT_LIST_BETA

RIGHT_LIST_BETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_LIST_BETA applies beta-reduction over a
top-level chain of beta-redexes to the right hand side (only). Variables are renamed if
necessary to avoid free variable capture.

A |- s = (\x1...xn. t) t1 ... tn
---------------------------------- RIGHT_LIST_BETA

A |- s = t[t1/x1]...[tn/xn]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level beta-
redex.

See also
BETA_CONV, BETA_RULE, BETA_TAC, LIST_BETA_CONV, RIGHT_BETA.

RIGHT_OR_EXISTS_CONV

RIGHT_OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the right disjunct outwards through a disjunction.

Description
When applied to a term of the form P \/ (?x.Q), the conversion RIGHT_OR_EXISTS_CONV

returns the theorem:

|- P \/ (?x.Q) = (?x’. P \/ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.
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Failure
Fails if applied to a term not of the form P \/ (?x.Q).

See also
OR_EXISTS_CONV, EXISTS_OR_CONV, LEFT_OR_EXISTS_CONV.

RIGHT_OR_FORALL_CONV

RIGHT_OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the right disjunct outwards through a disjunction.

Description
When applied to a term of the form P \/ (!x.Q), the conversion RIGHT_OR_FORALL_CONV

returns the theorem:

|- P \/ (!x.Q) = (!x’. P \/ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P \/ (!x.Q).

See also
OR_FORALL_CONV, FORALL_OR_CONV, LEFT_OR_FORALL_CONV.

Rsyntax

Rsyntax

Synopsis
A structure that restores a record-style environment for term manipulation.

Description
If one has opened the Psyntax structure, one can open the Rsyntax structure to get
record-style functions back.
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Each function in the Rsyntax structure has a corresponding function in the Psyntax
structure, and vice versa. One can flip-flop between the two structures by opening one
and then the other. One can also use long identifiers in order to use both syntaxes at
once.

Failure

Never fails.

Example

The following shows how to open the Rsyntax structure and the functions that sub-
sequently become available in the top level environment. Documentation for each of
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these functions is available online.

- open Rsyntax;
open Rsyntax
val INST = fn : term subst -> thm -> thm
val INST_TYPE = fn : hol_type subst -> thm -> thm
val INST_TY_TERM = fn : term subst * hol_type subst -> thm -> thm
val SUBST = fn : {thm:thm, var:term} list -> term -> thm -> thm
val SUBST_CONV = fn : {thm:thm, var:term} list -> term -> term -> thm
val define_new_type_bijections = fn

: {ABS:string, REP:string, name:string, tyax:thm} -> thm
val dest_abs = fn : term -> {Body:term, Bvar:term}
val dest_comb = fn : term -> {Rand:term, Rator:term}
val dest_cond = fn : term -> {cond:term, larm:term, rarm:term}
val dest_conj = fn : term -> {conj1:term, conj2:term}
val dest_cons = fn : term -> {hd:term, tl:term}
val dest_const = fn : term -> {Name:string, Ty:hol_type}
val dest_disj = fn : term -> {disj1:term, disj2:term}
val dest_eq = fn : term -> {lhs:term, rhs:term}
val dest_exists = fn : term -> {Body:term, Bvar:term}
val dest_forall = fn : term -> {Body:term, Bvar:term}
val dest_imp = fn : term -> {ant:term, conseq:term}
val dest_let = fn : term -> {arg:term, func:term}
val dest_list = fn : term -> {els:term list, ty:hol_type}
val dest_pabs = fn : term -> {body:term, varstruct:term}
val dest_pair = fn : term -> {fst:term, snd:term}
val dest_select = fn : term -> {Body:term, Bvar:term}
val dest_type = fn : hol_type -> {Args:hol_type list, Tyop:string}
val dest_var = fn : term -> {Name:string, Ty:hol_type}
val inst = fn : hol_type subst -> term -> term
val match_term = fn : term -> term -> term subst * hol_type subst
val match_type = fn : hol_type -> hol_type -> hol_type subst
val mk_abs = fn : {Body:term, Bvar:term} -> term
val mk_comb = fn : {Rand:term, Rator:term} -> term
val mk_cond = fn : {cond:term, larm:term, rarm:term} -> term
val mk_conj = fn : {conj1:term, conj2:term} -> term
val mk_cons = fn : {hd:term, tl:term} -> term
val mk_const = fn : {Name:string, Ty:hol_type} -> term
val mk_disj = fn : {disj1:term, disj2:term} -> term
val mk_eq = fn : {lhs:term, rhs:term} -> term
val mk_exists = fn : {Body:term, Bvar:term} -> term
val mk_forall = fn : {Body:term, Bvar:term} -> term
val mk_imp = fn : {ant:term, conseq:term} -> term
val mk_let = fn : {arg:term, func:term} -> term
val mk_list = fn : {els:term list, ty:hol_type} -> term
val mk_pabs = fn : {body:term, varstruct:term} -> term
val mk_pair = fn : {fst:term, snd:term} -> term
val mk_primed_var = fn : {Name:string, Ty:hol_type} -> term
val mk_select = fn : {Body:term, Bvar:term} -> term
val mk_type = fn : {Args:hol_type list, Tyop:string} -> hol_type
val mk_var = fn : {Name:string, Ty:hol_type} -> term
val new_binder = fn : {Name:string, Ty:hol_type} -> unit
val new_constant = fn : {Name:string, Ty:hol_type} -> unit
val new_infix = fn : {Name:string, Prec:int, Ty:hol_type} -> unit
val new_recursive_definition = fn

: {def:term, fixity:fixity, name:string, rec_axiom:thm} -> thm
val new_specification = fn

: {consts:{const_name:string, fixity:fixity} list,
name:string, sat_thm:thm}
-> thm

val new_type = fn : {Arity:int, Name:string} -> unit
val new_type_definition = fn

: {inhab_thm:thm, name:string, pred:term} -> thm
val subst = fn : term subst -> term -> term
val subst_occs = fn : int list list -> term subst -> term -> term
val type_subst = fn : hol_type subst -> hol_type -> hol_type

See also
Psyntax.
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RULE_ASSUM_TAC

RULE_ASSUM_TAC : ((thm -> thm) -> tactic)

Synopsis
Maps an inference rule over the assumptions of a goal.

Description
When applied to an inference rule f and a goal ({A1;...;An} ?- t), the RULE_ASSUM_TAC

tactical applies the inference rule to each of the ASSUMEd assumptions to give a new goal.

{A1,...,An} ?- t
==================================== RULE_ASSUM_TAC f
{f(A1 |- A1),...,f(An |- An)} ?- t

Failure
The application of RULE_ASSUM_TAC f to a goal fails iff f fails when applied to any of the
assumptions of the goal.

Comments
It does not matter if the goal has no assumptions, but in this case RULE_ASSUM_TAC has
no effect.

See also
ASSUM_LIST, MAP_EVERY, MAP_FIRST, POP_ASSUM_LIST.

S

S : ((* -> ** -> ***) -> (* -> **) -> * -> ***)

Synopsis
Performs function composition: S f g x = f x (g x) (the S combinator).

Failure
Never fails.

See also
#, B, C, CB, Co, I, K, KI, o, oo, W.
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save_thm

save_thm : ((string # thm) -> thm)

Synopsis
Stores a theorem in the current theory segment.

Description
The call save_thm(‘name‘, th) adds the theorem th to the current theory segment under
the name name. The theorem is returned as a value. The call can be made in both proof
and draft mode. The name name must be a distinct name within the theory segment,
but may be the same as for items within other theory segments of the theory. If the
current theory segment is named thy, the theorem will be written to the file thy.th in
the directory from which HOL was called. If the system is in draft mode, other changes
made to the current theory segment during the session will also be written to the theory
file. If the theory file does not exist, it will be created.

Failure
A call to save_thm will fail if the name given is the same as the name of an existing fact
in the current theory segment. Saving the theorem involves writing to the file system.
If the write fails for any reason save_thm will fail. For example, on start up the initial
theory is HOL. The associated theory files are read-only so an attempt to save a theorem
in that theory segment will fail.

Uses
Adding theorems to the current theory. Saving theorems for retrieval in later sessions.
The theorem may be retrieved using the function theorem. Binding the result of save_thm
to an ML variable makes it easy to access the theorem in the current terminal session.

See also
new_theory, prove_thm, save_top_thm, theorem.

SELECT_CONV

SELECT_CONV : conv
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Synopsis
Eliminates an epsilon term by introducing an existential quantifier.

Description
The conversion SELECT_CONV expects a boolean term of the form "P[@x.P[x]/x]", which
asserts that the epsilon term @x.P[x] denotes a value, x say, for which P[x] holds. This
assertion is equivalent to saying that there exists such a value, and SELECT_CONV applied
to a term of this form returns the theorem |- P[@x.P[x]/x] = ?x. P[x].

Failure
Fails if applied to a term that is not of the form "P[@x.P[x]/x]".

Example

#SELECT_CONV "(@n. n < m) < m";;
|- (@n. n < m) < m = (?n. n < m)

Uses
Particularly useful in conjunction with CONV_TAC for proving properties of values denoted
by epsilon terms. For example, suppose that one wishes to prove the goal

["0 < m"], "(@n. n < m) < SUC m"

Using the built-in arithmetic theorem

LESS_SUC |- !m n. m < n ==> m < (SUC n)

this goal may be reduced by the tactic MATCH_MP_TAC LESS_SUC to the subgoal

["0 < m"], "(@n. n < m) < m"

This is now in the correct form for using CONV_TAC SELECT_CONV to eliminate the epsilon
term, resulting in the existentially quantified goal

["0 < m"], "?n. n < m"

which is then straightforward to prove.

See also
SELECT_ELIM, SELECT_INTRO, SELECT_RULE.

SELECT_ELIM

SELECT_ELIM : (thm -> (term # thm) -> thm)
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Synopsis
Eliminates an epsilon term, using deduction from a particular instance.

Description
SELECT_ELIM expects two arguments, a theorem th1, and a pair (v,th2):(term # thm).
The conclusion of th1 must have the form P($@ P), which asserts that the epsilon term
$@ P denotes some value at which P holds. The variable v appears only in the assumption
P v of the theorem th2. The conclusion of the resulting theorem matches that of th2,
and the hypotheses include the union of all hypotheses of the premises excepting P v.

A1 |- P($@ P) A2 u {P v} |- t
----------------------------------- SELECT_ELIM th1 (v,th2)

A1 u A2 |- t

where v is not free in A2. If v appears in the conclusion of th2, the epsilon term will
NOT be eliminated, and the conclusion will be t[$@ P/v].

Failure
Fails if the first theorem is not of the form A1 |- P($@ P), or if the variable v occurs free
in any other assumption of th2.

Example
If a property of functions is defined by:

INCR = |- !f. INCR f = (!t1 t2. t1 < t2 ==> (f t1) < (f t2))

The following theorem can be proved.

th1 = |- INCR(@f. INCR f)

Additionally, if such a function is assumed to exist, then one can prove that there also
exists a function which is injective (one-to-one) but not surjective (onto).

th2 = [ INCR g ] |- ?h. ONE_ONE h /\ ~ONTO h

These two results may be combined using SELECT_ELIM to give a new theorem:

#SELECT_ELIM th1 ("g:num->num", th2);;
|- ?h. ONE_ONE h /\ ~ONTO h

Uses
This rule is rarely used. The equivalence of P($@ P) and $? P makes this rule funda-
mentally similar to the ?-elimination rule CHOOSE.
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See also
CHOOSE, SELECT_AX, SELECT_CONV, SELECT_INTRO, SELECT_RULE.

SELECT_EQ

SELECT_EQ : (term -> thm -> thm)

Synopsis
Applies epsilon abstraction to both terms of an equation.

Description
Effects the extensionality of the epsilon operator @.

A |- t1 = t2
------------------------ SELECT_EQ "x" [where x is not free in A]
A |- (@x.t1) = (@x.t2)

Failure
Fails if the conclusion of the theorem is not an equation, or if the variable x is free in A.

Example
Given a theorem which shows the equivalence of two distinct forms of defining the
property of being an even number:

th = |- (x MOD 2 = 0) = (?y. x = 2 * y)

A theorem giving the equivalence of the epsilon abstraction of each form is obtained:

#SELECT_EQ "x:num" th;;
|- (@x. x MOD 2 = 0) = (@x. ?y. x = 2 * y)

See also
ABS, AP_TERM, EXISTS_EQ, FORALL_EQ, SELECT_AX, SELECT_CONV, SELECT_ELIM,
SELECT_INTRO.

SELECT_INTRO

SELECT_INTRO : (thm -> thm)
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Synopsis
Introduces an epsilon term.

Description
SELECT_INTRO takes a theorem with an applicative conclusion, say P x, and returns a
theorem with the epsilon term $@ P in place of the original operand x.

A |- P x
-------------- SELECT_INTRO
A |- P($@ P)

The returned theorem asserts that $@ P denotes some value at which P holds.

Failure
Fails if the conclusion of the theorem is not an application.

Example
Given the theorem

th1 = |- (\n. m = n)m

applying SELECT_INTRO replaces the second occurrence of m with the epsilon abstraction
of the operator:

#let th2 = SELECT_INTRO th1;;
th2 = |- (\n. m = n)(@n. m = n)

This theorem could now be used to derive a further result:

#EQ_MP(BETA_CONV(concl th2))th2;;
|- m = (@n. m = n)

See also
EXISTS, SELECT_AX, SELECT_CONV, SELECT_ELIM, SELECT_RULE.

SELECT_RULE

SELECT_RULE : (thm -> thm)

Synopsis
Introduces an epsilon term in place of an existential quantifier.
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Description
The inference rule SELECT_RULE expects a theorem asserting the existence of a value x

such that P holds. The equivalent assertion that the epsilon term @x.P denotes a value
of x for which P holds is returned as a theorem.

A |- ?x. P
------------------ SELECT_RULE
A |- P[(@x.P)/x]

Failure
Fails if applied to a theorem the conclusion of which is not existentially quantified.

Example
The axiom INFINITY_AX in the theory ind is of the form:

|- ?f. ONE_ONE f /\ ~ONTO f

Applying SELECT_RULE to this theorem returns the following.

#SELECT_RULE INFINITY_AX;;
|- ONE_ONE(@f. ONE_ONE f /\ ~ONTO f) /\ ~ONTO(@f. ONE_ONE f /\ ~ONTO f)

Uses
May be used to introduce an epsilon term to permit rewriting with a constant defined
using the epsilon operator.

See also
CHOOSE, SELECT_AX, SELECT_CONV, SELECT_ELIM, SELECT_INTRO.

setify

Compat.setify : ’’a list -> ’’a list

Synopsis
setify makes a set out of an ”eqtype” list.

Description
Found in the hol88 library. setify l removes repeated elements from l, leaving the last
occurrence of each duplicate in the list.
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Failure
Never fails. The function is not available unless the hol88 library has been loaded.

Example

- setify [1,2,3,1,4,3];
[2,1,4,3] : int list

Comments
Perhaps the first occurrence of each duplicate should be left in the list, not the last?
However, other functions may rely on the ordering currently used. Included in Compat

because setify is not found in hol90 (mk_set is used instead.)

See also
distinct.

set_backup

goalstackLib.set_backup : int -> unit

Synopsis
Limits the number of proof states saved on the subgoal package backup list.

Description
The assignable variable set_backup is initially set to 12. Its value is one less than the
maximum number of proof states that may be saved on the backup list. Adding a new
proof state (by, for example, a call to expand) after the maximum is reached causes the
earliest proof state on the list to be discarded. For a description of the subgoal package,
see set_goal.
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Example

#set_backup 0;
() unit

#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

#e CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"

"HD[1;2;3] = 1"

() : void

#e (REWRITE_TAC[HD]);;
OK..
goal proved
|- HD[1;2;3] = 1

Previous subproof:
"TL[1;2;3] = [2;3]"

() : void

#b();;
2 subgoals
"TL[1;2;3] = [2;3]"

"HD[1;2;3] = 1"

() : void

#b();;
evaluation failed backup: backup list is empty

See also
b, backup, e, expand, expandf, g, get_state, p, print_state, r, rotate,
save_top_thm, set_goal, set_state, top_goal, top_thm.
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set_fixity

Parse.set_fixity : string -> fixity -> unit

Synopsis

Allows the fixity of tokens to be updated.

Description

The set_fixity function is used to change the fixity of single tokens. It implements this
functionality rather crudely. When called on to set the fixity of t to f, it removes all
rules mentioning t from the global (term) grammar, and then adds a new rule to the
grammar. The new rule maps occurrences of t with the given fixity to terms of the same
name.

Failure

This function fails if the new fixity causes a clash with existing rules, as happens if
the precedence level of the specified fixity is already taken by rules using a fixity of
a different type. Even though the application of set_fixity may succeed, it may also
cause the first subsequent application of the Term parsing function to fail. This latter
will happen if the new rule causes a conflict in the precedence matrix.
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Example
After a new constant is defined, set_fixity can be used to give them appropriate fixities:

- val thm = Psyntax.new_recursive_definition
prim_recTheory.num_Axiom "f"
(Term‘(f 0 n = n) /\ (f (SUC n) m = SUC (SUC (f n m)))‘);

> val thm =
|- (!n. f 0 n = n) /\ !n m. f (SUC n) m = SUC (SUC (f n m))
: Thm.thm

- set_fixity "f" (Infixl 500);
> val it = () : unit
- thm;
> val it =

|- (!n. 0 f n = n) /\ !n m. SUC n f m = SUC (SUC (n f m)) : Thm.thm

The same function can be used to alter the fixities of existing constants:

- val t = Term‘2 + 3 + 4 - 6‘;
> val t = ‘2 + 3 + 4 - 6‘ : Term.term
- set_fixity "+" (Infixr 501);
> val it = () : unit
- t;
> val it = ‘(2 + 3) + 4 - 6‘ : Term.term
- dest_comb (Term‘3 - 1 + 2‘);
> val it = (‘$- 3‘, ‘1 + 2‘) : Term.term * Term.term

Comments
This function is of no use if multiple-token rules (such as those for conditional expres-
sions) are desired, or if the token does not correspond to the name of the constant or
variable that is to be produced.

As with other functions in the Parse structure, there is a companion temp_set_fixity

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

See also
add_rule, add_infix, remove_rules_for_term, remove_termtok

set_goal

set_goal : (goal -> void)
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Synopsis
Initializes the subgoal package with a new goal.

Description
The function set_goal initializes the subgoal management package. A proof state of the
package consists of either a goal stack and a justification stack if a proof is in progress, or
a theorem if a proof has just been completed. set_goal sets a new proof state consisting
of an empty justification stack and a goal stack with the given goal as its sole goal. The
goal is printed.

Failure
Fails unless all terms in the goal are of type bool.

Example

#set_goal([], "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])");;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

Uses
Starting an interactive proof session with the subgoal package.

The subgoal package implements a simple framework for interactive goal-directed
proof. When conducting a proof that involves many subgoals and tactics, the user must
keep track of all the justifications and compose them in the correct order. While this
is feasible even in large proofs, it is tedious. The subgoal package provides a way of
building and traversing the tree of subgoals top-down, stacking the justifications and
applying them properly.

The package maintains a proof state consisting of either a goal stack of outstanding
goals and a justification stack, or a theorem. Tactics are used to expand the current
goal (the one on the top of the goal stack) into subgoals and justifications. These are
pushed onto the goal stack and justification stack, respectively, to form a new proof
state. Several preceding proof states are saved and can be returned to if a mistake is
made in the proof. The goal stack is divided into levels, a new level being created each
time a tactic is successfully applied to give new subgoals. The subgoals of the current
level may be considered in any order.

If a tactic solves the current goal (returns an empty subgoal list), then its justification
is used to prove a corresponding theorem. This theorem is then incorporated into the
justification of the parent goal. If the subgoal was the last subgoal of the level, the level
is removed and the parent goal is proved using its (new) justification. This process is
repeated until a level with unproven subgoals is reached. The next goal on the goal
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stack then becomes the current goal. If all the subgoals are proved, the resulting proof
state consists of the theorem proved by the justifications. This theorem may be accessed
and saved.

Comments
A more sophisticated subgoal management package will be implemented in the future.

See also
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_state, top_goal, top_thm.

set_base_rewrites

set_base_rewrites: rewrites -> unit

Synopsis
Allows the user to control the built-in database of simplifications used in rewriting.

Description
Uses

See also
base_rewrites, add_base_rewrites, empty_rewrites, add_rewrites.

show_numeral_types

Globals.show_numeral_types : bool ref

Synopsis
A flag which causes numerals to be printed with suffix annotation when true.

Description
This flag controls the pretty-printing of numeral forms that have been added to the
global grammar with the function add_numeral_form. If the flag is true, then all numeric
values are printed with the single-letter suffixes that identify which type the value is.
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Failure
Never fails, as it is just an SML value.

Example

- load "integerTheory";
> val it = () : unit

- Term‘~3‘;
> val it = ‘~3‘ : Term.term

- show_numeral_types := true;
> val it = () : unit

- Term‘~3‘;
> val it = ‘~3i‘ : Term.term

Uses
Can help to disambiguate terms involving numerals.

See also
add_numeral_form, show_types

show_types

Globals.show_types : bool ref

Synopsis
Flag controlling printing of HOL types (in terms).

Description
Normally HOL types in terms are not printed, since this makes terms hard to read.
Type printing is enabled by show_types := true, and disabled by show_types := false.
When printing of types is enabled, not all variables and constants are annotated with a
type. The intention is to provide sufficient type information to remove any ambiguities
without swamping the term with type information.

Failure
Never fails.
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Example

- BOOL_CASES_AX;;
> val it = |- !t. (t = T) \/ (t = F) : Thm.thm

- show_types := true;
> val it = () : unit

- BOOL_CASES_AX;;
> val it = |- !(t :bool). (t = T) \/ (t = F) : Thm.thm

Comments
It is possible to construct an abstraction in which the bound variable has the same name
but a different type to a variable in the body. In such a case the two variables are
considered to be distinct. Without type information such a term can be very misleading,
so it might be a good idea to provide type information for the free variable whether or
not printing of types is enabled.

See also
print_term.

SIMPSET

simpLib.SIMPSET : { ac : (thm * thm) list,
congs : thm list,
convs : {conv : (term list -> term -> thm) -> term list

-> conv,
key : (term list * term) option,
name : string,
trace : int} list,

dprocs : Traverse.reducer list,
filter : (thm -> thm list) option,
rewrs : thm list } -> ssdata

Synopsis
Constructs ssdata values.

Description
The ssdata type is the way in which simplification components are packaged up and
made available to the simplifier (though ssdata values must first be turned into simpsets,
either by addition to an existing simpset, or with the mk_simpset function).
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The big record type passed to SIMPSET as an argument has six fields. Here we describe
each in turn.

The ac field is a list of “AC theorem” pairs. Each such pair is the pair of theorems
starting that a given binary function is associative and commutative. The form of the
associative theorem must be

|- x op (y op z) = (x op y) op z

and the commutative theorem (the second element of the pair) must be of the form

|- x op y = y op x

Note that neither theorem can have any universal quantification.
The congs field is a list of congruence theorems justifying the addition of theorems to

simplification contexts. For example, the congruence theorem for implication is

|- (P = P’) ==> (P’ ==> (Q = Q’)) ==> (P ==> Q = P’ ==> Q’)

This theorem encodes a rewriting strategy. The consequent of the chain of implications
is the form of term in question, where the appropriate components have been rewritten.
Then, in left-to-right order, the various antecedents of the implication specify the rewrit-
ing strategy which gives rise to the consequent. In this example, P is first simplified to
P’ without any additional context, then, using P’ as additional context, simplification
of Q proceeds, producing Q’. Another example is a rule for conjunction:

|- (P ==> (Q = Q’)) ==> (Q’ ==> (P = P’)) ==> ((P /\ Q) = (P’ /\ Q’))

Here P is assumed while Q is simplified to Q’. Then, Q’ is assumed while P is simplified
to P’. If a antecedent doesn’t involve the relation in question (here, equality) then it
is treated as a side-condition, and the simplifier will be recursively invoked to try and
solve it.

The convs field is a list of conversions that the simplifier will apply. Each conversion
added to an ssdata value is done so in a record consisting of four fields.

The conv field of this subsidiary record type includes the value of the conversion itself.
When the simplifier applies the conversion it is actually passed two extra arguments
(as the type indicates). The first is a solver function that can be used to recursively
do side-condition solving, and the second is a stack of side-conditions that have been
accumulated to date. Many conversions will typically ignore these arguments (as in the
example below).

The key field of the subsidiary record type is an optional pattern, specifying the places
where the conversion should be applied. If the value is NONE, then the conversion will be
applied to all sub-terms. It is not known what the role of the list of terms is. However,
if it is the list is left as [], the second component of the pair, the bare term is used as a
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pattern. The conversion will only be applied to sub-terms that match the pattern. The
name and trace fields are only relevant to the debugging facilities of the simplifier.

The dprocs field of the record passed to SIMPSET is where decision procedures can be
specified. The construction of values of type reducer will be described in other reference
entries (some of which may not have been written yet).

The filter field of the record is an optional function, which, if present, is composed
with the standard simplifier’s function for generating rewrites from theorems, and re-
places that function. The version of this present in bool_ss and its descendents will, for
example, turn |- P /\ Q into |- P and |- Q, and |- ~(t1 = t2) into |- (t1 = t2) = F

and |- (t2 = t1) = F.

The rewrs field of the record is a list of rewrite theorems that are to be applied.

Failure
Never fails. Failure to provide theorems of just the right form may cause later applica-
tion of simplification functions to fail, documentation to the contrary notwithstanding.

Example
Given a conversion MUL_CONV to calculate multiplications, the following illustrates how
this can be added to a simpset:

- val ssd = SIMPSET {ac = [], congs = [],
convs = [{conv = K (K MUL_CONV),

key= SOME ([], Term‘x * y‘),
name = "MUL_CONV",
trace = 2}],

dprocs = [], filter = NONE, rewrs = []};
> val ssd =

SIMPSET{ac = [], congs = [],
convs =

[{conv = fn, key = SOME([], ‘x * y‘), name = "MUL_CONV",
trace = 2}], dprocs = [], filter = NONE, rewrs = []}

: ssdata
- SIMP_CONV bool_ss [] (Term‘3 * 4‘);
> val it = |- 3 * 4 = 3 * 4 : thm
- SIMP_CONV (bool_ss ++ ssd) [] (Term‘3 * 4‘);
> val it = |- 3 * 4 = 12 : thm

Given the theorems ADD_SYM and ADD_ASSOC from arithmeticTheory, we can construct a
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normaliser for additive terms.

- val ssd2 = SIMPSET {ac = [(SPEC_ALL ADD_ASSOC, SPEC_ALL ADD_SYM)],
congs = [], convs = [], dprocs = [],
filter = NONE, rewrs = []};

> val ssd2 =
SIMPSET{ac = [(|- m + n + p = (m + n) + p, |- m + n = n + m)],

congs = [], convs = [], dprocs = [], filter = NONE,
rewrs = []}

: ssdata
- SIMP_CONV (bool_ss ++ ssd2) [] (Term‘(y + 3) + x + 4‘);
(* note that the printing of + in this example is that of a

right associative operator.*)
> val it = |- (y + 3) + x + 4 = 3 + 4 + x + y : thm

Comments
SIMPSET is not the right name for something that creates an ssdata value. We still know
too little about how this code works.

See also
++, bool_ss, mk_simpset, rewrites, SIMP_CONV

SIMP_CONV

simpLib.SIMP_CONV : simpset -> thm list -> conv

Synopsis
Applies a simpset and a list of rewrite rules to simplify a term.

Description
SIMP_CONV is the fundamental engine of the HOL simplification library. It repeatedly
applies the transformations bound up in the the provided simpset augmented with the
given rewrite rules to a term, ultimately yielding a theorem equating the original term
to another.

Values of the simpset type embody a suite of different transformations that might be
applicable to given terms. These “transformational components” are rewrites, conver-
sions, AC-rules, congruences, decision procedures and a filter, which is used to modify
the way in which rewrite rules are added to the simpset. The exact types for these com-
ponents, and the way they can be combined to create simpsets is given in the reference
entry for SIMPSET.
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Rewrite rules are used similarly to the way in they are used in the rewriting system
(REWRITE_TAC et al.). These are equational theorems oriented to rewrite from left-hand-
side to right-hand-side. Further, SIMP_CONV handles obvious problems. If a rewrite rule is
of the general form [...] |- x = f x, then it will be discarded, and a message is printed
to this effect. On the other hand, if the right-hand-side is a permutation of the pattern on
the left, as in |- x + y = y + x and |- x INSERT (y INSERT s) = y INSERT (x INSERT s),
then such rules will only be applied if the term to which they are being applied is strictly
reduced according to some term ordering.

Rewriting is done using a form of higher-order matching, and also uses conditional
rewriting. This latter means that theorems of the form |- P ==> (x = y) can be used
as rewrites. If a term matching x is found, the simplifier will attempt to satisfy the
side-condition P. If it is able to do so, then the rewriting will be performed. In the
process of attempting to rewrite P to true, further side conditions may be generated.
The simplifier limits the size of the stack of side conditions to be solved (the reference
variable Cond_rewr.stack_limit holds this limit), so this will not introduce an infinite
loop.

Rewrite rules can always be added “on the fly” as all of the simplification functions
take a thm list argument where these rules can be specified. If a set of rewrite rules
is frequently used, then these should probably be made into a ssdata value with the
rewrites function and then added to an existing simpset with ++.

The conversions which are part of simpsets are useful for situations where simple
rewriting is not enough to transform certain terms. For example, the BETA_CONV conver-
sion is not expressible as a standard first order rewrite, but is part of the bool_ss simpset
and the application of this simpset will thus simplify all occurrences of (\x. e1) e2.

In fact, conversions in simpsets are not typically applied indiscriminately to all sub-
terms. (If a conversion is applied to an inappropriate sub-term and fails, this failure
is caught by the simplifier and ignored.) Instead, conversions in simpsets are accom-
panied by a term-pattern which specifies the sort of situations in which they should be
applied. This facility is used in the definition of bool_ss to include ETA_CONV, but stop
it from transforming !x. P x into $! P. Similarly, if one had a conversion for deciding
equalities over a certain type foo, one would add the relevant conversion keyed on
terms ‘‘x:foo = y‘‘.

AC-rules allow simpsets to be constructed that automatically normalise terms involv-
ing associative and commutative operators, again according to some arbitrary term or-
dering metric.

Congruence rules allow SIMP_CONV to assume additional context as a term is rewritten.
In a term such as P ==> Q /\ f x the truth of term P may be assumed as an additional
piece of context in the rewriting of Q /\ f x. The congruence theorem that states this
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is valid is (Ho_theorems.IMP_CONG):

|- (P = P’) ==> (P’ ==> (Q = Q’)) ==> ((P ==> Q) = (P’ ==> Q’))

Other congruence theorems can be part of simpsets. The system provides IMP_CONG

above and COND_CONG as part of the CONG_ss ssdata value. (These ssdata values can
be incorporated into simpsets with the ++ function.) Other congruence theorems are
already proved for operators such as conjunction and disjunction, but use of these in
standard simpsets is not recommended as the computation of all the additional contexts
for a simple chain of conjuncts or disjuncts can be very computationally intensive.

Decision procedures in simpsets are similar to conversions. They are arbitrary pieces
of code that are applied to sub-terms at low priority. They are given access to the wider
context through a list of relevant theorems. The hol_ss simpset includes an arithmetic
decision procedure implemented in this way.

Failure
SIMP_CONV never fails, but may diverge.

Example

- SIMP_CONV hol_ss [] ‘‘(\x. x + 3) 4‘‘;
> val it = |- (\x. x + 3) 4 = 7 : thm

Uses
SIMP_CONV is a powerful way of manipulating terms. Other functions in the simplification
library provide the same facilities when in the contexts of goals and tactics (SIMP_TAC,
ASM_SIMP_TAC etc.), and theorems (SIMP_RULE), but SIMP_CONV provides the underlying
functionality, and is useful in its own right, just as conversions are generally.

Comments
This documentation is incomplete, due to a lack of understanding on the author’s part
of another’s code.

See also
++, ASM_SIMP_TAC, FULL_SIMP_TAC, hol_ss, mk_simpset, rewrites, SIMP_RULE,
SIMP_TAC, SIMPSET

SIMP_PROVE

simpLib.SIMP_PROVE : simpset -> thm list -> term -> thm
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Synopsis
Like SIMP_CONV, but converts boolean terms to theorem with same conclusion.

Description
SIMP_PROVE ss thml is equivalent to EQT_ELIM o SIMP_CONV ss thml.

Failure
Fails if the term can not be shown to be equivalent to true. May diverge.

Example
Using SIMP_PROVE here allows ASSUME_TAC to add a new fact, where the equality with
truth that SIMP_CONV would produce would be less useful.

- ASSUME_TAC (SIMP_PROVE hol_ss [] ‘‘x < y ==> x < y + 6‘‘)
([], ‘‘x + y = 10‘‘)

> val it =
([([‘x < y ==> x < y + 6‘], ‘x + y = 10‘)], fn)
: tactic_result

Uses
SIMP_PROVE is useful when constructing theorems to be passed to other tools, where
those other tools would prefer not to have theorems of the form |- P = T.

See also
SIMP_CONV, SIMP_RULE, SIMP_TAC.

SIMP_RULE

simpLib.SIMP_RULE : simpset -> thm list -> thm -> thm

Synopsis
Simplifies the conclusion of a theorem according to the given simpset and theorem
rewrites.

Description
SIMP_RULE simplifies the conclusion of a theorem, adding the given theorems to the
simpset parameter as rewrites. The way in which terms are transformed as a part of
simplification is described in the entry for SIMP_CONV.
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Failure
Never fails, but may diverge.

Example
The following also demonstrates the higher order rewriting possible with simplification
(FORALL_AND_THM states |- (!x. P x /\ Q x) = (!x. P x) /\ (!x. Q x)):

- SIMP_RULE hol_ss [boolTheory.FORALL_AND_THM]
(ASSUME (Term‘!x. P (x + 1) /\ R x /\ x < y‘));

> val it = [.] |- (!x. P (x + 1)) /\ (!x. R x) /\ (!x. x < y) : thm

Comments
SIMP_RULE ss thmlist is equivalent to CONV_RULE (SIMP_CONV ss thmlist).

See also
ASM_SIMP_RULE, SIMP_CONV, SIMP_TAC.

SIMP_TAC

simpLib.SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies the goal, using the given simpset and the additional theorems listed.

Description
SIMP_TAC adds the theorems of the second argument to the simpset argument as rewrites
and then applies the resulting simpset to the conclusion of the goal. The exact behaviour
of a simpset when applied to a term is described further in the entry for SIMP_CONV.

With simple simpsets, SIMP_TAC is similar in effect to REWRITE_TAC; it transforms the
conclusion of a goal by using the (equational) theorems given and those already in the
simpset as rewrite rules over the structure of the conclusion of the goal.

Just as ASM_REWRITE_TAC includes the assumptions of a goal in the rewrite rules that
REWRITE_TAC uses, ASM_SIMP_TAC adds the assumptions of a goal to the rewrites and then
performs simplification.

Failure
SIMP_TAC never fails, though it may diverge.
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Example
SIMP_TAC and the hol_ss simpset combine to prove quite difficult seeming goals:

- val (_, p) =
SIMP_TAC hol_ss [] ([], Term‘P x /\ (x = y + 3) ==> P x /\ y < x‘);

> val p = fn : thm list -> thm
- p [];
> val it = |- P x /\ (x = y + 3) ==> P x /\ y < x : thm

SIMP_TAC is similar to REWRITE_TAC if used with just the bool_ss simpset. Here it is used
in conjunction with the arithmetic theorem GREATER_DEF, |- !m n. m > n = n < m, to
advance a goal:

- SIMP_TAC bool_ss [GREATER_DEF] ([], Term‘T /\ 5 > 4 \/ F‘);
> val it = ([([], ‘4 < 5‘)], fn) : subgoals

Comments
The simplification library is described further in other documentation, but its full capa-
bilities are still rather opaque.

Uses
Simplification is one of the most powerful tactics available to the HOL user. It can be
used both to solve goals entirely or to make progress with them. However, poor simpsets
or a poor choice of rewrites can still result in divergence, or poor performance.

See also
++, ASM_SIMP_TAC, bool_ss, FULL_SIMP_TAC, hol_ss, mk_simpset, REWRITE_TAC,
SIMP_CONV, SIMP_PROVE, SIMP_RULE.

SKOLEM_CONV

SKOLEM_CONV : conv

Synopsis
Proves the existence of a Skolem function.

Description
When applied to an argument of the form !x1...xn. ?y. P, the conversion SKOLEM_CONV

returns the theorem:

|- (!x1...xn. ?y. P) = (?y’. !x1...xn. P[y’ x1 ... xn/y])

where y’ is a primed variant of y not free in the input term.
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Failure
SKOLEM_CONV tm fails if tm is not a term of the form !x1...xn. ?y. P.

See also
X_SKOLEM_CONV.

snd

snd : ((* # **) -> **)

Synopsis
Extracts the second component of a pair.

Description
snd (x,y) returns y.

Failure
Never fails.

See also
fst, pair.

sort

sort : (((* # *) -> bool) -> * list -> * list)

Synopsis
Sorts a list using a given transitive ‘ordering’ relation.

Description
The call

sort op list

where op is an (uncurried) transitive relation on the elements of list, will topologically
sort the list, i.e. will permute it such that if x op y but not y op x then x will occur to
the left of y in the sorted list. In particular if op is a total order, the list will be sorted in
the usual sense of the word.
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Failure
Never fails.

Example
A simple example is:

#sort $< [3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9];;
[1; 1; 2; 3; 3; 4; 5; 5; 5; 6; 7; 8; 9; 9; 9] : int list

The following example is a little more complicated. Note that the ‘ordering’ is not
antisymmetric.

#sort ($< o (fst # fst)) [(1,3); (7,11); (3,2); (3,4); (7,2); (5,1)];;
[(1, 3); (3, 4); (3, 2); (5, 1); (7, 2); (7, 11)] : (int # int) list

SPEC

SPEC : (term -> thm -> thm)

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term u and a theorem A |- !x. t, then SPEC returns the theorem
A |- t[u/x]. If necessary, variables will be renamed prior to the specialization to ensure
that u is free for x in t, that is, no variables free in u become bound after substitution.

A |- !x. t
-------------- SPEC "u"
A |- t[u/x]

Failure
Fails if the theorem’s conclusion is not universally quantified, or if x and u have different
types.

Example
The following example shows how SPEC renames bound variables if necessary, prior to
substitution: a straightforward substitution would result in the clearly invalid theorem
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|- ~y ==> (!y. y ==> ~y).

#let xv = "x:bool" and yv="y:bool" in
# (GEN xv o DISCH xv o GEN yv o DISCH yv) (ASSUME xv);;
|- !x. x ==> (!y. y ==> x)

#SPEC "~y" it;;
|- ~y ==> (!y’. y’ ==> ~y)

See also
ISPEC, SPECL, SPEC_ALL, SPEC_VAR, GEN, GENL, GEN_ALL.

SPECL

SPECL : (term list -> thm -> thm)

Synopsis
Specializes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [u1;...;un] and a theorem A |- !x1...xn. t, the inference
rule SPECL returns the theorem A |- t[u1/x1]...[un/xn], where the substitutions are
made sequentially left-to-right in the same way as for SPEC, with the same sort of alpha-
conversions applied to t if necessary to ensure that no variables which are free in ui

become bound after substitution.

A |- !x1...xn. t
-------------------------- SPECL "[u1;...;un]"

A |- t[u1/x1]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of SPECL has
no effect.

Failure
Fails unless each of the terms is of the same as that of the appropriate quantified variable
in the original theorem.
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Example
The following is a specialization of a theorem from theory arithmetic.

#let t = theorem ‘arithmetic‘ ‘LESS_EQ_LESS_EQ_MONO‘;;
t = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q)

#SPECL ["1"; "2"; "3"; "4"] t;;
|- 1 <= 3 /\ 2 <= 4 ==> (1 + 2) <= (3 + 4)

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPEC_ALL, SPEC_TAC.

SPEC_ALL

SPEC_ALL : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with its own quantified variables.

Description
When applied to a theorem A |- !x1...xn. t, the inference rule SPEC_ALL returns the
theorem A |- t[x1’/x1]...[xn’/xn] where the xi’ are distinct variants of the corre-
sponding xi, chosen to avoid clashes with any variables free in the assumption list and
with the names of constants. Normally xi’ is just xi, in which case SPEC_ALL simply
removes all universal quantifiers.

A |- !x1...xn. t
--------------------------- SPEC_ALL
A |- t[x1’/x1]...[xn’/xn]

Failure
Never fails.

Example
The following example shows how variables are also renamed to avoid clashing with
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the names of constants.

#let v=mk_var(‘T‘,":bool") in ASSUME "!^v. ^v \/ ~^v";;
!T. T \/ ~T |- !T. T \/ ~T

#SPEC_ALL it;;
!T. T \/ ~T |- T’ \/ ~T’

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

SPEC_TAC

SPEC_TAC : ((term # term) -> tactic)

Synopsis
Generalizes a goal.

Description
When applied to a pair of terms (u,x), where x is just a variable, and a goal A ?- t, the
tactic SPEC_TAC generalizes the goal to A ?- !x. t[x/u], that is, all instances of u are
turned into x.

A ?- t
================= SPEC_TAC ("u","x")
A ?- !x. t[x/u]

Failure
Fails unless x is a variable with the same type as u.

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive
proof.

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, STRIP_TAC.
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SPEC_VAR

SPEC_VAR : (thm -> (term # thm))

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !x. t, the inference rule SPEC_VAR returns the term x’

and the theorem A |- t[x’/x], where x’ is a variant of x chosen to avoid free variable
capture.

A |- !x. t
-------------- SPEC_VAR
A |- t[x’/x]

Failure
Fails unless the theorem’s conclusion is universally quantified.

Comments
This rule is very similar to plain SPEC, except that it returns the variant chosen, which
may be useful information under some circumstances.

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL.

split

split : (’a * ’b) list -> (’a list * ’b list)

Synopsis
Converts a list of pairs into a pair of lists.

Description
split [(x1,y1),...,(xn,yn)] returns ([x1,...,xn],[y1,...,yn]).
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Failure
Never fails.

Comments
Identical to the Basis function ListPair.unzip.

See also
combine.

string_of_int

Compat.string_of_int : int -> string

Synopsis
Maps an integer to the corresponding decimal string.

Description
Found in the hol88 library. When given an integer, string_of_int returns a string rep-
resenting the number in standard decimal notation, with a leading minus sign if the
number is negative, and no leading zeros.

Failure
Never fails. The function is not available unless the hol88 library has been loaded.

Comments
Not found in hol90, since the author always got it backwards; use int_to_string in-
stead. Likewise, int_of_string is not found in hol90; use string_to_int.

See also
ascii, ascii_code, int_of_string, int_to_string, string_to_int.

strip_abs

strip_abs : (term -> goal)

Synopsis
Iteratively breaks apart abstractions.
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Description
strip_abs "\x1 ... xn. t" returns (["x1";...;"xn"],"t"). Note that

strip_abs(list_mk_abs(["x1";...;"xn"],"t"))

will not return (["x1";...;"xn"],"t") if t is an abstraction.

Failure
Never fails.

See also
list_mk_abs, dest_abs.

STRIP_ASSUME_TAC

STRIP_ASSUME_TAC : thm_tactic

Synopsis
Splits a theorem into a list of theorems and then adds them to the assumptions.

Description
Given a theorem th and a goal (A,t), STRIP_ASSUME_TAC th splits th into a list of theo-
rems. This is done by recursively breaking conjunctions into separate conjuncts, cases-
splitting disjunctions, and eliminating existential quantifiers by choosing arbitrary vari-
ables. Schematically, the following rules are applied:

A ?- t
====================== STRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)
A u {v1,...,vn} ?- t

A ?- t
================================= STRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)
A u {v1} ?- t ... A u {vn} ?- t

A ?- t
==================== STRIP_ASSUME_TAC (A’ |- ?x.v)
A u {v[x’/x]} ?- t

where x’ is a variant of x.
If the conclusion of th is not a conjunction, a disjunction or an existentially quantified

term, the whole theorem th is added to the assumptions.
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As assumptions are generated, they are examined to see if they solve the goal (either
by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).

The assumptions of the theorem being split are not added to the assumptions of the
goal(s), but they are recorded in the proof. This means that if A’ is not a subset of the
assumptions A of the goal (up to alpha-conversion), STRIP_ASSUME_TAC (A’|-v) results
in an invalid tactic.

Failure
Never fails.

Example
When solving the goal

?- m = 0 + m

assuming the clauses for addition with STRIP_ASSUME_TAC ADD_CLAUSES results in the goal

{m + (SUC n) = SUC(m + n), (SUC m) + n = SUC(m + n),
m + 0 = m, 0 + m = m, m = 0 + m} ?- m = 0 + m

while the same tactic directly solves the goal

?- 0 + m = m

Uses
STRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal,
or when enriching its assumptions so that resolution, rewriting with assumptions and
other operations involving assumptions have more to work with.

See also
ASSUME_TAC, CHOOSE_TAC, CHOOSE_THEN, CONJUNCTS_THEN, DISJ_CASES_TAC,
DISJ_CASES_THEN.

strip_comb

strip_comb : (term -> (term # term list))

Synopsis
Iteratively breaks apart combinations (function applications).
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Description
strip_comb "t t1 ... tn" returns ("t",["t1";...;"tn"]). Note that

strip_comb(list_mk_comb("t",["t1";...;"tn"]))

will not return ("t",["t1";...;"tn"]) if t is a combination.

Failure
Never fails.

Example

#strip_comb "x /\ y";;
("$/\", ["x"; "y"]) : (term # term list)

#strip_comb "T";;
("T", []) : (term # term list)

See also
list_mk_comb, dest_comb.

strip_exists

strip_exists : (term -> goal)

Synopsis
Iteratively breaks apart existential quantifications.

Description
strip_exists "?x1 ... xn. t" returns (["x1";...;"xn"],"t"). Note that

strip_exists(list_mk_exists(["x1";...;"xn"],"t"))

will not return (["x1";...;"xn"],"t") if t is an existential quantification.

Failure
Never fails.

See also
list_mk_exists, dest_exists.
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strip_forall

strip_forall : (term -> goal)

Synopsis
Iteratively breaks apart universal quantifications.

Description
strip_forall "!x1 ... xn. t" returns (["x1";...;"xn"],"t"). Note that

strip_forall(list_mk_forall(["x1";...;"xn"],"t"))

will not return (["x1";...;"xn"],"t") if t is a universal quantification.

Failure
Never fails.

See also
list_mk_forall, dest_forall.

STRIP_GOAL_THEN

STRIP_GOAL_THEN : (thm_tactic -> tactic)

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic
to the antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), STRIP_GOAL_THEN removes one outermost
occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t. If
t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier:

A ?- !x.u
============== STRIP_GOAL_THEN ttac

A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
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conjunction, then STRIP_GOAL_THEN simply splits the conjunction into two subgoals:

A ?- v /\ w
================= STRIP_GOAL_THEN ttac
A ?- v A ?- w

If t is an implication "u ==> v" and if:

A ?- v
=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v
==================== STRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
STRIP_GOAL_THEN ttac (A,t) fails if t is not a universally quantified term, an implica-
tion, a negation or a conjunction. Failure also occurs if the application of ttac fails,
after stripping the goal.

Example
When solving the goal

?- (n = 1) ==> (n * n = n)

a possible initial step is to apply

STRIP_GOAL_THEN SUBST1_TAC

thus obtaining the goal

?- 1 * 1 = 1

Uses
STRIP_GOAL_THEN is used when manipulating intermediate results (obtained by stripping
outer connectives from a goal) directly, rather than as assumptions.

See also
CONJ_TAC, DISCH_THEN, FILTER_STRIP_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_TAC.
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strip_imp

strip_imp : (term -> goal)

Synopsis
Iteratively breaks apart implications.

Description
strip_imp "t1 ==> ( ... (tn ==> t)...)" returns (["t1";...;"tn"],"t"). Note that

strip_imp(list_mk_imp(["t1";...;"tn"],"t"))

will not return (["t1";...;"tn"],"t") if t is an implication.

Failure
Never fails.

Example

#strip_imp "(T ==> F) ==> (T ==> F)";;
(["T ==> F"; "T"], "F") : goal

See also
list_mk_imp, dest_imp.

strip_pair

strip_pair : (term -> term list)

Synopsis
Iteratively breaks apart tuples.

Description
strip_pair("(t1,...,tn)") returns ["t1";...;"tn"]. A term that is not a tuple is simply
returned as the sole element of a list. Note that

strip_pair(list_mk_pair ["t1";...;"tn"])

will not return ["t1";...;"tn"] if tn is a pair or a tuple.
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Failure
Never fails.

Example

#list_mk_pair ["(1,2)";"(3,4)";"(5,6)"];;
"(1,2),(3,4),5,6" : term

#strip_pair it;;
["1,2"; "3,4"; "5"; "6"] : term list

#strip_pair "1";;
["1"] : term list

See also
list_mk_pair, dest_pair.

STRIP_TAC

STRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

Description
Given a goal (A,t), STRIP_TAC removes one outermost occurrence of one of the connec-
tives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified
term, then STRIP_TAC strips off the quantifier:

A ?- !x.u
============== STRIP_TAC

A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, then STRIP_TAC simply splits the conjunction into two subgoals:

A ?- v /\ w
================= STRIP_TAC
A ?- v A ?- w

If t is an implication, STRIP_TAC moves the antecedent into the assumptions, stripping
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conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v
====================
A u {w[x’/x]} ?- v

where x’ is a primed variant of x that does not appear free in A. Finally, a negation ~t is
treated as the implication t ==> F.

Failure
STRIP_TAC (A,t) fails if t is not a universally quantified term, an implication, a negation
or a conjunction.

Example
Applying STRIP_TAC twice to the goal:

?- !n. m <= n /\ n <= m ==> (m = n)

results in the subgoal:

{n <= m, m <= n} ?- m = n

Uses
When trying to solve a goal, often the best thing to do first is REPEAT STRIP_TAC to split
the goal up into manageable pieces.

See also
CONJ_TAC, DISCH_TAC, DISCH_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_GOAL_THEN.

STRIP_THM_THEN

STRIP_THM_THEN : thm_tactical

Synopsis
STRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one
outer connective from the given theorem.
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Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunc-
tion or an existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th first
strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from the
stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’|- u /\ v, the tactic

ttac(u|-u) THEN ttac(v|-v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping
a disjunctive theorem A’|- u \/ v, the tactics resulting from applying ttac to the dis-
juncts, are applied to split the goal into two cases. That is, if

A ?- t A ?- t
========= ttac (u|-u) and ========= ttac (v|-v)
A ?- t1 A ?- t2

then:

A ?- t
================== STRIP_THM_THEN ttac (A’|- u \/ v)
A ?- t1 A ?- t2

When stripping an existentially quantified theorem A’|- ?x.u, the tactic ttac(u|-u),
resulting from applying ttac to the body of the existential quantification, is applied to
the goal. That is, if:

A ?- t
========= ttac (u|-u)
A ?- t1

then:

A ?- t
============= STRIP_THM_THEN ttac (A’|- ?x. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the
goal(s) but are recorded in the proof. If A’ is not a subset of the assumptions A of the
goal (up to alpha-conversion), STRIP_THM_THEN ttac th results in an invalid tactic.

Failure
STRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction
or an existentially quantified term. Failure also occurs if the application of ttac fails,
after stripping the outer connective from the conclusion of th.



STRUCT CASES TAC 417

Uses
STRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a
previously-proved theorem.

See also
CHOOSE_THEN, CONJUNCTS_THEN, DISJ_CASES_THEN, STRIP_ASSUME_TAC.

STRUCT_CASES_TAC

STRUCT_CASES_TAC : thm_tactic

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?y11...y1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/
?yn1...ynp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)

in which there may be no existential quantifiers where a ‘vector’ of them is shown above,
STRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s
===============================================================
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

that is, performs a case split over the possible constructions (the ti) of a term, providing
as assumptions the given constraints, having split conjoined constraints into separate
assumptions. Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply
existentially quantified) terms which assert the equality of the same variable x and the
given terms.
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Example
Suppose we have the goal:

?- ~(l:(*)list = []) ==> (LENGTH l) > 0

then we can get rid of the universal quantifier from the inbuilt list theorem list_CASES:

list_CASES = !l. (l = []) \/ (?t h. l = CONS h t)

and then use STRUCT_CASES_TAC. This amounts to applying the following tactic:

STRUCT_CASES_TAC (SPEC_ALL list_CASES)

which results in the following two subgoals:

?- ~(CONS h t = []) ==> (LENGTH(CONS h t)) > 0

?- ~([] = []) ==> (LENGTH[]) > 0

Note that this is a rather simple case, since there are no constraints, and therefore the
resulting subgoals have no assumptions.

Uses
Generating a case split from the axioms specifying a structure.

See also
ASM_CASES_TAC, BOOL_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC.

SUBGOAL_THEN

SUBGOAL_THEN : (term -> thm_tactic -> tactic)

Synopsis
Allows the user to introduce a lemma.

Description
The user proposes a lemma and is then invited to prove it under the current assump-
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tions. The lemma is then used with the thm_tactic to simplify the goal. That is, if

A1 ?- t1
========== f (u |- u)
A2 ?- t2

then

A1 ?- t1
==================== SUBGOAL_THEN "u" f
A1 ?- u A2 ?- t2

Failure
SUBGOAL_THEN will fail with ‘ASSUME‘ if an attempt is made to use a nonboolean term as
a lemma.

Uses
When combined with rotate, SUBGOAL_THEN allows the user to defer some part of a
proof and to continue with another part. SUBGOAL_THEN is most convenient when the
tactic solves the original goal, leaving only the subgoal. For example, suppose the user
wishes top prove the goal

{n = SUC m} ?- (0 = n) ==> t

Using SUBGOAL_THEN to focus on the case in which ~(n = 0), rewriting establishes it
truth, leaving only the proof that ~(n = 0). That is,

SUBGOAL_THEN "~(0 = n)" (\th:thm. REWRITE_TAC [th])

generates the following subgoals:

{n = SUC m} ?- ~(0 = n)
?- T

Comments
Some users may expect the generated tactic to be f (A1 |- u), rather than f (u |- u).

SUBS

SUBS : (thm list -> thm -> thm)
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Synopsis
Makes simple term substitutions in a theorem using a given list of theorems.

Description
Term substitution in HOL is performed by replacing free subterms according to the
transformations specified by a list of equational theorems. Given a list of theorems
A1|-t1=v1,...,An|-tn=vn and a theorem A|-t, SUBS simultaneously replaces each free
occurrence of ti in t with vi:

A1|-t1=v1 ... An|-tn=vn A|-t
--------------------------------------------- SUBS[A1|-t1=v1;...;An|-tn=vn]
A1 u ... u An u A |- t[v1,...,vn/t1,...,tn] (A|-t)

No matching is involved; the occurrence of each ti being substituted for must be a free
in t (see SUBST_MATCH). An occurrence which is not free can be substituted by using
rewriting rules such as REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure
SUBS [th1;...;thn] (A|-t) fails if the conclusion of each theorem in the list is not an
equation. No change is made to the theorem A |- t if no occurrence of any left-hand
side of the supplied equations appears in t.

Example
Substitutions are made with the theorems

#let thm1 = SPECL ["m:num"; "n:num"] ADD_SYM
#and thm2 = CONJUNCT1 ADD_CLAUSES;;
thm1 = |- m + n = n + m
thm2 = |- 0 + m = m

depending on the occurrence of free subterms

#SUBS [thm1; thm2] (ASSUME "(n + 0) + (0 + m) = m + n");;
. |- (n + 0) + m = n + m

#SUBS [thm1; thm2] (ASSUME "!n. (n + 0) + (0 + m) = m + n");;
. |- !n. (n + 0) + m = m + n

Uses
SUBS can sometimes be used when rewriting (for example, with REWRITE_RULE) would
diverge and term instantiation is not needed. Moreover, applying the substitution rules
is often much faster than using the rewriting rules.
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See also
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBST, SUBST_MATCH,
SUBS_OCCS.

subst

subst : (term,term) subst -> term -> term

Synopsis

Substitutes terms in a term.

Description

Given a ”(term,term) subst” (a list of redex, residue records) and a term tm, subst

attempts to substitute each free occurrence of a redex in tm by its associated residue.
The substitution is done in parallel, i.e., once a redex has been replaced by its residue, at
some place in the term, that residue at that place will not itself be replaced in the current
call. When necessary, renaming of bound variables in tm is done to avoid capturing the
free variables of an incoming residue.

Failure

Failure occurs if there exists a redex, residue record in the substitution such that the
types of the redex and residue are not equal.
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Example

- load "arithmeticTheory";

- subst [‘‘SUC 0‘‘ |-> ‘‘1‘‘] ‘‘SUC(SUC 0)‘‘;
> val it = ‘‘SUC 1‘‘ : term

- subst [‘‘SUC 0‘‘ |-> ‘‘1‘‘, ‘‘SUC 1‘‘ |-> ‘‘2‘‘] ‘‘SUC(SUC 0)‘‘;
> val it = ‘‘SUC 1‘‘ : term

- subst [‘‘SUC 0‘‘ |-> ‘‘1‘‘, ‘‘SUC 1‘‘ |-> ‘‘2‘‘]
‘‘SUC(SUC 0) = SUC 1‘‘;

> val it = ‘‘SUC 1 = 2‘‘ : term

- subst [‘‘b:num‘‘ |-> ‘‘a:num‘‘] ‘‘\a:num. (b:num)‘‘;
> val it = ‘‘\a’. a‘‘ : term

- subst[‘‘flip:’a‘‘ |-> ‘‘foo:’a‘‘] ‘‘waddle:’a‘‘
> val it = ‘‘waddle‘‘ : term

SUBST

SUBST : (term, thm) subst -> term -> thm -> thm

Synopsis
Makes a set of parallel substitutions in a theorem.
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Description

Implements the following rule of simultaneous substitution

A1 |- t1 = u1 , ... , An |- tn = un , A |- t[t1,...,tn]
-------------------------------------------------------------

A u A1 u ... u An |- t[ui]

Evaluating

SUBST [x1 |-> (A1 |- t1=u1) ,..., xn |-> (An |- tn=un)]
t[x1,...,xn]
(A |- t[t1,...,tn])

returns the theorem A1 u ... An |- t[u1,...,un]. The term argument t[x1,...,xn] is
a template which should match the conclusion of the theorem being substituted into,
with the variables x1, ... , xn marking those places where occurrences of t1, ... , tn

are to be replaced by the terms u1, ... , un, respectively. The occurrence of ti at the
places marked by xi must be free (i.e. ti must not contain any bound variables). SUBST
automatically renames bound variables to prevent free variables in ui becoming bound
after substitution.

SUBST is a complex primitive because it performs both parallel simultaneous substitu-
tion and renaming of variables. This is for efficiency reasons, but it would be logically
cleaner if SUBST were simpler.

Failure

If the template does not match the conclusion of the hypothesis, or the terms in the
conclusion marked by the variables x1, ... , xn in the template are not identical to the
left hand sides of the supplied equations (i.e. the terms t1, ... , tn).
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Example

- val x = --‘x:num‘--
and y = --‘y:num‘--
and th0 = SPEC (--‘0‘--) arithmeticTheory.ADD1
and th1 = SPEC (--‘1‘--) arithmeticTheory.ADD1;

(* x = (--‘x‘--)
y = (--‘y‘--)

th0 = |- SUC 0 = 0 + 1
th1 = |- SUC 1 = 1 + 1 *)

- SUBST [x |-> th0, y |-> th1] (--‘(x+y) > SUC 0‘--)
(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

val it = [.] |- (0 + 1) + 1 + 1 > SUC 0 : thm

- SUBST [x |-> th0, y |-> th1] (--‘(SUC 0 + y) > SUC 0‘--)
(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

val it = [.] |- SUC 0 + 1 + 1 > SUC 0 : thm

- SUBST [x |-> th0, y |-> th1] (--‘(x+y) > x‘--)
(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

val it = [.] |- (0 + 1) + 1 + 1 > 0 + 1 : thm

Uses
For substituting at selected occurrences. Often useful for writing special purpose derived
inference rules.

See also
SUBS.

SUBST1_TAC

SUBST1_TAC : thm_tactic

Synopsis
Makes a simple term substitution in a goal using a single equational theorem.
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Description
Given a theorem A’|-u=v and a goal (A,t), the tactic SUBST1_TAC (A’|-u=v) rewrites the
term t into t[v/u], by substituting v for each free occurrence of u in t:

A ?- t
============= SUBST1_TAC (A’|-u=v)
A ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assump-
tions of the goal but are recorded in the proof. If A’ is not a subset of the assumptions
A of the goal (up to alpha-conversion), then SUBST1_TAC (A’|-u=v) results in an invalid
tactic.
SUBST1_TAC automatically renames bound variables to prevent free variables in v be-

coming bound after substitution.

Failure
SUBST1_TAC th (A,t) fails if the conclusion of th is not an equation. No change is made
to the goal if no free occurrence of the left-hand side of th appears in t.

Example
When trying to solve the goal

?- m * n = (n * (m - 1)) + n

substituting with the commutative law for multiplication

SUBST1_TAC (SPECL ["m:num"; "n:num"] MULT_SYM)

results in the goal

?- n * m = (n * (m - 1)) + n

Uses
SUBST1_TAC is used when rewriting with a single theorem using tactics such as REWRITE_TAC
is too expensive or would diverge. Applying SUBST1_TAC is also much faster than using
rewriting tactics.

See also
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_ALL_TAC, SUBST_TAC.

SUBST_ALL_TAC

SUBST_ALL_TAC : thm_tactic
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Synopsis
Substitutes using a single equation in both the assumptions and conclusion of a goal.

Description
SUBST_ALL_TAC breaches the style of natural deduction, where the assumptions are kept
fixed. Given a theorem A|-u=v and a goal ([t1;...;tn], t), SUBST_ALL_TAC (A|-u=v)

transforms the assumptions t1,...,tn and the term t into t1[v/u],...,tn[v/u] and t[v/u]

respectively, by substituting v for each free occurrence of u in both the assumptions and
the conclusion of the goal.

{t1,...,tn} ?- t
================================= SUBST_ALL_TAC (A|-u=v)
{t1[v/u],...,tn[v/u]} ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assump-
tions of the goal, but they are recorded in the proof. If A is not a subset of the assump-
tions of the goal (up to alpha-conversion), then SUBST_ALL_TAC (A|-u=v) results in an
invalid tactic.
SUBST_ALL_TAC automatically renames bound variables to prevent free variables in v

becoming bound after substitution.

Failure
SUBST_ALL_TAC th (A,t) fails if the conclusion of th is not an equation. No change is
made to the goal if no occurrence of the left-hand side of th appears free in (A,t).

Example
Simplifying both the assumption and the term in the goal

{0 + m = n} ?- 0 + (0 + m) = n

by substituting with the theorem |- 0 + m = m for addition

SUBST_ALL_TAC (CONJUNCT1 ADD_CLAUSES)

results in the goal

{m = n} ?- 0 + m = n

See also
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_TAC.
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SUBST_CONV

SUBST_CONV : {var :term, thm :thm} list -> term -> conv

Synopsis
Makes substitutions in a term at selected occurrences of subterms, using a list of theo-
rems.

Description
SUBST_CONV implements the following rule of simultaneous substitution

A1 |- t1 = v1 ... An |- tn = vn
------------------------------------------------------------------
A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]

The first argument to SUBST_CONV is a list [{var=x1, thm = A1|-t1=v1},...,{var = xn, thm = An|-tn=vn}].
The second argument is a template term t[x1,...,xn], in which the variables x1,...,xn
are used to mark those places where occurrences of t1,...,tn are to be replaced with
the terms v1,...,vn, respectively. Thus, evaluating

SUBST_CONV [{var = x1, thm = A1|-t1=v1},...,{var = xn, thm = An|-tn=vn}]
t[x1,...,xn]
t[t1,...,tn/x1,...,xn]

returns the theorem

A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]

The occurrence of ti at the places marked by the variable xi must be free (i.e. ti must
not contain any bound variables). SUBST_CONV automatically renames bound variables
to prevent free variables in vi becoming bound after substitution.

Failure
SUBST_CONV [{var=x1,thm=th1},...,{var=xn,thm=thn}] t[x1,...,xn] t’ fails if the con-
clusion of any theorem thi in the list is not an equation; or if the template t[x1,...,xn]

does not match the term t’; or if and term ti in t’ marked by the variable xi in the
template, is not identical to the left-hand side of the conclusion of the theorem thi.
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Example
The values

- val thm0 = SPEC (--‘0‘--) ADD1
= and thm1 = SPEC (--‘1‘--) ADD1
= and x = --‘x:num‘-- and y = --‘y:num‘--;
thm0 = |- SUC 0 = 0 + 1
thm1 = |- SUC 1 = 1 + 1
val x = (--‘(x :num)‘--) : term
val y = (--‘(y :num)‘--) : term

can be used to substitute selected occurrences of the terms SUC 0 and SUC 1

- SUBST_CONV [{var=x, thm=thm0},{var=y,thm=thm1}]
= (--‘(x + y) > SUC 1‘--)
= (--‘(SUC 0 + SUC 1) > SUC 1‘--);
val it = |- SUC 0 + SUC 1 > SUC 1 = (0 + 1) + 1 + 1 > SUC 1 : thm

Uses
SUBST_CONV is used when substituting at selected occurrences of terms and using rewrit-
ing rules/conversions is too extensive.

See also
REWR_CONV, SUBS, SUBST, SUBS_OCCS.

SUBST_MATCH

SUBST_MATCH : (thm -> thm -> thm)

Synopsis
Substitutes in one theorem using another, equational, theorem.

Description
Given the theorems A|-u=v and A’|-t, SUBST_MATCH (A|-u=v) (A’|-t) searches for one
free instance of u in t, according to a top-down left-to-right search strategy, and then
substitutes the corresponding instance of v.

A |- u=v A’ |- t
-------------------- SUBST_MATCH (A|-u=v) (A’|-t)

A u A’ |- t[v/u]

SUBST_MATCH allows only a free instance of u to be substituted for in t. An instance
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which contain bound variables can be substituted for by using rewriting rules such as
REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure
SUBST_MATCH th1 th2 fails if the conclusion of the theorem th1 is not an equation. More-
over, SUBST_MATCH (A|-u=v) (A’|-t) fails if no instance of u occurs in t, since the match-
ing algorithm fails. No change is made to the theorem (A’|-t) if instances of u occur in
t, but they are not free (see SUBS).

Example
The commutative law for addition

#let thm1 = SPECL ["m:num"; "n:num"] ADD_SYM;;
thm1 = |- m + n = n + m

is used to apply substitutions, depending on the occurrence of free instances

#SUBST_MATCH thm1 (ASSUME "(n + 1) + (m - 1) = m + n");;
. |- (m - 1) + (n + 1) = m + n

#SUBST_MATCH thm1 (ASSUME "!n. (n + 1) + (m - 1) = m + n");;
. |- !n. (n + 1) + (m - 1) = m + n

Uses
SUBST_MATCH is used when rewriting with the rules such as REWRITE_RULE, using a single
theorem is too extensive or would diverge. Moreover, applying SUBST_MATCH can be
much faster than using the rewriting rules.

See also
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBS, SUBST.

subst_occs

subst_occs : int list list -> term subst -> term -> term

Synopsis
Substitutes for particular occurrences of subterms of a given term.

Description
For each redex,residue in the second argument, there should be a corresponding integer
list l_i in the first argument that specifies which free occurrences of redex_i in the third
argument should be substituted by residue_i.
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Failure
Failure occurs if any substitution fails, or if the length of the first argument is not equal
to the length of the substitution. In other words, every substitution pair should be
accompanied by a list specifying when the substitution is applicable.

Example

- subst_occs [[1,3]] [{redex = --‘SUC 0‘--, residue = --‘1‘--}]
= (--‘SUC 0 + SUC 0 = SUC(SUC 0)‘--);
val it = (--‘1 + SUC 0 = SUC 1‘--) : term

- subst_occs [[1],[1]] [{redex = --‘SUC 0‘--, residue = --‘1‘--},
= {redex = --‘SUC 1‘--, residue = --‘2‘--}]
= (--‘SUC(SUC 0) = SUC 1‘--);
val it = (--‘SUC 1 = 2‘--) : term

- subst_occs [[1],[1]] [{redex = --‘SUC(SUC 0)‘--, residue = --‘2‘--},
= {redex = --‘SUC 0‘--, residue = --‘1‘--}]
= (--‘SUC(SUC 0) = SUC 0‘--);
val it = (--‘2 = 1‘--) : term

See also
subst

SUBST_OCCS_TAC

SUBST_OCCS_TAC : ((int list # thm) list -> tactic)

Synopsis
Makes substitutions in a goal at specific occurrences of a term, using a list of theorems.

Description
Given a list (l1,A1|-t1=u1),...,(ln,An|-tn=un) and a goal (A,t), SUBST_OCCS_TAC re-
places each ti in t with ui, simultaneously, at the occurrences specified by the integers
in the list li = [o1;...;ok] for each theorem Ai|-ti=ui.

A ?- t
============================= SUBST_OCCS_TAC [(l1,A1|-t1=u1);...;
A ?- t[u1,...,un/t1,...,tn] (ln,An|-tn=un)]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, but they are recorded in the proof. If any Ai is not a subset of A (up
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to alpha-conversion), SUBST_OCCS_TAC [(l1,A1|-t1=u1);...;(ln,An|-tn=un)] results in
an invalid tactic.
SUBST_OCCS_TAC automatically renames bound variables to prevent free variables in ui

becoming bound after substitution.

Failure
SUBST_OCCS_TAC [(l1,th1);...;(ln,thn)] (A,t) fails if the conclusion of any theorem
in the list is not an equation. No change is made to the goal if the supplied occurrences
li of the left-hand side of the conclusion of thi do not appear in t.

Example
When trying to solve the goal

?- (m + n) + (n + m) = (m + n) + (m + n)

applying the commutative law for addition on the third occurrence of the subterm m + n

SUBST_OCCS_TAC [([3],SPECL ["m:num"; "n:num"] ADD_SYM)]

results in the goal

?- (m + n) + (n + m) = (m + n) + (n + m)

Uses
SUBST_OCCS_TAC is used when rewriting a goal at specific occurrences of a term, and
rewriting tactics such as REWRITE_TAC, PURE_REWRITE_TAC, ONCE_REWRITE_TAC, SUBST_TAC,
etc. are too extensive or would diverge.

See also
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_TAC.

SUBST_TAC

SUBST_TAC : (thm list -> tactic)

Synopsis
Makes term substitutions in a goal using a list of theorems.
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Description
Given a list of theorems A1|-u1=v1,...,An|-un=vn and a goal (A,t), SUBST_TAC rewrites

the term t into the term t[v1,...,vn/u1,...,un] by simultaneously substituting vi for
each occurrence of ui in t with vi:

A ?- t
============================= SUBST_TAC [A1|-u1=v1,...,An|-un=vn]
A ?- t[v1,...,vn/u1,...,un]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, while they are recorded in the proof. If any Ai is not a subset of A (up
to alpha-conversion), then SUBST_TAC [A1|-u1=v1,...,An|-un=vn] results in an invalid
tactic.
SUBST_TAC automatically renames bound variables to prevent free variables in vi be-

coming bound after substitution.

Failure
SUBST_TAC [th1,...,thn] (A,t) fails if the conclusion of any theorem in the list is not
an equation. No change is made to the goal if no occurrence of the left-hand side of the
conclusion of thi appears in t.

Example
When trying to solve the goal

?- (n + 0) + (0 + m) = m + n

by substituting with the theorems

#let thm1 = SPECL ["m:num"; "n:num"] ADD_SYM
#and thm2 = CONJUNCT1 ADD_CLAUSES;;
thm1 = |- m + n = n + m
thm2 = |- 0 + m = m

applying SUBST_TAC [thm1; thm2] results in the goal

?- (n + 0) + m = n + m

Uses
SUBST_TAC is used when rewriting (for example, with REWRITE_TAC) is extensive or would
diverge. Substituting is also much faster than rewriting.

See also
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_ALL_TAC.
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SUBS_OCCS

SUBS_OCCS : ((int list # thm) list -> thm -> thm)

Synopsis
Makes substitutions in a theorem at specific occurrences of a term, using a list of equa-
tional theorems.

Description
Given a list (l1,A1|-t1=v1),...,(ln,An|-tn=vn) and a theorem (A|-t), SUBS_OCCS si-
multaneously replaces each ti in t with vi, at the occurrences specified by the integers
in the list li = [o1;...;ok] for each theorem Ai|-ti=vi.

(l1,A1|-t1=v1) ... (ln,An|-tn=vn) A|-t
------------------------------------------- SUBS_OCCS[(l1,A1|-t1=v1);...;
A1 u ... An u A |- t[v1,...,vn/t1,...,tn] (ln,An|-tn=vn)] (A|-t)

Failure
SUBS_OCCS [(l1,th1);...;(ln,thn)] (A|-t) fails if the conclusion of any theorem in the
list is not an equation. No change is made to the theorem if the supplied occurrences li
of the left-hand side of the conclusion of thi do not appear in t.

Example
The commutative law for addition

#let thm = SPECL ["m:num"; "n:num"] ADD_SYM;;
thm = |- m + n = n + m

can be used for substituting only the second occurrence of the subterm m + n

#SUBS_OCCS [([2],thm)] (ASSUME "(n + m) + (m + n) = (m + n) + (m + n)");;
. |- (n + m) + (m + n) = (n + m) + (m + n)

Uses
SUBS_OCCS is used when rewriting at specific occurrences of a term, and rules such
as REWRITE_RULE, PURE_REWRITE_RULE, ONCE_REWRITE_RULE, and SUBS are too extensive or
would diverge.

See also
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBS, SUBST, SUBST_MATCH.
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subtract

subtract : (* list -> * list -> * list)

Synopsis
Computes the set-theoretic difference of two ‘sets’.

Description
subtract l1 l2 returns a list consisting of those elements of l1 that do not appear in l2.

Failure
Never fails.

Example

#subtract [1;2;3] [3;5;4;1];;
[2] : int list

#subtract [1;2;4;1] [4;5];;
[1; 2; 1] : int list

See also
setify, set_equal, union, intersect.

SUB_CONV

SUB_CONV : (conv -> conv)

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by SUB_CONV c is a conversion that applies
c to all the top-level subterms of a term. If the conversion c maps t to |- t = t’, then
SUB_CONV c maps an abstraction "\x.t" to the theorem:

|- (\x.t) = (\x.t’)

That is, SUB_CONV c "\x.t" applies c to the body of the abstraction "\x.t". If c is
a conversion that maps "t1" to the theorem |- t1 = t1’ and "t2" to the theorem
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|- t2 = t2’, then the conversion SUB_CONV c maps an application "t1 t2" to the the-
orem:

|- (t1 t2) = (t1’ t2’)

That is, SUB_CONV c "t1 t2" applies c to the both the operator t1 and the operand
t2 of the application "t1 t2". Finally, for any conversion c, the function returned by
SUB_CONV c acts as the identity conversion on variables and constants. That is, if "t" is
a variable or constant, then SUB_CONV c "t" returns |- t = t.

Failure
SUB_CONV c tm fails if tm is an abstraction "\x.t" and the conversion c fails when applied
to t, or if tm is an application "t1 t2" and the conversion c fails when applied to either t1
or t2. The function returned by SUB_CONV c may also fail if the ML function c:term->thm

is not, in fact, a conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
ABS_CONV, RAND_CONV, RATOR_CONV.

SWAP_EXISTS_CONV

SWAP_EXISTS_CONV : conv

Synopsis
Interchanges the order of two existentially quantified variables.

Description
When applied to a term argument of the form ?x y. P, the conversion SWAP_EXISTS_CONV

returns the theorem:

|- (?x y. P) = (?y x. P)

Failure
SWAP_EXISTS_CONV fails if applied to a term that is not of the form ?x y. P.

SYM

SYM : (thm -> thm)
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Synopsis
Swaps left-hand and right-hand sides of an equation.

Description
When applied to a theorem A |- t1 = t2, the inference rule SYM returns A |- t2 = t1.

A |- t1 = t2
-------------- SYM
A |- t2 = t1

Failure
Fails unless the theorem is equational.

See also
GSYM, NOT_EQ_SYM, REFL.

SYM_CONV

SYM_CONV : conv

Synopsis
Interchanges the left and right-hand sides of an equation.

Description
When applied to an equational term t1 = t2, the conversion SYM_CONV returns the theo-
rem:

|- (t1 = t2) = (t2 = t1)

Failure
Fails if applied to a term that is not an equation.

See also
SYM.

TAC_PROOF

TAC_PROOF : ((goal # tactic) -> thm)
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Synopsis
Attempts to prove a goal using a given tactic.

Description
When applied to a goal-tactic pair (A ?- t,tac), the TAC_PROOF function attempts to
prove the goal A ?- t, using the tactic tac. If it succeeds, it returns the theorem A’ |- t

corresponding to the goal, where the assumption list A’ may be a proper superset of A
unless the tactic is valid; there is no inbuilt validity checking.

Failure
Fails unless the goal has hypotheses and conclusions all of type bool, and the tactic can
solve the goal.

See also
PROVE, prove_thm, VALID.

Term

Parse.Term : term quotation -> term

Synopsis
Parses a quotation into a term value

Description
The parsing process for terms divides into four distinct phases.

The first phase converts the quotation argument into a relatively simple parse tree
datatype, with the following datatype definition (from parse_term):

datatype ’a varstruct =
SIMPLE of string | VPAIR of (’a varstruct * ’a varstruct) |
TYPEDV of ’a varstruct * TCPretype.pretype |
RESTYPEDV of ’a varstruct * ’a preterm | VS_AQ of ’a

and ’a preterm =
COMB of (’a preterm * ’a preterm) | VAR of string |
ABS of (’a varstruct * ’a preterm) | AQ of ’a |
TYPED of (’a preterm * TCPretype.pretype)

Further, the RESTYPEDV constructor is only used internally, so never appears as a result.
This phase of parsing is concerned with the treatment of the rawest syntax. It has no
notion of whether or not a term corresponds to a constant or a variable, so all preterm
leaves are ultimately either VARs or AQs (anti-quotations).
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This phase converts infixes, mixfixes and all the other categories of syntactic rule from
the global grammar into simple structures built up using COMB. For example, ‘x op y‘

(where op is an infix) will turn into

COMB(COMB(VAR "op", VAR "x"), VAR "y")

and ‘tok1 x tok2 y‘ (where tok1 _ tok2 has been declared as a TruePrefix form for
the term f) will turn into

COMB(COMB(VAR "f", VAR "x"), VAR "y")

The special syntaxes for “let” and record expressions are also handled at this stage.
For more details on how this is done see the reference entry for parse_preTerm, which
function can be used in isolation to see what is done at this phase.

The second phase of parsing consists of the resolution of names, identifying what
were just VARs as constants, overloaded constants or genuine variables. This phase also
annotates all leaves of the data structure (given in the entry for preTerm) with type
information.

The third phase of parsing works over the second pre-term datatype and does type-
checking, though ignoring overloaded values. The datatype being operated over uses
reference variables to allow for efficiency, and the type-checking is done “in place”. If
type-checking is successful, the resulting value has consistent type annotations.

The final phase of parsing resolves overloaded constants. The type-checking done to
this point may completely determine which choice of overloaded constant is appropri-
ate, but if not, the choice may still be completely determined by the interaction of the
possible types for the overloaded possibilities.

Finally, depending on the value of the global flags guessing_tyvars and guessing_overloads,
the parser may make fairly arbitrary choices about how to resolve

Failure
All over place, and for all sorts of reasons.

Uses
Turns strings into terms.

See also
parse_preTerm, preTerm, Type, allow_for_overloading_on, overload_on,
guessing_overloads, guessing_tyvars

term_lt

term_lt : term -> term -> unit
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Synopsis
A total ordering function on terms.

Description
term_lt tells whether one term is less than another in the ordering.

Failure
Never fails.

Example

- term_lt (--‘\x.x = T‘--) (--‘3 + 4‘--)
val it = false : bool

Comments
If not (term_lt tm1 tm2) and not (term_lt tm2 tm1), then tm1 = tm2, although it is
faster to directly test for equality. Ordering of terms may be useful in implementing
search trees and the like.

See also
type_lt

term_to_string

Parse.term_to_string : term -> string

Synopsis
Converts a term to a string.

Description
Uses the global term grammar and pretty-printing flags to turn a term into a string. It
assumes that the string should be broken up as if for display on a screen that is as wide
as the value stored in the Globals.linewidth variable.

Failure
Should never fail.

See also
print_term
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THEN

$THEN : (tactic -> tactic -> tactic)

Synopsis
Applies two tactics in sequence.

Description
If T1 and T2 are tactics, T1 THEN T2 is a tactic which applies T1 to a goal, then applies
the tactic T2 to all the subgoals generated. If T1 solves the goal then T2 is never applied.

Failure
The application of THEN to a pair of tactics never fails. The resulting tactic fails if T1 fails
when applied to the goal, or if T2 does when applied to any of the resulting subgoals.

Comments
Although normally used to sequence tactics which generate a single subgoal, it is worth
remembering that it is sometimes useful to apply the same tactic to multiple subgoals;
sequences like the following:

EQ_TAC THENL [ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]

can be replaced by the briefer:

EQ_TAC THEN ASM_REWRITE_TAC[]

See also
EVERY, ORELSE, THENL.

THENC

$THENC : (conv -> conv -> conv)

Synopsis
Applies two conversions in sequence.
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Description
If the conversion c1 returns |- t = t’ when applied to a term "t", and c2 returns
|- t’ = t’’ when applied to "t’", then the composite conversion (c1 THENC c2) "t"

returns |- t = t’’. That is, (c1 THENC c2) "t" has the effect of transforming the term
"t" first with the conversion c1 and then with the conversion c2.

Failure
(c1 THENC c2) "t" fails if either the conversion c1 fails when applied to "t", or if c1 "t"

succeeds and returns |- t = t’ but c2 fails when applied to "t’". (c1 THENC c2) "t"

may also fail if either of c1 or c2 is not, in fact, a conversion (i.e. a function that maps
a term t to a theorem |- t = t’).

See also
EVERY_CONV.

THENL

$THENL : (tactic -> tactic list -> tactic)

Synopsis
Applies a list of tactics to the corresponding subgoals generated by a tactic.

Description
If T,T1,...,Tn are tactics, T THENL [T1;...;Tn] is a tactic which applies T to a goal, and
if it does not fail, applies the tactics T1,...,Tn to the corresponding subgoals, unless T

completely solves the goal.

Failure
The application of THENL to a tactic and tactic list never fails. The resulting tactic fails
if T fails when applied to the goal, or if the goal list is not empty and its length is not
the same as that of the tactic list, or finally if Ti fails when applied to the i’th subgoal
generated by T.

Uses
Applying different tactics to different subgoals.

See also
EVERY, ORELSE, THEN.
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THEN_TCL

$THEN_TCL : (thm_tactical -> thm_tactical -> thm_tactical)

Synopsis
Composes two theorem-tacticals.

Description
If ttl1 and ttl2 are two theorem-tacticals, ttl1 THEN_TCL ttl2 is a theorem-tactical
which composes their effect; that is, if:

ttl1 ttac th1 = ttac th2

and

ttl2 ttac th2 = ttac th3

then

(ttl1 THEN_TCL ttl2) ttac th1 = ttac th3

Failure
The application of THEN_TCL to a pair of theorem-tacticals never fails.

See also
EVERY_TCL, FIRST_TCL, ORELSE_TCL.

thm_count

thm_count : (void -> int)

Synopsis
Returns the current value of the theorem counter.

Description
HOL maintains a counter which is incremented every time a primitive inference is per-
formed (or an axiom or definition set up). A call to thm_count() returns the current
value of this counter
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Failure
Never fails.

See also
set_thm_count, timer.

TOP_DEPTH_CONV

TOP_DEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion top-down to all subterms, retraversing changed ones.

Description
TOP_DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term
tm, including the term tm itself. The supplied conversion c is applied to the subterms
of tm in top-down order and is applied repeatedly (zero or more times, as is done
by REPEATC) at each subterm until it fails. If a subterm t is changed (up to alpha-
equivalence) by virtue of the application of c to its own subterms, then then the term
into which t is transformed is retraversed by applying TOP_DEPTH_CONV c to it.

Failure
TOP_DEPTH_CONV c tm never fails but can diverge.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the failure string ‘QCONV‘ may be generated and
later trapped. The behaviour of the function is dependent on this use of failure. So, if
the conversion given as argument happens to generate a failure with string ‘QCONV‘, the
operation of TOP_DEPTH_CONV will be unpredictable.

See also
DEPTH_CONV, ONCE_DEPTH_CONV, REDEPTH_CONV.

top_goal

top_goal : (void -> goal)
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Synopsis
Returns the current goal of the subgoal package.

Description
The function top_goal is part of the subgoal package. It returns the top goal of the goal
stack in the current proof state. For a description of the subgoal package, see set_goal.

Failure
A call to top_goal will fail if there are no unproven goals. This could be because no goal
has been set using set_goal or because the last goal set has been completely proved.

Uses
Examining the proof state after a proof fails.

See also
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_thm.

top_thm

top_thm : (void -> thm)

Synopsis
Returns the theorem just proved using the subgoal package.

Description
The function top_thm is part of the subgoal package. A proof state of the package
consists of either goal and justification stacks if a proof is in progress or a theorem if a
proof has just been completed. If the proof state consists of a theorem, top_thm returns
that theorem. For a description of the subgoal package, see set_goal.

Failure
top_thm will fail if the proof state does not hold a theorem. This will be so either because
no goal has been set or because a proof is in progress with unproven subgoals.

Uses
Accessing the result of an interactive proof session with the subgoal package.

See also
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal.
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TRANS

$TRANS : (thm -> thm -> thm)

Synopsis
Uses transitivity of equality on two equational theorems.

Description
When applied to a theorem A1 |- t1 = t2 and a theorem A2 |- t2 = t3, the inference
rule TRANS returns the theorem A1 u A2 |- t1 = t3. Note that TRANS can also be used
as a infix (see example below).

A1 |- t1 = t2 A2 |- t2 = t3
------------------------------- TRANS

A1 u A2 |- t1 = t3

Failure
Fails unless the theorems are equational, with the right side of the first being the same
as the left side of the second.

Example
The following shows identical uses of TRANS, one as a prefix, one an infix.

#let t1 = ASSUME "a:bool = b" and t2 = ASSUME "b:bool = c";;
t1 = . |- a = b
t2 = . |- b = c

#TRANS t1 t2;;
.. |- a = c

#t1 TRANS t2;;
.. |- a = c

See also
EQ_MP, IMP_TRANS, REFL, SYM.

TRY

TRY : (tactic -> tactic)
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Synopsis
Makes a tactic have no effect rather than fail.

Description
For any tactic T, the application TRY T gives a new tactic which has the same effect as T

if that succeeds, and otherwise has no effect.

Failure
The application of TRY to a tactic never fails. The resulting tactic never fails.

See also
CHANGED_TAC, VALID.

tryfind

tryfind : ((* -> **) -> * list -> **)

Synopsis
Returns the result of the first successful application of a function to the elements of a
list.

Description
tryfind f [x1;...;xn] returns (f xi) for the first xi in the list for which application of
f succeeds.

Failure
Fails with tryfind if the application of the function fails for all elements in the list. This
will always be the case if the list is empty.

See also
find, mem, exists, forall, assoc, rev_assoc.

TRY_CONV

TRY_CONV : (conv -> conv)
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Synopsis
Attempts to apply a conversion; applies identity conversion in case of failure.

Description
TRY_CONV c "t" attempts to apply the conversion c to the term "t"; if this fails, then the
identity conversion applied instead. That is, if c is a conversion that maps a term "t"

to the theorem |- t = t’, then the conversion TRY_CONV c also maps "t" to |- t = t’.
But if c fails when applied to "t", then TRY_CONV c "t" returns |- t = t.

Failure
Never fails.

See also
ALL_CONV.

types

types : string -> {Arity : int, Name : string} list

Synopsis
Lists the types in the named theory.

Description
The function types should be applied to a string which is the name of an ancestor theory
(including the current theory; the special string "-" is always interpreted as the current
theory). It returns a list of all the type constructors declared in the named theory, in the
form of arity-name pairs.

Failure
Fails unless the named theory is an ancestor.
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Example
The theory HOL has no types declared:

- types "HOL";
> val it = [] : (int # string) list

but its ancestors have the following types declared:

- itlist union (map types (ancestry "HOL")) [];
> val it =

[{Arity = 2, Name = "sum"}, {Arity = 2, Name = "prod"},
{Arity = 0, Name = "num"}, {Arity = 1, Name = "list"},
{Arity = 0, Name = "tree"}, {Arity = 1, Name = "ltree"},
{Arity = 0, Name = "bool"}, {Arity = 0, Name = "ind"},
{Arity = 2, Name = "fun"}, {Arity = 0, Name = "one"}]
: {Arity : int, Name : string} list

}
\SEEALSO
ancestors, axioms, constants, definitions, infixes, new_type, new_type_abbrev,
new_type_definition, parents.

\ENDDOC
\DOC{type\_in}

\TYPE {\small\verb%type_in : (type -> term -> bool)%}\egroup

\SYNOPSIS
Determines whether any subterm of a given term has a particular type.

\DESCRIBE
The predicate {\small\verb%type_in%} returns {\small\verb%true%} if a subterm of the second argument
has the type specified by the first argument.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#type_in ":num" "5 = 4 + 1";;
true : bool

#type_in ":bool" "5 = 4 + 1";;
true : bool

#type_in ":(num)list" "SUC 0";;
false : bool

See also
find_term, find_terms, type_in_type, type_tyvars.
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type_in_type

type_in_type : (type -> type -> bool)

Synopsis
Determines whether a given type is a subtype of another.

Description
The predicate type_in_type returns true if the type given as the first argument is a
subtype of the second.

Example

#type_in_type ":num" ":num # bool";;
true : bool

#type_in_type ":num" ":(num)list";;
true :bool

#type_in_type ":bool" ":num + bool";;
true : bool

See also
find_term, find_terms, type_in

type_lt

type_lt : hol_type -> hol_type -> unit

Synopsis
A total ordering function on types.

Description
type_lt tells whether one type is less than another in the ordering.

Failure
Never fails.
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Example

- type_lt (==‘:bool‘==) (==‘:’a -> ’a‘==)
val it = true : bool

Comments
If not (type_lt ty1 ty2) and not (type_lt ty2 ty1), then ty1 = ty2, although it is
faster to directly test for equality. Ordering of types may be useful in implementing
search trees and the like.

See also
term_lt

type_of

type_of : (term -> type)

Synopsis
Returns the type of a term.

Failure
Never fails.

Example

#type_of "T";;
":bool" : type

type_subst

type_subst : hol_type subst -> hol_type -> hol_type

Synopsis
Instantiates types in a type.
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Description
If theta = [{redex1,residue1},...,{redexn,residuen}] is a hol_type subst, where the
redexi are the types to be substituted for, and the residuei the replacements, and ty is
a type to instantiate, the call

type_subst theta ty

will appropriately instantiate the type ty. The instantiations will be performed in par-
allel. If several of the type instantiations are applicable, the choice is undefined. Each
redexi ought to be a type variable, but if it isn’t, it will never be replaced. Also, it is not
necessary that any or all of the types t1...tn should in fact appear in ty.

Failure
Never fails.

Example

- type_subst [{redex = (==‘:’a‘==), residue = (==‘:bool‘==)}]
(==‘:’a # ’b‘==);

> val it = (==‘:bool # ’b‘==) : hol_type

- type_subst [{redex = (==‘:’a # ’b‘==), residue = (==‘:num‘==)},
{redex = (==‘:’a‘==), residue = (==‘:bool‘==)}]

(==‘:’a # ’b‘==);
> val it = (==‘:bool # ’b‘==) : hol_type

See also
inst, INST_TYPE.

type_tyvars

type_tyvars : (type -> type list)

Synopsis
Determines the type variables of a given type.

Description
The function type_tyvars returns a list of type variables used to construct the given
type.
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Example

#type_tyvars ":bool";;
[] : type list

#type_tyvars ":(* -> **) -> (bool # ***) -> (** + num)";;
[":*"; ":**"; ":***"] : type list

See also
type_abbrevs, type_in, type_in_type.

tyvars

Compat.tyvars : term -> type list

Synopsis
Returns a list of the type variables free in a term.

Description
Found in the hol88 library. When applied to a term, tyvars returns a list (possibly

empty) of the type variables which are free in the term.

Failure
Never fails. The function is not accessible unless the hol88 library has been loaded.

Example

- theorem "pair" "PAIR";
|- !x. (FST x,SND x) = x

- Compat.tyvars (concl PAIR);
val it = [(==‘:’b‘==),(==‘:’a‘==)] : hol_type list

- Compat.tyvars (--‘x + 1 = SUC x‘--);
[] : hol_type list

Comments
tyvars does not appear in hol90; use type_vars_in_term instead. WARNING: the order
of the list returned from tyvars need not be the same as that returned from type_vars_in_term.
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In the current HOL logic, there is no binding operation for types, so ‘is free in’ is
synonymous with ‘appears in’.

See also
tyvarsl.

tyvarsl

Compat.tyvarsl : (term list -> type list)

Synopsis
Returns a list of the type variables free in a list of terms.

Description
Found in the hol88 library. When applied to a list of terms, tyvarsl returns a list (pos-
sibly empty) of the type variables which are free in any of those terms.

Failure
Never fails. The function is not accessible unless the hol88 library has been loaded.

Example

- tyvarsl [--‘!x. x = 1‘--, --‘!x:’a. x = x‘--];
[(==‘:’a‘==)] : hol_type list

Uses
Finding all the free type variables in the assumptions of a theorem, as a check on the
validity of certain inferences.

Comments
tyvarsl does not appear in hol90. In the current HOL logic, there is no binding opera-
tion for types, so ‘is free in’ is synonymous with ‘appears in’.

See also
tyvars.

uncurry

uncurry : ((* -> ** -> ***) -> (* # **) -> ***)
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Synopsis
Converts a function taking two arguments into a function taking a single paired argu-
ment.

Description
The application uncurry f returns \(x,y). f x y, so that

uncurry f (x,y) = f x y

Failure
Never fails.

See also
curry.

UNDISCH

UNDISCH : (thm -> thm)

Synopsis
Undischarges the antecedent of an implicative theorem.

Description

A |- t1 ==> t2
---------------- UNDISCH
A, t1 |- t2

Note that UNDISCH treats "~u" as "u ==> F".

Failure
UNDISCH will fail on theorems which are not implications or negations.

Comments
If the antecedent already appears in the hypotheses, it will not be duplicated. However,
unlike DISCH, if the antecedent is alpha-equivalent to one of the hypotheses, it will still
be added to the hypotheses.

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
NEG_DISCH, STRIP_TAC, UNDISCH_ALL, UNDISCH_TAC.
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UNDISCH_ALL

UNDISCH_ALL : (thm -> thm)

Synopsis
Iteratively undischarges antecedents in a chain of implications.

Description

A |- t1 ==> ... ==> tn ==> t
------------------------------ UNDISCH_ALL

A, t1, ..., tn |- t

Note that UNDISCH_ALL treats "~u" as "u ==> F".

Failure
Unlike UNDISCH, UNDISCH_ALL will, when called on something other than an implication
or negation, return its argument unchanged rather than failing.

Comments
Identical terms which are repeated in A, "t1", ..., "tn" will not be duplicated in the
hypotheses of the resulting theorem. However, if two or more alpha-equivalent terms
appear in A, "t1", ..., "tn", then each distinct term will appear in the result.

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, NEG_DISCH, FILTER_DISCH_TAC,
FILTER_DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_TAC.

UNDISCH_TAC

UNDISCH_TAC : (term -> tactic)

Synopsis
Undischarges an assumption.
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Description

A ?- t
==================== UNDISCH_TAC "v"
A - {v} ?- v ==> t

Failure
UNDISCH_TAC will fail if "v" is not an assumption.

Comments
UNDISCHarging "v" will remove all assumptions which are identical to "v", but those
which are alpha-equivalent will remain.

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, NEG_DISCH, FILTER_DISCH_TAC,
FILTER_DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL.

UNDISCH_THEN

Thm_cont.UNDISCH_THEN : term -> thm_tactic -> tactic

Synopsis
Discharges the assumption given and passes it to a theorem-tactic.

Description
UNDISCH_THEN finds the first assumption equal to the term given, removes it from the as-
sumption list, ASSUMEs it, passes it to the theorem-tactic and then applies the consequent
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tactic. Thus:

UNDISCH_THEN t f ([a1,... ai, t, aj, ... an], goal) =
f (ASSUME t) ([a1,... ai, aj,... an], goal)

For example, if

A u {t1} ?- t
=============== f (ASSUME "t1")
B u {t1} ?- v

then

A u {t1} ?- t
=============== UNDISCH_THEN t1 f

B ?- v

Failure
UNDISCH_THEN will fail on goals where the given term is not in the assumption list.

See also
PAT_ASSUM, DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, NEG_DISCH,
FILTER_DISCH_TAC, FILTER_DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL,
UNDISCH_TAC.

unhide_constant

unhide_constant : (string -> void)

Synopsis
Restores recognition of a constant by the quotation parser.

Description
A call unhide_constant ‘c‘, where c is a hidden constant, will unhide the constant,
that is, will make the quotation parser recognize it as such rather than parsing it as a
variable. It reverses the effect of the call hide_constant name.

Failure
Fails unless the given name is a hidden constant in the current theory.



458 Chapter 1. Pre-defined ML Identifiers

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory, and may not be redefined.

See also
hide_constant.

union

union : (’a list -> ’a list -> ’a list)

Synopsis
Computes the union of two ‘sets’.

Description
If l1 and l2 are both sets (a list with no repeated members), union l1 l2 returns the
set union of l1 and l2. In the case that l1 or l2 is not a set, all the user can depend on
is that union l1 l2 returns a list l3 such that every unique element of l1 and l2 is in l3

and each element of l3 is found in either l1 or l2.

Failure
Never fails.

Example

- union [1,2,3] [1,5,4,3];
val it = [2,1,5,4,3] : int list

- union [1,1,1] [1,2,3,2];
val it = [1,2,3,2] : int list

- union [1,2,3,2] [1,1,1] ;
val it = [3,2,1,1,1] : int list

Comments
Do not make the assumption that the order of items in the list is fixed. Later implemen-
tations may use different algorithms, and return a different concrete result while still
meeting the specification.

High performance set operations may be found in the SML/NJ library.
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See also
setify, set_equal, intersect, subtract.

variant

variant : (term list -> term -> term)

Synopsis
Modifies a variable name to avoid clashes.

Description
When applied to a list of variables to avoid clashing with, and a variable to modify,
variant returns a variant of the variable to modify, that is, it changes the name as
intuitively as possible to make it distinct from any variables in the list, or any (non-
hidden) constants. This is normally done by adding primes to the name.

The exact form of the variable name should not be relied on, except that the original
variable will be returned unmodified unless it is itself in the list to avoid clashing with.

Failure
variant l t fails if any term in the list l is not a variable or if t is not a variable.

Example
The following shows a couple of typical cases:

#variant ["y:bool"; "z:bool"] "x:bool";;
"x" : term

#variant ["x:bool"; "x’:num"; "x’’:num"] "x:bool";;
"x’’’" : term

while the following shows that clashes with the names of constants are also avoided:

#variant [] (mk_var(‘T‘,":bool"));;
"T’" : term

Uses
The function variant is extremely useful for complicated derived rules which need to
rename variables to avoid free variable capture while still making the role of the variable
obvious to the user.
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Comments
The hol90 version of variant differs from that of hol88 by failing if asked to rename a
constant.

See also
genvar, hide_constant, Compat.variant (in hol88 library).

version

Globals.version : string

Synopsis
The version of the HOL system being run.

Example

- Globals.version;

val it = "Athabasca" : string

W

W : ((* -> * -> **) -> * -> **)

Synopsis
Duplicates function argument : W f x = f x x.

Failure
Never fails.

See also
#, B, C, CB, Co, I, K, KI, o, oo, S.

words

words : (string -> string list)



words2 461

Synopsis
Splits a string into a list of words.

Description
words s splits the string s into a list of substrings. Splitting occurs at each sequence of
blanks and carriage returns (white space). This white space does not appear in the list
of substrings. Leading and trailing white space in the input string is also thrown away.

Failure
Never fails.

Example

#words ‘ the cat sat on the mat ‘;;
[‘the‘; ‘cat‘; ‘sat‘; ‘on‘; ‘the‘; ‘mat‘] : string list

Uses
Useful when wanting to map a function over a list of constant strings. Instead of using
[‘string1‘;...;‘stringn‘] one can use:

(words ‘string1 ... stringn‘)

See also
words2, word_separators, maptok, explode.

words2

words2 : (string -> string -> string list)

Synopsis
Splits a string into a list of substrings, breaking at occurrences of a specified character.

Description
words2 char s splits the string s into a list of substrings. Splitting occurs at each occur-
rence of a sequence of the character char. The char characters do not appear in the list
of substrings. Leading and trailing occurrences of char are also thrown away. If char

is not a single-character string (its length is not 1), then s will not be split and so the
result will be the list [s].
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Failure
Never fails.

Example

#words2 ‘/‘ ‘/the/cat//sat/on//the/mat/‘;;
[‘the‘; ‘cat‘; ‘sat‘; ‘on‘; ‘the‘; ‘mat‘] : string list

#words2 ‘//‘ ‘/the/cat//sat/on//the/mat/‘;;
[‘/the/cat//sat/on//the/mat/‘] : string list

See also
words, word_separators, explode.

X_CASES_THEN

X_CASES_THEN : (term list list -> thm_tactical)

Synopsis
Applies a theorem-tactic to all disjuncts of a theorem, choosing witnesses.

Description
Let [yl1;...;yln] represent a list of variable lists, each of length zero or more, and
xl1,...,xln each represent a vector of zero or more variables, so that the variables in
each of yl1...yln have the same types as the corresponding xli. X_CASES_THEN expects
such a list of variable lists, [yl1;...;yln], a tactic generating function f:thm->tactic,
and a disjunctive theorem, where each disjunct may be existentially quantified:

th = |-(?xl1.B1) \/...\/ (?xln.Bn)

each disjunct having the form (?xi1 ... xim. Bi). If applying f to the theorem ob-
tained by introducing witness variables yli for the objects xli whose existence is as-
serted by each disjunct, typically ({Bi[yli/xli]} |- Bi[yli/xli]), produce the follow-
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ing results when applied to a goal (A ?- t):

A ?- t
========= f ({B1[yl1/xl1]} |- B1[yl1/xl1])
A ?- t1

...

A ?- t
========= f ({Bn[yln/xln]} |- Bn[yln/xln])
A ?- tn

then applying (X_CHOOSE_THEN [yl1;...;yln] f th) to the goal (A ?- t) produces n

subgoals.

A ?- t
======================= X_CHOOSE_THEN [yl1;...;yln] f th
A ?- t1 ... A ?- tn

Failure
Fails (with X_CHOOSE_THEN) if any yli has more variables than the corresponding xli, or
(with SUBST) if corresponding variables have different types. Failures may arise in the
tactic-generating function. An invalid tactic is produced if any variable in any of the yli

is free in the corresponding Bi or in t, or if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.

Example
Given the goal ?- (x MOD 2) <= 1, the following theorem may be used to split into 2
cases:

th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)

by the tactic X_CASES_THEN [["n:num"];["n:num"]] ASSUME_TAC th to produce the sub-
goals:

{x = (2 * n) + 1} ?- (x MOD 2) <= 1

{x = 2 * n} ?- (x MOD 2) <= 1

See also
DISJ_CASES_THENL, X_CASES_THENL, X_CHOOSE_THEN.
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X_CASES_THENL

X_CASES_THENL : (term list list -> thm_tactic list -> thm_tactic)

Synopsis
Applies theorem-tactics to corresponding disjuncts of a theorem, choosing witnesses.

Description
Let [yl1;...;yln] represent a list of variable lists, each of length zero or more, and
xl1,...,xln each represent a vector of zero or more variables, so that the variables
in each of yl1...yln have the same types as the corresponding xli. The function
X_CASES_THENL expects a list of variable lists, [yl1;...;yln], a list of tactic-generating
functions [f1;...;fn]:(thm->tactic)list, and a disjunctive theorem, where each dis-
junct may be existentially quantified:

th = |-(?xl1.B1) \/...\/ (?xln.Bn)

each disjunct having the form (?xi1 ... xim. Bi). If applying each fi to the theorem
obtained by introducing witness variables yli for the objects xli whose existence is
asserted by the ith disjunct, ({Bi[yli/xli]} |- Bi[yli/xli]), produces the following
results when applied to a goal (A ?- t):

A ?- t
========= f1 ({B1[yl1/xl1]} |- B1[yl1/xl1])
A ?- t1

...

A ?- t
========= fn ({Bn[yln/xln]} |- Bn[yln/xln])
A ?- tn

then applying X_CASES_THENL [yl1;...;yln] [f1;...;fn] th to the goal (A ?- t) pro-
duces n subgoals.

A ?- t
======================= X_CASES_THENL [yl1;...;yln] [f1;...;fn] th
A ?- t1 ... A ?- tn

Failure
Fails (with X_CASES_THENL) if any yli has more variables than the corresponding xli,
or (with SUBST) if corresponding variables have different types, or (with combine) if the
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number of theorem tactics differs from the number of disjuncts. Failures may arise in
the tactic-generating function. An invalid tactic is produced if any variable in any of the
yli is free in the corresponding Bi or in t, or if the theorem has any hypothesis which
is not alpha-convertible to an assumption of the goal.

Example
Given the goal ?- (x MOD 2) <= 1, the following theorem may be used to split into 2
cases:

th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)

by the tactic X_CASES_THENL [["n:num"];["n:num"]] [ASSUME_TAC; SUBST1_TAC] th to pro-
duce the subgoals:

?- (((2 * n) + 1) MOD 2) <= 1

{x = 2 * n} ?- (x MOD 2) <= 1

See also
DISJ_CASES_THEN, X_CASES_THEN, X_CHOOSE_THEN.

X_CHOOSE_TAC

X_CHOOSE_TAC : (term -> thm_tactic)

Synopsis
Assumes a theorem, with existentially quantified variable replaced by a given witness.

Description
X_CHOOSE_TAC expects a variable y and theorem with an existentially quantified conclu-
sion. When applied to a goal, it adds a new assumption obtained by introducing the
variable y as a witness for the object x whose existence is asserted in the theorem.

A ?- t
=================== X_CHOOSE_TAC "y" (A1 |- ?x. w)
A u {w[y/x]} ?- t ("y" not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a variable. Failures may arise in the tactic-generating function. An invalid tactic is
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produced if the introduced variable is free in w or t, or if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Example
Given a goal of the form

{n < m} ?- ?x. m = n + (x + 1)

the following theorem may be applied:

th = ["n < m"] |- ?p. m = n + p

by the tactic (X_CHOOSE_TAC "q:num" th) giving the subgoal:

{n < m, m = n + q} ?- ?x. m = n + (x + 1)

See also
CHOOSE, CHOOSE_THEN, X_CHOOSE_THEN.

X_CHOOSE_THEN

X_CHOOSE_THEN : (term -> thm_tactical)

Synopsis
Replaces existentially quantified variable with given witness, and passes it to a theorem-
tactic.

Description
X_CHOOSE_THEN expects a variable y, a tactic-generating function f:thm->tactic, and a
theorem of the form (A1 |- ?x. w) as arguments. A new theorem is created by intro-
ducing the given variable y as a witness for the object x whose existence is asserted in
the original theorem, (w[y/x] |- w[y/x]). If the tactic-generating function f applied to
this theorem produces results as follows when applied to a goal (A ?- t):

A ?- t
========= f ({w[y/x]} |- w[y/x])
A ?- t1

then applying (X_CHOOSE_THEN "y" f (A1 |- ?x. w)) to the goal (A ?- t) produces the
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subgoal:

A ?- t
========= X_CHOOSE_THEN "y" f (A1 |- ?x. w)
A ?- t1 ("y" not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a variable. Failures may arise in the tactic-generating function. An invalid tactic is
produced if the introduced variable is free in w or t, or if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Example
Given a goal of the form

{n < m} ?- ?x. m = n + (x + 1)

the following theorem may be applied:

th = ["n < m"] |- ?p. m = n + p

by the tactic (X_CHOOSE_THEN "q:num" SUBST1_TAC th) giving the subgoal:

{n < m} ?- ?x. n + q = n + (x + 1)

See also
CHOOSE, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN,
DISJ_CASES_THEN2, DISJ_CASES_THENL, STRIP_THM_THEN, X_CHOOSE_TAC.

X_FUN_EQ_CONV

X_FUN_EQ_CONV : (term -> conv)

Synopsis
Performs extensionality conversion for functions (function equality).

Description
The conversion X_FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. For any
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variable "x" and equation "f = g", where x is of type ty1 and f and g are functions of
type ty1->ty2, a call to X_FUN_EQ_CONV "x" "f = g" returns the theorem:

|- (f = g) = (!x. f x = g x)

Failure
X_FUN_EQ_CONV x tm fails if x is not a variable or if tm is not an equation f = g where f

and g are functions. Furthermore, if f and g are functions of type ty1->ty2, then the
variable x must have type ty1; otherwise the conversion fails. Finally, failure also occurs
if x is free in either f or g.

See also
EXT, FUN_EQ_CONV.

X_GEN_TAC

X_GEN_TAC : (term -> tactic)

Synopsis
Specializes a goal with the given variable.

Description
When applied to a term x’, which should be a variable, and a goal A ?- !x. t, the tactic
X_GEN_TAC returns the goal A ?- t[x’/x].

A ?- !x. t
============== X_GEN_TAC "x’"
A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified and the term a variable of the
appropriate type. It also fails if the variable given is free in either the assumptions or
(initial) conclusion of the goal.

See also
FILTER_GEN_TAC, GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC.
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X_SKOLEM_CONV

X_SKOLEM_CONV : (term -> conv)

Synopsis
Introduces a user-supplied Skolem function.

Description
X_SKOLEM_CONV takes two arguments. The first is a variable f, which must range over
functions of the appropriate type, and the second is a term of the form !x1...xn. ?y. P.
Given these arguments, X_SKOLEM_CONV returns the theorem:

|- (!x1...xn. ?y. P) = (?f. !x1...xn. tm[f x1 ... xn/y])

which expresses the fact that a skolem function f of the universally quantified variables
x1...xn may be introduced in place of the the existentially quantified value y.

Failure
X_SKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of
the form !x1...xn. ?y. P, or if the variable f is free in tm, or if the type of f does not
match its intended use as an n-place curried function from the variables x1...xn to a
value having the same type as y.

See also
SKOLEM_CONV.
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