
[For HOL Kananaskis-1] June 17, 2002

The HOL System
REFERENCE

Preface

This volume is the reference manual for the HOL system. It is one of three documents
making up the documentation for HOL:

(i) TUTORIAL: a tutorial introduction to HOL, with case studies.

(ii) DESCRIPTION: a description of higher order logic, the ML programming lan-
guage, and theorem proving methods in the HOL system;

(iii) REFERENCE: the reference documentation of the tools available in HOL.

These three documents will be referred to by the short names (in small slanted capitals)
given above.

This document, REFERENCE, provides documentation on all the pre-defined ML vari-
able bindings in the HOL system. These include: general-purpose functions, such as
ML functions for list processing, arithmetic, input/output, and interface configuration;
functions for processing the types and terms of the HOL logic, for setting up theories,
and for using the subgoal package; primitive and derived forward inference rules; tac-
tics and tacticals; and pre-proved built-in theorems.

The manual entries for these ML identifiers are divided into two chapters. The first
chapter is an alphabetical sequence of manual entries for all ML identifiers in the system
except those identifiers that are bound to theorems. The theorems are listed in the
second chapter, roughly grouped into sections based on subject matter.

The REFERENCE volume is purely for reference and browsing. It is generated from the
same database that is used by the help system. For an introduction to the HOL system,
see TUTORIAL; for a systematic presentation, see DESCRIPTION.

iii

iv Preface

Acknowledgements

First edition

The three volumes TUTORIAL, DESCRIPTION and REFERENCE were produced at the Cam-
bridge Research Center of SRI International with the support of DSTO Australia.

The HOL documentation project was managed by Mike Gordon, who also wrote parts
of DESCRIPTION and TUTORIAL using material based on an early paper describing the
HOL system1 and The ML Handbook 2. Other contributers to DESCRIPTION incude Avra
Cohn, who contributed material on theorems, rules, conversions and tactics, and also
composed the index (which was typeset by Juanito Camilleri); Tom Melham, who wrote
the sections describing type definitions, the concrete type package and the ‘resolution’
tactics; and Andy Pitts, who devised the set-theoretic semantics of the HOL logic and
wrote the material describing it.

The original document design used LATEX macros supplied by Elsa Gunter, Tom Melham
and Larry Paulson. The typesetting of all three volumes was managed by Tom Melham.
The cover design is by Arnold Smith, who used a photograph of a ‘snow watching
lantern’ taken by Avra Cohn (in whose garden the original object resides). John Van
Tassel composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL documenta-
tion effort, either by providing material, or by sending lists of errors in the first edition.
Thanks to everyone who helped, and thanks to DSTO and SRI for their generous sup-
port.

Later editions

The second edition of REFERENCE was a joint effort by the Cambridge HOL group.
The third edition of all three volumes represents a wide-ranging and still incomplete

revision of material written for HOL88 so that it applies to the HOL system a decade
later. The third edition has been prepared by Konrad Slind and Michael Norrish.

1M.J.C. Gordon, ‘HOL: a Proof Generating System for Higher Order Logic’, in: VLSI Specification,
Verification and Synthesis, edited by G. Birtwistle and P.A. Subrahmanyam, (Kluwer Academic Publishers,
1988), pp. 73–128.

2The ML Handbook, unpublished report from Inria by Guy Cousineau, Mike Gordon, Gérard Huet,
Robin Milner, Larry Paulson and Chris Wadsworth.

v

vi Acknowledgements

Contents

1 Pre-defined ML Identifiers 1

vii

viii Contents

Chapter 1

Pre-defined ML Identifiers

This chapter provides manual entries for pre-defined ML identifiers in the HOL system.
These include: general-purpose functions, such as functions for list processing, arith-
metic, input/output, and interface configuration; functions for processing the types and
terms of the HOL logic, for setting up theories, and for using the subgoal package; prim-
itive and derived forward inference rules; and tactics and tacticals. The arrangement
is alphabetical. If an entry’s title box includes a parenthesised word to the right, this
identifies the ML structure where that identifier is bound. The interactive system starts
with some structures already present, others will need to be load-ed first.

(Lib)

op ## : (’a -> ’b) * (’c -> ’d) -> ’a * ’c -> ’b * ’d

Synopsis
Infix combinator for applying two functions to the two projections of a pair.

Description
An application (f ## g) (x,y) is equal to (f x, g y).

Failure
If f x or g y fails.

Example

- (I ## dest_imp) (strip_forall (Term ‘!x y z. x /\ y ==> z /\ p‘));
> val it = ([‘x‘, ‘y‘, ‘z‘], (‘x /\ y‘, ‘z /\ p‘))

Comments
The ## combinator can be thought of as a map operation for pairs. It is declared as a
right associative infix.

1

2 Chapter 1. Pre-defined ML Identifiers

See also
Lib.pair.

&& (BasicProvers)

op && : simpset * thm list -> simpset

Synopsis
Infix operator for adding theorems into a simpset.

Description
BasicProvers.&& is identical to bossLib.&&.

See also
bossLib.&&.

&& (bossLib)

op && : simpset * thm list -> simpset

Synopsis
Infix operator for adding theorems into a simpset.

Description
It is occasionally necessary to extend an existing simpset ss with a collection rwlist of
new rewrite rules. To achieve this, one applies the && function via ss && rwlist.

Failure
Never fails.

Example

- open bossLib;
... <output elided> ...
- val ss = boolSimps.bool_ss && pairTheory.pair_rws;
> val ss = <simpset> : simpset

Comments
Of limited applicability since most of the tactics for rewriting already include this func-
tionality. However, applications of ZAP_TAC can benefit.

++ 3

See also
simpLib.++, simpLib.SIMP CONV, bossLib.RW TAC, bossLib.ZAP TAC.

++ (simpLib)

op ++ : simpset * ssdata -> simpset

Synopsis
Infix operator for adding an ssdata item into a simpset.

Description
bossLib.++ is identical to simpLib.++.

See also
bossLib.++.

-- (Parse)

-- : term quotation -> ’a -> term

Synopsis
Parses a quotation into a term value

Description
An invocation --‘ ... ‘-- is identical to Term ‘ ... ‘.

Failure
As for Parse.Term.

Uses
Turns strings into terms.

See also
Parse.Term, Parse.Type, Parse.==.

4 Chapter 1. Pre-defined ML Identifiers

--> (Type)

op --> : hol_type * hol_type -> hol_type

Synopsis
Right associative infix operator for building a function type.

Description
If ty1 and ty2 are HOL types, then ty1 --> ty2 builds the HOL type ty1 -> ty2.

Failure
Never fails.

Example

- bool --> alpha;
> val it = ‘:bool -> ’a‘ : hol_type

Comments
This operator associates to the right, that is, ty1 --> ty2 --> ty3 is identical to ty1 --> (ty2 --> ty3).

See also
Type.dom rng, Type.mk type, Type.mk thy type.

== (Parse)

== : hol_type quotation -> ’a -> hol_type

Synopsis
Parses a quotation into a HOL type.

Description
An invocation ==‘ ... ‘== is identical to Type ‘ ... ‘.

Failure
As for Parse.Type.

A 5

Uses
Turns strings into types.

See also
Parse.Term, Parse.Type, Parse.--.

A (Lib)

A : (’a -> ’b) -> ’a -> ’b

Synopsis
Combinator for function application

Description
The application A f x equals f x.

Failure
A f never fails. A f x fails if f x fails.

Example

- map2 A [I, K 3, fn x => x + 1] [1,2,3];

> val it = [1, 3, 4] : int list

See also
Lib, Lib.##, Lib.B, Lib.C, Lib.I, Lib.K, Lib.S, Lib.W.

ABS (Thm)

ABS : term -> thm -> thm

Synopsis
Abstracts both sides of an equation.

6 Chapter 1. Pre-defined ML Identifiers

Description

A |- t1 = t2
------------------------ ABS x [Where x is not free in A]
A |- (\x.t1) = (\x.t2)

Failure
If the theorem is not an equation, or if the variable x is free in the assumptions A.

Example

- let val m = Term ‘m:bool‘
in

ABS m (REFL m)
end;

> val it = |- (\m. m) = (\m. m) : thm

See also
Thm.ETA CONV, Drule.EXT, Drule.MK ABS.

ABS_CONV (Conv)

ABS_CONV : conv -> conv

Synopsis
Applies a conversion to the body of an abstraction.

Description
If c is a conversion that maps a term tm to the theorem |- tm = tm’, then the conversion
ABS_CONV c maps abstractions of the form \x.tm to theorems of the form:

|- (\x.tm) = (\x.tm’)

That is, ABS_CONV c (\x.t) applies c to the body of the abstraction \x.t.

Failure
ABS_CONV c tm fails if tm is not an abstraction or if tm has the form \x.t but the conver-
sion c fails when applied to the term t. The function returned by ABS_CONV c may also

Absyn 7

fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps
a term M to a theorem |- M = N).

Example

- ABS_CONV SYM_CONV (Term ‘\x. 1 = x‘)
> val it = |- (\x. 1 = x) = (\x. x = 1) : thm

See also
Conv.RAND CONV, Conv.RATOR CONV, Conv.SUB CONV, Conv.BINDER CONV,
Conv.QUANT CONV, Conv.STRIP BINDER CONV, Conv.STRIP QUANT CONV.

Absyn (Parse)

Absyn : term quotation -> Absyn.absyn

Synopsis
Implements the first phase of term parsing; the removal of special syntax.

Description
Absyn takes a quotation and parses it into an abstract syntax tree of type absyn, using
the current term and type grammars. This phase of parsing is unconcerned with types,
and will happily parse meaningless expressions that are syntactically valid.

Example
Absyn will parse the expression ‘let x = e1 in e2‘ into

APP(APP(IDENT "LET", LAM(VIDENT "x", IDENT "e2")), IDENT "e1")

The record syntax ‘rec.fld1‘ is converted into something of the form

APP(IDENT "....fld1", IDENT "rec")

where the dots will actually be equal to the value of GrammarSpecials.recsel_special
(a string).

Failure
Fails if the quotation has a syntax error.

8 Chapter 1. Pre-defined ML Identifiers

Uses
Absyn is not often used, but may be handy for implementing some weird and wonderful
concrete syntax that surpasses the functionality of the HOL parser.

See also
Parse.Term, Parse.term grammar.

AC_CONV (Conv)

AC_CONV : (thm * thm) -> conv

Synopsis
Proves equality of terms using associative and commutative laws.

Description
Suppose _ is a function, which is assumed to be infix in the following syntax, and ath

and cth are theorems expressing its associativity and commutativity; they must be of
the following form, except that any free variables may have arbitrary names and may
be universally quantified:

ath = |- m _ (n _ p) = (m _ n) _ p
cth = |- m _ n = n _ m

Then the conversion AC_CONV(ath,cth) will prove equations whose left and right sides
can be made identical using these associative and commutative laws.

Failure
Fails if the associative or commutative law has an invalid form, or if the term is not an
equation between AC-equivalent terms.

Example
Consider the terms x + SUC t + ((3 + y) + z) and 3 + SUC t + x + y + z. AC_CONV

proves them equal.

- AC_CONV(ADD_ASSOC,ADD_SYM)
(Term ‘x + (SUC t) + ((3 + y) + z) = 3 + (SUC t) + x + y + z‘);

> val it =
|- (x + ((SUC t) + ((3 + y) + z)) = 3 + ((SUC t) + (x + (y + z)))) = T

Comments
Note that the preproved associative and commutative laws for the operators +, *, /\ and
\/ are already in the right form to give to AC_CONV.

ACCEPT TAC 9

See also
Conv.SYM CONV.

ACCEPT_TAC (Tactic)

ACCEPT_TAC : thm_tactic

Synopsis
Solves a goal if supplied with the desired theorem (up to alpha-conversion).

Description
ACCEPT_TAC maps a given theorem th to a tactic that solves any goal whose conclusion
is alpha-convertible to the conclusion of th.

Failure
ACCEPT_TAC th (A,g) fails if the term g is not alpha-convertible to the conclusion of the
supplied theorem th.

Example
ACCEPT_TAC applied to the axiom

BOOL_CASES_AX = |- !t. (t = T) \/ (t = F)

will solve the goal

?- !x. (x = T) \/ (x = F)

but will fail on the goal

?- !x. (x = F) \/ (x = T)

Uses
Used for completing proofs by supplying an existing theorem, such as an axiom, or a
lemma already proved.

See also
Tactic.MATCH ACCEPT TAC.

10 Chapter 1. Pre-defined ML Identifiers

aconv (Term)

aconv : term -> term -> bool

Synopsis
Tests for alpha-convertibility of terms.

Description
When applied to two terms, aconv returns true if they are alpha-convertible, and false

otherwise. Two terms are alpha-convertible if they differ only in the way that names
have been given to bound variables.

Failure
Never fails.

Example

- aconv (Term ‘?x y. x /\ y‘) (Term ‘?y x. y /\ x‘)
> val it = true : bool

See also
Thm.ALPHA, Drule.ALPHA CONV.

ADD_ASSUM (Drule)

ADD_ASSUM : term -> thm -> thm

Synopsis
Adds an assumption to a theorem.

Description
When applied to a boolean term s and a theorem A |- t, the inference rule ADD_ASSUM

returns the theorem A u {s} |- t.

A |- t
-------------- ADD_ASSUM s
A u {s} |- t

ADD_ASSUM performs straightforward set union with the new assumption; it checks for
identical assumptions, but not for alpha-equivalent ones. The position at which the new
assumption is inserted into the assumption list should not be relied on.

add bare numeral form 11

Failure
Fails unless the given term has type bool.

See also
Thm.ASSUME, Drule.UNDISCH.

add_bare_numeral_form (Parse)

add_bare_numeral_form : (char * string option) -> unit

Synopsis
Adds support for annotated numerals to the parser/pretty-printer.

Description
The function add_bare_numeral_form allows the user to give special meaning to strings of
digits that are suffixed with single characters. A call to this function with pair argument
(c, s) adds c as a possible suffix. Subsequently, if a sequence of digits is parsed, and it
has the character c directly after the digits, then the natural number corresponding to
these digits is made the argument of the “map function” corresponding to s.

This map function is computed as follows: if the s option value is NONE, then the
function is considered to be the identity and never really appears; the digits denote a
natural number. If the value of s is SOME s’, then the parser translates the string to an
application of s’ to the natural number denoted by the digits.

Failure
Fails if the suffix character is not a letter.

Example
The following function, binary_of, defined with equations:

val bthm =
|- binary_of n = if n = 0 then 0

else n MOD 10 + 2 * binary_of (n DIV 10) : thm

can be used to convert numbers whose decimal notation is x, to numbers whose binary
notation is x (as long as x only involves zeroes and ones).

12 Chapter 1. Pre-defined ML Identifiers

The following call to add_bare_numeral_form then sets up a numeral form that could
be used by users wanting to deal with binary numbers:

- add_bare_numeral_form(#"b", SOME "binary_of");
> val it = () : unit

- Term‘1011b‘;
> val it = ‘1011b‘ : term

- dest_comb it;
> val it = (‘binary_of‘, ‘1011‘) : term * term

Uses
If one has a range of values that are usefully indexed by natural numbers, the function
add_bare_numeral_form provides a syntactically convenient way of reading and writing
these values. If there are other functions in the range type such that the mapping
function is a homomorphism from the natural numbers, then add_numeral_form could
be used, and the appropriate operators (+, * etc) overloaded.

See also
Parse.add numeral form.

add_implicit_rewrites (Rewrite)

Rewrite.add_implicit_rewrites: thm list -> unit

Synopsis
Augments the built-in database of simplifications automatically included in rewriting.

Uses
Used to build up the power of the built-in simplification set.

See also
base rewrites, Rewrite.set implicit rewrites.

add_infix (Parse)

add_infix : string * int * HOLgrammars.associativity -> unit

add infix 13

Synopsis
Adds a string as an infix with the given precedence and associativity to the term gram-
mar.

Description
This function adds the given string to the global term grammar such that the string

<str1> s <str2>

will be parsed as

s <t1> <t2>

where <str1> and <str2> have been parsed to two terms <t1> and <t2>. The parsing
process does not pay any attention to whether or not s corresponds to a constant or
not. This resolution happens later in the parse, and will result in either a constant or a
variable with name s. In fact, if this name is overloaded, the eventual term generated
may have a constant of quite a different name again; the resolution of overloading
comes as a separate phase (see the entry for overload_on).

Failure
add_infix fails if the precedence level chosen for the new infix is the same as a different
type of grammar rule (e.g., suffix or binder), or if the specified precedence level has
infixes already but of a different associativity.

It is also possible that the choice of string s will result in an ambiguous grammar. This
will be marked with a warning. The parser may behave in strange ways if it encounters
ambiguous phrases, but will work normally otherwise.

Example
Though we may not have + defined as a constant, we can still define it as an infix for
the purposes of printing and parsing:

- add_infix ("+", 500, HOLgrammars.LEFT);
> val it = () : unit

- val t = Term‘x + y‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>
> val t = ‘x + y‘ : term

We can confirm that this new infix has indeed been parsed that way by taking the
resulting term apart:

- dest_comb t;
> val it = (‘$+ x‘, ‘y‘) : term * term

With its new status, + has to be “quoted” with a dollar-sign if we wish to use it in a

14 Chapter 1. Pre-defined ML Identifiers

position where it is not an infix, as in the binding list of an abstraction:

- Term‘\$+. x + y‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>
> val it = ‘\$+. x + y‘ : term
- dest_abs it;
> val it = (‘$+‘,‘x + y‘) : term * term

The generation of three new type variables in the examples above emphasises the fact
that the terms in the first example and the body of the second are really no different
from f x y (where f is a variable), and don’t have anything to do with the constant for
addition from arithmeticTheory. The new + infix is left associative:

- Term‘x + y + z‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘x + y + z‘ : term

- dest_comb it;
> val it = (‘$+ (x + y)‘, ‘z‘) : term * term

It is also more tightly binding than /\ (which has precedence 400 by default):

- Term‘p /\ q + r‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘p /\ q + r‘ : term

- dest_comb it;
> val it = (‘$/\ p‘, ‘q + r‘) : term * term

An attempt to define a right associative operator at the same level fails:

Lib.try add_infix("-", 500, HOLgrammars.RIGHT);

Exception raised at Parse.add_infix:
Grammar Error: Attempt to have differently associated infixes

(RIGHT and LEFT) at same level

Similarly we can’t define an infix at level 900, because this is where the (true prefix)
rule for logical negation (~) is.

- Lib.try add_infix("-", 900, HOLgrammars.RIGHT);

Exception raised at Parse.add_infix:
Grammar Error: Attempt to have different forms at same level

Finally, an attempt to have a second + infix at a different precedence level causes grief

add listform 15

when we later attempt to use the parser:

- add_infix("+", 400, HOLgrammars.RIGHT);
> val it = () : unit

- Term‘p + q‘;
<<HOL warning: Parse.Term: Grammar ambiguous on token pair + and +,

and probably others too>>
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
> val it = ‘‘p + q‘‘ : term

In this situation, the behaviour of the parser will become quite unpredictable whenever
the + token is encountered. In particular, + may parse with either fixity.

Uses
Most use of infixes will want to have them associated with a particular constant in
which case the definitional principles (new_infixl_definition etc) are more likely to be
appropriate. However, a development of a theory of abstract algebra may well want to
have infix variables such as + above.

Comments
As with other functions in the Parse structure, there is a companion temp_add_infix

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

See also
Parse.add binder, Parse.add rule, Parse.add listform, Parse.Term.

add_listform (Parse)

add_listform :
{separator : string, leftdelim : string, rightdelim : string,
cons : string, nilstr : string} -> unit

Synopsis
Adds a “list-form” to the built-in grammar, allowing the parsing of strings such as
[a; b; c] and {}.

16 Chapter 1. Pre-defined ML Identifiers

Description
The add_listform function allows the user to augment the HOL parser with rules so that
it can turn a string of the form

<ld> str1 <sep> str2 <sep> ... strn <rd>

into the term

<cons> t1 (<cons> t2 ... (<cons> tn <nilstr>))

where <ld> is the left delimiter string, <rd> the right delimiter, and <sep> is the separator
string from the fields of the record argument to the function. The various stri are
strings representing the ti terms. Further, the grammar will also parse <ld> <rd> into
<nilstr>.

In common with the add_rule function, there is no requirement that the cons and
nilstr fields be the names of constants; the parser/grammar combination will generate
variables with these names if there are no corresponding constants.

The HOL pretty-printer is simultaneously aware of the new rule, and terms of the
forms above will print appropriately.

Failure
Should never fail itself, but subsequent calls to the term parser may well fail if the strings
chosen for the various fields above introduce precedence conflicts. For example, it will
almost always be impossible to use left and right delimiters that are already present in
the grammar, unless they are there as the left and right parts of a closefix.

Example
The definition of the “list-form” for lists in the HOL distribution is:

add_listform {separator = ";", leftdelim = "[", rightdelim = "]",
cons = "CONS", nilstr = "NIL"};

while the set syntax is defined similarly:

add_listform {leftdelim = "{", rightdelim = "}", separator = ";",
cons = "INSERT", nilstr = "EMPTY"};

Uses
Used to make sequential term structures print and parse more pleasingly.

Comments
As with other parsing functions, there is a temp_add_listform version of this function,
which has the same effect on the global grammar, but which does not cause this effect
to persist when the current theory is exported.

add numeral form 17

See also
Parse.add rule.

add_numeral_form (Parse)

Parse.add_numeral_form : (char * string option) -> unit

Synopsis
Adds support for numerals of differing types to the parser/pretty-printer.

Description
This function allows the user to extend HOL’s parser and pretty-printer so that they
recognise and print numerals. A numeral in this context is a string of digits. Each such
string corresponds to a natural number (i.e., the HOL type num) but add_numeral_form

allows for numerals to stand for values in other types as well.
A call to add_numeral_form(c,s) augments the global term grammar in two ways.

Firstly, in common with the function add_bare_numeral_form (q.v.), it allows the user
to write a single letter suffix after a numeral (the argument c). The presence of this
character specifies s as the “injection function” which is to be applied to the natural
number denoted by the preceding digits.

Secondly, the constant denoted by the s argument is overloaded to be one of the pos-
sible resolutions of an internal, overloaded operator, which is invisibly wrapped around
all numerals that appear without a character suffix. After applying add_numeral_form,
the function denoted by the argument s is now a possible resolution of this overloading,
so numerals can now be seen as members of the range of the type of s.

Finally, if s is not NONE, the constant denoted by s is overloaded to be one of the
possible resolutions of the string &. This operator is thus the standard way of writing
the injection function from :num into other numeric types.

The injection function specifed by argument s is either the constant with name s0, if s
is of the form SOME s0, or the identity function if s is NONE. Using add_numeral_form with
NONE for this parameter is done in the development of arithmeticTheory, and should not
be done subsequently.

Failure
Fails if arithmeticTheory is not loaded, as this is where the basic constants implementing
natural number numerals are defined. Also fails if there is no constant with the given
name, or if it doesn’t have type :num -> ’a for some ’a. Fails if add_bare_numeral_form
would also fail on this input.

18 Chapter 1. Pre-defined ML Identifiers

Example
The natural numbers are given numeral forms as follows:

val _ = add_numeral_form (#"n", NONE);

This is done in arithmeticTheory so that after it is loaded, one can write numerals and
have them parse (and print) as natural numbers. However, later in the development, in
integerTheory, numeral forms for integers are also introduced:

val _ = add_numeral_form(#"i", SOME "int_of_num");

Here int_of_num is the name of the function which injects natural numbers into integers.
After this call is made, numeral strings can be treated as integers or natural numbers,
depending on the context.

- load "integerTheory";
> val it = () : unit
- Term‘3‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘3‘ : term
- type_of it;
> val it = ‘:int‘ : hol_type

The parser has chosen to give the string “3” integer type (it will prefer the most recently
specified possibility, in common with overloading in general). However, numerals can
appear with natural number type in appropriate contexts:

- Term‘(SUC 3, 4 + ~x)‘;
> val it = ‘(SUC 3,4 + ~x)‘ : term
- type_of it;
> val it = ‘:num # int‘ : hol_type

Moreover, one can always use the character suffixes to absolutely specify the type of the
numeral form:

- Term‘f 3 /\ p‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘f 3 /\ p‘ : term

- Term‘f 3n /\ p‘;
> val it = ‘f 3 /\ p‘ : term

Comments
Overloading on too many numeral forms is a sure recipe for confusion.

add rewrites 19

See also
Parse.add bare numeral form, Parse.overload on, Parse.show numeral types.

add_rewrites (Rewrite)

add_rewrites : rewrites -> thm list -> rewrites

Synopsis
Add theorems to a collection of rewrite rules.

Description
The function add_rewrites processes each element in a list of theorems and adds the
resulting rewrite rules to a value of type rewrites.

Failure
Never fails.

Example

- load "pairTheory"; open pairTheory;
add_rewrites empty_rewrites (PAIR_MAP_THM::pair_rws);

> val it =
|- (f ## g) (x,y) = (f x,g y);
|- (FST x,SND x) = x;
|- FST (x,y) = x;
|- SND (x,y) = y
Number of rewrite rules = 4
: rewrites

Uses
For building bespoke rewrite rule sets.

See also
Rewrite.bool rewrites, Rewrite.empty rewrites, Rewrite.implicit rewrites,
Rewrite.GEN REWRITE CONV, Rewrite.GEN REWRITE RULE, Rewrite.GEN REWRITE TAC.

20 Chapter 1. Pre-defined ML Identifiers

add_rule (Parse)

add_rule :
{term_name : string, fixity : fixity,
pp_elements: term_grammar.pp_element list,
paren_style : term_grammar.ParenStyle,
block_style : term_grammar.PhraseBlockStyle *

term_grammar.block_info} -> unit

Synopsis
Adds a parsing/printing rule to the global grammar.

Description
The function add_rule is a fundamental method for adding parsing (and thus printing)
rules to the global term grammar that sits behind the functions Term and --, and the
pretty-printer installed for terms. It is used for everything except the addition of list-
forms, for which refer to the entry for add_listform.

There are five components in the record argument to add_rule. The term_name com-
ponent is the name of the term (whether a constant or a variable) that will be generated
at the head of the function application. Thus, the term_name component when specifying
parsing for conditional expressions is COND.

The following values (all in structure Parse) are useful for constructing fixity values:

val LEFT : HOLgrammars.associativity
val RIGHT : HOLgrammars.associativity
val NONASSOC : HOLgrammars.associativity

val Prefix : fixity
val Binder : fixity
val Closefix : fixity
val Infixl : int -> fixity
val Infixr : int -> fixity
val Infix : HOLgrammars.associativity * int -> fixity
val TruePrefix : int -> fixity
val Suffix : int -> fixity

The Prefix fixity has an unfortunate name, as it is a fixity corresponding to no special
treatment. In fact, when a Prefix fixity is specified, the add_rule function performs no
action. When an element list is meant to form a genuine prefix, the TruePrefix fixity
must be used instead, as is done below in the conditional expression example and as is

add rule 21

also done with ~ (logical negation). The Prefix fixity is useful elsewhere, in situations
where standard interfaces require fixities to be provided, but where the user may wish
to leave an identifier as a normal symbol.

The Binder fixity is for binders such as universal and existential quantifiers (! and
?). Binders can actually be seen as (true) prefixes (should ‘!x. p /\ q‘ be parsed as
‘(!x. p) /\ q‘ or as ‘!x. (p /\ q)‘?), but the add_rule interface only allows binders
to be added at the one level (the weakest in the grammar). Further, when binders
are added using this interface, all elements of the record apart from the term_name are
ignored, so the name of the binder must be the same as the string that is parsed and
printed (but see also restricted quantifiers: associate_restriction).

The remaining fixities all cause add_rule to pay due heed to the pp_elements (“pars-
ing/printing elements”) component of the record. As far as parsing is concerned, the
only important elements are TOK and TM values, of the following types:

val TM : term_grammar.pp_element
val TOK : string -> term_grammar.pp_element

The TM value corresponds to a “hole” where a sub-term is possible. The TOK value corre-
sponds to a piece of concrete syntax, a string that is required when parsing, and which
will appear when printing. The sequence of pp_elements specified in the record passed
to add_rule specifies the “kernel” syntax of an operator in the grammar. The “kernel” of
a rule is extended (or not) by additional sub-terms depending on the fixity type, thus:

Closefix : [Kernel] (* no external arguments *)
TruePrefix : [Kernel] _ (* an argument to the right *)
Suffix : _ [Kernel] (* an argument to the left *)
Infix : _ [Kernel] _ (* arguments on both sides *)

Thus simple infixes, suffixes and prefixes would have singleton pp_element lists, con-
sisting of just the symbol desired. More complicated mix-fix syntax can be constructed
by identifying whether or not sub-term arguments exist beyond the kernel of concrete
syntax. For example, syntax for the evaluation relation of an operational semantics
(_ |- _ --> _) is an infix with a kernel delimited by |- and --> tokens. Syntax for
denotation brackets [| _ |] is a closefix with one internal argument in the kernel.

The remaining sorts of possible pp_element values are concerned with pretty-printing.
(The basic scheme is implemented on top of a standard Oppen-style pretty-printing

22 Chapter 1. Pre-defined ML Identifiers

package.) They are

(* where
type term_grammar.block_info = PP.break_style * int

*)
val BreakSpace : (int * int) -> term_grammar.pp_element
val HardSpace : int -> term_grammar.pp_element

val BeginFinalBlock : term_grammar.block_info -> term_grammar.pp_element
val EndInitialBlock : term_grammar.block_info -> term_grammar.pp_element
val PPBlock : term_grammar.pp_element list * term_grammar.block_info

-> term_grammar.pp_element

val OnlyIfNecessary : term_grammar.ParenStyle
val ParoundName : term_grammar.ParenStyle
val ParoundPrec : term_grammar.ParenStyle
val Always : term_grammar.ParenStyle

val AroundEachPhrase : term_grammar.PhraseBlockStyle
val AroundSamePrec : term_grammar.PhraseBlockStyle
val AroundSameName : term_grammar.PhraseBlockStyle
val NoPhrasing : term_grammar.PhraseBlockStyle

The two spacing values provide ways of specifying white-space should be added when
terms are printed. Use of HardSpace n results in n spaces being added to the term
whatever the context. On the other hand, BreakSpace(m,n) results in a break of width m

spaces unless this makes the current line too wide, in which case a line-break will occur,
and the next line will be indented an extra n spaces.

For example, the add_infix function (q.v.) is implemented in terms of add_rule in
such a way that a single token infix s, has a pp_element list of

[HardSpace 1, TOK s, BreakSpace(1,0)]

This results in chains of infixes (such as those that occur with conjunctions) that break
so as to leave the infix on the right hand side of the line. Under this constraint, printing
can’t break so as to put the infix symbol on the start of a line, because that would imply
that the HardSpace had in fact been broken. (Consequently, if a change to this behaviour
is desired, there is no global way of effecting it, but one can do it on an infix-by-infix
basis by deleting the given rule (see, for example, remove_termtok) and then “putting it
back” with different pretty-printing constraints.)

The PPBlock function allows the specification of nested blocks (blocks in the Oppen
pretty-printing sense) within the list of pp_elements. Because there are sub-terms in
all but the Closefix fixities that occur beyond the scope of the pp_element list, the
BeginFinalBlock and EndInitialBlock functions can also be used to indicate the bound-

add rule 23

ary of blocks whose outer extent is the term beyond the kernel represented by the
pp_element list. There is an example of this below.

The possible ParenStyle values describe when parentheses should be added to terms.
The OnlyIfNecessary value will cause parentheses to be added only when required to
disambiguate syntax. The ParoundName will cause parentheses to be added if necessary,
or where the head symbol has the given term_name and where this term is not the ar-
gument of a function with the same head name. This style of parenthesisation is used
with tuples, for example. The ParoundPrec value is similar, but causes parentheses to be
added when the term is the argument to a function with a different precedence level.
Finally, the Always value causes parentheses always to be added.

The PhraseBlockStyle values describe when pretty-printing blocks involving this term
should be entered. The AroundEachPhrase style causes a pretty-printing block to be cre-
ated around each term. This is not appropriate for operators such as conjunction how-
ever, where all of the arguments to the conjunctions in a list are more pleasingly thought
of as being at the same level. This effect is gained by specifying either AroundSamePrec

or AroundSameName. The former will cause the creation of a new block for the phrase if
it is at a different precedence level from its parent, while the latter creates the block if
the parent name is not the same. The former is appropriate for + and - which are at
the same precedence level, while the latter is appropriate for /\. Finally, the NoPhrasing

style causes there to be no block at all around terms controlled by this rule. The inten-
tion in using such a style is to have block structure controlled by the level above.

Failure

This function will fail if the pp_element list does not have TOK values at the beginning
and the end of the list, or if there are two adjacent TM values in the list. It will fail if the
rule specifies a fixity with a precedence, and if that precedence level in the grammar is
already taken by rules with a different sort of fixity.

Example

There are two conditional expression syntaxes defined in the theory bool. The first is
the traditional HOL88/90 syntax. Because the syntax involves “dangling” terms to the

24 Chapter 1. Pre-defined ML Identifiers

left and right, it is an infix (and one of very weak precedence at that).

val _ = add_rule{term_name = "COND",
fixity = Infix (HOLgrammars.RIGHT, 3),
pp_elements = [HardSpace 1, TOK "=>",

BreakSpace(1,0), TM,
BreakSpace(1,0), TOK "|",
HardSpace 1],

paren_style = OnlyIfNecessary,
block_style = (AroundEachPhrase,

(PP.INCONSISTENT, 0))};

The second rule added uses the more familiar if-then-else syntax. Here there is only a
“dangling” term to the right of the construction, so this rule’s fixity is of type TruePrefix.
(If the rule was made a Closefix, strings such as ‘if P then Q else R‘ would still parse,
but so too would ‘if P then Q else‘.) This example also illustrates the use of blocks
within rules to improve pretty-printing.

val _ = add_rule{term_name = "COND", fixity = TruePrefix 70,
pp_elements = [PPBlock([TOK "if", BreakSpace(1,2),

TM, BreakSpace(1,0),
TOK "then"], (PP.CONSISTENT, 0)),

BreakSpace(1,2), TM, BreakSpace(1,0),
BeginFinalBlock(PP.CONSISTENT, 2),
TOK "else", BreakSpace(1,0)],

paren_style = OnlyIfNecessary,
block_style = (AroundEachPhrase,

(PP.INCONSISTENT, 0))};

Note that the above form is not that actually used in the system. As written, it allows
for pretty-printing some expressions as:

if P then
<very long term> else Q

because the block_style is INCONSISTENT.
The pretty-printer prefers later rules over earlier rules by default (though this choice

can be changed with prefer_form_with_tok (q.v.)), so conditional expressions print us-
ing the if-then-else syntax rather than the _ => _ | _ syntax.

Uses
For making pretty concrete syntax possible.

Comments
Because adding new rules to the grammar may result in precedence conflicts in the
operator-precedence matrix, it is as well with interactive use to test the Term parser

add user printer 25

immediately after adding a new rule, as it is only with this call that the precedence
matrix is built.

As with other functions in the Parse structure, there is a companion temp_add_rule

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

The Prefix/TruePrefix situation may be transitory. It has the advantage of main-
taining a deal of backwards compatibility, but at the cost of confusing the terminol-
ogy. Where the Prefix value is acceptable, the fixity type should be replaced by a
fixity option type to better reflect the semantics of what is really happening.

An Isabelle-style concrete syntax for specifying rules would probably be desirable as
it would conceal the complexity of the above from most users.

See also
Parse.add listform, Parse.add infix, Parse.prefer form with tok,
Parse.remove rules for term.

add_user_printer (Parse)

add_user_printer :
({Tyop : string, Thy : string} * userprinter * string) -> unit

Synopsis
Adds a user specified pretty-printer for a specified type.

Description
The function add_user_printer is used to add a special purpose term pretty-printer to
the interactive system. The pretty-printer is called whenever the type of a term to be
printed is as given by the first parameter of the triple. This first parameter specifies
an operator that is not necessarily nullary, so that if the Tyop-Thy pair is list-list for
example, then the printing function will be called on all values of type :x list, where
x is any type.

The user-supplied function may choose not to print anything for the given term and
hand back control to the standard printer by raising the exception term_pp_types.UserPP_Failed.
All other exceptions will propagate to the top-level. If the system printer receives the
UserPP_Failed exception, it prints out the term using its standard algorithm, but will
again attempt to call the user function on any sub-terms of the given type.

26 Chapter 1. Pre-defined ML Identifiers

The type userprinter is an abbreviation defined in term_pp_types to be

type userprinter =
sysprinter -> (grav * grav * grav) -> int -> Portable.ppstream ->
term -> unit

where the type grav is

datatype grav = Top | RealTop | Prec of (int * string)

and the type sysprinter is another abbreviation

type sysprinter = (grav * grav * grav) -> int -> term -> unit

Thus, when the user’s printing function is called, it is passed seven parameters, includ-
ing three ”gravity” values in a triple. The first parameter is the system’s own printer, so
that the user function can use the default printer on sub-terms that it is not interested
in. The user function must not call the sysprinter on the term that it is handed initially
as the sysprinter will immediately call the user printing function all over again. If the
user printer wants to give the whole term back to the system printer, then it must use
the UserPP_Failed exception described above.

The grav type is used to let pretty-printers know a little about the context in which a
term is to be printed out. The triple of gravities is given in the order “parent”, “left” and
“right”. The left and right gravities specify the precedence of any operator that might
be attempting to “grab” arguments from the left and right. For example, the term

(p /\ (if q then r else s)) ==> t

should be pretty-printed as

p /\ (if q then r else s) ==> t

The system figures this out when it comes to print the conditional expression because it
knows both that the operator to the left has the appropriate precedence for conjunction
but also that there is an operator with implication’s precedence to the right. The issue
arises because conjunction is tighter than implication in precedence, leading the printer
to decide that parentheses aren’t necessary around the conjunction. Similarly, consid-
ered on its own, the conjunction doesn’t require parentheses around the conditional
expression because there is no competition between them for arguments.

The grav constructors Top and RealTop indicate a context analogous to the top of
the term, where there is no binding competition. The constructor RealTop is reserved
for situations where the term really is the top of the tree; Top is used for analogous
situations such when the term is enclosed in parentheses. (In the conditional expression
above, the printing of q will have Top gravities to the left and right.)

add user printer 27

The Prec constructor for gravity values takes both a number indicating precedence
level and a string corresponding to the token that has this precedence level. This string
parameter is of most importance in the parent gravity (the first component of the triple)
where it can be useful in deciding whether or not to print parentheses and whether or
not to begin fresh pretty-printing blocks. For example, tuples in the logic look better if
they have parentheses around the topmost instance of the comma-operator, regardless
of whether or not this is required according to precedence considerations. By examining
the parent gravity, a printer can determine more about the term’s context. (Note that
the parent gravity will also be one or other of the left and right gravities; but it is not
possible to tell which.)

The integer parameter to both the system printing function and the user printing
function is the depth of the term. The system printer will stop printing a term if the
depth ever reaches exactly zero. Each time it calls itself recursively, the depth parameter
is reduced by one. It starts out at the value stored in Globals.max_print_depth. Setting
the latter to ~1 will ensure that all of a term is always printed.

Finally, the string parameter to the add_user_printer function is a string correspond-
ing to the ML function. Best practice is probably to define the printing function in
an independent structure and to then have the string be of the form "module.fnname".
This parameter is not present in the accompanying temp_add_user_printer, as this latter
function does not affect the grammar exported to disk with export_theory.

Failure

Will not fail directly, but if the function parameter fails to print all terms of the registered
type in any other way than raising the UserPP_Failed exception, then the pretty-printer
will also fail. If the string parameter does not correspond to valid ML code, then the
theory file generated by export_theory will not compile.

Example

This example uses the system printer to print sub-terms, and concerns itself only with

28 Chapter 1. Pre-defined ML Identifiers

printing conjunctions:

- fun myprint sys gravs d pps t = let
open Portable term_pp_types
val (l,r) = dest_conj t

in
add_string pps "CONJ:";
add_break pps (1,0);
sys (Top, Top, Top) (d - 1) l;
add_string " and then ";
sys (Top, Top, Top) (d - 1) r;
add_string "ENDCONJ"

end handle HOL_ERR _ => raise term_pp_types.UserPP_Failed;
> val (’a, ’b) myprint = fn :

(grav * grav * grav -> int -> term -> ’a) -> ’b -> int ->
ppstream -> term -> unit

- temp_add_user_printer ({Tyop = "bool", Thy = "min"}, myprint);
> val it = () : unit

- ‘‘p ==> q /\ r‘‘;
> val it = ‘‘p ==> CONJ: q and then r ENDCONJ‘‘ : term

The variables p, q and r as well as the implication are all of boolean type, but are
handled by the system printer. The user printer handles just the special form of the
conjunction. Note that this example actually falls within the scope of the add_rule

functionality.

add user printer 29

Another approach to printing conjunctions is not possible with add_rule:

- fun myprint2 sys (pg,lg,rg) d pps t = let
open Portable term_pp_types
val (l,r) = dest_conj t
fun delim act = case pg of

Prec(_, "CONJ") => ()
| _ => act()

in
delim (fn () => (begin_block pps CONSISTENT 0;

add_string pps "CONJ";
add_break pps (1,2);
begin_block pps INCONSISTENT 0));

sys (Prec(0, "CONJ"), Top, Top) (d - 1) l;
add_string pps ",";
add_break pps (1,0);
sys (Prec(0, "CONJ"), Top, Top) (d - 1) r;
delim (fn () => (end_block pps;

add_break pps (1,0);
add_string pps "ENDCONJ";
end_block pps))

end handle HOL_ERR _ => raise term_pp_types.UserPP_Failed;
> val (’a, ’b, ’c) myprint2 = fn :

(grav * grav * grav -> int -> term -> ’a) -> grav * ’b * ’c ->
int -> ppstream -> term -> unit

- temp_add_user_printer ({Tyop = "bool", Thy = "min"}, myprint2);
> val it = () : unit

- ‘‘p /\ q /\ r /\ s /\ t /\ u /\ p /\ p /\ p /\ p /\ p /\ p /\
p /\ p /\ p /\ p/\ p /\ p /\ q /\ r /\ s /\ t /\ u /\ v /\
(w /\ x) /\ (p \/ q) /\ r‘‘;

> val it =
‘‘CONJ

p, q, r, s, t, u, p, p, p, p, p, p, p, p, p, p, p, p, q,
r, s, t, u, v, w, x, p \/ q, r

ENDCONJ‘‘ : term

This examples demonstrates using pretty-printer blocks in order to get a pleasing effect,
and also using parent gravities to print out a big term. Note also how the flow of control
doubles backwards and forwards between the system printer and the user’s. A better
approach (and certainly a more direct one) would probably be to call strip_conj and
print all of the conjuncts in one fell swoop. Finally, this example demonstrates how easy
it is to conceal genuine syntactic structure with a pretty-printer.

30 Chapter 1. Pre-defined ML Identifiers

Uses
For extending the pretty-printer in ways not possible to encompass with the built-in
grammar rules for concrete syntax.

See also
Parse.remove user printer.

adjoin_to_theory (Theory)

adjoin_to_theory : thy_addon -> unit

Synopsis
Include arbitrary ML in exported theory.

Description
It often happens that algorithms and flag settings accompany a logical theory (call it
thy). One would want to simply load the thyTheory module and have the appropriate
proof support, etc. loaded automatically as well.

There are several ways to support this. One simple way would be to define another
ML structure, thySupport say, that depended on thyTheory. The algorithms, etc, could
be placed in thySupport and the interested user would know that by loading thySupport,
its contents, and those of thyTheory, would become available. This approach, and ex-
tensions of it are accomodated already in the notion of a HOL library.

However, it is sometimes more appropriate to actually include the support code di-
rectly in thyTheory. The function adjoin_to_theory performs this operation.

A call adjoin_to_theory {sig_ps, struct_ps} adds a signature prettyprinter sig_ps

and a structure prettyprinter struct_ps to an internal queue of prettyprinters. When
export_theory () is eventually called two things happen: (a) the signature file thyTheory.sig

is written, and (b) the structure file thyTheory.sml is written. When thyTheory.sig

is written, each signature prettyprinter in the queue is called, in the order that they
were added to the queue. This printing activity happens after the rest of the signa-
ture (coming from the declarations in the theory) has been written. Similarly, when
thyTheory.sml is written, the structure prettyprinters are invoked in queue order, after
the bindings of the theory have been written.

If sig_ps is NONE, then no signature additions are made. Likewise, if struct_ps is NONE,
then no structure additions are made. (This latter possibility doesn’t seem to be useful.)

after new theory 31

Failure
It is up to the writer of a prettyprinter to ensure that it generates valid ML. If a pret-
typrinter added by a call to adjoin_to_theory fails, thyTheory.sig or thyTheory.sml

could be malformed, and therefore not properly exported, or compiled.

Example
The following excerpt from the script for the theory of pairs is a fairly typical use of
adjoin_to_theory. It adds the declaration of an ML variable pair_rws to the structure
pairTheory.

val _ = adjoin_to_theory
{sig_ps =

SOME(fn ppstrm => PP.add_string ppstrm "val pair_rws:thm list"),
struct_ps =

SOME(fn ppstrm => PP.add_string ppstrm
"val pair_rws = [PAIR, FST, SND];")

}

Comments
The PP structure is documented in the MoscowML library documentation.

See also
Theory.after new theory, Theory.thy addon, BasicProvers.export rewrites.

after_new_theory (Theory)

after_new_theory : (string -> unit) -> unit

Synopsis
Initialize package once a theory is declared.

Description
Some HOL infrastructure depends on certain packages being informed each time a
new theory is created. The function after_new_theory supports this. An invocation
after_new_theory f adds the function f to an internal queue of ‘initializers’. All sub-
sequent calls to new_theory will cause each initializer to be run, in queue order. Each
initializer will be given the name of the theory as argument.

32 Chapter 1. Pre-defined ML Identifiers

Failure
It can be that an initializer fails for some reason when it is executed. Any exceptions
will be caught, and an attempt will be made to print out a message. Then execution of
the remaining initializers will continue.

Example

- fun every8 s (a::b::c::d::e::f::g::h::rst) =
a::b::c::d::e::f::g::h::s::every8 s rst

| every8 s otherwise = otherwise;
> val ’a every8 = fn : ’a -> ’a list -> ’a list

- after_new_theory (fn s =>
(print ("Ancestors of "^s^":\n ");
print (String.concat (every8 "\n " (commafy (ancestry s))));
print ".\n"));

> val it = () : unit

- new_theory"foo";
<<HOL message: Created theory "foo">>
Ancestors of foo:

one, option, pair, sum,
combin, relation, min, bool,
num, prim_rec, arithmetic, numeral,
ind_type, list.

> val it = () : unit

- new_theory"bar";
Exporting theory "foo" ... done.
<<HOL message: Created theory "bar">>
Ancestors of bar:

one, option, pair, sum,
combin, relation, min, bool,
num, prim_rec, arithmetic, numeral,
ind_type, list, foo.

> val it = () : unit

Comments
Perhaps there should be a before_export_theory call as well?

Uses
Fairly low level system support tasks.

See also
Theory.adjoin to theory.

all 33

all (Lib)

all : (’a -> bool) -> ’a list -> bool

Synopsis
Tests whether a predicate holds throughout a list.

Description
all P [x1,...,xn] equals P x1 andalso andalso P xn. all P [] yields true.

Failure
If P x0,...,P x(j-1) all evaluate to true and P xj raises an exception e, then all P [x0,...,x(j-1

raises e.

Example

- all (equal 3) [3,3,3];
> val it = true : bool

- all (equal 3) [];
> val it = true : bool

- all (fn _ => raise Fail "") [];
> val it = true : bool

- all (fn _ => raise Fail "") [1];
! Uncaught exception:
! Fail ""

See also
Lib.all2, Lib.exists, Lib.first.

all2 (Lib)

all2 : : (’a -> ’b -> bool) -> ’a list -> ’b list -> bool

Synopsis
Tests whether a predicate holds pairwise throughout two lists.

34 Chapter 1. Pre-defined ML Identifiers

Description
An invocation

all2 P [x1,...,xn] [y1,...,yn]

equals

P x1 y1 andalso andalso P xn yn

Also, all2 P [] [] yields true.

Failure
If P x0,...,P x(j-1) all evaluate to true and P xj raises an exception e, then

all2 P [x0,...,x(j-1),xj,...,xn]

raises e. An invocation all2 P l1 l2 will also raise an exception if the length of l1 is
not equal to the length of l2.

Example

- all2 equal [1,2,3] [1,2,3];
> val it = true : bool

- all2 equal [1,2,3] [1,2,3,4] handle e => Raise e;

Exception raised at Lib.all2:
different length lists
! Uncaught exception:
! HOL_ERR

- all2 (fn _ => fn _ => raise Fail "") [] [];
> val it = true : bool

- all2 (fn _ => fn _ => raise Fail "") [1] [1];
! Uncaught exception:
! Fail ""

See also
Lib.all.

all_consts (Term)

all_consts : unit -> term list

ALL CONV 35

Synopsis
All known constants in the current theory.

Description
An invocation all_consts returns a list of all declared constants in the current theory,
i.e., all constants in the current theory segment and in its ancestry.

Failure
Never fails.

Example

- all_consts();
> val it =

[‘transitive‘, ‘CONS‘, ‘RES_ABSTRACT‘, ‘COND‘, ‘OPTION_MAP‘, ‘FCONS‘,
‘FACT‘, ‘&‘, ‘RPROD‘, ‘mk_list‘, ‘ZIP‘, ‘IS_NUM_REP‘, ‘ABS_sum‘, ‘SUM‘,
‘SUC‘, ‘OPTION_JOIN‘, ‘REP_sum‘, ‘RTC‘, ‘SND‘, ‘RES_SELECT‘, ‘THE‘,
‘APPEND‘, ‘option_REP‘, ‘PRE‘, ‘ABS_num‘, ‘PRIM_REC‘, ‘EXISTS‘, ‘REP_num‘,
‘approx‘, ‘case‘, ‘CONSTR‘, ‘[]‘, ‘$MOD‘, ‘ODD‘, ‘MIN‘, ‘case‘, ‘MEM‘,
‘ISR‘, ‘MAX‘, ‘$LEX‘, ‘ISO‘, ‘case_arrow__magic‘, ‘ISL‘, ‘LET‘, ‘MAP‘,
‘INR‘, ‘INL‘, ‘$EXP‘, ‘FST‘, ‘case‘, ‘mk_rec‘, ‘IS_SOME‘, ‘$DIV‘, ‘ARB‘,
‘option_ABS‘, ‘wellfounded‘, ‘iiSUC‘, ‘SIMP_REC_REL‘, ‘RES_FORALL‘,
‘$==>‘, ‘MK_PAIR‘, ‘ZBOT‘, ‘IS_NONE‘, ‘TYPE_DEFINITION‘, ‘case‘,
‘dest_rec‘, ‘IS_PAIR‘, ‘ONE_ONE‘, ‘case‘, ‘RES_EXISTS_UNIQUE‘, ‘NUMRIGHT‘,
‘NUMPAIR‘, ‘FILTER‘, ‘BOTTOM‘, ‘SOME‘, ‘reflexive‘, ‘EMPTY_REL‘,
‘REVERSE‘, ‘ABS_prod‘, ‘NUMERAL_BIT2‘, ‘NUMERAL_BIT1‘, ‘FRONT‘, ‘OUTR‘,
‘OUTL‘, ‘SIMP_REC‘, ‘measure‘, ‘NUMLEFT‘, ‘REP_prod‘, ‘list1‘, ‘list0‘,
‘NULL‘, ‘ONTO‘, ‘EVERY‘, ‘inv_image‘, ‘list_size‘, ‘NONE‘, ‘ALT_ZERO‘,
‘case__magic‘, ‘UNCURRY‘, ‘UNZIP‘, ‘FOLDR‘, ‘FOLDL‘, ‘iBIT_cases‘,
‘NUMERAL‘, ‘ZRECSPACE‘, ‘iZ‘, ‘case‘, ‘iSUB‘, ‘iSQR‘, ‘ZCONSTR‘, ‘WFREC‘,
‘WF‘, ‘$\/‘, ‘TL‘, ‘TC‘, ‘RC‘, ‘case_split__magic‘, ‘$IN‘, ‘NUMSUM‘, ‘HD‘,
‘EL‘, ‘MAP2‘, ‘CURRY‘, ‘RES_EXISTS‘, ‘LAST‘, ‘NUMSND‘, ‘()‘, ‘$>=‘, ‘$<=‘,
‘INJP‘, ‘INJN‘, ‘INJF‘, ‘$?!‘, ‘INJA‘, ‘$/\‘, ‘IS_SUM_REP‘, ‘RESTRICT‘,
‘iDUB‘, ‘$##‘, ‘FUNPOW‘, ‘NUMFST‘, ‘EVEN‘, ‘SUC_REP‘, ‘$~‘, ‘dest_list‘,
‘$o‘, ‘FNIL‘, ‘W‘, ‘the_fun‘, ‘T‘, ‘S‘, ‘LENGTH‘, ‘PRIM_REC_FUN‘, ‘K‘,
‘I‘, ‘F‘, ‘combin$C‘, ‘$@‘, ‘$?‘, ‘$>‘, ‘$=‘, ‘$<‘, ‘ZERO_REP‘, ‘0‘, ‘$-‘,
‘$,‘, ‘FLAT‘, ‘$+‘, ‘$*‘, ‘$!‘] : term list

See also
Parse.term grammar.

ALL_CONV (Conv)

ALL_CONV : conv

36 Chapter 1. Pre-defined ML Identifiers

Synopsis
Conversion that always succeeds and leaves a term unchanged.

Description
When applied to a term t, the conversion ALL_CONV returns the theorem |- t = t.

Failure
Never fails.

Uses
Identity element for THENC.

See also
Conv.NO CONV, Thm.REFL.

ALL_TAC (Tactical)

ALL_TAC : tactic

Synopsis
Passes on a goal unchanged.

Description
ALL_TAC applied to a goal g simply produces the subgoal list [g]. It is the identity for the
THEN tactical.

Failure
Never fails.

Example
The tactic

INDUCT_THEN numTheory.INDUCTION THENL [ALL_TAC, tac]

applied to a goal g, applies INDUCT_THEN numTheory.INDUCTION to g to give a basis and
step subgoal; it then returns the basis unchanged, along with the subgoals produced by
applying tac to the step.

Uses
Used to write tacticals such as REPEAT. Also, it is often used as a place-holder in building
compound tactics using tacticals such as THENL.

ALL THEN 37

See also
Prim rec.INDUCT THEN, Tactical.NO TAC, Tactical.REPEAT, Tactical.THENL.

ALL_THEN (Thm_cont)

ALL_THEN : thm_tactical

Synopsis
Passes a theorem unchanged to a theorem-tactic.

Description
For any theorem-tactic ttac and theorem th, the application ALL_THEN ttac th results
simply in ttac th, that is, the theorem is passed unchanged to the theorem-tactic.
ALL_THEN is the identity theorem-tactical.

Failure
The application of ALL_THEN to a theorem-tactic never fails. The resulting theorem-tactic
fails under exactly the same conditions as the original one.

Uses
Writing compound tactics or tacticals, e.g. terminating list iterations of theorem-tacticals.

See also
Tactical.ALL TAC, Tactical.FAIL TAC, Tactical.NO TAC, Thm cont.NO THEN,
Thm cont.THEN TCL, Thm cont.ORELSE TCL.

all_thys (DB)

all_thys : unit -> data list

Synopsis
All theorems, axioms, and definitions in the currently loaded theory segments.

Description
An invocation all_thys() returns everything that has been stored in all theory segments
currently loaded.

38 Chapter 1. Pre-defined ML Identifiers

Example

- length (all_thys());
> val it = 736 : int

See also
DB.thy, DB.theorems, DB.definitions, DB.axioms, DB.find, DB.match.

all_vars (Term)

all_vars : term -> term list

Synopsis
Returns the set of all variables in a term.

Description
An invocation all_vars ty returns a list representing the set of all bound and free term
variables occurring in tm.

Failure
Never fails.

Example

- all_vars (Term ‘!x y. x /\ y /\ y ==> z‘);
> val it = [‘z‘, ‘y‘, ‘x‘] : term list

Comments
Code should not depend on how elements are arranged in the result of all_vars.

See also
Term.free vars, Term.all varsl.

all_varsl (Term)

all_varsl : term list -> term list

allowed term constant 39

Synopsis
Returns the set of all variables in a list of terms.

Description
An invocation all_varsl [t1,...,tn] returns a list representing the set of all term vari-
ables occurring in t1,...,tn.

Failure
Never fails.

Example

- all_varsl [Term ‘x /\ y /\ y ==> x‘,
Term ‘!a. a ==> p ==> y‘];

> val it = [‘x‘, ‘y‘, ‘p‘, ‘a‘] : term list

Comments
Code should not depend on how elements are arranged in the result of all_varsl.

See also
Term.FVL, Term.free vars lr, Term.free vars, Term.free varsl, Term.empty varset,
Type.type vars.

allowed_term_constant (Lexis)

Lexis.allowed_term_constant : string -> bool

Synopsis
Tests if a string has a permissible name for a term constant.

Description
When applied to a string, allowed_term_constant returns true if the string is a permis-
sible constant name for a term, that is, if it is an identifier (see the DESCRIPTION for
more details), and false otherwise.

Failure
Never fails.

40 Chapter 1. Pre-defined ML Identifiers

Example
The following gives a sample of some allowed and disallowed constant names:

- map Lexis.allowed_term_constant ["pi", "@", "a name", "+++++", "10"];
> val it = [true, true, false, true, false] : bool list

Comments
Note that this function only performs a lexical test; it does not check whether there is
already a constant of that name in the current theory.

See also
Theory.constants, is constant, new alphanum, new special symbol,
special symbols, Lexis.allowed type constant.

allowed_type_constant (Lexis)

allowed_type_constant : string -> bool

Synopsis
Tests if a string has a permissible name for a type constant.

Description
When applied to a string, allowed_type_constant returns true if the string is a permis-
sible constant name for a type operator, and false otherwise.

Failure
Never fails.

Example
The following gives a sample of some allowed and disallowed names for type operators:

- map Lexis.allowed_type_constant ["list", "’a", "fun", "->", "#", "fun2"];
> val it = [true, false, true, false, false, true] : bool list

Comments
Note that this function only performs a lexical test; it does not check whether there is
already a type operator of that name in the current theory.

This function is not currently enforced by the system, as it was found that more
flexibilty in naming was preferable.

ALPHA 41

See also
Lexis.allowed term constant.

ALPHA (Thm)

ALPHA : term -> term -> thm

Synopsis
Proves equality of alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns
the theorem |- t1 = t1’.

------------- ALPHA t1 t1’
|- t1 = t1’

Failure
Fails unless the terms provided are alpha-equivalent.

See also
Term.aconv, Drule.ALPHA CONV, Drule.GEN ALPHA CONV.

alpha (Type)

alpha : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.alpha is bound to the type variable ’a.

See also
Type.beta, Type.gamma, Type.delta, Type.bool.

42 Chapter 1. Pre-defined ML Identifiers

ALPHA_CONV (Drule)

ALPHA_CONV : term -> conv

Synopsis
Renames the bound variable of a lambda-abstraction.

Description
If x is a variable of type ty and M is an abstraction (with bound variable y of type ty and
body t), then ALPHA_CONV x M returns the theorem:

|- (\y.t) = (\x’. t[x’/y])

where the variable x’:ty is a primed variant of x chosen so as not to be free in \y.t.

Failure
ALPHA_CONV x tm fails if x is not a variable, if tm is not an abstraction, or if x is a variable
v and tm is a lambda abstraction \y.t but the types of v and y differ.

See also
Thm.ALPHA, Drule.GEN ALPHA CONV.

ancestry (Theory)

ancestry : string -> string list

Synopsis
Returns the (proper) ancestry of a theory in a list.

Description
A call to ancestry thy returns a list of all the proper ancestors (i.e. parents, parents of
parents, etc.) of the theory thy. The shorthand "-" may be used to denote the name of
the current theory segment.

Failure
Fails if thy is not an ancestor of the current theory.

AND EXISTS CONV 43

Example

- load "bossLib";
> val it = () : unit

- current_theory();
> val it = "scratch" : string

- ancestry "-";
> val it =

["one", "option", "pair", "sum", "combin", "relation", "min", "bool",
"num", "prim_rec", "arithmetic", "numeral", "ind_type", "list"] :

string list

See also
Theory.parents.

AND_EXISTS_CONV (Conv)

AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification outwards through a conjunction.

Description
When applied to a term of the form (?x.P) /\ (?x.Q), where x is free in neither P nor
Q, AND_EXISTS_CONV returns the theorem:

|- (?x. P) /\ (?x. Q) = (?x. P /\ Q)

Failure
AND_EXISTS_CONV fails if it is applied to a term not of the form (?x.P) /\ (?x.Q), or if it
is applied to a term (?x.P) /\ (?x.Q) in which the variable x is free in either P or Q.

Comments
It may be easier to use higher order rewriting with some of BOTH_EXISTS_AND_THM, LEFT_EXISTS_AND_
and RIGHT_EXISTS_AND_THM.

See also
Conv.EXISTS AND CONV, Conv.LEFT AND EXISTS CONV, Conv.RIGHT AND EXISTS CONV,
BOTH EXISTS AND THM, LEFT EXISTS AND THM, RIGHT EXISTS AND THM.

44 Chapter 1. Pre-defined ML Identifiers

AND_FORALL_CONV (Conv)

AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification outwards through a conjunction.

Description
When applied to a term of the form (!x.P) /\ (!x.Q), the conversion AND_FORALL_CONV

returns the theorem:

|- (!x.P) /\ (!x.Q) = (!x. P /\ Q)

Failure
Fails if applied to a term not of the form (!x.P) /\ (!x.Q).

Comments
It may be easier to use higher order rewriting with FORALL_AND_THM.

See also
Conv.FORALL AND CONV, Conv.LEFT AND FORALL CONV, Conv.RIGHT AND FORALL CONV.

AND_PEXISTS_CONV (PairRules)

AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification outwards through a conjunction.

Description
When applied to a term of the form (?p. t) /\ (?p. u), where no variables in p are
free in either t or u, AND_PEXISTS_CONV returns the theorem:

|- (?p. t) /\ (?p. u) = (?p. t /\ u)

Failure
AND_PEXISTS_CONV fails if it is applied to a term not of the form (?p. t) /\ (?p. u), or
if it is applied to a term (?p. t) /\ (?p. u) in which variables from p are free in either
t or u.

AND PFORALL CONV 45

See also
Conv.AND EXISTS CONV, PairRules.PEXISTS AND CONV,
PairRules.LEFT AND PEXISTS CONV, PairRules.RIGHT AND PEXISTS CONV.

AND_PFORALL_CONV (PairRules)

AND_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification outwards through a conjunction.

Description
When applied to a term of the form (!p. t) /\ (!p. t), the conversion AND_PFORALL_CONV

returns the theorem:

|- (!p. t) /\ (!p. u) = (!p. t /\ u)

Failure
Fails if applied to a term not of the form (!p. t) /\ (!p. t).

See also
Conv.AND FORALL CONV, PairRules.PFORALL AND CONV,
PairRules.LEFT AND PFORALL CONV, PairRules.RIGHT AND PFORALL CONV.

ANTE_CONJ_CONV (Conv)

ANTE_CONJ_CONV : conv

Synopsis
Eliminates a conjunctive antecedent in favour of implication.

Description
When applied to a term of the form (t1 /\ t2) ==> t, the conversion ANTE_CONJ_CONV

returns the theorem:

|- (t1 /\ t2 ==> t) = (t1 ==> t2 ==> t)

Failure
Fails if applied to a term not of the form "(t1 /\ t2) ==> t".

46 Chapter 1. Pre-defined ML Identifiers

Uses
Somewhat ad-hoc, but can be used (with CONV_TAC) to transform a goal of the form
?- (P /\ Q) ==> R into the subgoal ?- P ==> (Q ==> R), so that only the antecedent P
is moved into the assumptions by DISCH_TAC.

See also
Tactic.CONV TAC, Tactic.DISCH TAC.

ANTE_RES_THEN (Thm_cont)

ANTE_RES_THEN : thm_tactical

Synopsis
Resolves implicative assumptions with an antecedent.

Description
Given a theorem-tactic ttac and a theorem A |- t, the function ANTE_RES_THEN produces
a tactic that attempts to match t to the antecedent of each implication

Ai |- !x1...xn. ui ==> vi

(where Ai is just !x1...xn. ui ==> vi) that occurs among the assumptions of a goal.
If the antecedent ui of any implication matches t, then an instance of Ai u A |- vi is
obtained by specialization of the variables x1, ..., xn and type instantiation, followed
by an application of modus ponens. Because all implicative assumptions are tried, this
may result in several modus-ponens consequences of the supplied theorem and the
assumptions. Tactics are produced using ttac from all these theorems, and these tactics
are applied in sequence to the goal. That is,

ANTE_RES_THEN ttac (A |- t) g

has the effect of:

MAP_EVERY ttac [A1 u A |- v1, ..., Am u A |- vm] g

where the theorems Ai u A |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the implications that occur among the as-
sumptions of the goal g and the supplied theorem A |- t. Any negation ~v that appears
among the assumptions of the goal is treated as an implication v ==> F. The sequence in

AP TERM 47

which the theorems Ai u A |- vi are generated and the corresponding tactics applied
is unspecified.

Failure
ANTE_RES_THEN ttac (A |- t) fails when applied to a goal g if any of the tactics pro-
duced by ttac (Ai u A |- vi), where Ai u A |- vi is the ith resolvent obtained from
the theorem A |- t and the assumptions of g, fails when applied in sequence to g.

Uses
Painfully detailed proof hacking.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Drule.MATCH MP, Tactic.RES TAC,
Thm cont.RES THEN.

AP_TERM (Thm)

AP_TERM : term -> thm -> thm

Synopsis
Applies a function to both sides of an equational theorem.

Description
When applied to a term f and a theorem A |- x = y, the inference rule AP_TERM returns
the theorem A |- f x = f y.

A |- x = y
---------------- AP_TERM f
A |- f x = f y

Failure
Fails unless the theorem is equational and the supplied term is a function whose domain
type is the same as the type of both sides of the equation.

See also
Tactic.AP TERM TAC, Thm.AP THM, Tactic.AP THM TAC, Thm.MK COMB.

AP_TERM_TAC (Tactic)

AP_TERM_TAC : tactic

48 Chapter 1. Pre-defined ML Identifiers

Synopsis
Strips a function application from both sides of an equational goal.

Description
AP_TERM_TAC reduces a goal of the form A ?- f x = f y by stripping away the function
applications, giving the new goal A ?- x = y.

A ?- f x = f y
================ AP_TERM_TAC

A ?- x = y

Failure
Fails unless the goal is equational, with both sides being applications of the same func-
tion.

See also
Thm.AP TERM, Thm.AP THM, Tactic.AP THM TAC.

AP_THM (Thm)

AP_THM : thm -> term -> thm

Synopsis
Proves equality of equal functions applied to a term.

Description
When applied to a theorem A |- f = g and a term x, the inference rule AP_THM returns
the theorem A |- f x = g x.

A |- f = g
---------------- AP_THM (A |- f = g) x
A |- f x = g x

Failure
Fails unless the conclusion of the theorem is an equation, both sides of which are func-
tions whose domain type is the same as that of the supplied term.

See also
Tactic.AP THM TAC, Thm.AP TERM, Thm.ETA CONV, Drule.EXT, Conv.FUN EQ CONV,
Thm.MK COMB.

AP THM TAC 49

AP_THM_TAC (Tactic)

AP_THM_TAC : tactic

Synopsis
Strips identical operands from functions on both sides of an equation.

Description
When applied to a goal of the form A ?- f x = g x, the tactic AP_THM_TAC strips away
the operands of the function application:

A ?- f x = g x
================ AP_THM_TAC

A ?- f = g

Failure
Fails unless the goal has the above form, namely an equation both sides of which consist
of function applications to the same arguments.

See also
Thm.AP TERM, Tactic.AP TERM TAC, Thm.AP THM, Drule.EXT.

append (Lib)

append : ’a list -> ’a list -> ’a list

Synopsis
Curried form of list append

Description
The function append is a curried form of the standard operation for appending two ML
lists.

Failure
Never fails.

50 Chapter 1. Pre-defined ML Identifiers

Example

- append [1] [2,3] = [1] @ [2,3];
> val it = true : bool

apropos (DB)

apropos : term -> data list

Synopsis
Attempt to find matching theorems in the currently loaded theories.

Description
An invocation DB.apropos M collects all theorems, definitions, and axioms of the cur-
rently loaded theories that have a subterm that matches M. If there are no matches, the
empty list is returned.

Failure
Never fails.

Example

- DB.apropos (Term ‘(!x y. P x y) ==> Q‘);
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

[(("ind_type", "INJ_INVERSE2"),
(|- !P.

(!x1 y1 x2 y2. (P x1 y1 = P x2 y2) = (x1 = x2) /\ (y1 = y2)) ==>
?X Y. !x y. (X (P x y) = x) /\ (Y (P x y) = y), Thm)),

(("pair", "pair_induction"),
(|- (!p_1 p_2. P (p_1,p_2)) ==> !p. P p, Thm))] :

((string * string) * (thm * class)) list

Comments
The notion of matching is a restricted version of higher-order matching.

For finer control over the theories searched, use DB.match.

See also
DB.match, DB.find.

arb 51

arb (boolSyntax)

arb : term

Synopsis
Constant denoting arbitrary items.

Description
The ML variable boolSyntax.arb is bound to the term bool$ARB.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.bool case.

arith_ss (bossLib)

arith_ss : simpset

Synopsis
Simplification set for arithmetic.

Description
The simplification set arith_ss is a version of std_ss enhanced for arithmetic. It in-
cludes many arithmetic rewrites, an evaluation mechanism for ground arithmetic terms,
and a decision procedure for linear arithmetic. It also incorporates a cache of success-
fully solved conditions proved when conditional rewrite rules are successfully applied.

The following rewrites are currently used to augment those already present from

52 Chapter 1. Pre-defined ML Identifiers

std_ss:

|- !m n. (m * n = 0) = (m = 0) \/ (n = 0)
|- !m n. (0 = m * n) = (m = 0) \/ (n = 0)
|- !m n. (m + n = 0) = (m = 0) /\ (n = 0)
|- !m n. (0 = m + n) = (m = 0) /\ (n = 0)
|- !x y. (x * y = 1) = (x = 1) /\ (y = 1)
|- !x y. (1 = x * y) = (x = 1) /\ (y = 1)
|- !m. m * 0 = 0
|- !m. 0 * m = 0
|- !x y. (x * y = SUC 0) = (x = SUC 0) /\ (y = SUC 0)
|- !x y. (SUC 0 = x * y) = (x = SUC 0) /\ (y = SUC 0)
|- !m. m * 1 = m
|- !m. 1 * m = m
|- !x.((SUC x = 1) = (x = 0)) /\ ((1 = SUC x) = (x = 0))
|- !x.((SUC x = 2) = (x = 1)) /\ ((2 = SUC x) = (x = 1))
|- !m n. (m + n = m) = (n = 0)
|- !m n. (n + m = m) = (n = 0)
|- !c. c - c = 0
|- !m. SUC m - 1 = m
|- !m. (0 - m = 0) /\ (m - 0 = m)
|- !a c. a + c - c = a
|- !m n. (m - n = 0) = m <= n
|- !m n. (0 = m - n) = m <= n
|- !n m. n - m <= n
|- !n m. SUC n - SUC m = n - m
|- !m n p. m - n > p = m > n + p
|- !m n p. m - n < p = m < n + p /\ 0 < p
|- !m n p. m - n >= p = m >= n + p \/ 0 >= p
|- !m n p. m - n <= p = m <= n + p
|- !n. n <= 0 = (n = 0)
|- !m n p. m + p < n + p = m < n
|- !m n p. p + m < p + n = m < n
|- !m n p. m + n <= m + p = n <= p
|- !m n p. n + m <= p + m = n <= p
|- !m n p. (m + p = n + p) = (m = n)
|- !m n p. (p + m = p + n) = (m = n)
|- !x y w. x + y < w + x = y < w
|- !x y w. y + x < x + w = y < w
|- !m n. (SUC m = SUC n) = (m = n)
|- !m n. SUC m < SUC n = m < n
|- !n m. SUC n <= SUC m = n <= m
|- !m i n. SUC n * m < SUC n * i = m < i
|- !p m n. (n * SUC p = m * SUC p) = (n = m)
|- !m i n. (SUC n * m = SUC n * i) = (m = i)
|- !n m. ~(SUC n <= m) = m <= n
|- !p q n m. (n * SUC q ** p = m * SUC q ** p) = (n = m)
|- !m n. ~(SUC n ** m = 0)
|- !n m. ~(SUC (n + n) = m + m)
|- !m n. ~(SUC (m + n) <= m)
|- !n. ~(SUC n <= 0)
|- !n. ~(n < 0)
|- !n. (MIN n 0 = 0) /\ (MIN 0 n = 0)
|- !n. (MAX n 0 = n) /\ (MAX 0 n = n)

ASM CASES TAC 53

ables and the operators SUC,PRE,+,-,<,>,<=,>=. Multiplication by constants is acco-
modated by translation to repeated addition. An attempt is made to generalize sub-
formulas of type num not fitting into this syntax.

Comments
The philosophy behind this simpset is fairly conservative. For example, some poten-
tial rewrite rules, e.g., the recursive clauses for addition and multiplication, are not
included, since it was felt that their incorporation too often resulted in formulas becom-
ing more complex rather than simpler. Also, transitivity theorems are avoided because
they tend to make simplification diverge.

See also
BasicProvers.RW TAC, BasicProvers.SRW TAC, simpLib.SIMP TAC, simpLib.SIMP CONV,
simpLib.SIMP RULE, BasicProvers.bool ss, bossLib.std ss, bossLib.list ss.

ASM_CASES_TAC (Tactic)

ASM_CASES_TAC : term -> tactic

Synopsis
Given a term, produces a case split based on whether or not that term is true.

Description
Given a term u, ASM_CASES_TAC applied to a goal produces two subgoals, one with u as
an assumption and one with ~u:

A ?- t
================================ ASM_CASES_TAC u
A u {u} ?- t A u {~u} ?- t

ASM_CASES_TAC u is implemented by DISJ_CASES_TAC(SPEC u EXCLUDED_MIDDLE), where
EXCLUDED_MIDDLE is the axiom |- !u. u \/ ~u.

Failure
By virtue of the implementation (see above), the decomposition fails if EXCLUDED_MIDDLE
cannot be instantiated to u, e.g. if u does not have boolean type.

54 Chapter 1. Pre-defined ML Identifiers

Example
The tactic ASM_CASES_TAC u can be used to produce a case analysis on u:

- let val u = Term ‘u:bool‘
val g = Term ‘(P:bool -> bool) u‘

in
ASM_CASES_TAC u ([],g)
end;

([([‘u‘], ‘P u‘),
([‘~u‘], ‘P u‘)], fn) : tactic_result

Uses
Performing a case analysis according to whether a given term is true or false.

See also
Tactic.BOOL CASES TAC, Tactic.COND CASES TAC, Tactic.DISJ CASES TAC, Thm.SPEC,
Tactic.STRUCT CASES TAC, SingleStep.Cases, Cases on.

ASM_MESON_TAC (mesonLib)

ASM_MESON_TAC : thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using the assumptions and the the-
orems given.

Description
ASM_MESON_TAC is identical in behaviour to MESON_TAC except that it uses the assumptions
of a goal as well as the provided theorems.

Failure
ASM_MESON_TAC fails if it can not find a proof of the goal with depth less than or equal to
the mesonLib.max_depth value.

See also
mesonLib.GEN MESON TAC, mesonLib.MESON TAC.

ASM REWRITE RULE 55

ASM_REWRITE_RULE (Rewrite)

ASM_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem including built-in rewrites and the theorem’s assumptions.

Description
ASM_REWRITE_RULE rewrites using the tautologies in basic_rewrites, the given list of the-
orems, and the set of hypotheses of the theorem. All hypotheses are used. No ordering
is specified among applicable rewrites. Matching subterms are searched for recursively,
starting with the entire term of the conclusion and stopping when no rewritable expres-
sions remain. For more details about the rewriting process, see GEN_REWRITE_RULE. To
avoid using the set of basic tautologies, see PURE_ASM_REWRITE_RULE.

Failure
ASM_REWRITE_RULE does not fail, but may result in divergence. To prevent divergence
where it would occur, ONCE_ASM_REWRITE_RULE can be used.

See also
Rewrite.GEN REWRITE RULE, Rewrite.ONCE ASM REWRITE RULE,
Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,
Rewrite.REWRITE RULE, basic rewrites.

ASM_REWRITE_TAC (Rewrite)

ASM_REWRITE_TAC : thm list -> tactic

Synopsis
Rewrites a goal using built-in rewrites and the goal’s assumptions.

Description
ASM_REWRITE_TAC generates rewrites with the tautologies in basic_rewrites, the set of
assumptions, and a list of theorems supplied by the user. These are applied top-down
and recursively on the goal, until no more matches are found. The order in which the
set of rewrite equations is applied is an implementation matter and the user should
not depend on any ordering. Rewriting strategies are described in more detail under

56 Chapter 1. Pre-defined ML Identifiers

GEN_REWRITE_TAC. For omitting the common tautologies, see the tactic PURE_ASM_REWRITE_TAC.
To rewrite with only a subset of the assumptions use FILTER_ASM_REWRITE_TAC.

Failure
ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For rewriting
to a limited depth, see ONCE_ASM_REWRITE_TAC. The resulting tactic may not be valid if
the applicable replacement introduces new assumptions into the theorem eventually
proved.

Example
The use of assumptions in rewriting, specially when they are not in an obvious equa-
tional form, is illustrated below:

- let val asm = [Term ‘P x‘]
val goal = Term ‘P x = Q x‘

in
ASM_REWRITE_TAC[] (asm, goal)
end;

val it = ([([‘P x‘], ‘Q x‘)], fn) : tactic_result

- let val asm = [Term ‘~P x‘]
val goal = Term ‘P x = Q x‘

in
ASM_REWRITE_TAC[] (asm, goal)
end;

val it = ([([‘~P x‘], ‘~Q x‘)], fn) : tactic_result

See also
basic rewrites, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.GEN REWRITE TAC,
Rewrite.ONCE ASM REWRITE TAC, Rewrite.ONCE REWRITE TAC,
Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,
Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC, Tactic.SUBST TAC.

ASM_SIMP_RULE (simpLib)

ASM_SIMP_RULE : simpset -> thm list -> thm -> thm

ASM SIMP TAC 57

Synopsis
Simplifies a theorem, using the theorem’s assumptions as rewrites in addition to the
provided rewrite theorems and simpset.

Failure
Never fails, but may diverge.

Example

- ASM_SIMP_RULE bool_ss [] (ASSUME (Term ‘x = 3‘))
> val it = [.] |- T : thm

Uses
The assumptions can be used to simplify the conclusion of the theorem. For exam-
ple, if the conclusion of a theorem is an implication, the antecedent together with the
hypotheses may help simplify the conclusion.

See also
simpLib.SIMP CONV, simpLib.SIMP RULE.

ASM_SIMP_TAC (bossLib)

ASM_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies a goal using the simpset, the provided theorems, and the goal’s assumptions.

Description
ASM_SIMP_TAC does a simplification of the goal, adding both the assumptions and the
provided theorem to the given simpset as rewrites. This simpset is then applied to the
goal in the manner explained in the entry for SIMP_CONV.
ASM_SIMP_TAC is to SIMP_TAC, as ASM_REWRITE_TAC is to REWRITE_TAC.

Failure
ASM_SIMP_TAC never fails, though it may diverge.

58 Chapter 1. Pre-defined ML Identifiers

Example
The simple goal x < y ?- x + y < y + y can be proved by using bossLib.arith_ss and
the assumption by

ASM_SIMP_TAC bossLib.arith_ss []

See also
bossLib.++, bossLib.bool ss, bossLib.FULL SIMP TAC, simpLib.mk simpset,
bossLib.SIMP CONV, bossLib.SIMP TAC.

ASM_SIMP_TAC (simpLib)

ASM_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.ASM_SIMP_TAC is identical to simpLib.ASM_SIMP_TAC.

See also
bossLib.ASM SIMP TAC.

assert (Lib)

assert : (’a -> bool) -> ’a -> ’a

Synopsis
Checks that a value satisfies a predicate.

Description
assert p x returns x if the application p x yields true. Otherwise, assert p x fails.

Failure
assert p x fails with exception HOL_ERR if the predicate p yields false when applied to
the value x. If the application p x raises an exception e, then assert p x raises e.

assert exn 59

Example

- null [];
> val it = true : bool

- assert null ([]:int list);
> val it = [] : int list

- null [1];
> false : bool

- assert null [1];
! Uncaught exception:
! HOL_ERR <poly>

See also
Lib.can, Lib.assert exn, Feedback.with exn.

assert_exn (Lib)

assert_exn : (’a -> bool) -> ’a -> exn -> ’a

Synopsis
Checks that a value satisfies a predicate.

Description
assert_exn p x e returns x if the application p x evaluates to true. Otherwise, assert_exn p x e

raises e

Failure
assert_exn p x e fails with exception e if the predicate p yields false when applied to
the value x. If the application p x raises an exception ex, then assert_exn p x e raises
ex.

60 Chapter 1. Pre-defined ML Identifiers

Example

- null [];
> val it = true : bool

- assert_exn null ([]:int list) (Fail "non-empty list");
> val it = [] : int list

- null [1];
> false : bool

- assert_exn null [1] (Fail "non-empty list");;
! Uncaught exception:
! Fail "non-empty list"

See also
Lib.can, Lib.assert, Feedback.with exn.

assoc (Lib)

assoc : ’’a -> (’’a * ’b) list -> ’’a * ’b

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.

Description
assoc x [(x1,y1),...,(xn,yn)] returns the first (xi,yi) in the list such that xi equals
x. The lookup is done on an eqtype, i.e., the SML implementation must be able to decide
equality for the type of x.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- assoc 2 [(1,4),(3,2),(2,5),(2,6)];
> val it = (2, 5) : (int * int)

See also
Lib.assoc1, Lib.assoc2, Lib.rev assoc, Lib.find, Lib.mem, Lib.tryfind,
Lib.exists, Lib.all.

assoc1 61

assoc1 (Lib)

assoc1 : ’’a -> (’’a * ’b) list -> (’’a * ’b)option

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.

Description
assoc1 x [(x1,y1),...,(xn,yn)] returns SOME (xi,yi) for the first pair (xi,yi) in the
list such that xi equals x. Otherwise, NONE is returned. The lookup is done on an eqtype,
i.e., the SML implementation must be able to decide equality for the type of x.

Failure
Never fails.

Example

- assoc1 2 [(1,4),(3,2),(2,5),(2,6)];
> val it = SOME (2, 5) : (int * int)option

See also
Lib.assoc, Lib.assoc2, Lib.rev assoc, Lib.find, Lib.mem, Lib.tryfind,
Lib.exists, Lib.all.

assoc2 (Lib)

assoc2 : ’’a -> (’b * ’’a) list -> (’b * ’’a)option

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.

Description
An invocation assoc2 y [(x1,y1),...,(xn,yn)] returns SOME (xi,yi) for the first (xi,yi)
in the list such that yi equals y. Otherwise, NONE is returned. The lookup is done on an
eqtype, i.e., the SML implementation must be able to decide equality for the type of y.

62 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

- assoc2 2 [(1,4),(3,2),(2,5),(2,6)];
> val it = SOME (3, 2) : (int * int) option

See also
Lib.assoc, Lib.assoc1, Lib.rev assoc, Lib.find, Lib.mem, Lib.tryfind,
Lib.exists, Lib.all.

associate_restriction (Parse)

associate_restriction : ((string * string) -> unit)

Synopsis
Associates a restriction semantics with a binder.

Description
If B is a binder and RES_B a constant then

associate_restriction("B", "RES_B")

will cause the parser and pretty-printer to support:

---- parse ---->
Bv::P. B RES_B P (\v. B)

<---- print ----

Anything can be written between the binder and ‘::‘ that could be written between
the binder and ‘.‘ in the old notation. See the examples below.

Associations between user defined binders and their restrictions are not stored in the
theory, so they have to be set up for each hol session (e.g. with a hol-init.ml file).

The flag ‘#restrict(Globals.pp_flags)‘ has default true, but if set to false will dis-
able the pretty printing. This is useful for seeing what the semantics of particular re-
stricted abstractions are.

associate restriction 63

The following associations are predefined:

\v::P. B <----> RES_ABSTRACT P (\v. B)
!v::P. B <----> RES_FORALL P (\v. B)
?v::P. B <----> RES_EXISTS P (\v. B)
@v::P. B <----> RES_SELECT P (\v. B)

Where the constants RES_ABSTRACT, RES_FORALL, RES_EXISTS and RES_SELECT are de-
fined in the theory ‘restr_binder‘ by:

|- RES_ABSTRACT P B = \x:’a. (P x => B x | ARB:’b)

|- RES_FORALL P B = !x:’a. P x ==> B x

|- RES_EXISTS P B = ?x:’a. P x /\ B x

|- RES_SELECT P B = @x:’a. P x /\ B x

where ARB is defined in the theory ‘restr_binder‘ by:

|- ARB = @x:’a. T

Failure

Never fails.

64 Chapter 1. Pre-defined ML Identifiers

Example

- new_binder_definition("DURING", --‘DURING(p:num#num->bool) = $!p‘--);
|- !p. $DURING p = $! p

- --‘DURING x::(m,n). p x‘--;

Exception raised at Parse_support.restr_binder:
no restriction associated with "DURING"

- new_definition("RES_DURING",
--‘RES_DURING(m,n)p = !x. m<=x /\ x<=n ==> p x‘--);

|- !m n p. RES_DURING (m,n) p = (!x. m <= x /\ x <= n ==> p x) : thm

- associate_restriction("DURING","RES_DURING");
() : unit

- --‘DURING x::(m,n). p x‘--;
(--‘DURING x ::(m,n). p x‘--) : term

- Globals.show_restrict := false;
() : unit

- --‘DURING x::(m,n). p x‘--;
(--‘RES_DURING (m,n) (\x. p x)‘--) : term

See also
binder restrictions, delete restriction.

ASSUM_LIST (Tactical)

ASSUM_LIST : (thm list -> tactic) -> tactic

Synopsis
Applies a tactic generated from the goal’s assumption list.

Description
When applied to a function of type thm list -> tactic and a goal, ASSUM_LIST con-
structs a tactic by applying f to a list of ASSUMEd assumptions of the goal, then applies

ASSUME 65

that tactic to the goal.

ASSUM_LIST f ({A1,...,An} ?- t)
= f [A1 |- A1, ... , An |- An] ({A1,...,An} ?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the
resulting tactic fails when applied to the goal.

Comments
There is nothing magical about ASSUM_LIST: the same effect can usually be achieved just
as conveniently by using ASSUME a wherever the assumption a is needed. If ASSUM_LIST is
used, it is extremely unwise to use a function which selects elements from its argument
list by number, since the ordering of assumptions should not be relied on.

Example
The tactic:

ASSUM_LIST SUBST_TAC

makes a single parallel substitution using all the assumptions, which can be useful if the
rewriting tactics are too blunt for the required task.

Uses
Making more careful use of the assumption list than simply rewriting or using resolu-
tion.

See also
Rewrite.ASM REWRITE TAC, Tactical.EVERY ASSUM, Tactic.IMP RES TAC,
Tactical.POP ASSUM, Tactical.POP ASSUM LIST, Rewrite.REWRITE TAC.

ASSUME (Thm)

ASSUME : term -> thm

Synopsis
Introduces an assumption.

66 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term t, which must have type bool, the inference rule ASSUME returns
the theorem t |- t.

-------- ASSUME t
t |- t

Failure
Fails unless the term t has type bool.

See also
Drule.ADD ASSUM, Thm.REFL.

ASSUME_TAC (Tactic)

ASSUME_TAC : thm_tactic

Synopsis
Adds an assumption to a goal.

Description
Given a theorem th of the form A’ |- u, and a goal, ASSUME_TAC th adds u to the as-
sumptions of the goal.

A ?- t
============== ASSUME_TAC (A’ |- u)
A u {u} ?- t

Note that unless A’ is a subset of A, this tactic is invalid.

Failure
Never fails.

Example
Given a goal g of the form {x = y, y = z} ?- P, where x, y and z have type :’a, the

ASSUME TAC 67

theorem x = y, y = z |- x = z can, first, be inferred by forward proof

let val eq1 = Term ‘(x:’a) = y‘
val eq2 = Term ‘(y:’a) = z‘

in
TRANS (ASSUME eq1) (ASSUME eq2)
end;

and then added to the assumptions. This process requires the explicit text of the as-
sumptions, as well as invocation of the rule ASSUME:

let val eq1 = Term ‘(x:’a) = y‘
val eq2 = Term ‘(y:’a) = z‘
val goal = ([eq1,eq2],Parse.Term ‘P:bool‘)

in
ASSUME_TAC (TRANS (ASSUME eq1) (ASSUME eq2)) goal
end;

val it = ([([‘x = z‘, ‘x = y‘, ‘y = z‘], ‘P‘)], fn) : tactic_result

This is the naive way of manipulating assumptions; there are more advanced proof
styles (more elegant and less transparent) that achieve the same effect, but this is a
perfectly correct technique in itself.

Alternatively, the axiom EQ_TRANS could be added to the assumptions of g:

let val eq1 = Term ‘(x:’a) = y‘
val eq2 = Term ‘(y:’a) = z‘
val goal = ([eq1,eq2], Term ‘P:bool‘)

in
ASSUME_TAC EQ_TRANS goal
end;

val it =
([([‘!x y z. (x = y) /\ (y = z) ==> (x = z)‘,

‘x = y‘,‘y = z‘],‘P‘)],fn) : tactic_result

A subsequent resolution (see RES_TAC) would then be able to add the assumption x = z

to the subgoal shown above. (Aside from purposes of example, it would be more usual
to use IMP_RES_TAC than ASSUME_TAC followed by RES_TAC in this context.)

Uses
ASSUME_TAC is the naive way of manipulating assumptions (i.e. without recourse to ad-
vanced tacticals); and it is useful for enriching the assumption list with lemmas as a pre-
lude to resolution (RES_TAC, IMP_RES_TAC), rewriting with assumptions (ASM_REWRITE_TAC
and so on), and other operations involving assumptions.

68 Chapter 1. Pre-defined ML Identifiers

See also
Tactic.ACCEPT TAC, Tactic.IMP RES TAC, Tactic.RES TAC, Tactic.STRIP ASSUME TAC.

augment_srw_ss (BasicProvers)

augment_srw_ss : ssdata list -> unit

Synopsis
Augments the ”stateful” simpset used by SRW_TAC with a list of simpset fragments.

Description
bossLib.augment_srw_ss is identical to BasicProvers.augment_srw_ss

See also
bossLib.augment srw ss.

augment_srw_ss (bossLib)

bossLib.augment_srw_ss : simpLib.ssdata list -> unit

Synopsis
Augments the “stateful rewriter” with a list of simpset fragments.

Description
A call to augment_srw_ss sslist causes each element of sslist to be merged into the
simpset value that the system maintains “behind” srw_ss().

Failure
Never fails.

Comments
The change to the srw_ss() simpset brought about with augment_srw_ss is not exported
with a theory, so it is not “permanent”. But see export_rewrites for a simple way to
achieve a sort of permanence.

See also
BasicProvers.export rewrites, bossLib.srw ss, bossLib.SRW TAC.

axioms 69

axioms (DB)

axioms : string -> (string * thm) list

Synopsis
All the axioms stored in the named theory.

Description
An invocation axioms thy, where thy is the name of a currently loaded theory segment,
will return a list of the axioms stored in that theory. Each theorem is paired with its
name in the result. The string "-" may be used to denote the current theory segment.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- axioms "bool";
> val it =

[("INFINITY_AX", |- ?f. ONE_ONE f /\ ~ONTO f),
("SELECT_AX", |- !P x. P x ==> P ($@ P)),
("ETA_AX", |- !t. (\x. t x) = t),
("BOOL_CASES_AX", |- !t. (t = T) \/ (t = F))] : (string * thm) list

See also
DB.thy, DB.fetch, DB.thms, DB.theorems, DB.definitions, DB.listDB.

axioms (Theory)

axioms : unit -> (string * thm) list

Synopsis
Returns the axioms of the current theory.

70 Chapter 1. Pre-defined ML Identifiers

Description
A call axioms () returns the axioms of the current theory segment together with their
names. The names are those given to the axioms by the user when they were originally
added to the theory segment (by a call to new_axiom).

Failure
Never fails.

See also
Theory.axiom, Theory.definitions, Theory.theorems, Theory.new axiom.

b (goalstackLib)

b : unit -> goalstack

Synopsis
Restores the proof state undoing the effects of a previous expansion.

Description
The function b is part of the subgoal package. It is an abbreviation for the function
backup. For a description of the subgoal package, see set_goal.

Failure
As for backup.

Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
goalstackLib.backup, backup limit, goalstackLib.e, goalstackLib.expand,
goalstackLib.expandf, goalstackLib.g, get state, goalstackLib.p, print state,
goalstackLib.r, rotate, save top thm, goalstackLib.set goal, set state,
goalstackLib.top goal, goalstackLib.top thm.

B (Lib)

B : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

backup 71

Synopsis
Performs curried function-composition: B f g x = f (g x).

Failure
Never fails.

See also
Lib, Lib.##, Lib.A, Lib.C, Lib.I, Lib.K, Lib.S, Lib.W.

backup (goalstackLib)

backup : unit -> goalstack

Synopsis
Restores the proof state, undoing the effects of a previous expansion.

Description
The function backup is part of the subgoal package. It allows backing up from the last
state change (caused by calls to expand, set_goal, rotate and their abbreviations, or
to set_state). The package maintains a backup list of previous proof states. A call to
backup restores the state to the previous state (which was on top of the backup list).
The current state and the state on top of the backup list are discarded. The maximum
number of proof states saved on the backup list is one greater than the value of the
assignable variable backup_limit. This variable is initially set to 12. Adding new proof
states after the maximum is reached causes the earliest proof state on the list to be
discarded. The user may backup repeatedly until the list is exhausted. The state restored
includes all unproven subgoals or, if a goal had been proved in the previous state, the
corresponding theorem. backup is abbreviated by the function b. For a description of
the subgoal package, see set_goal.

Failure
The function backup will fail if the backup list is empty.

72 Chapter 1. Pre-defined ML Identifiers

Example

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

- e CONJ_TAC;
OK..
2 subgoals:
> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

: goalstack

- backup();
> val it =

Initial goal:

(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: goalstack

- e (REWRITE_TAC[listTheory.HD, listTheory.TL]);
OK..
> val it =

Initial goal proved.
|- (HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3]) : goalstack

Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
goalstackLib.b, goalstackLib.e, goalstackLib.expand, goalstackLib.expandf,
goalstackLib.g, goalstackLib.p, goalstackLib.r, goalstackLib.rotate,
goalstackLib.set goal, goalstackLib.top goal, goalstackLib.top thm,
goalstackLib.restart, goalstackLib.drop, goalstackLib.dropn.

Beta 73

Beta (Thm)

Beta : thm -> thm

Synopsis
Perform one step of beta-reduction on the right hand side of an equational theorem.

Description
Beta performs a single beta-reduction step on the right-hand side of an equational the-
orem.

A |- t = ((\x.M) N)
--------------------- Beta
A |- t = M [N/x]

Failure
If the theorem is not an equation, or if the right hand side of the equation is not a
beta-redex.

Example

val th = REFL (Term ‘(K:’a ->’b->’a) x‘);
> val th = |- K x = K x : thm

- SUBS_OCCS [([2],combinTheory.K_DEF)] th;
> val it = |- K x = (\x y. x) x : thm

- Beta it;
> val it = |- K x = (\y. x) : thm

Comments
Beta is equivalent to RIGHT_BETA but faster.

See also
Drule.RIGHT BETA, Thm.Eta.

beta (Type)

beta : hol_type

74 Chapter 1. Pre-defined ML Identifiers

Synopsis
Common type variable.

Description
The ML variable Type.beta is bound to the type variable ’b.

See also
Type.alpha, Type.gamma, Type.delta, Type.bool.

beta_conv (Term)

beta_conv : term -> term

Synopsis
Performs one step of beta-reduction.

Description
Beta-reduction is one of the primitive operations in the lambda calculus. A step of beta-
reduction may be performed by beta_conv M, where M is the application of a lambda
abstraction to an argument, i.e., has the form ((\v.N) P). The beta-reduction occurs by
systematically replacing every free occurrence of v in N by P.

Care is taken so that no free variable of P becomes captured in this process.

Failure
If M is not the application of an abstraction to an argument.

Example

- beta_conv (mk_comb (Term ‘\(x:’a) (y:’b). x‘, Term ‘(P:bool -> ’a) Q‘));
> val it = ‘\y. P Q‘ : term

- beta_conv (mk_comb (Term ‘\(x:’a) (y:’b) (y’:’b). x‘, Term ‘y:’a‘));
> val it = ‘\y’. y‘ : term

Comments
More complex strategies for coding up full beta-reduction can be coded up in ML. The
conversions of Larry Paulson support this activity as inference steps.

Uses
For programming derived rules of inference.

BETA CONV 75

See also
Thm.BETA CONV, Drule.RIGHT BETA, Drule.LIST BETA CONV, Drule.RIGHT LIST BETA,
Conv.DEPTH CONV, Conv.TOP DEPTH CONV, Conv.REDEPTH CONV.

BETA_CONV (Thm)

BETA_CONV : conv

Synopsis
Performs a single step of beta-conversion.

Description
The conversion BETA_CONV maps a beta-redex "(\x.u)v" to the theorem

|- (\x.u)v = u[v/x]

where u[v/x] denotes the result of substituting v for all free occurrences of x in u, after
renaming sufficient bound variables to avoid variable capture. This conversion is one of
the primitive inference rules of the HOL system.

Failure
BETA_CONV tm fails if tm is not a beta-redex.

Example

- BETA_CONV (Term ‘(\x.x+1)y‘);
> val it = |- (\x. x + 1)y = y + 1 :thm

- BETA_CONV (Term ‘(\x y. x+y)y‘);
> val it = |- (\x y. x + y)y = (\y’. y + y’) : thm

See also
Conv.BETA RULE, Tactic.BETA TAC, Drule.LIST BETA CONV,
PairedLambda.PAIRED BETA CONV, Drule.RIGHT BETA, Drule.RIGHT LIST BETA.

BETA_RULE (Conv)

BETA_RULE : (thm -> thm)

76 Chapter 1. Pre-defined ML Identifiers

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule BETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

A |-((\x. s1) s2)....
---------------------------- BETA_RULE

A |-(s1[s2/x])....

Failure
Never fails, but will have no effect if there are no beta-redexes.

Example
The following example is a simple reduction which illustrates variable renaming:

- Globals.show_assums := true;
val it = () : unit

- local val tm = Parse.Term ‘f = ((\x y. x + y) y)‘
in
val x = ASSUME tm
end;

val x = [f = (\x y. x + y)y] |- f = (\x y. x + y)y : thm

- BETA_RULE x;
val it = [f = (\x y. x + y)y] |- f = (\y’. y + y’) : thm

See also
Thm.BETA CONV, Tactic.BETA TAC, PairedLambda.PAIRED BETA CONV, Drule.RIGHT BETA.

BETA_TAC (Tactic)

BETA_TAC : tactic

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a goal.

BINDER CONV 77

Description
When applied to a goal A ?- t, the tactic BETA_TAC produces a new goal which results
from beta-reducing all beta-redexes, at any depth, in t. Variables are renamed where
necessary to avoid free variable capture.

A ?- ...((\x. s1) s2)...
========================== BETA_TAC

A ?- ...(s1[s2/x])...

Failure
Never fails, but will have no effect if there are no beta-redexes.

See also
Thm.BETA CONV, Tactic.BETA TAC, PairedLambda.PAIRED BETA CONV.

BINDER_CONV (Conv)

BINDER_CONV : conv -> conv

Synopsis
Applies a conversion underneath a binder.

Description
If conv N returns A |- N = P, then BINDER_CONV conv (M (\v.N)) returns A |- M (\v.N) = M (\v.P

and BINDER_CONV conv (\v.N) returns A |- (\v.N) = (\v.P)

Failure
If conv N fails, or if v is free in A.

Example

- BINDER_CONV SYM_CONV (Term ‘\x. x + 0 = x‘);
> val it = |- (\x. x + 0 = x) = \x. x = x + 0 : thm

Comments
For deeply nested quantifiers, STRIP_BINDER_CONV and STRIP_QUANT_CONV are more effi-
cient than iterated application of BINDER_CONV, BINDER_CONV, or ABS_CONV.

See also
Conv.QUANT CONV, Conv.STRIP QUANT CONV, Conv.STRIP BINDER CONV, Conv.ABS CONV.

78 Chapter 1. Pre-defined ML Identifiers

BINOP_CONV (Conv)

BINOP_CONV : conv -> conv

Synopsis
Applies a conversion to both arguments of a binary operator.

Description
If c is a conversion that when applied to t1 returns the theorem |- t1 = t1’ and when
applied to t2 returns the theorem |- t2 = t2’, then BINOP_CONV c (Term‘f t1 t2‘) will
return the theorem

|- f t1 t2 = f t1’ t2’

Failure
BINOP_CONV c t will fail if t is not of the general form f t1 t2, or if c fails when ap-
plied to either t1 or t2, or if c fails to return theorems of the form |- t1 = t1’ and
|- t2 = t2’ when applied to those arguments. (The latter case would imply that c

wasn’t a conversion at all.)

Example

- BINOP_CONV REDUCE_CONV (Term‘3 * 4 + 6 * 7‘);
> val it = |- 3 * 4 + 6 * 7 = 12 + 42 : thm

See also
Conv.FORK CONV, Conv.LAND CONV, Conv.RAND CONV, Conv.RATOR CONV.

body (Term)

body : term -> term

Synopsis
Returns the body of an abstraction.

Description
If M is a lambda abstraction, i.e, has the form \v. t, then body M returns t.

BODY CONJUNCTS 79

Failure
Fails unless M is an abstraction.

See also
Term.bvar, Term.dest abs.

BODY_CONJUNCTS (Drule)

BODY_CONJUNCTS : (thm -> thm list)

Synopsis
Splits up conjuncts recursively, stripping away universal quantifiers.

Description
When applied to a theorem, BODY_CONJUNCTS recursively strips off universal quantifiers
by specialization, and breaks conjunctions into a list of conjuncts.

A |- !x1...xn. t1 /\ (!y1...ym. t2 /\ t3) /\ ...
-- BODY_CONJUNCTS

[A |- t1, A |- t2, A |- t3, ...]

Failure
Never fails, but has no effect if there are no top-level universal quantifiers or conjuncts.

Example
The following illustrates how a typical term will be split:

- local val tm = Parser.term_parser
‘!x:bool. A /\ (B \/ (C /\ D)) /\ ((!y:bool. E) /\ F)‘

in
val x = ASSUME tm
end;

val x = . |- !x. A /\ (B \/ C /\ D) /\ (!y. E) /\ F : thm

- BODY_CONJUNCTS x;
val it = [. |- A, . |- B \/ C /\ D, . |- E, . |- F] : thm list

See also
Thm.CONJ, Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ TAC.

80 Chapter 1. Pre-defined ML Identifiers

bool (Type)

bool : hol_type

Synopsis
Basic type constant.

Description
The ML variable Type.bool is bound to the type constant bool.

See also
alpha, Type.beta, Type.gamma, Type.delta.

bool_case (boolSyntax)

bool_case : term

Synopsis
Constant denoting case expressions for bool.

Description
The ML variable boolSyntax.bool_case is bound to the term bool$bool_case.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.let tm,
boolSyntax.arb.

BOOL_CASES_TAC (Tactic)

BOOL_CASES_TAC : (term -> tactic)

bool compset 81

Synopsis
Performs boolean case analysis on a (free) term in the goal.

Description
When applied to a term x (which must be of type bool but need not be simply a variable),
and a goal A ?- t, the tactic BOOL_CASES_TAC generates the two subgoals corresponding
to A ?- t but with any free instances of x replaced by F and T respectively.

A ?- t
============================ BOOL_CASES_TAC "x"
A ?- t[F/x] A ?- t[T/x]

The term given does not have to be free in the goal, but if it isn’t, BOOL_CASES_TAC will
merely duplicate the original goal twice.

Failure
Fails unless the term x has type bool.

Example
The goal:

?- (b ==> ~b) ==> (b ==> a)

can be completely solved by using BOOL_CASES_TAC on the variable b, then simply rewrit-
ing the two subgoals using only the inbuilt tautologies, i.e. by applying the following
tactic:

BOOL_CASES_TAC (Parse.Term ‘b:bool‘) THEN REWRITE_TAC[]

Uses
Avoiding fiddly logical proofs by brute-force case analysis, possibly only over a key term
as in the above example, possibly over all free boolean variables.

See also
Tactic.ASM CASES TAC, Tactic.COND CASES TAC, Tactic.DISJ CASES TAC,
Tactic.STRUCT CASES TAC.

bool_compset (computeLib)

bool_compset : unit -> compset

82 Chapter 1. Pre-defined ML Identifiers

Synopsis
Creates a new simplification set to use with CBV_CONV for basic computations.

Description
This function creates a new simplification set to use with the compute library performing
computations about operations on primitive booleans and other basic constants, such
as LET, conditional, implication, conjunction, disjunction, and negation.

Example

- CBV_CONV (bool_compset()) (Term ‘F ==> (T \/ F)‘);
> val it = |- F ==> (T \/ F) = T : thm

See also
computeLib.CBV CONV.

bool_EQ_CONV (Conv)

bool_EQ_CONV : conv

Synopsis
Simplifies expressions involving boolean equality.

Description
The conversion bool_EQ_CONV simplifies equations of the form t1 = t2, where t1 and t2

are of type bool. When applied to a term of the form t = t, the conversion bool_EQ_CONV

returns the theorem

|- (t = t) = T

When applied to a term of the form t = T, the conversion returns

|- (t = T) = t

And when applied to a term of the form T = t, it returns

|- (T = t) = t

Failure
Fails unless applied to a term of the form t1 = t2, where t1 and t2 are boolean, and
either t1 and t2 are syntactically identical terms or one of t1 and t2 is the constant T.

bool rewrites 83

Example

- bool_EQ_CONV (Parse.Term ‘T = F‘);
val it = |- (T = F) = F : thm

- bool_EQ_CONV (Parse.Term ‘(0 < n) = T‘);
val it = |- (0 < n = T) = 0 < n : thm

bool_rewrites (Rewrite)

bool_rewrites: rewrites

Synopsis
Contains a number of basic equalities useful in rewriting.

Description
The variable bool_rewrites is a basic collection of rewrite rules useful in expression
simplification. The current collection is

- bool_rewrites;

> val it =
|- (x = x) = T; |- (T = t) = t; |- (t = T) = t; |- (F = t) = ~t;
|- (t = F) = ~t; |- ~~t = t; |- ~T = F; |- ~F = T; |- T /\ t = t;
|- t /\ T = t; |- F /\ t = F; |- t /\ F = F; |- t /\ t = t;
|- T \/ t = T; |- t \/ T = T; |- F \/ t = t; |- t \/ F = t;
|- t \/ t = t; |- T ==> t = t; |- t ==> T = T; |- F ==> t = T;
|- t ==> t = T; |- t ==> F = ~t; |- (if T then t1 else t2) = t1;
|- (if F then t1 else t2) = t2; |- (!x. t) = t; |- (?x. t) = t;
|- (\x. t1) t2 = t1
Number of rewrite rules = 28
: rewrites

Uses
The contents of bool_rewrites provide a standard basis upon which to build bespoke
rewrite rule sets for use by the functions in Rewrite.

See also
Rewrite.GEN REWRITE CONV, Rewrite.GEN REWRITE RULE, Rewrite.GEN REWRITE TAC,
Rewrite.REWRITE RULE, Rewrite.REWRITE TAC, Rewrite.add rewrites,

84 Chapter 1. Pre-defined ML Identifiers

Rewrite.add implicit rewrites, Rewrite.empty rewrites,
Rewrite.implicit rewrites, Rewrite.set implicit rewrites.

bool_ss (BasicProvers)

bool_ss : simpset

Synopsis
Basic simpset containing standard propositional and first order logic simplifications,
plus beta and eta conversion.

Description
BasicProvers.bool_ss is identical to boolSimps.bool_ss.

See also
boolSimps.bool ss.

bool_ss (boolSimps)

bool_ss : simpset

Synopsis
Basic simpset containing standard propositional and first order logic simplifications,
plus beta-conversion.

Description
bossLib.bool_ss is identical to boolSimps.bool_ss.

See also
bossLib.bool ss.

bool_ss (bossLib)

bool_ss : simpset

bool ss 85

Synopsis

Basic simpset containing standard propositional and first order logic simplifications,
plus beta conversion.

Description

The bool_ss simpset is almost at the base of the system-provided simpset hierarchy.
Though not very powerful, it does include the following ad hoc collection of rewrite

86 Chapter 1. Pre-defined ML Identifiers

rules for propositions and first order terms:

|- !A B. ~(A ==> B) = A /\ ~B
|- !A B. (~(A /\ B) = ~A \/ ~B) /\

(~(A \/ B) = ~A /\ ~B)
|- !P. ~(!x. P x) = ?x. ~P x
|- !P. ~(?x. P x) = !x. ~P x
|- (~p = ~q) = (p = q)
|- !x. (x = x) = T
|- !t. ((T = t) = t) /\

((t = T) = t) /\
((F = t) = ~t) /\
((t = F) = ~t)

|- (!t. ~~t = t) /\ (~T = F) /\ (~F = T)
|- !t. (T /\ t = t) /\

(t /\ T = t) /\
(F /\ t = F) /\
(t /\ F = F) /\
(t /\ t = t)

|- !t. (T \/ t = T) /\
(t \/ T = T) /\
(F \/ t = t) /\
(t \/ F = t) /\
(t \/ t = t)

|- !t. (T ==> t = t) /\
(t ==> T = T) /\
(F ==> t = T) /\
(t ==> t = T) /\
(t ==> F = ~t)

|- !t1 t2. ((if T then t1 else t2) = t1) /\
((if F then t1 else t2) = t2)

|- !t. (!x. t) = t
|- !t. (?x. t) = t
|- !b t. (if b then t else t) = t
|- !a. ?x. x = a
|- !a. ?x. a = x
|- !a. ?!x. x = a,
|- !a. ?!x. a = x,
|- (!b e. (if b then T else e) = b \/ e) /\

(!b t. (if b then t else T) = b ==> t) /\
(!b e. (if b then F else e) = ~b /\ e) /\
(!b t. (if b then t else F) = b /\ t)

|- !t. t \/ ~t
|- !t. ~t \/ t
|- !t. ~(t /\ ~t)
|- !x. (@y. y = x) = x
|- !x. (@y. x = y) = x
|- !f v. (!x. (x = v) ==> f x) = f v
|- !f v. (!x. (v = x) ==> f x) = f v
|- !P a. (?x. (x = a) /\ P x) = P a
|- !P a. (?x. (a = x) /\ P x) = P a

Also included in bool_ss is a conversion to perform beta reduction, as well as the fol-

butlast 87

lowing congruence rules, which allow the simplifier to glean additional contextual in-
formation as it descends through implications and conditionals.

|- !x x’ y y’.
(x = x’) ==>
(x’ ==> (y = y’)) ==> (x ==> y = x’ ==> y’)

|- !P Q x x’ y y’.
(P = Q) ==>
(Q ==> (x = x’)) ==>
(~Q ==> (y = y’)) ==> ((if P then x else y) = (if Q then x’ else y’))

Failure
Can’t fail, as it is not a functional value.

Uses
The bool_ss simpset is an appropriate simpset from which to build new user-defined
simpsets. It is also useful in its own right, for example when a delicate simplification is
desired, where other more powerful simpsets might cause undue disruption to a goal.
If even less system rewriting is desired, the pure_ss value can be used.

See also
pureSimps.pure ss, bossLib.std ss, bossLib.arith ss, bossLib.list ss,
bossLib.SIMP CONV, bossLib.SIMP TAC, bossLib.RW TAC.

butlast (Lib)

butlast : ’a list -> ’a list

Synopsis
Computes the sub-list of a list consisting of all but the last element.

Description
butlast [x1,...,xn] returns [x1,...,x(n-1)].

Failure
Fails if the list is empty.

See also
Lib.last, Lib.el, Lib.front last.

88 Chapter 1. Pre-defined ML Identifiers

bvar (Term)

bvar : term -> term

Synopsis
Returns the bound variable of an abstraction.

Description
If M is a lambda abstraction, i.e, has the form \v. t, then bvar M returns v.

Failure
Fails unless M is an abstraction.

See also
Term.body, Term.dest abs.

by (bossLib)

op by : term quotation * tactic -> tactic

Synopsis
Prove and place a theorem on the assumptions of the goal.

Description
An invocation tm by tac, when applied to goal A ?- g, applies tac to goal A ?- tm. If tm
is thereby proved, it is added to A, yielding the new goal A,tm ?- g. If tm is not proved
by tac, then any remaining subgoals generated are added to A,tm ?- g.

When tm is added to the existing assumptions A, it is ”stripped”, i.e., broken apart by
eliminating existentials, conjunctions, and disjunctions. This can lead to case splitting.

Failure
Fails if tac fails when applied to A ?- tm.

C 89

Example
Given the goal {x <= y, w < x} ?- P, suppose that the fact ?n. y = n + w would help
in eventually proving P. Invoking

‘?n. y = n + w‘ by (EXISTS_TAC (Term ‘y-w‘) THEN DECIDE_TAC)

yields the goal {y = n + w, x <= y, w < x} ?- P in which the proved fact has been
added to the assumptions after its existential quantifier is eliminated. Note the paren-
theses around the tactic: this is needed for the example because by binds more tightly
than THEN.

Since the tactic supplied need not solve the generated subgoal, by gives a useful
way of generating proof obligations while pursuing a particular line of reasoning. For
example, the above goal could also be attacked by

‘?n. y = n + w‘ by ALL_TAC

with the result being the goal {x <= y, w < x} ?- ?n. y = n + w and the augmented
original {y = n + w, x <= y, w < x} ?- P. Now either may be attempted.

Comments
Use of by can be more convenient than IMP_RES_TAC and RES_TAC when they would
generate many useless assumptions.

See also
Tactical.SUBGOAL THEN, Tactic.IMP RES TAC, Tactic.RES TAC,
Tactic.STRIP ASSUME TAC.

C (Lib)

C : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

Synopsis
Permutes first two arguments to curried function: C f x y equals f y x.

Failure
C f never fails and C f x never fails, but C f x y fails if f y x fails.

90 Chapter 1. Pre-defined ML Identifiers

Example

- map (C cons []) [1,2,3];
> val it = [[1], [2], [3]] : int list list

See also
Lib.##, Lib.A, Lib.B, Lib.I, Lib.K, Lib.S, Lib.W.

can (Lib)

can : (’a -> ’b) -> ’a -> bool

Synopsis
Tests for failure.

Description
can f x evaluates to true if the application of f to x succeeds. It evaluates to false if
the application fails.

Failure
Only fails if f x raises the Interrupt exception.

Example

- hd [];
! Uncaught exception:
! Empty

- can hd [];
> val it = false : bool

- can (fn _ => raise Interrupt) 3;
> Interrupted.

See also
Lib.assert, try, Lib.trye, Lib.partial, Lib.total, Feedback.with exn,
Lib.assert exn.

Cases 91

Cases (bossLib)

Cases : tactic

Synopsis
Performs case analysis on the variable of the leading universally quantified variable of
the goal.

Description
When applied to a universally quantified goal ?- !u. G, Cases performs a case-split,
based on the cases theorem for the type of u stored in the global TypeBase database.

The cases theorem for a type ty will be of the form:

|- !v:ty. (?x11...x1n1. v = C1 x11 ... x1n1) \/ \/
(?xm1...xmnm. v = Cm xm1 ... xmnm)

where there is no requirement for there to be more than one disjunct, nor for there to be
any particular number of existentially quantified variables in any disjunct. For example,
the cases theorem for natural numbers initially in the TypeBase is:

|- !n. (n = 0) \/ (?m. n = SUC m)

Case-splitting consists of specialising the cases theorem with the variable from the goal
and then generating as many sub-goals as there are disjuncts in the cases theorem,
where in each sub-goal (including the assumptions) the variable has been replaced by
an expression involving the given ‘constructor’ (the Ci’s above) applied to as many fresh
variables as appropriate.

Failure
Fails if the goal is not universally quantified, or if the type of the universally quantified
variable does not have a case theorem in the TypeBase, as will happen, for example,
with variable types.

92 Chapter 1. Pre-defined ML Identifiers

Example
If we have defined the following type:

- Hol_datatype ‘foo = Bar of num | Baz of bool‘;
> val it = () : unit

and the following function:

- val foofn_def = Define ‘(foofn (Bar n) = n + 10) /\
(foofn (Baz x) = 10)‘;

> val foofn_def =
|- (!n. foofn (Bar n) = n + 10) /\

!x. foofn (Baz x) = 10 : thm

then it is possible to make progress with the goal !x. foofn x >= 10 by applying the
tactic Cases, thus:

?- !x. foofn x >= 10
== Cases
?- foofn (Bar n) >= 10 ?- foofn (Baz b) >= 10

producing two new goals, one for each constructor of the type.

See also
bossLib.Cases on, bossLib.Induct, Tactic.STRUCT CASES TAC.

Cases (SingleStep)

Cases : tactic

Synopsis
Case split on leading universally quantified variable in a goal.

Description
bossLib.Cases is identical to SingleStep.Cases.

See also
bossLib.Cases.

Cases on 93

Cases_on (bossLib)

Cases_on : term -> tactic

Synopsis
Performs case analysis on the type of a given term.

Description
An application Cases_on M performs a case-split based on the type ty of M, using the
cases theorem for ty from the global TypeBase database.
Cases_on can be used to specify variables that are buried in the quantifier prefix.

Cases_on can also be used to perform case splits on non-variable terms. If M is a non-
variable term that does not occur bound in the goal, then the cases theorem is instanti-
ated with M and used to generate as many sub-goals as there are disjuncts in the cases
theorem.

Failure
Fails if ty does not have a case theorem in the TypeBase.

Example
None yet.

See also
bossLib.Cases, bossLib.Induct, bossLib.Induct on, Tactic.STRUCT CASES TAC.

Cases_on (SingleStep)

Cases_on : term -> tactic

Synopsis
Case split on type of supplied term.

Description
bossLib.Cases_on is identical to SingleStep.Cases_on.

See also
bossLib.Cases on.

94 Chapter 1. Pre-defined ML Identifiers

CASES_THENL (Thm_cont)

CASES_THENL : (thm_tactic list -> thm_tactic)

Synopsis
Applies the theorem-tactics in a list to corresponding disjuncts in a theorem.

Description
When given a list of theorem-tactics [ttac1;...;ttacn] and a theorem whose conclu-
sion is a top-level disjunction of n terms, CASES_THENL splits a goal into n subgoals result-
ing from applying to the original goal the result of applying the i’th theorem-tactic to
the i’th disjunct. This can be represented as follows, where the number of existentially
quantified variables in a disjunct may be zero. If the theorem th has the form:

A’ |- ?x11..x1m. t1 \/ ... \/ ?xn1..xnp. tn

where the number of existential quantifiers may be zero, and for all i from 1 to n:

A ?- s
========== ttaci (|- ti[xi1’/xi1]..[xim’/xim])
Ai ?- si

where the primed variables have the same type as their unprimed counterparts, then:

A ?- s
========================= CASES_THENL [ttac1;...;ttacn] th
A1 ?- s1 ... An ?- sn

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails if the given theorem does not, at the top level, have the same number of (possi-
bly multiply existentially quantified) disjuncts as the length of the theorem-tactic list
(this includes the case where the theorem-tactic list is empty), or if any of the tactics
generated as specified above fail when applied to the goal.

Uses
Performing very general disjunctive case splits.

See also
Thm cont.DISJ CASES THENL, Thm cont.X CASES THENL.

CBV CONV 95

CBV_CONV (computeLib)

CBV_CONV : comp_rws -> conv

Synopsis
Call by value rewriting.

Description
The conversion CBV_CONV expects an simplification set and a term. Its term argument
is rewritten using the equations added in the simplification set. The strategy used is
somewhat similar to ML’s, that is call-by-value (arguments of constants are completely
reduced before the rewrites associated to the constant are applied) with weak reduction
(no reduction of the function body before the function is applied). The main differences
are that beta-redexes are reduced with a call-by-name strategy (the argument is not
reduced), and reduction under binders is done when it occurs in a position where it
cannot be substituted.

The simplification sets are mutable objects, this means they are extended by side-
effect. The function new_rws will create a new set containing only reflexivity (REFL_CLAUSE).
Theorems can be added to a set with the function add_thms. The function from_list sim-
ply combines new_rws and add_thms.

It is also possible to add conversions to a simplification set with add_conv. The only
restriction is that a constant (c) and an arity (n) must be provided. The conversion will
be called only on terms in which c is applied to n arguments.

Two theorem “preprocessors” are provided to control the strictness of the arguments
of a constant. lazyfy_thm has pattern variables on the left hand side turned into ab-
stractions on the right hand side. This transformation is applied on every conjunct, and
removes prenex universal quantifications. A typical example is COND_CLAUSES:

(COND T a b = a) /\ (COND F a b = b)

Using these equations is very inefficient because both a and b are evaluated, regardless
of the value of the boolean expression. It is better to use COND_CLAUSES with the form
above

(COND T = \a b. a) /\ (COND F = \a b. b)

The call-by-name evaluation of beta redexes avoids computing the unused branch of
the conditional.

96 Chapter 1. Pre-defined ML Identifiers

Conversely, strictify_thm does the reverse transformation. This is particularly rele-
vant for LET_DEF:

LET = \f x. f x --> LET f x = f x

This forces the evaluation of the argument before reducing the beta-redex. Hence the
usual behaviour of LET.

It is necessary to provide rules for all the constants appearing in the expression to
reduce (all also for those that appear in the right hand side of a rule), unless the given
constant is considered as a constructor of the representation chosen. As an example,
initial_rws provides a way to create a new simplification set with all the rules needed
for basic boolean and arithmetical calculations built in.

Example

- val rws = from_list (lazyfy_thm [COND_CLAUSES]);
> val rws = RWS<hash_table> : comp_rws

- CBV_CONV rws (--‘(\x.x) ((\x.x) if T then 0+0 else 10)‘--);
> val it = |- (\x. x) ((\x. x) (if T then 0 + 0 else 10)) = 0 + 0 : thm

- CBV_CONV (initial_rws())
(--‘if 100 - 5 * 5 < 80 then 2 EXP 16 else 3‘--);

> val it = |- (if 100 - 5 * 5 < 80 then 2 EXP 16 else 3) = 65536 : thm

Failing to give enough rules may make CBV_CONV build a huge result, or even loop. The
same may occur if the initial term to reduce contains free variables.

val eqn = bossLib.Define ‘exp n p = if p=0 then 1 else n * (exp n (p-1))‘;
val rws = bossLib.initial_rws();
val _ = add_thms(true,[eqn]) rws;

- CBV_CONV rws (--‘exp 2 n‘--);
> Interrupted.
- set_skip rws "COND" (SOME 1);
> val it = () : unit
- CBV_CONV rws (--‘exp 2 n‘--);
> val it = |- exp 2 n = (if n = 0 then 1 else 2 * exp 2 (n - 1)) : thm

The first invocation of CBV_CONV loops since the exponent never reduces to 0. Below the

CCONTR 97

first steps are computed:

exp 2 n
if n = 0 then 1 else 2 * exp 2 (n-1)
if n = 0 then 1 else 2 * if (n-1) = 0 then 1 else 2 * exp 2 (n-1-1)
...

The call to set_skip means that if the constants COND appears applied to one argument
and does not create a redex (in the example, if the condition does not reduce to T or F),
then the forthcoming arguments (the two branches of the conditional) are not reduced
at all.

Failure
Should never fail. Nonetheless, using rewrites with assumptions may cause problems
when rewriting under abstractions. The following example illustrates that issue.

- val th = ASSUME(--‘0=x‘--);
- val tm = --‘\(x:num).x=0‘--;
- val rws = from_list [th];
- CBV_CONV rws tm;

This fails because the 0 is replaced by x, making the assumption 0=x. Then, the abstrac-
tion cannot be rebuilt since x appears free in the assumptions.

See also
REDUCE CONV, reduce rws, computeLib.initial rws.

CCONTR (Thm)

CCONTR : term -> thm -> thm

Synopsis
Implements the classical contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CCONTR returns the

98 Chapter 1. Pre-defined ML Identifiers

theorem A - {~t} |- t.

A |- F
--------------- CCONTR t
A - {~t} |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

Comments
The usual use will be when ~t exists in the assumption list; in this case, CCONTR corre-
sponds to the classical contradiction rule: if ~t leads to a contradiction, then t must be
true.

See also
Drule.CONTR, Drule.CONTRAPOS, Tactic.CONTR TAC, Thm.NOT ELIM.

CCONTR_TAC (Tactic)

CCONTR_TAC : tactic

Synopsis
Prepares for a proof by Classical contradiction.

Description
CCONTR_TAC takes a theorem A’ |- F and completely solves the goal. This is an invalid
tactic unless A’ is a subset of A.

A ?- t
======== CCONTR_TAC (A’ |- F)

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

See also
Tactic.CHECK ASSUME TAC, Thm.CCONTR, CCCONTR, Drule.CONTRAPOS, Thm.NOT ELIM.

CHANGED CONV 99

CHANGED_CONV (Conv)

CHANGED_CONV : (conv -> conv)

Synopsis
Makes a conversion fail if applying it leaves a term unchanged.

Description
If c is a conversion that maps a term "t" to a theorem |- t = t’, where t’ is alpha-
equivalent to t, then CHANGED_CONV c is a conversion that fails when applied to the
term "t". If c maps "t" to |- t = t’, where t’ is not alpha-equivalent to t, then
CHANGED_CONV c also maps "t" to |- t = t’. That is, CHANGED_CONV c is the conversion
that behaves exactly like c, except that it fails whenever the conversion c would leave
its input term unchanged (up to alpha-equivalence).

Failure
CHANGED_CONV c "t" fails if c maps "t" to |- t = t’, where t’ is alpha-equivalent to t,
or if c fails when applied to "t". The function returned by CHANGED_CONV c may also fail
if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps a
term t to a theorem |- t = t’).

Uses
CHANGED_CONV is used to transform a conversion that may leave terms unchanged, and
therefore may cause a nonterminating computation if repeated, into one that can safely
be repeated until application of it fails to substantially modify its input term.

CHANGED_TAC (Tactical)

CHANGED_TAC : (tactic -> tactic)

Synopsis
Makes a tactic fail if it has no effect.

Description
When applied to a tactic T, the tactical CHANGED_TAC gives a new tactic which is the same
as T if that has any effect, and otherwise fails.

100 Chapter 1. Pre-defined ML Identifiers

Failure
The application of CHANGED_TAC to a tactic never fails. The resulting tactic fails if the
basic tactic either fails or has no effect.

See also
Tactical.TRY, VALID.

CHECK_ASSUME_TAC (Tactic)

CHECK_ASSUME_TAC : thm_tactic

Synopsis
Adds a theorem to the assumption list of goal, unless it solves the goal.

Description
When applied to a theorem A’ |- s and a goal A ?- t, the tactic CHECK_ASSUME_TAC

checks whether the theorem will solve the goal (this includes the possibility that the
theorem is just A’ |- F). If so, the goal is duly solved. If not, the theorem is added to
the assumptions of the goal, unless it is already there.

A ?- t
============== CHECK_ASSUME_TAC (A’ |- F) [special case 1]

A ?- t
============== CHECK_ASSUME_TAC (A’ |- t) [special case 2]

A ?- t
============== CHECK_ASSUME_TAC (A’ |- s) [general case]
A u {s} ?- t

Unless A’ is a subset of A, the tactic will be invalid, although it will not fail.

Failure
Never fails.

See also
Tactic.ACCEPT TAC, Tactic.ASSUME TAC, Tactic.CONTR TAC, Tactic.DISCARD TAC,
Tactic.MATCH ACCEPT TAC.

CHOOSE 101

CHOOSE (Thm)

CHOOSE : term * thm -> thm -> thm

Synopsis
Eliminates existential quantification using deduction from a particular witness.

Description
When applied to a term-theorem pair (v,A1 |- ?x. s) and a second theorem of the
form A2 u {s[v/x]} |- t, the inference rule CHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?x. s A2 u {s[v/x]} |- t
--------------------------------------- CHOOSE (v,(A1 |- ?x. s))

A1 u A2 |- t

Where v is not free in A1, A2 or t.

Failure
Fails unless the terms and theorems correspond as indicated above; in particular v must
have the same type as the variable existentially quantified over, and must not be free in
A1, A2 or t.

See also
Tactic.CHOOSE TAC, Thm.EXISTS, Tactic.EXISTS TAC, Drule.SELECT ELIM.

CHOOSE_TAC (Tactic)

CHOOSE_TAC : thm_tactic

Synopsis
Adds the body of an existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?x. t and a goal, CHOOSE_TAC adds t[x’/x] to the
assumptions of the goal, where x’ is a variant of x which is not free in the assumption

102 Chapter 1. Pre-defined ML Identifiers

list; normally x’ is just x.

A ?- u
==================== CHOOSE_TAC (A’ |- ?x. t)
A u {t[x’/x]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is existentially quantified.

Example
Suppose we have a goal asserting that the output of an electrical circuit (represented as
a boolean-valued function) will become high at some time:

?- ?t. output(t)

and we have the following theorems available:

t1 = |- ?t. input(t)
t2 = !t. input(t) ==> output(t+1)

Then the goal can be solved by the application of:

CHOOSE_TAC th1
THEN EXISTS_TAC (Term ‘t+1‘)
THEN UNDISCH_TAC (Term ‘input (t:num) :bool‘)
THEN MATCH_ACCEPT_TAC th2

See also
Thm cont.CHOOSE THEN, Tactic.X CHOOSE TAC.

CHOOSE_THEN (Thm_cont)

CHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of existentially quantified theorem.

CHOOSE THEN 103

Description
When applied to a theorem-tactic ttac, an existentially quantified theorem A’ |- ?x. t,
and a goal, CHOOSE_THEN applies the tactic ttac (t[x’/x] |- t[x’/x]) to the goal, where
x’ is a variant of x chosen not to be free in the assumption list of the goal. Thus if:

A ?- s1
========= ttac (t[x’/x] |- t[x’/x])
B ?- s2

then

A ?- s1
========== CHOOSE_THEN ttac (A’ |- ?x. t)
B ?- s2

This is invalid unless A’ is a subset of A.

Failure
Fails unless the given theorem is existentially quantified, or if the resulting tactic fails
when applied to the goal.

Example
This theorem-tactical and its relatives are very useful for using existentially quantified
theorems. For example one might use the inbuilt theorem

LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1))

to help solve the goal

?- x < y ==> 0 < y * y

by starting with the following tactic

DISCH_THEN (CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1)

which reduces the goal to

?- 0 < ((x + (p + 1)) * (x + (p + 1)))

which can then be finished off quite easily, by, for example:

REWRITE_TAC[ADD_ASSOC, SYM (SPEC_ALL ADD1),
MULT_CLAUSES, ADD_CLAUSES, LESS_0]

See also
Tactic.CHOOSE TAC, Thm cont.X CHOOSE THEN.

104 Chapter 1. Pre-defined ML Identifiers

class (DB)

datatype class

Synopsis
Datatype for classifying theory elements.

Description
Many of the functions in the DB structure return answers that involve the class type,
which is declared as

datatype class = Thm | Axm | Def

When occurring with th, an ML value of type thm, Axm means that th has been asserted
as an axiom; Def means that th is a constant definition; and Thm means that th is a plain
old theorem, i.e,. not an axiom or a definition.

See also
DB.data.

clear_overloads_on (Parse)

Parse.clear_overloads_on : string -> unit

Synopsis
Clears all overloading on the specified operator.

Description
This function removes all overloading associated with the given string, except those
”overloads” that map the string to constants of the same name. These additional over-
loads (there may be more than one constant of the same name, as long as each such is
part of a different theory) may be removed with remove_ovl_mapping, or by using hide.

Failure
Never fails. If a string is not overloaded, this function simply has no effect.

clear prefs for term 105

Example

- load "realTheory";
> val it = () : unit
- realTheory.REAL_INV_LT1;
> val it = |- !x. 0 < x /\ x < 1 ==> 1 < inv x : thm
- clear_overloads_on "<";
> val it = () : unit
- realTheory.REAL_INV_LT1;
> val it = |- !x. 0 real_lt x /\ x real_lt 1 ==> 1 real_lt inv x : thm
- clear_overloads_on "&";
> val it = () : unit
- realTheory.REAL_INV_LT1;
> val it = |- !x. 0r real_lt x /\ x real_lt 1r ==> 1r real_lt inv x : thm

Uses
If overloading gets too confusing, this function should help to clear away one layer of
supposedly helpful obfuscation.

Comments
As with other parsing functions, there is a sister function, temp_clear_overloads_on that
does the same thing, but whose effect is not saved to a theory file.

See also
Parse.overload on, Parse.remove ovl mapping.

clear_prefs_for_term (Parse)

Parse.clear_prefs_for_term : string -> unit

Synopsis
Removes pretty-printing preference information from the global grammar.

Description
The clear_prefs_for_term function removes the information stored in the global gram-
mar as to which (if any) rule should be preferred when terms are pretty-printed. This
will cause terms of the given name to be printed using “raw” syntax.

Failure
Never fails.

106 Chapter 1. Pre-defined ML Identifiers

Example
The initial grammar has two rules for conditional expressions, with the if-then-else

form preferred, so that even if the old HOL88 style syntax is used for input, the term is
printed out in the if-then-else style:

- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘(if p then q else r)‘ : term

If clear_prefs_for_term is applied, neither syntax will print:

- clear_prefs_for_term "COND";
> val it = () : unit
- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘COND p q r‘ : term

See also
Parse.prefer form with tok.

CNF_CONV (normalForms)

CNF_CONV : conv

Synopsis
Converts a formula into Conjunctive Normal Form (CNF).

Description
Given a formula consisting of truths, falsities, conjunctions, disjunctions, negations,
equivalences, conditionals, and universal and existential quantifiers, CNF_CONV will con-
vert it to the canonical form:

?a_1 ... a_k.
(!v_1 ... v_m1. P_1 \/ ... \/ P_n1) /\
... /\
(!v_1 ... v_mp. P_1 \/ ... \/ P_np)

The P_ij are literals: possibly-negated atoms. In first-order logic an atom is a formula
consisting of a top-level relation symbol applied to first-order terms: function symbols
and variables. In higher-order logic there is no distinction between formulas and terms,

combine 107

so the concept of atom is not well-formed. Note also that the a_i existentially bound
variables may be functions, as a result of Skolemization.

Failure
CNF_CONV should never fail.

Example

- CNF_CONV ‘‘!x. P x ==> ?y z. Q y \/ ~?z. P z /\ Q z‘‘;
> val it =

|- (!x. P x ==> ?y z. Q y \/ ~?z. P z /\ Q z) =
?y. !x x’. Q (y x) \/ ~P x’ \/ ~Q x’ \/ ~P x : thm

Example

- CNF_CONV ‘‘~(~(x = y) = z) = ~(x = ~(y = z))‘‘;
> val it = |- (~(~(x = y) = z) = ~(x = ~(y = z))) = T : thm

combine (Lib)

combine : ’a list * ’b list -> (’a * ’b) list

Synopsis
Transforms a pair of lists into a list of pairs.

Description
combine ([x1,...,xn],[y1,...,yn]) returns [(x1,y1),...,(xn,yn)].

Failure
Fails if the two lists are of different lengths.

Comments
Has much the same effect as the SML Basis function ListPair.zip except that it fails if
the arguments are not of equal length. Also note that zip is a curried version of combine

See also
Lib.zip, Lib.unzip, Lib.split.

108 Chapter 1. Pre-defined ML Identifiers

commafy (Lib)

commafy : string list -> string list

Synopsis
Add commas into a list of strings.

Description
An application commafy [s1,...,sn] yields [s1, ",", ..., ",", sn].

Failure
Never fails.

Example

- commafy ["donkey", "mule", "horse", "camel", "llama"];
> val it =

["donkey", ", ", "mule", ", ", "horse", ", ", "camel", ", ", "llama"] :
string list

- print (String.concat it ^ "\n");
donkey, mule, horse, camel, llama
> val it = () : unit

- commafy ["foo"];
> val it = ["foo"] : string list

compare (Term)

Term.compare : term * term -> order

Synopsis
Ordering on terms.

Description
An invocation compare (M,N) will return one of {LESS, EQUAL, GREATER}, according to
an ordering on terms. The ordering is transitive and total, and equates alpha-convertible
terms.

compare 109

Failure
Never fails.

Example

- compare (T,F);
> val it = GREATER : order

- compare (Term ‘\x y. x /\ y‘, Term ‘\y z. y /\ z‘);
> val it = EQUAL : order

Comments
Used to build high performance datastructures for dealing with sets having many terms.

See also
Term.empty tmset, Term.var compare.

compare (Type)

Type.compare : hol_type * hol_type -> order

Synopsis
An ordering on HOL types.

Description
An invocation compare (ty1,ty2) returns one of {LESS, EQUAL, GREATER}. This is a total
and transitive order.

Failure
Never fails.

Example

- Type.compare (bool, alpha --> alpha);
> val it = LESS : order

Comments
One use of compare is to build efficient set or dictionary datastructures involving HOL
types in the keys.

110 Chapter 1. Pre-defined ML Identifiers

There is also a Term.compare.

See also
Term.compare.

completeInduct_on (bossLib)

completeInduct_on : term quotation -> tactic

Synopsis
Perform complete induction

Description
If q parses into a well-typed term M, an invocation completeInduct_on q begins a proof
by complete (also known as ‘course-of-values’) induction on M. The term M should occur
free in the current goal.

Failure
If M does not parse into a term or does not occur free in the current goal.

Example
Suppose we wish to prove that every number not equal to one has a prime factor:

!n. ~(n = 1) ==> ?p. prime p /\ p divides n

A natural way to prove this is by complete induction. Invoking completeInduct_on ‘n‘

yields the goal

{ !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m }
?-
~(n = 1) ==> ?p. prime p /\ p divides n

See also
bossLib.measureInduct on, bossLib.Induct, bossLib.Induct on.

concat (Lib)

concat : string -> string -> string

concl 111

Synopsis
Concatenates two ML strings.

Failure
Never fails.

Example

- concat "1" "";
> val it = "1" : string

- concat "hello" "world";
> val it = "helloworld" : string

- concat "hello" (concat " " "world");
> val it = "hello world" : string

Comments
This function is open at the top level and is not the same as the Basis function String.concat.
The latter concatenates a list of strings.

concl (Thm)

concl : thm -> term

Synopsis
Returns the conclusion of a theorem.

Description
When applied to a theorem A |- t, the function concl returns t.

Failure
Never fails.

See also
Thm.dest thm, Thm.hyp.

COND_CASES_TAC (Tactic)

COND_CASES_TAC : tactic

112 Chapter 1. Pre-defined ML Identifiers

Synopsis
Induces a case split on a conditional expression in the goal.

Description
COND_CASES_TAC searches for a conditional sub-term in the term of a goal, i.e. a sub-term
of the form p=>u|v, choosing one by its own criteria if there is more than one. It then
induces a case split over p as follows:

A ?- t
=== COND_CASES_TAC
A u {p} ?- t[u/(p=>u|v)] A u {~p} ?- t[v/(p=>u|v)]]

where p is not a constant, and the term p=>u|v is free in t. Note that it both enriches
the assumptions and inserts the assumed value into the conditional.

Failure
COND_CASES_TAC fails if there is no conditional sub-term as described above.

Example
For "x", "y", "z1" and "z2" of type ":*", and "P:*->bool",

COND_CASES_TAC ([], "x = (P y => z1 | z2)");;
([(["P y"], "x = z1"); (["~P y"], "x = z2")], -) : subgoals

but it fails, for example, if "y" is not free in the term part of the goal:

COND_CASES_TAC ([], "!y. x = (P y => z1 | z2)");;
evaluation failed COND_CASES_TAC

In contrast, ASM_CASES_TAC does not perform the replacement:

ASM_CASES_TAC "P y" ([], "x = (P y => z1 | z2)");;
([(["P y"], "x = (P y => z1 | z2)"); (["~P y"], "x = (P y => z1 | z2)")],
-)

: subgoals

Uses
Useful for case analysis and replacement in one step, when there is a conditional sub-
term in the term part of the goal. When there is more than one such sub-term and one
in particular is to be analyzed, COND_CASES_TAC cannot be depended on to choose the
‘desired’ one. It can, however, be used repeatedly to analyze all conditional sub-terms
of a goal.

See also
Tactic.ASM CASES TAC, Tactic.DISJ CASES TAC, Tactic.STRUCT CASES TAC.

COND CONV 113

COND_CONV (Conv)

COND_CONV : conv

Synopsis
Simplifies conditional terms.

Description
The conversion COND_CONV simplifies a conditional term "c => u | v" if the condition c

is either the constant T or the constant F or if the two terms u and v are equivalent up
to alpha-conversion. The theorems returned in these three cases have the forms:

|- (T => u | v) = u

|- (F => u | v) = u

|- (c => u | u) = u

Failure
COND_CONV tm fails if tm is not a conditional "c => u | v", where c is T or F, or u and v

are alpha-equivalent.

conditional (boolSyntax)

conditional : term

Synopsis
Constant denoting conditional expressions.

Description
The ML variable boolSyntax.conditional is bound to the term bool$COND.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.bool case,
boolSyntax.let tm, boolSyntax.arb.

114 Chapter 1. Pre-defined ML Identifiers

CONJ (Thm)

CONJ : thm -> thm -> thm

Synopsis
Introduces a conjunction.

Description

A1 |- t1 A2 |- t2
------------------------ CONJ

A1 u A2 |- t1 /\ t2

Failure
Never fails.

Comments
The theorem AND_INTRO_THM can be instantiated to similar effect.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJ PAIR,
Drule.LIST CONJ, Drule.CONJ LIST, Drule.CONJUNCTS.

CONJ_DISCH (Drule)

CONJ_DISCH : (term -> thm -> thm)

Synopsis
Discharges an assumption and conjoins it to both sides of an equation.

Description
Given an term t and a theorem A |- t1 = t2, which is an equation between boolean
terms, CONJ_DISCH returns A - {t} |- (t /\ t1) = (t /\ t2), i.e. conjoins t to both

CONJ DISCHL 115

sides of the equation, removing t from the assumptions if it was there.

A |- t1 = t2
------------------------------ CONJ_DISCH "t"
A - {t} |- t /\ t1 = t /\ t2

Failure
Fails unless the theorem is an equation, both sides of which, and the term provided are
of type bool.

See also
Drule.CONJ DISCHL.

CONJ_DISCHL (Drule)

CONJ_DISCHL : (term list -> thm -> thm)

Synopsis
Conjoins multiple assumptions to both sides of an equation.

Description
Given a term list [t1;...;tn] and a theorem whose conclusion is an equation between
boolean terms, CONJ_DISCHL conjoins all the terms in the list to both sides of the equa-
tion, and removes any of the terms which were in the assumption list.

A |- s = t
-- CONJ_DISCHL
A - {t1,...,tn} |- (t1/\.../\tn/\s) = (t1/\.../\tn/\t) [t1,...,tn]

Failure
Fails unless the theorem is an equation, both sides of which, and all the terms provided,
are of type bool.

See also
Drule.CONJ DISCH.

CONJ_LIST (Drule)

CONJ_LIST : (int -> thm -> thm list)

116 Chapter 1. Pre-defined ML Identifiers

Synopsis
Extracts a list of conjuncts from a theorem (non-flattening version).

Description
CONJ_LIST is the proper inverse of LIST_CONJ. Unlike CONJUNCTS which recursively splits
as many conjunctions as possible both to the left and to the right, CONJ_LIST splits
the top-level conjunction and then splits (recursively) only the right conjunct. The
integer argument is required because the term tn may itself be a conjunction. A list of n
theorems is returned.

A |- t1 /\ (t2 /\ (... /\ tn)...)
------------------------------------ CONJ_LIST n (A |- t1 /\ ... /\ tn)
A |- t1 A |- t2 ... A |- tn

Failure
Fails if the integer argument (n) is less than one, or if the input theorem has less than n

conjuncts.

Example
Suppose the identifier th is bound to the theorem:

A |- (x /\ y) /\ z /\ w

Here are some applications of CONJ_LIST to th:

- CONJ_LIST 0 th;
! Uncaught exception:
! HOL_ERR

- CONJ_LIST 1 th;
> val it = [[A] |- (x /\ y) /\ z /\ w] : thm list

- CONJ_LIST 2 th;
> val it = [[A] |- x /\ y, [A] |- z /\ w] : thm list

- CONJ_LIST 3 th;
> val it = [[A] |- x /\ y, [A] |- z, [A] |- w] : thm list

- CONJ_LIST 4 th;
! Uncaught exception:
! HOL_ERR

See also
Drule.BODY CONJUNCTS, Drule.LIST CONJ, Drule.CONJUNCTS, Thm.CONJ,
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJ PAIR.

CONJ PAIR 117

CONJ_PAIR (Drule)

CONJ_PAIR : thm -> thm * thm

Synopsis
Extracts both conjuncts of a conjunction.

Description

A |- t1 /\ t2
---------------------- CONJ_PAIR
A |- t1 A |- t2

The two resultant theorems are returned as a pair.

Failure
Fails if the input theorem is not a conjunction.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT1, Thm.CONJUNCT2, Thm.CONJ, Drule.LIST CONJ,
Drule.CONJ LIST, Drule.CONJUNCTS.

CONJ_SET_CONV (Drule)

CONJ_SET_CONV : (term list -> term list -> thm)

Synopsis
Proves the equivalence of the conjunctions of two equal sets of terms.

Description
The arguments to CONJ_SET_CONV are two ML lists of terms [t1,...,tn] and [u1,...,um].
If these are equal when considered as sets, that is if the sets

{t1,...,tn} and {u1,...,um}

are equal, then CONJ_SET_CONV returns the theorem:

|- (t1 /\ ... /\ tn) = (u1 /\ ... /\ um)

Otherwise CONJ_SET_CONV fails.

118 Chapter 1. Pre-defined ML Identifiers

Failure
CONJ_SET_CONV [t1,...,tn] [u1,...,um] fails if [t1,...,tn] and [u1,...,um], regarded
as sets of terms, are not equal. Also fails if any ti or ui does not have type bool.

Uses
Used to order conjuncts. First sort a list of conjuncts l1 into the desired order to get a
new list l2, then call CONJ_SET_CONV l1 l2.

Comments
This is not a true conversion, so perhaps it ought to be called something else.

See also
Drule.CONJUNCTS CONV.

CONJ_TAC (Tactic)

CONJ_TAC : tactic

Synopsis
Reduces a conjunctive goal to two separate subgoals.

Description
When applied to a goal A ?- t1 /\ t2, the tactic CONJ_TAC reduces it to the two subgoals
corresponding to each conjunct separately.

A ?- t1 /\ t2
====================== CONJ_TAC
A ?- t1 A ?- t2

Failure
Fails unless the conclusion of the goal is a conjunction.

See also
Tactic.STRIP TAC.

CONJUNCT1 (Thm)

CONJUNCT1 : thm -> thm

CONJUNCT2 119

Synopsis
Extracts left conjunct of theorem.

Description

A |- t1 /\ t2
--------------- CONJUNCT1

A |- t1

Failure
Fails unless the input theorem is a conjunction.

Comments
The theorem AND1_THM can be instantiated to similar effect.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT2, Drule.CONJ PAIR, Thm.CONJ, Drule.LIST CONJ,
Drule.CONJ LIST, Drule.CONJUNCTS.

CONJUNCT2 (Thm)

CONJUNCT2 : thm -> thm

Synopsis
Extracts right conjunct of theorem.

Description

A |- t1 /\ t2
--------------- CONJUNCT2

A |- t2

Failure
Fails unless the input theorem is a conjunction.

Comments
The theorem AND2_THM can be instantiated to similar effect.

See also
Drule.BODY CONJUNCTS, Thm.CONJUNCT1, Drule.CONJ PAIR, Thm.CONJ, Drule.LIST CONJ,
Drule.CONJ LIST, Drule.CONJUNCTS.

120 Chapter 1. Pre-defined ML Identifiers

conjunction (boolSyntax)

conjunction : term

Synopsis
Constant denoting logical conjunction.

Description
The ML variable boolSyntax.conjunction is bound to the term bool$/\.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.disjunction, boolSyntax.negation, boolSyntax.conditional,
boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

CONJUNCTS (Drule)

CONJUNCTS : (thm -> thm list)

Synopsis
Recursively splits conjunctions into a list of conjuncts.

Description
Flattens out all conjuncts, regardless of grouping. Returns a singleton list if the input
theorem is not a conjunction.

A |- t1 /\ t2 /\ ... /\ tn
----------------------------------- CONJUNCTS
A |- t1 A |- t2 ... A |- tn

Failure
Never fails.

CONJUNCTS CONV 121

Example
Suppose the identifier th is bound to the theorem:

A |- (x /\ y) /\ z /\ w

Application of CONJUNCTS to th returns the following list of theorems:

[A |- x; A |- y; A |- z; A |- w] : thm list

See also
Drule.BODY CONJUNCTS, Drule.CONJ LIST, Drule.LIST CONJ, Thm.CONJ, Thm.CONJUNCT1,
Thm.CONJUNCT2, Drule.CONJ PAIR.

CONJUNCTS_CONV (Drule)

CONJUNCTS_CONV : term * term -> thm

Synopsis
Prove equivalence under idempotence, symmetry and associativity of conjunction.

Description
CONJUNCTS_CONV takes a pair of terms (t1,t2) and proves |- t1 = t2 if t1 and t2 are
equivalent up to idempotence, symmetry and associativity of conjunction. That is, if t1
and t2 are two (different) arbitrarily-nested conjunctions of the same set of terms, then
CONJUNCTS_CONV (t1,t2) returns |- t1 = t2. Otherwise, it fails.

Failure
Fails if t1 and t2 are not equivalent, as described above.

Example

- CONJUNCTS_CONV (Term ‘(P /\ Q) /\ R‘, Term ‘R /\ (Q /\ R) /\ P‘);
> val it = |- (P /\ Q) /\ R = R /\ (Q /\ R) /\ P : thm

Uses
Used to reorder a conjunction. First sort the conjuncts in a term t1 into the desired
order (e.g. lexicographic order, for normalization) to get a new term t2, then call
CONJUNCTS_CONV(t1,t2).

122 Chapter 1. Pre-defined ML Identifiers

Comments
This is not a true conversion, so perhaps it ought to be called something else.

See also
Drule.CONJ SET CONV.

CONJUNCTS_THEN (Thm_cont)

CONJUNCTS_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each conjunct of a theorem.

Description
CONJUNCTS_THEN takes a theorem-tactic f, and a theorem t whose conclusion must be
a conjunction. CONJUNCTS_THEN breaks t into two new theorems, t1 and t2 which are
CONJUNCT1 and CONJUNCT2 of t respectively, and then returns a new tactic: f t1 THEN f t2.
That is,

CONJUNCTS_THEN f (A |- l /\ r) = f (A |- l) THEN f (A |- r)

so if

A1 ?- t1 A2 ?- t2
========== f (A |- l) ========== f (A |- r)
A2 ?- t2 A3 ?- t3

then

A1 ?- t1
========== CONJUNCTS_THEN f (A |- l /\ r)
A3 ?- t3

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

CONJUNCTS THEN2 123

Comments
CONJUNCTS_THEN f (A |- u1 /\ ... /\ un) results in the tactic:

f (A |- u1) THEN f (A |- u2 /\ ... /\ un)

Unfortunately, it is more likely that the user had wanted the tactic:

f (A |- u1) THEN ... THEN f(A |- un)

Such a tactic could be defined as follows:

let CONJUNCTS_THENL (f:thm_tactic) thm =
itlist $THEN (map f (CONJUNCTS thm)) ALL_TAC;;

or by using REPEAT_TCL.

See also
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ TAC,
Thm cont.CONJUNCTS THEN2, Thm cont.STRIP THM THEN.

CONJUNCTS_THEN2 (Thm_cont)

CONJUNCTS_THEN2 : (thm_tactic -> thm_tactic -> thm_tactic)

Synopsis
Applies two theorem-tactics to the corresponding conjuncts of a theorem.

Description
CONJUNCTS_THEN2 takes two theorem-tactics, f1 and f2, and a theorem t whose con-
clusion must be a conjunction. CONJUNCTS_THEN2 breaks t into two new theorems, t1

and t2 which are CONJUNCT1 and CONJUNCT2 of t respectively, and then returns the tactic

124 Chapter 1. Pre-defined ML Identifiers

f1 t1 THEN f2 t2. Thus

CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) = f1 (A |- l) THEN f2 (A |- r)

so if

A1 ?- t1 A2 ?- t2
========== f1 (A |- l) ========== f2 (A |- r)
A2 ?- t2 A3 ?- t3

then

A1 ?- t1
========== CONJUNCTS_THEN2 f1 f2 (A |- l /\ r)
A3 ?- t3

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

Comments
The system shows the type as (thm_tactic -> thm_tactical).

Uses
The construction of complex tacticals like CONJUNCTS_THEN.

See also
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Tactic.CONJ TAC,
Thm cont.CONJUNCTS THEN2, Thm cont.STRIP THM THEN.

cons (Lib)

cons : ’a -> ’a list -> ’a list

Synopsis
Curried form of list cons operation

Description
In some programming situations it is handy to use the ”cons” operation in a curried
form. Although it is easy to code up on demand, the cons function is provided for
convenience.

constants 125

Failure
Never fails.

Example

- map (cons 1) [[],[2],[2,3]];
> val it = [[1], [1, 2], [1, 2, 3]] : int list list

constants (Theory)

constants : string -> term list

Synopsis
Returns a list of the constants defined in a named theory.

Description
The call

constants thy

where thy is an ancestor theory (the special string "-" means the current theory), re-
turns a list of all the constants in that theory.

Failure
Fails if the named theory does not exist, or is not an ancestor of the current theory.

Example

- load "combinTheory";
> val it = () : unit

- constants "combin";
> val it = [‘$o‘, ‘W‘, ‘S‘, ‘K‘, ‘I‘, ‘combin$C‘] : term list

See also
Theory.types, Theory.current axioms, Theory.current definitions,
Theory.current theorems.

126 Chapter 1. Pre-defined ML Identifiers

CONTR (Drule)

CONTR : term -> thm -> thm

Synopsis
Implements the intuitionistic contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CONTR returns the
theorem A |- t.

A |- F
-------- CONTR t
A |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

See also
Thm.CCONTR, Drule.CONTRAPOS, Tactic.CONTR TAC, Thm.NOT ELIM.

CONTR_TAC (Tactic)

CONTR_TAC : thm_tactic

Synopsis
Solves any goal from contradictory theorem.

Description
When applied to a contradictory theorem A’ |- F, and a goal A ?- t, the tactic CONTR_TAC
completely solves the goal. This is an invalid tactic unless A’ is a subset of A.

A ?- t
======== CONTR_TAC (A’ |- F)

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

CONTRAPOS 127

See also
Tactic.CHECK ASSUME TAC, Drule.CONTR, Thm.CCONTR, Drule.CONTRAPOS, Thm.NOT ELIM.

CONTRAPOS (Drule)

CONTRAPOS : (thm -> thm)

Synopsis
Deduces the contrapositive of an implication.

Description
When applied to a theorem A |- s ==> t, the inference rule CONTRAPOS returns its con-
trapositive, A |- ~t ==> ~s.

A |- s ==> t
---------------- CONTRAPOS
A |- ~t ==> ~s

Failure
Fails unless the theorem is an implication.

See also
Thm.CCONTR, Drule.CONTR, Conv.CONTRAPOS CONV, Thm.NOT ELIM.

CONTRAPOS_CONV (Conv)

CONTRAPOS_CONV : conv

Synopsis
Proves the equivalence of an implication and its contrapositive.

Description
When applied to an implication P ==> Q, the conversion CONTRAPOS_CONV returns the
theorem:

|- (P ==> Q) = (~Q ==> ~P)

Failure
Fails if applied to a term that is not an implication.

128 Chapter 1. Pre-defined ML Identifiers

See also
Drule.CONTRAPOS.

CONV_RULE (Conv)

CONV_RULE : (conv -> thm -> thm)

Synopsis
Makes an inference rule from a conversion.

Description
If c is a conversion, then CONV_RULE c is an inference rule that applies c to the conclu-
sion of a theorem. That is, if c maps a term "t" to the theorem |- t = t’, then the
rule CONV_RULE c infers |- t’ from the theorem |- t. More precisely, if c "t" returns
A’ |- t = t’, then:

A |- t
-------------- CONV_RULE c
A u A’ |- t’

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure
CONV_RULE c th fails if c fails when applied to the conclusion of th. The function re-
turned by CONV_RULE c will also fail if the ML function c:term->thm is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
Tactic.CONV TAC, Conv.RIGHT CONV RULE.

CONV_TAC (Tactic)

CONV_TAC : (conv -> tactic)

Synopsis
Makes a tactic from a conversion.

current axioms 129

Description
If c is a conversion, then CONV_TAC c is a tactic that applies c to the goal. That is, if c
maps a term "g" to the theorem |- g = g’, then the tactic CONV_TAC c reduces a goal g
to the subgoal g’. More precisely, if c "g" returns A’ |- g = g’, then:

A ?- g
=============== CONV_TAC c

A ?- g’

Note that the conversion c should return a theorem whose assumptions are also among
the assumptions of the goal (normally, the conversion will returns a theorem with no
assumptions). CONV_TAC does not fail if this is not the case, but the resulting tactic will be
invalid, so the theorem ultimately proved using this tactic will have more assumptions
than those of the original goal.

Failure
CONV_TAC c applied to a goal A ?- g fails if c fails when applied to the term g. The
function returned by CONV_TAC c will also fail if the ML function c:term->thm is not, in
fact, a conversion (i.e. a function that maps a term t to a theorem |- t = t’).

Uses
CONV_TAC is used to apply simplifications that can’t be expressed as equations (rewrite
rules). For example, a goal can be simplified by beta-reduction, which is not expressible
as a single equation, using the tactic

CONV_TAC(DEPTH_CONV BETA_CONV)

The conversion BETA_CONV maps a beta-redex "(\x.u)v" to the theorem

|- (\x.u)v = u[v/x]

and the ML expression (DEPTH_CONV BETA_CONV) evaluates to a conversion that maps
a term "t" to the theorem |- t=t’ where t’ is obtained from t by beta-reducing all
beta-redexes in t. Thus CONV_TAC(DEPTH_CONV BETA_CONV) is a tactic which reduces beta-
redexes anywhere in a goal.

See also
Conv.CONV RULE.

current_axioms (Theory)

current_axioms : unit -> (string * thm) list

130 Chapter 1. Pre-defined ML Identifiers

Synopsis
Return the axioms in the current theory segment.

Description
An invocation current_axioms() returns a list of the axioms asserted in the current
theory segment.

Failure
Never fails. If no axioms have been asserted, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current definitions,
Theory.current theorems, Theory.constants, Theory.types, Theory.parents.

current_definitions (Theory)

current_definitions : unit -> (string * thm) list

Synopsis
Return the definitions in the current theory segment.

Description
An invocation current_definitions() returns the list of definitions stored in the current
theory segment. Every definition is automatically stored in the current segment by the
primitive definition principles.

Advanced definition principles are built in terms of the primitives, so they also store
their results in the cuurent segment. However, the definitions may be quite far removed
from the user input, and they may also store some consequences of the definition as
theorems.

Failure
Never fails. If no definitions have been made, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current axioms,
Theory.current theorems, Theory.constants, Theory.types, Theory.parents,
Definition.new definition, Definition.new specification,
Definition.new type definition, TotalDefn.Define, IndDefLib.Hol reln.

current defs 131

current_defs (Theory)

current_defs : unit -> (string * thm) list

Synopsis
Return the definitions in the current theory segment.

Description
An invocation current_defs () returns a list of the definitions made in the current the-
ory segment.

Failure
Never fails. If no definitions have been made, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current axioms,
Theory.current thms, Theory.constants, Theory.types, Theory.parents.

current_theorems (Theory)

current_theorems : unit -> (string * thm) list

Synopsis
Return the theorems stored in the current theory segment.

Description
An invocation current_theorems () returns the list of theorems stored in the current
theory segment.

Failure
Never fails. If no theorems have been stored, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current definitions,
Theory.current theorems, Theory.constants, Theory.types, Theory.parents.

132 Chapter 1. Pre-defined ML Identifiers

current_theory (Theory)

current_theory : unit -> string

Synopsis

Returns the name of the current theory segment.

Description

A HOL session has a notion of ‘current theory’. There are two senses to this phrase. First,
the current theory denotes the totality of all loaded theories plus whatever definitions,
axioms, and theorems have been stored in the current session. In this sense, the current
theory is the full logical context being used at the moment. This logical context can
be extended in two ways: (a) by loading in prebuilt theories residing on disk; and
(b) by making a definition, asserting an axiom, or storing a theorem. Therefore, the
current theory consists of a body of prebuilt theories that have been loaded from disk (a
collection of static components) plus whatever has been stored in the current session.

This latter component — what has been stored in the current session — embodies
the second sense of ‘current theory’. It is more properly known as the ‘current theory
segment’. The current segment is dynamic in nature, for its contents can be augmented
and overwritten. It functions as a kind of scratchpad used to help build a static theory
segment.

In a HOL session, there is always a single current theory segment. Its name is given by
calling current_theory(). On startup, the current theory segment is called "scratch",
which is just a default name. If one is just experimenting, or hacking about, then this
segment can be used.

On the other hand, if one intends to build a static theory segment, one usually creates
a new theory segment named thy by calling new_theory thy. This changes the value
of current_theory to thy. Once such a theory segment has been built (which may take
many sessions), one calls export_theory, which exports the stored elements to disk.

current thms 133

Example

- current_theory();
> val it = "scratch" : string

- new_theory "foo";
<<HOL message: Created theory "foo">>
> val it = () : unit

- current_theory();
> val it = "foo" : string

Failure
Never fails.

See also
Theory.new theory, Theory.export theory.

current_thms (Theory)

current_thms : unit -> (string * thm) list

Synopsis
Return the theorems stored in the current theory segment.

Description
An invocation current_thms () returns a list of the theorems that have been stored in
the current theory segment.

Failure
Never fails. If no theorems have been stored, the empty list is returned.

See also
Theory.current theory, Theory.new theory, Theory.current defs,
Theory.current thms, Theory.constants, Theory.types, Theory.parents.

current_trace (Feedback)

current_trace : string -> int

134 Chapter 1. Pre-defined ML Identifiers

Synopsis
Returns the current value of the tracing variable specified.

Failure
Fails if the name given is not associated with a registered tracing variable.

See also
Feedback.register trace, Feedback.reset trace, Feedback.reset traces,
Feedback.trace, Feedback.traces.

curry (Lib)

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

Synopsis
Converts a function on a pair to a corresponding curried function.

Description
The application curry f returns fn x => fn y => f(x,y), so that

curry f x y = f(x,y)

Failure
A call curry f never fails; however, curry f x y fails if f (x,y) fails.

Example

- val increment = curry op+ 1;
> val it = increment = fn : int -> int

- increment 6;
> val it = 7 : int

See also
Lib, Lib.uncurry.

CURRY_CONV (PairRules)

CURRY_CONV : conv

CURRY EXISTS CONV 135

Synopsis
Currys an application of a paired abstraction.

Example

- CURRY_CONV (Term ‘(\(x,y). x + y) (1,2)‘);
> val it = |- (\(x,y). x + y) (1,2) = (\x y. x + y) 1 2 : thm

- CURRY_CONV (Term ‘(\(x,y). x + y) z‘);
> val it = |- (\(x,y). x + y) z = (\x y. x + y) (FST z) (SND z) : thm

Failure
CURRY_CONV tm fails if tm is not an application of a paired abstraction.

See also
PairRules.UNCURRY CONV.

CURRY_EXISTS_CONV (PairRules)

CURRY_EXISTS_CONV : conv

Synopsis
Currys paired existential quantifications into consecutive existential quantifications.

Example

- CURRY_EXISTS_CONV (Term ‘?(x,y). x + y = y + x‘);
> val it = |- (?(x,y). x + y = y + x) = ?x y. x + y = y + x : thm

- CURRY_EXISTS_CONV (Term ‘?((w,x),(y,z)). w+x+y+z = z+y+x+w‘);
> val it =

|- (?((w,x),y,z). w + x + y + z = z + y + x + w) =
?(w,x) (y,z). w + x + y + z = z + y + x + w : thm

Failure
CURRY_EXISTS_CONV tm fails if tm is not a paired existential quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.UNCURRY EXISTS CONV,
PairRules.CURRY FORALL CONV, PairRules.UNCURRY FORALL CONV.

136 Chapter 1. Pre-defined ML Identifiers

CURRY_FORALL_CONV (PairRules)

CURRY_FORALL_CONV : conv

Synopsis
Currys paired universal quantifications into consecutive universal quantifications.

Example

- CURRY_FORALL_CONV (Term ‘!(x,y). x + y = y + x‘);
> val it = |- (!(x,y). x + y = y + x) = !x y. x + y = y + x : thm

- CURRY_FORALL_CONV (Term ‘!((w,x),(y,z)). w+x+y+z = z+y+x+w‘);
> val it =

|- (!((w,x),y,z). w + x + y + z = z + y + x + w) =
!(w,x) (y,z). w + x + y + z = z + y + x + w : thm

Failure
CURRY_FORALL_CONV tm fails if tm is not a paired universal quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.UNCURRY FORALL CONV,
PairRules.CURRY EXISTS CONV, PairRules.UNCURRY EXISTS CONV.

data (DB)

type data

Synopsis
Type abbreviation used in DB structure.

Description
When functions from the DB structure are used to query the current theory, answer are
often phrased in terms of the data type, which is a type abbreviation declared as

type data = (string * string) * (thm * class)

An element ((thy,name), (th,cl)) means that th is a theorem with classification
class, stored in theory segment thy under name.

DECIDE 137

Example

- DB.find "BOOL_CASES_AX";
> val it = [(("bool", "BOOL_CASES_AX"),

(|- !t. (t = T) \/ (t = F), Axm))]
: ((string * string) * (thm * class)) list

See also
DB.class, DB.thy, DB.find, DB.match, DB.apropos, DB.listDB.

DECIDE (bossLib)

DECIDE : term -> thm

Synopsis
Invoke decision procedure(s).

Description
An application DECIDE M, where M is a boolean term, attempts to prove M using a propo-
sitional tautology checker and a linear arithmetic decision procedure.

Failure
The invocation fails if M is not of boolean type. It also fails if M is not a tautology or an
instance of a theorem of linear arithmetic.

Example

- DECIDE (Term ‘p /\ p /\ r ==> r‘);
> val it = |- p /\ p /\ r ==> r : thm

- DECIDE (Term ‘x < 17 /\ y < 26 ==> x + y < 17 + 26‘);
> val it = |- x < 17 /\ y < 26 ==> x + y < 17 + 26 : thm

Comments
DECIDE is currently somewhat underpowered. Formerly it was implemented by a coop-
erating decision procedure mechanism. However, most proofs seemed to go somewhat
smoother with simplification using the arith_ss simpset, so we have adopted a simpler
implementation. That should not be taken as final, since cooperating decision proce-
dures are an important component in highly automated proof systems.

138 Chapter 1. Pre-defined ML Identifiers

See also
bossLib.RW TAC, bossLib.arith ss, intLib.ARITH TAC.

DECIDE_TAC (bossLib)

DECIDE_TAC : tactic

Synopsis
Invoke decision procedure(s).

Description
DECIDE_TAC is the tactical version of DECIDE.

Failure
As for DECIDE

See also
bossLib.DECIDE.

decls (Term)

decls : string -> term list

Synopsis
Returns a list of constants having the same name.

Description
An invocation Term.decls s returns a list of constants found in the current theory having
the name s. If there are no constants with name s, then the empty list is returned.

Failure
Never fails.

decls 139

Example

- decls "+";
> val it = [‘$+‘] : term list

- map dest_thy_const it;
> val it = [{Name = "+", Thy = "arithmetic", Ty = ‘:num -> num -> num‘}] : ...

Comments
Useful for untangling confusion arising from overloading and also the possibility to
declare two different constants with the same name in different theories.

See also
Type.decls., Term.dest thy const.

decls (Type)

decls : string -> {Thy : string, Tyop : string} list

Synopsis
Lists all theories a named type operator is declared in.

Description
An invocation Type.decls s finds all theories in the ancestry of the current theory with
a type constant having the given name.

Failure
Never fails.

Example

- Type.decls "prod";
> val it = [{Thy = "pair", Tyop = "prod"}] : {Thy:string, Tyop:string} list

Comments
There is also a function Term.decls that performs a similar operation on term constants.

See also
Theory.ancestry, Term.decls, Theory.constants.

140 Chapter 1. Pre-defined ML Identifiers

Define (bossLib)

Define : term quotation -> thm

Synopsis
General-purpose function definition facility.

Description
Define takes a high-level specification of an HOL function, and attempts to define the
function in the logic. If this attempt is successful, the specification is derived from
the definition. The derived specification is returned to the user, and also stored in
the current theory. Define may be used to define abbreviations, recursive functions,
and mutually recursive functions. An induction theorem may be stored in the current
theory as a by-product of Define’s activity. This induction theorem follows the recursion
structure of the function, and may be useful when proving properties of the function.
Define takes as input a quotation representing a conjunction of equations. The speci-

fied function(s) may be phrased using ML-style pattern-matching. A call Define ‘<spec>‘

should conform with the following grammar:

spec ::= <eqn>
| (<eqn>) /\ <spec>

eqn ::= <alphanumeric> <pat> ... <pat> = <term>

pat ::= <variable>
| <wildcard>
| <cname> (* 0-ary constructor *)
| (<cname>_n <pat>_1 ... <pat>_n) (* constructor appl. *)

cname ::= <alphanumeric> | <symbolic>

wildcard ::= _
| _<wildcard>

When processing the specification of a recursive function, Define must perform a termi-
nation proof. It automatically constructs termination conditions for the function, and
invokes a termination prover in an attempt to prove the termination conditions.

If the function is primitive recursive, in the sense that it exactly follows the recursion
pattern of a previously declared HOL datatype, then this proof always succeeds, and

Define 141

Define stores the derived equations in the current theory segment. Otherwise, the func-
tion is not an instance of primitive recursion, and the termination prover may succeed
or fail.

If it succeeds, then Define stores the specified equations in the current theory seg-
ment. An induction theorem customized for the defined function is also stored in the
current segment. Note, however, that an induction theorem is not stored for primitive
recursive functions, since that theorem would be identical to the induction theorem
resulting from the declaration of the datatype.

If the termination proof fails, then Define fails.

In general, Define attempts to derive exactly the specified conjunction of equations.
However, the rich syntax of patterns allows some ambiguity. For example, the input

Define ‘(f 0 _ = 1)
/\ (f _ 0 = 2)‘

is ambiguous at f 0 0: should the result be 1 or 2? The system attempts to resolve
this ambiguity in the same way as compilers and interpreters for functional languages.
Namely, a conjunction of equations is treated as being processed left-conjunct first, fol-
lowed by processing the right conjunct. Therefore, in the example above, the right-hand
side of the first clause is taken as the value of f 0 0. In the implementation, ambi-
guities arising from such overlapping patterns are systematically translated away in a
pre-processing step.

Another case of vagueness in patterns is shown above: the specification is ‘incomplete‘
since it does not tell us how f should behave when applied to two non-zero arguments:
e.g., f (SUC m) (SUC n). In the implementation, such missing clauses are filled in, and
have the value ARB. This ‘pattern-completion‘ step is a way of turning descriptions of
partial functions into total functions suitable for HOL. However, since the user has not
completely specified the function, the system takes that as a hint that the user is not
interested in using the function at the missing-but-filled-in clauses, and so such clauses
are dropped from the final theorem.

In summary, Define will derive the unambiguous and complete equations

|- (f 0 (SUC v4) = 1) /\
(f 0 0 = 1) /\
(f (SUC v2) 0 = 2)
(f (SUC v2) (SUC v4) = ARB)

from the above ambiguous and incomplete equations. The odd-looking variable names
are due to the pre-processing steps described above. The above result is only an inter-

142 Chapter 1. Pre-defined ML Identifiers

mediate value: in the final result returned by Define, the last equation is droppped:

|- (f 0 (SUC v4) = 1) /\
(f 0 0 = 1) /\
(f (SUC v2) 0 = 2)

Define automatically generates names with which to store the definition and, (if it
exists) the associated induction theorem, in the current theory. The name for storing
the definition is built by concatenating the name of the function with the value of the
reference variable Defn.def_suffix. The name for storing the induction theorem is
built by concatenating the name of the function with the value of the reference variable
Defn.ind_suffix. For mutually recursive functions, where there is a choice of names,
the name of the function in the first clause is taken.

Since the names used to store elements in the current theory segment are transformed
into ML bindings after the theory is exported, it is required that every invocation of
Define generates names that will be valid ML identifiers. For this reason, Define requires
alphanumeric function names. If one wishes to define symbolic identifiers, the ML
function xDefine should be used.

Failure
Define fails if its input fails to parse and typecheck.

Define fails if the name of the function being defined is not alphanumeric.

Define fails if there are more free variables on the right hand sides of the recursion
equations than the left.

Define fails if it cannot prove the termination of the specified recursive function. In
that case, one has to embark on the following multi-step process in order to get the
same effect as if Define had succeeded: (1) construct the function and synthesize its
termination conditions with Hol_defn; (2) set up a goal to prove the termination con-
ditions with tgoal; (3) interactively prove the termination conditions, starting with an
invocation of WF_REL_TAC; and (4) package everything up with an invocation of tprove.

Example
We will give a number of examples that display the range of functions that may be
defined with Define. First, we have a recursive function that uses ”destructors” in the
recursive call. Since fact is not primitive recursive, an induction theorem for fact is

Define 143

generated and stored in the current theory.

Define ‘fact x = if x = 0 then 1 else x * fact(x-1)‘;

Equations stored under "fact_def".
Induction stored under "fact_ind".
> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- DB.fetch "-" "fact_ind";

> val it =
|- !P. (!x. (~(x = 0) ==> P (x - 1)) ==> P x) ==> !v. P v : thm

Next we have a recursive function with relatively complex pattern-matching. We omit
to examine the generated induction theorem.

Define ‘(flatten [] = [])
/\ (flatten ([]::rst) = flatten rst)
/\ (flatten ((h::t)::rst) = h::flatten(t::rst))‘

<<HOL message: inventing new type variable names: ’a>>

Equations stored under "flatten_def".
Induction stored under "flatten_ind".

> val it =
|- (flatten [] = []) /\

(flatten ([]::rst) = flatten rst) /\
(flatten ((h::t)::rst) = h::flatten (t::rst)) : thm

Next we define a curried recursive function, which uses wildcard expansion and pattern-
matching pre-processing.

Define ‘(min (SUC x) (SUC y) = min x y + 1)
/\ (min ____ ____ = 0)‘;

Equations stored under "min_def".
Induction stored under "min_ind".

> val it =
|- (min (SUC x) (SUC y) = min x y + 1) /\

(min (SUC v2) 0 = 0) /\
(min 0 v1 = 0) : thm

Next we make a primitive recursive definition. Note that no induction theorem is gen-

144 Chapter 1. Pre-defined ML Identifiers

erated in this case.

Define ‘(filter P [] = [])
/\ (filter P (h::t) = if P h then h::filter P t else filter P t)‘;

<<HOL message: inventing new type variable names: ’a>>
Definition has been stored under "filter_def".

> val it =
|- (!P. filter P [] = []) /\

!P h t. filter P (h::t) =
(if P h then h::filter P t else filter P t) : thm

Define may also be used to define mutually recursive functions. For example, we can
define a datatype of propositions and a function for putting a proposition into negation

Define 145

normal form as follows. First we define a datatype for boolean formulae (prop):

- Hol_datatype
‘prop = VAR of ’a

| NOT of prop
| AND of prop => prop
| OR of prop => prop‘;

> val it = () : unit

Then two mutually recursive functions nnfpos and nnfneg are defined:

- Define
‘(nnfpos (VAR x) = VAR x)

/\ (nnfpos (NOT p) = nnfneg p)
/\ (nnfpos (AND p q) = AND (nnfpos p) (nnfpos q))
/\ (nnfpos (OR p q) = OR (nnfpos p) (nnfpos q))

/\ (nnfneg (VAR x) = NOT (VAR x))
/\ (nnfneg (NOT p) = nnfpos p)
/\ (nnfneg (AND p q) = OR (nnfneg p) (nnfneg q))
/\ (nnfneg (OR p q) = AND (nnfneg p) (nnfneg q))‘;

The system returns:

<<HOL message: inventing new type variable names: ’a>>

Equations stored under "nnfpos_def".
Induction stored under "nnfpos_ind".

> val it =
|- (nnfpos (VAR x) = VAR x) /\

(nnfpos (NOT p) = nnfneg p) /\
(nnfpos (AND p q) = AND (nnfpos p) (nnfpos q)) /\
(nnfpos (OR p q) = OR (nnfpos p) (nnfpos q)) /\
(nnfneg (VAR x) = NOT (VAR x)) /\
(nnfneg (NOT p) = nnfpos p) /\
(nnfneg (AND p q) = OR (nnfneg p) (nnfneg q)) /\
(nnfneg (OR p q) = AND (nnfneg p) (nnfneg q)) : thm

Define may also be used to define non-recursive functions.

Define ‘f x (y,z) = (x + 1 = y DIV z)‘;

Definition has been stored under "f_def".

> val it = |- !x y z. f x (y,z) = (x + 1 = y DIV z) : thm

Define may also be used to define non-recursive functions with complex pattern-

146 Chapter 1. Pre-defined ML Identifiers

matching. The pattern-matching pre-processing of Define can be convenient for this
purpose, but can also generate a large number of equations. For example:

Define ‘(g (0,_,_,_,_) = 1) /\
(g (_,0,_,_,_) = 2) /\
(g (_,_,0,_,_) = 3) /\
(g (_,_,_,0,_) = 4) /\
(g (_,_,_,_,0) = 5)‘

yields a definition with thirty-one clauses.

Comments
In an eqn, no variable can occur more than once on the left hand side of the equation.

In HOL, constructors are curried functions, unlike in ML. When used in a pattern, a
constructor must be fully applied to its arguments.

Also unlike ML, a pattern variable in a clause of a definition is not distinct from
occurrences of that variable in other clauses.
Define translates a wildcard into a new variable, which is named to be different from

any other variable in the function definition. As in ML, wildcards are not allowed to
occur on the right hand side of any clause in the definition.

An induction theorem generated in the course of processing an invocation of Define
can be applied by recInduct.

Invoking Define on a conjunction of non-recursive clauses having complex pattern-
matching will result in an induction theorem being stored. This theorem may be useful
for case analysis, and can be applied by recInduct.
Define takes a ‘quotation‘ as an argument. Some might think that the input to Define

should instead be a term. However, some important pre-processing happens in Define

that would not be possible if the input was a term.
Define is a mechanization of a well-founded recursion theorem (relationTheory.WFREC_COROLLARY).
Define currently has a rather weak termination prover. For example, it always fails to

prove the termination of nested recursive functions.
bossLib.Define is most commonly used. TotalDefn.Define is identical to bossLib.Define,

except that the TotalDefn structure comes with less baggage—it depends only on numLib

and pairLib.
Define automatically adds the definition it makes into the hidden ‘compset‘ accessed

by EVAL and EVAL_TAC.

See also
bossLib.xDefine, TotalDefn.DefineSchema, bossLib.Hol defn, Defn.tgoal,
Defn.tprove, bossLib.WF REL TAC, bossLib.recInduct, bossLib.EVAL,
bossLib.EVAL TAC.

Define 147

Define (TotalDefn)

Define : term quotation -> thm

Synopsis
General purpose function definition facility.

Description
bossLib.Define is identical to TotalDefn.Define.

See also
bossLib.Define.

define_new_type_bijections (Drule)

define_new_type_bijections :
{name:string, ABS:string, REP:string, tyax:thm} -> thm

Synopsis
Introduces abstraction and representation functions for a defined type.

Description
The result of making a type definition using new_type_definition is a theorem of the
following form:

|- ?rep:nty->ty. TYPE_DEFINITION P rep

which asserts only the existence of a bijection from the type it defines (in this case, nty)
to the corresponding subset of an existing type (here, ty) whose characteristic function
is specified by P. To automatically introduce constants that in fact denote this bijection
and its inverse, the ML function define_new_type_bijections is provided.
name is the name under which the constant definition (a constant specification, in fact)

made by define_new_type_bijections will be stored in the current theory segment. tyax
must be a definitional axiom of the form returned by new_type_definition. ABS and
REP are the user-specified names for the two constants that are to be defined. These

148 Chapter 1. Pre-defined ML Identifiers

constants are defined so as to denote mutually inverse bijections between the defined
type, whose definition is given by tyax, and the representing type of this defined type.

If th is a theorem of the form returned by new_type_definition:

|- ?rep:newty->ty. TYPE_DEFINITION P rep

then evaluating:

define_new_type_bijections{name="name",ABS="abs",REP="rep",tyax=th} th

automatically defines two new constants abs:ty->newty and rep:newty->ty such that:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

This theorem, which is the defining property for the constants abs and rep, is stored
under the name name in the current theory segment. It is also the value returned by
define_new_type_bijections. The theorem states that abs is the left inverse of rep and,
for values satisfying P, that rep is the left inverse of abs.

Failure
A call define_new_type_bijections{name,ABS,REP,tyax} fails if tyax is not a theorem of
the form returned by new_type_definition.

See also
Definition.new type definition, Prim rec.prove abs fn one one,
Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto.

define_type (Define_type)

define_type : {name :string, type_spec :term frag list,
fixities : fixity list} -> thm

Synopsis
Automatically defines a user-specified concrete recursive data type.

Description
This function is deprecated, and its use is not recommended. The following documenta-
tion is old and not likely to be updated as the system further evolves. The more flexible
and powerful Hol_datatype function should be used instead of define_type.

define type 149

The ML function define_type automatically defines any required concrete recursive
type in the logic. The name argument is the name under which the results of making
the definition will be stored in the current theory segment. The type_spec argument
is a user-supplied specification of the type to be defined. This specification (explained
below) simply states the names of the new type’s constructors and the logical types
of their arguments. The fixities argument gives the parsing status of the introduced
constants: it may be Prefix, Binder, or Infix <positive int>. The theorem returned
by define_type is an automatically-proved abstract characterization of the concrete data
type described by this specification.

The type_spec argument to define_type must be a quotation of the form:

‘op = C1 of ty => ... => ty | C2 of ty=> ...=>ty | ... | Cn of ty=> ... =>ty‘

where op is the name of the type constant or type operator to be defined, C1, ..., Cn are
identifiers, and each ty is either a (logical) type expression valid in the current theory
(in which case ty must not contain op) or just the identifier ‘op’ itself.

A quotation of this form describes an n-ary type operator op, where n is the number of
distinct type variables in the types ty on the right hand side of the equation. If n is zero
then op is a type constant; otherwise op is an n-ary type operator. The type described by
the specification has n distinct constructors C1, ..., Cn. Each constructor Ci is a function
that takes arguments whose types are given by the associated type expressions ty in the
specification. If one or more of the type expressions ty is the type op itself, then the
equation specifies a recursive data type. In any specification, at least one constructor
must be non-recursive, i.e. all its arguments must have types which already exist in the
current theory.

Given a type specification of the form described above, define_type makes an appro-
priate type definition for the type operator op. It then makes appropriate definitions
for the constants C1, ..., Cn, and automatically proves a theorem that states an abstract
characterization of the newly-defined type op. This theorem, which is stored in the cur-
rent theory segment under the name supplied as the first argument and also returned
by define_type, has the form of a ‘primitive recursion theorem’ for the concrete type
op (see the examples given below). This property provides an abstract characteriza-
tion of the type op which is both succinct and complete, in the sense that it completely
determines the structure of the values of op up to isomorphism.

Failure
Evaluating

define_type{type_spec = ‘op = C1 of ty=>...=>ty | ... | Cn of ty=>...=>ty‘,
name, fixities}

fails if the supplied constant names C1, ..., Cn are not distinct; if any one of C1, ..., Cn

150 Chapter 1. Pre-defined ML Identifiers

is already a constant in the current theory or is not an allowed name for a constant;
if ABS_op or REP_op are already constants in the current theory; if there is already an
axiom, definition, constant specification or type definition stored under either the name
op_TY_DEF or the name op_ISO_DEF in the current theory segment; or (finally) if the input
type specification does not conform in any other respect to the syntax described above.

Example
The following call to define_type defines tri to be a simple enumerated type with
exactly three distinct values:

- define_type{name = "tri_DEF",
type_spec = ‘tri = ONE | TWO | THREE‘,
fixities = [Prefix,Prefix,Prefix]}

|- !e0 e1 e2. ?! fn. (fn ONE = e0) /\ (fn TWO = e1) /\ (fn THREE = e2)

The theorem returned is a degenerate ‘primitive recursion’ theorem for the concrete
type tri. An example of a recursive type that can be defined using define_type is a type
of binary trees:

- define_type {type_spec = ‘btree = LEAF of ’a
| NODE of btree => btree‘,

name = "tree_DEF",
fixities = [Prefix,Prefix]}

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

The theorem returned by define_type in this case asserts the unique existence of func-
tions defined by primitive recursion over labelled binary trees.

Note that the type being defined may not occur as a proper subtype in any of the
types of the arguments of the constructors:

- define_type{type_spec = ‘ty = NUM of num | FUN of (ty -> ty)‘,
name = "num_funcs", fixities = [Prefix, Prefix]};

Exception raised at Term.make_type_clause.check:
recursive occurrence of defined type is deeper than the first level

In this example, there is an error because ty occurs within the type expression (ty -> ty).

Comments
The ”=>” that may be used in type specifications is merely a delimiter that shows a
constructor to be Curried. It must occur at the ”top-level” in the argument list to a

DefineSchema 151

constructor. i.e., parsing of the type specification will fail if the ”=>” occurs underneath
an existing type constructor.

This function is deprecated. Datatype.Hol_datatype should be used instead. Types
defined with define_type are not introduced into the TypeBase, and define_type doesn’t
handle nested or mutual recursion.

See also
Datatype.Hol datatype, Prim rec.INDUCT THEN, Prim rec.new recursive definition,
Prim rec.prove cases thm, Prim rec.prove constructors distinct,
Prim rec.prove constructors one one, Prim rec.prove induction thm,
Prim rec.prove rec fn exists.

DefineSchema (TotalDefn)

DefineSchema : term quotation -> thm

Synopsis
Defines a recursion schema

Description
DefineSchema may be used to declare so-called ‘schematic‘ definitions, or ‘recursion
schemas‘. These are just recursive functions with extra free variables (also called ‘pa-
rameters‘) on the right-hand side of some clauses. Such schemas have been used as a
basis for program transformation systems.
DefineSchema takes its input in exactly the same format as Define.
The termination constraints of a schmatic definition are collected on the hypotheses

of the definition, and also on the hypotheses of the automatically proved induction
theorem, but a termination proof is only attempted when the termination conditions
have no occurrences of parameters. This is because, in general, termination can only be
proved after some of the parameters of the scheme have been instantiated.

Failure
DefineSchema fails in many of the same ways as Define. However, it will not fail if it
cannot prove termination.

152 Chapter 1. Pre-defined ML Identifiers

Example
The following defines a schema for binary recursion.

- DefineSchema
‘binRec (x:’a) =

if atomic x then (A x:’b)
else join (binRec (left x))

(binRec (right x))‘;

<<HOL message: Definition is schematic in the following variables:
"A", "atomic", "join", "left", "right">>

Equations stored under "binRec_def".
Induction stored under "binRec_ind".

> val it =
[!x. ~atomic x ==> R (left x) x,
!x. ~atomic x ==> R (right x) x, WF R]

|- binRec A atomic join left right x =
if atomic x then A x
else

join (binRec A atomic join left right (left x))
(binRec A atomic join left right (right x)) : thm

The following defines a schema in which a termination proof is attempted successfully.

- DefineSchema ‘(map [] = []) /\ (map (h::t) = f h :: map t)‘;

<<HOL message: inventing new type variable names: ’a, ’b>>
<<HOL message: Definition is schematic in the following variables:

"f">>

Equations stored under "map_def".
Induction stored under "map_ind".

> val it = [] |- (map f [] = []) /\ (map f (h::t) = f h::map f t) : thm

The easy termination proof is attempted because the schematic variable f doesn’t occur
in the termination conditions.

Comments
The original recursion equations, in which parameters only occur on right hand sides,
is transformed into one in which the parameters become arguments to the function
being defined. This is the expected behaviour. If an argument intended as a parameter
occurs on the left hand side in the original recursion equations, it becomes universally
quantified in the termination conditions, which is not desirable for a schema.

definitions 153

See also
TotalDefn.xDefineSchema, TotalDefn.Define, Defn.Hol defn.

definitions (DB)

definitions : string -> (string * thm) list

Synopsis
All the definitions stored in the named theory.

Description
An invocation definitions thy, where thy is the name of a currently loaded theory
segment, will return a list of the definitions stored in that theory. Each definition is
paired with its name in the result. The string "-" may be used to denote the current
theory segment.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- definitions "combin";
> val it =

[("C_DEF", |- combin$C = (\f x y. f y x)),
("I_DEF", |- I = S K K),
("K_DEF", |- K = (\x y. x)),
("o_DEF", |- !f g. f o g = (\x. f (g x))),
("S_DEF", |- S = (\f g x. f x (g x))),
("W_DEF", |- W = (\f x. f x x))] : (string * thm) list

See also
DB.thy, DB.fetch, DB.thms, DB.theorems, DB.axioms, DB.listDB.

delete_binding (Theory)

delete_binding : string -> unit

154 Chapter 1. Pre-defined ML Identifiers

Synopsis
Remove a stored value from the current theory segment.

Description
An invocation delete_binding s attempts to locate an axiom, definition, or theorem
that has been stored under name s in the current theory segment. If such a binding can
be found, it is deleted.

Failure
Never fails. If the binding can’t be found, then nothing is removed from the current
theory segment.

Example

- Define ‘fact x = if x=0 then 1 else x * fact (x-1)‘;
Equations stored under "fact_def".
Induction stored under "fact_ind".
> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- current_theorems();
> val it =

[("fact_def", |- fact x = (if x = 0 then 1 else x * fact (x - 1))),
("fact_ind", |- !P. (!x. (~(x = 0) ==> P (x - 1)) ==> P x) ==> !v. P v)]

: (string * thm) list

- delete_binding "fact_ind";
> val it = () : unit

- current_theorems();
> val it =

[("fact_def", |- fact x = (if x = 0 then 1 else x * fact (x - 1)))]
: (string * thm) list

Comments
Removing a definition binding does not remove the constant(s) it introduced from the
signature. Use delete_const for that.

Removing an axiom has the consequence that all theorems proved from it become
garbage.

See also
Theory.scrub, Theory.delete type, Theory.delete const.

delete const 155

delete_const (Theory)

delete_const : string -> unit

Synopsis
Remove a term constant from the current signature.

Description
An invocation delete_const s removes the constant denoted by s from the current HOL
segment. All types, terms, and theorems that depend on that constant become garbage.

The implementation ensures that a deleted constant is never equal to a subsequently
declared constant, even if it has the same name and type. Furthermore, although
garbage types, terms, and theorems may exist in a session, and may even have been
stored in the current segment for export, no theorem, definition, or axiom that is
garbage is exported when export_theory is invoked.

The prettyprinter highlights deleted constants.

Failure
If a constant named s has not been declared in the current segment, a warning will be
issued, but an exception will not be raised.

Example

- Define ‘foo x = if x=0 then 1 else x * foo (x-1)‘;
Equations stored under "foo_def".
Induction stored under "foo_ind".
> val it = |- foo x = (if x = 0 then 1 else x * foo (x - 1)) : thm

- val th = EVAL (Term ‘foo 4‘);
> val th = |- foo 4 = 24 : thm

- delete_const "foo";
> val it = () : unit

- th;
> val it = |- scratch$old->foo<-old 4 = 24 : thm

Comments
A type, term, or theorem that depends on a deleted constant may be detected by invok-
ing the appropriate ‘uptodate’ entrypoint.

156 Chapter 1. Pre-defined ML Identifiers

It may happen that a theorem th is proved with the use of another theorem th1

that subsequently becomes garbage because a constant c was deleted. If c does not
occur in th, then th does not become garbage, which may be contrary to expectation.
The conservative extension property of HOL says that th is still provable, even in the
absence of c.

See also
Theory.delete type, Theory.delete axiom, Theory.delete definition,
Theory.delete theorem, Theory.uptodate type, Theory.uptodate term,
Theory.uptodate thm, Theory.scrub.

delete_type (Theory)

delete_type : string -> unit

Synopsis
Remove a type operator from the signature.

Description
An invocation delete_type s removes the type constant denoted by s from the current
HOL segment. All types, terms, and theorems that depend on that type should therefore
disappear, as though they hadn’t been constructed in the first place. Conceptually, they
have become ”garbage” and need to be collected. However, because of the way that HOL
is implemented in ML, it is not possible to have them automatically collected. Instead,
HOL tracks the currency of type and term constants and provides some consistency
maintenance support.

In particular, the implementation ensures that a deleted type operator is never equal
to a subsequently declared type operator with the same name (and arity). Further-
more, although garbage types, terms, and theorems may exist in a session, no theorem,
definition, or axiom that is garbage is exported when export_theory is invoked.

The notion of garbage is hereditary. Any type, term, definition, or theorem is garbage
if any of its constituents are. Furthermore, if a type operator or term constant had been
defined, and its witness theorem later later becomes garbage, then that type or term is
garbage, as is anything built from it.

Failure
If a type constant named s has not been declared in the current segment, a warning will
be issued, but an exception will not be raised.

delta 157

Example

new_type ("foo", 2);
> val it = () : unit

- val thm = REFL (Term ‘f:(’a,’b)foo‘);
> val thm = |- f = f : thm

- delete_type "foo";
> val it = () : unit

- thm;
> val it = |- f = f : thm

- show_types := true;
> val it = () : unit

- thm;
Exception raised at type_pp.pp_type:
old->foo<-old: no such type operator in grammar

Comments
It’s rather dodgy to withdraw constants from the HOL signature.

It is not possible to delete constants from ancestor theories.

See also
Theory.delete const, Theory.delete axiom, Theory.delete definition,
Theory.delete theorem, Theory.uptodate type, Theory.uptodate term,
Theory.uptodate thm, Theory.scrub.

delta (Lib)

type ’a delta

Synopsis
A type used for telling when a function has changed its argument.

Description
The delta type is declared as follows:

datatype ’a delta = SAME | DIFF of ’a

The delta type may be used in applications where it is important to tell if a function
has changed its argument or not. As an example of this, consider mapping a function

158 Chapter 1. Pre-defined ML Identifiers

over a large collection of elements. If only a few elements are changed, it makes sense
to re-use all those that were not changed. This can of course be handled on an ad hoc
basis; the delta type provides a mechanism for doing this systematically.

Comments
The delta type is an example of polytypism.

See also
Lib.delta apply, Lib.delta map, Lib.delta pair.

delta (Type)

delta : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.delta is bound to the type variable ’d.

See also
Type.alpha, Type.beta, Type.gamma, Type.bool.

delta_apply (Lib)

delta_apply : (’a -> ’a delta) -> ’a -> ’a

Synopsis
Apply a function to an argument, re-using the argument if possible.

Description
An application delta_apply f x applies f to x and, if the result is SAME, returns x. If the
result is DIFF y, then y is returned.

Failure
If f x raises exception e, then delta_apply f x raises e.

delta map 159

Example
Suppose we want to write a function that replaces every even integer in a list of pairs
of integers with an odd one. The most basic replacement function is therefore

- fun ireplace i = if i mod 2 = 0 then DIFF (i+1) else SAME

Applying ireplace to an arbitrary integer would yield an element of the int delta type.
It’s not seemingly useful, but it becomes useful when used with similar functions for type
operators. Then a delta function for pairs of integers is built by delta_pair ireplace ireplace,
and a delta function for a list of pairs of integers is built by applying delta_map.

- delta_map (delta_pair ireplace ireplace)
[(1,2), (3,5), (5,7), (4,8)];

> val it = DIFF [(1,3), (3,5), (5,7), (5,9)] : (int * int) list delta

- delta_map (delta_pair ireplace ireplace)
[(1,3), (3,5), (5,7), (7,9)];

> val it = SAME : (int * int) list delta

Finally, we can move the result from the delta type to the actual type we are interested
in.

- delta_apply (delta_map (delta_pair ireplace ireplace))
[(1,2), (3,5), (5,7), (4,8)];

> val it = [(1,3), (3,5), (5,7), (5,9)] : (int * int) list

Comments
Used to change a function from one that returns an ’a delta element to one that returns
an ’a element.

See also
Lib.delta, Lib.delta map, Lib.delta pair.

delta_map (Lib)

delta_map : (’a -> ’a delta) -> ’a list -> ’a list delta

Synopsis
Apply a function to a list, sharing as much structure as possible.

160 Chapter 1. Pre-defined ML Identifiers

Description
An application delta_map f list applies f to each member [x1,...,xn] of list. If all
applications of f return SAME, then delta_map f list returns SAME. Otherwise, DIFF [y1,...,yn]

is returned. If f xi yielded SAME, then yi is xi. Otherwise, f xi equals DIFF yi.

Failure
If some application of f xi raises e, then delta_map f list raises e.

Example
See the example in the documentation for delta_apply.

See also
Lib.delta, Lib.delta apply, Lib.delta pair.

delta_pair (Lib)

delta_pair : (’a -> ’a delta) ->
(’b -> ’b delta) ->
’a * ’b -> (’a * ’b) delta

Synopsis
Apply two functions to the projections of a pair, sharing as much structure as possible.

Description
An application delta_pair f g (x,y) applies f to x and g to y. If f x equals g y equals
SAME, then SAME is returned. Otherwise DIFF (p1,p2) is returned, where p1 is x if f x

equals SAME; otherwise p1 is f x. Similarly, p2 is y if g y equals SAME; otherwise p2 is g y.

Failure
If f x raises e, then delta_pair f g (x,y) raises e.

If g y raises e, then delta_pair f g (x,y) raises e.

Example
See the example in the documentation for delta_apply.

See also
Lib.delta, Lib.delta apply, Lib.delta pair.

deprecate int 161

deprecate_int (intLib)

intLib.deprecate_int : unit -> unit

Synopsis
Makes the parser never consider integers as a numeric possibility.

Description
Calling deprecate_int() causes the parser to remove all of the standard numeric con-
stants over the integers from consideration. In addition to the standard operators (+, -,
* and others), this also affects numerals; after the call to deprecate_int these will never
be parsed as integers.

This function, by affecting the global grammar, also affects the behaviour of the
pretty-printer. A term that includes affected constants will print with those constants in
“fully qualified form”, typically as integer$op, and numerals will print with a trailing i.
(Incidentally, the parser will always read integer terms if they are presented to it in this
form.)

Failure
Never fails.

Example
First we load the integer library, ensuring that integers and natural numbers both are
possible when we type numeric expressions:

- load "intLib";
> val it = () : unit

Then, when we type such an expression, we’re warned that this is strictly ambiguous,
and a type is silently chosen for us:

- val t = ‘‘2 + x‘‘;
<<HOL message: more than one resolution of overloading was possible>>
> val t = ‘‘2 + x‘‘ : term

- type_of t;
> val it = ‘‘:int‘‘ : hol_type

Now we can use deprecate_int to stop this happening, and make sure that we just get

162 Chapter 1. Pre-defined ML Identifiers

natural numbers:

- intLib.deprecate_int();
> val it = () : unit

- ‘‘2 + x‘‘;
> val it = ‘‘2 + x‘‘ : term

- type_of it;
> val it = ‘‘:num‘‘ : hol_type

The term we started out with is now printed in rather ugly fashion:

- t;
> val it = ‘‘integer$int_add 2i x‘‘ : term

Comments
If one wishes to simply prefer the natural numbers, say, to the integers, and yet still
retain integers as a possibility, use numLib.prefer_num rather than this function. This
function only brings about a “temporary” effect; it does not cause the change to be
exported with the current theory.

See also
numLib.deprecate num, intLib.prefer int, numLib.prefer num.

DEPTH_CONV (Conv)

DEPTH_CONV : conv -> conv

Synopsis
Applies a conversion repeatedly to all the sub-terms of a term, in bottom-up order.

Description
DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term tm,
including the term tm itself. The supplied conversion is applied repeatedly (zero or more
times, as is done by REPEATC) to each subterm until it fails. The conversion is applied to
subterms in bottom-up order.

Failure
DEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeatedly
to some subterm of tm without failing.

DEPTH CONV 163

Example
The following example shows how DEPTH_CONV applies a conversion to all subterms to
which it applies:

- DEPTH_CONV BETA_CONV (Term ‘(\x. (\y. y + x) 1) 2‘);
> val it = |- (\x. (\y. y + x)1)2 = 1 + 2 : thm

Here, there are two beta-redexes in the input term, one of which occurs within the other.
DEPTH_CONV BETA_CONV applies beta-conversion to innermost beta-redex (\y. y + x) 1

first. The outermost beta-redex is then (\x. 1 + x) 2, and beta-conversion of this redex
gives 1 + 2.

Because DEPTH_CONV applies a conversion bottom-up, the final result may still contain
subterms to which the supplied conversion applies. For example, in:

- DEPTH_CONV BETA_CONV (Term ‘(\f x. (f x) + 1) (\y.y) 2‘);
> val it = |- (\f x. (f x) + 1)(\y. y)2 = ((\y. y)2) + 1 : thm

the right-hand side of the result still contains a beta-redex, because the redex (\y.y)2

is introduced by virtue of an application of BETA_CONV higher-up in the structure of the
input term. By contrast, in the example:

- DEPTH_CONV BETA_CONV (Term ‘(\f x. (f x)) (\y.y) 2‘);
> val it = |- (\f x. f x)(\y. y)2 = 2 : thm

all beta-redexes are eliminated, because DEPTH_CONV repeats the supplied conversion (in
this case, BETA_CONV) at each subterm (in this case, at the top-level term).

Uses
If the conversion c implements the evaluation of a function in logic, then DEPTH_CONV c

will do bottom-up evaluation of nested applications of it. For example, the conversion
ADD_CONV implements addition of natural number constants within the logic. Thus, the
effect of:

- DEPTH_CONV reduceLib.ADD_CONV (Term ‘(1 + 2) + (3 + 4 + 5)‘);
> val it = |- (1 + 2) + (3 + (4 + 5)) = 15 : thm

is to compute the sum represented by the input term.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of DEPTH_CONV will be unpredictable.

164 Chapter 1. Pre-defined ML Identifiers

See also
Conv.ONCE DEPTH CONV, Conv.REDEPTH CONV, Conv.TOP DEPTH CONV.

dest_abs (Term)

dest_abs : term -> term * term

Synopsis
Breaks apart an abstraction into abstracted variable and body.

Description
dest_abs is a term destructor for abstractions: if M is a term of the form \v.t, then
dest_abs M returns (v,t).

Failure
Fails if it is not given a lambda abstraction.

See also
Term.mk abs, Term.is abs, Term.dest var, Term.dest const, Term.dest comb,
boolSyntax.strip abs.

dest_arb (boolSyntax)

dest_arb : term -> hol_type

Synopsis
Extract the type of an instance of the ARB constant.

Description
If M is an instance of the constant ARB with type ty, then dest_arb M equals ty.

Failure
Fails if M is not an instance of ARB.

Comments
When it succeeds, an invocation of dest_arb is equivalent to type_of.

dest bool case 165

See also
boolSyntax.mk arb, boolSyntax.is arb.

dest_bool_case (boolSyntax)

dest_bool_case : term -> term * term * term

Synopsis
Destructs a case expression over bool.

Description
If M has the form bool_case M1 M2 b, then dest_bool_case M returns M1,M2,b.

Failure
Fails if M is not a full application of the bool_case constant.

See also
boolSyntax.mk bool case, boolSyntax.is bool case.

dest_comb (Term)

dest_comb : term -> term * term

Synopsis
Breaks apart a combination (function application) into rator and rand.

Description
dest_comb is a term destructor for combinations. If term M has the form f x, then
dest_comb M equals (f,x).

Failure
Fails if the argument is not a function application.

See also
Term.mk comb, Term.is comb, Term.dest var, Term.dest const, Term.dest abs,
boolSyntax.strip comb.

166 Chapter 1. Pre-defined ML Identifiers

dest_cond (boolSyntax)

dest_cond : term -> term * term * term

Synopsis
Breaks apart a conditional into the three terms involved.

Description
If M has the form if t then t1 else t2 then dest_cond M returns (t,t1,t2).

Failure
Fails if M is not a conditional.

See also
boolSyntax.mk cond, boolSyntax.is cond.

dest_conj (boolSyntax)

dest_conj : term -> term * term

Synopsis
Term destructor for conjunctions.

Description
If M is a term t1 /\ t2, then dest_conj M returns (t1,t2).

Failure
Fails if M is not a conjunction.

See also
boolSyntax.mk conj, boolSyntax.is conj, boolSyntax.list mk conj,
boolSyntax.strip conj.

dest_cons (listSyntax)

dest_cons : term -> term * term

dest const 167

Synopsis
Breaks apart a ‘CONS pair’ into head and tail.

Description
dest_cons is a term destructor for ‘CONS pairs’. When applied to a term representing
a nonempty list [t;t1;...;tn] (which is equivalent to CONS t [t1;...;tn]), it returns
the pair of terms (t, [t1;...;tn]).

Failure
Fails if the term is an empty list.

See also
listSyntax.mk cons, listSyntax.is cons, listSyntax.mk list,
listSyntax.dest list, listSyntax.is list.

dest_const (Term)

dest_const : term -> string * hol_type

Synopsis
Breaks apart a constant into name and type.

Description
dest_const is a term destructor for constants. If M is a constant with name c and type
ty, then dest_const M returns (c,ty).

Failure
Fails if M is not a constant.

Comments
In Hol98, constants also carry the theory they are declared in. A more precise and
robust way to analyze a constant is with dest_thy_const.

See also
Term.mk const, Term.mk thy const, Term.dest thy const, Term.is const,
Term.dest abs, Term.dest comb, Term.dest var.

dest_disj (boolSyntax)

dest_disj : term -> term * term

168 Chapter 1. Pre-defined ML Identifiers

Synopsis
Term destructor for disjunctions.

Description
If M is a term having the form t1 \/ t2, then dest_disj M returns (t1,t2).

Failure
Fails if M is not a disjunction.

See also
boolSyntax.mk disj, boolSyntax.is disj, boolSyntax.strip disj,
boolSyntax.list mk disj.

dest_eq (boolSyntax)

dest_eq : term -> term * term

Synopsis
Term destructor for equality.

Description
If M is the term t1 = t2, then dest_eq M returns (t1, t2).

Failure
Fails if M is not an equality.

See also
boolSyntax.mk eq, boolSyntax.is eq, boolSyntax.lhs, boolSyntax.rhs.

dest_eq_ty (boolSyntax)

dest_eq_ty : term -> term * term * hol_type

Synopsis
Term destructor for equality.

dest exists 169

Description
If M is the term t1 = t2, then dest_eq_ty M returns (t1, t2, ty), where ty is the type
of t1 (and thus also of t2).

Failure
Fails if M is not an equality.

Uses
Gives an efficient way to break apart an equality and get the type of the equality. Useful
for obtaining that last fraction of speed when optimizing the bejeesus out of an inference
rule.

See also
boolSyntax.mk eq, boolSyntax.is eq, boolSyntax.lhs, boolSyntax.rhs.

dest_exists (boolSyntax)

dest_exists : term -> term * term

Synopsis
Breaks apart a existentially quantified term into quantified variable and body.

Description
If M has the form ?x. t, then dest_exists M returns (x,t).

Failure
Fails if M is not a existential quantification.

See also
boolSyntax.mk exists, boolSyntax.is exists, boolSyntax.strip exists.

dest_exists1 (boolSyntax)

dest_exists1 : term -> term * term

Synopsis
Breaks apart a unique existence term into quantified variable and body.

170 Chapter 1. Pre-defined ML Identifiers

Description
If M has the form ?!x. t, then dest_exists1 M returns (x,t).

Failure
Fails if M is not a unique existence term.

See also
boolSyntax.mk exists1, boolSyntax.is exists1.

dest_forall (boolSyntax)

dest_forall : term -> term * term

Synopsis
Breaks apart a universally quantified term into quantified variable and body.

Description
If M has the form !x. t, then dest_forall M returns (x,t).

Failure
Fails if M is not a universal quantification.

See also
boolSyntax.mk forall, boolSyntax.is forall, boolSyntax.strip forall,
boolSyntax.list mk forall.

dest_imp (boolSyntax)

dest_imp : term -> term * term

Synopsis
Breaks an implication or negation into antecedent and consequent.

Description
dest_imp is a term destructor for implications. It treats negations as implications with
consequent F. Thus, if M is a term with the form t1 ==> t2, then dest_imp M returns
(t1,t2), and if M has the form ~t, then dest_imp M returns (t,F).

dest imp only 171

Failure
Fails if M is neither an implication nor a negation.

Comments
Destructs negations for increased functionality of HOL-style resolution. If the ability to
destruct negations is not desired, as is only right, then use dest_imp_only.

See also
boolSyntax.mk imp, boolSyntax.dest imp only, boolSyntax.is imp,
boolSyntax.is imp only, boolSyntax.strip imp, boolSyntax.list mk imp.

dest_imp_only (boolSyntax)

dest_imp_only : term -> term * term

Synopsis
Breaks an implication into antecedent and consequent.

Description
If M is a term with the form t1 ==> t2, then dest_imp_only M returns (t1,t2).

Failure
Fails if M is not an implication.

See also
boolSyntax.mk imp, boolSyntax.dest imp, boolSyntax.is imp,
boolSyntax.is imp only, boolSyntax.strip imp, boolSyntax.list mk imp.

dest_let (boolSyntax)

dest_let : term -> term * term

Synopsis
Breaks apart a let-expression.

Description
If M is a term of the form LET M N, then dest_let M returns (M,N).

172 Chapter 1. Pre-defined ML Identifiers

Example

- dest_let (Term ‘let x = P /\ Q in x \/ x‘);
> val it = (‘\x. x \/ x‘, ‘P /\ Q‘) : term * term

Failure
Fails if M is not of the form LET M N.

See also
boolSyntax.mk let, boolSyntax.is let.

dest_list (listSyntax)

dest_list : term -> term list * hol_type

Synopsis
Iteratively breaks apart a list term.

Description
dest_list is a term destructor for lists: dest_list ‘‘[t1;...;tn]:ty list‘‘ returns
([t1,...,tn], ty).

Failure
Fails if the term is not a list.

See also
listSyntax.mk list, listSyntax.is list, listSyntax.mk cons,
listSyntax.dest cons, listSyntax.is cons.

dest_neg (boolSyntax)

dest_neg : term -> term

Synopsis
Breaks apart a negation, returning its body.

dest pabs 173

Description
dest_neg is a term destructor for negations: if M has the form ~t, then dest_neg M returns
t.

Failure
Fails with dest_neg if term is not a negation.

See also
boolSyntax.mk neg, boolSyntax.is neg.

dest_pabs (pairSyntax)

dest_pabs : term -> term * term

Synopsis
Breaks apart a paired abstraction into abstracted pair and body.

Description
dest_pabs is a term destructor for paired abstractions: dest_abs "\pair. t" returns
("pair","t").

Failure
Fails with dest_pabs if term is not a paired abstraction.

See also
Term.dest abs, pairSyntax.mk pabs, pairSyntax.is pabs, pairSyntax.strip pabs.

dest_pair (pairSyntax)

dest_pair : term -> term * term

Synopsis
Breaks apart a pair into two separate terms.

Description
dest_pair is a term destructor for pairs: if M is a term of the form (t1,t2), then
dest_pair M returns (t1,t2).

174 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if M is not a pair.

See also
pairSyntax.mk pair, pairSyntax.is pair, pairSyntax.strip pair.

dest_pexists (pairSyntax)

dest_pexists : term -> term * term

Synopsis
Breaks apart paired existential quantifiers into the bound pair and the body.

Description
dest_pexists is a term destructor for paired existential quantification. The application
of dest_pexists to ?pair. t returns (pair,t).

Failure
Fails with dest_pexists if term is not a paired existential quantification.

See also
boolSyntax.dest exists, pairSyntax.mk pexists, pairSyntax.is pexists,
pairSyntax.strip pexists.

dest_pforall (pairSyntax)

dest_pforall : term -> term * term

Synopsis
Breaks apart paired universal quantifiers into the bound pair and the body.

Description
dest_pforall is a term destructor for paired universal quantification. The application of
dest_pforall to "!pair. t" returns ("pair","t").

Failure
Fails with dest_pforall if term is not a paired universal quantification.

dest prod 175

See also
boolSyntax.dest forall, pairSyntax.mk pforall, pairSyntax.is pforall,
pairSyntax.strip pforall.

dest_prod (pairSyntax)

dest_prod : hol_type -> hol_type * hol_type

Synopsis
Breaks a product type into its two component types.

Description
dest_prod is a type destructor for products: dest_pair ":t1#t2" returns (":t1",":t2").

Failure
Fails with dest_prod if the argument is not a product type.

See also
pairSyntax.is prod, pairSyntax.mk prod.

dest_pselect (pairSyntax)

dest_pselect : term -> term * term

Synopsis
Breaks apart a paired choice-term into the selected pair and the body.

Description
dest_pselect is a term destructor for paired choice terms. The application of dest_select
to @pair. t returns (pair,t).

Failure
Fails with dest_pselect if term is not a paired choice-term.

See also
boolSyntax.dest select, pairSyntax.mk pselect, pairSyntax.is pselect.

176 Chapter 1. Pre-defined ML Identifiers

dest_res_abstract (res_quanLib)

dest_res_abstract : term -> (term # term # term)

Synopsis
Breaks apart a restricted abstract term into the quantified variable, predicate and body.

Description
dest_res_abstract is a term destructor for restricted abstraction:

dest_res_abstract "\var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_abstract if the term is not a restricted abstraction.

See also
res quanLib.mk res abstract, res quanLib.is res abstract.

dest_res_exists (res_quanLib)

dest_res_exists : term -> (term # term # term)

Synopsis
Breaks apart a restricted existentially quantified term into the quantified variable, pred-
icate and body.

Description
dest_res_exists is a term destructor for restricted existential quantification:

dest_res_exists "?var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_exists if the term is not a restricted existential quantification.

dest res exists unique 177

See also
res quanLib.mk res exists, res quanLib.is res exists,
res quanLib.strip res exists.

dest_res_exists_unique (res_quanLib)

dest_res_exists_unique : term -> (term # term # term)

Synopsis
Breaks apart a restricted unique existential quantified term into the quantified variable,
predicate and body.

Description
dest_res_exists_unique is a term destructor for restricted existential quantification:

dest_res_exists_unique "?var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_exists_unique if the term is not a restricted existential quantifica-
tion.

See also
res quanLib.mk res exists unique, res quanLib.is res exists unique.

dest_res_forall (res_quanLib)

dest_res_forall : term -> (term # term # term)

Synopsis
Breaks apart a restricted universally quantified term into the quantified variable, predi-
cate and body.

178 Chapter 1. Pre-defined ML Identifiers

Description
dest_res_forall is a term destructor for restricted universal quantification:

dest_res_forall "!var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_forall if the term is not a restricted universal quantification.

See also
res quanLib.mk res forall, res quanLib.is res forall,
res quanLib.strip res forall.

dest_res_select (res_quanLib)

dest_res_select : term -> (term # term # term)

Synopsis
Breaks apart a restricted choice quantified term into the quantified variable, predicate
and body.

Description
dest_res_select is a term destructor for restricted choice quantification:

dest_res_select "@var::P. t"

returns ("var","P","t").

Failure
Fails with dest_res_select if the term is not a restricted choice quantification.

See also
res quanLib.mk res select, res quanLib.is res select.

dest_select (boolSyntax)

dest_select : term -> term * term

dest theory 179

Synopsis
Breaks apart a choice term into selected variable and body.

Description
If M has the form @v. t then dest_select M returns (v,t).

Failure
Fails if M is not an epsilon-term.

See also
boolSyntax.mk select, boolSyntax.is select.

dest_theory (DB)

dest_theory : string -> theory

Synopsis
Return the contents of a theory.

Description
An invocation dest_theory s returns a structure

THEORY(s,{types, consts, parents, axioms, definitions, theorems})

where types is a list of (string,int) pairs that contains all the type operators declared in
s, consts is a list of (string,hol_type) pairs enumerating all the term constants declared
in s, parents is a list of strings denoting the parents of s, axioms is a list of (string,thm)
pairs denoting the axioms asserted in s, definitions is a list of (string,thm) pairs de-
noting the definitions of s, and theorems is a list of (string,thm) pairs denoting the
theorems proved and stored in s.

The call dest_theory "-" may be used to access the contents of the current theory.

Failure
If s is not the name of a loaded theory.

180 Chapter 1. Pre-defined ML Identifiers

Example

- dest_theory "option";
> val it =

Theory: option

Parents:
sum
one

Type constants:
option 1

Term constants:
option_case :’b -> (’a -> ’b) -> ’a option -> ’b
NONE :’a option
SOME :’a -> ’a option
IS_NONE :’a option -> bool
option_ABS :’a + one -> ’a option
IS_SOME :’a option -> bool
option_REP :’a option -> ’a + one
THE :’a option -> ’a
OPTION_JOIN :’a option option -> ’a option
OPTION_MAP :(’a -> ’b) -> ’a option -> ’b option

Definitions:
option_TY_DEF |- ?rep. TYPE_DEFINITION (\x. T) rep
option_REP_ABS_DEF
|- (!a. option_ABS (option_REP a) = a) /\

!r. (\x. T) r = (option_REP (option_ABS r) = r)
SOME_DEF |- !x. SOME x = option_ABS (INL x)
NONE_DEF |- NONE = option_ABS (INR ())
option_case_def
|- (!u f. case u f NONE = u) /\ !u f x. case u f (SOME x) = f x
OPTION_MAP_DEF
|- (!f x. OPTION_MAP f (SOME x) = SOME (f x)) /\

!f. OPTION_MAP f NONE = NONE
IS_SOME_DEF |- (!x. IS_SOME (SOME x) = T) /\ (IS_SOME NONE = F)
IS_NONE_DEF |- (!x. IS_NONE (SOME x) = F) /\ (IS_NONE NONE = T)
THE_DEF |- !x. THE (SOME x) = x
OPTION_JOIN_DEF
|- (OPTION_JOIN NONE = NONE) /\ !x. OPTION_JOIN (SOME x) = x

Theorems:
option_Axiom |- !e f. ?fn. (!x. fn (SOME x) = f x) /\ (fn NONE = e)
option_induction |- !P. P NONE /\ (!a. P (SOME a)) ==> !x. P x
SOME_11 |- !x y. (SOME x = SOME y) = (x = y)
NOT_NONE_SOME |- !x. ~(NONE = SOME x)
NOT_SOME_NONE |- !x. ~(SOME x = NONE)
option_nchotomy |- !opt. (opt = NONE) \/ ?x. opt = SOME x
option_CLAUSES
|- (!x y. (SOME x = SOME y) = (x = y)) /\ (!x. THE (SOME x) = x) /\

(!x. ~(NONE = SOME x)) /\ (!x. ~(SOME x = NONE)) /\
(!x. IS_SOME (SOME x) = T) /\ (IS_SOME NONE = F) /\

dest thm 181

via pattern matching.

See also
DB.print theory, Hol pp.pp theory, Hol pp.theory.

dest_thm (Thm)

dest_thm : thm -> term list * term

Synopsis
Breaks a theorem into assumption list and conclusion.

Description
dest_thm ([t1,...,tn] |- t) returns ([t1,...,tn],t).

Failure
Never fails.

Example

- dest_thm (ASSUME (Term ‘p=T‘));
> val it = ([‘p = T‘], ‘p = T‘) : term list * term

See also
Thm.concl, Thm.hyp.

dest_thy_const (Term)

dest_thy_const : term -> {Thy:string, Name:string, Ty:hol_type}

Synopsis
Breaks apart a constant into name, theory, and type.

Description
dest_thy_const is a term destructor for constants. If M is a constant, declared in theory
Thy with name Name, having type ty, then dest_thy_const M returns {Thy, Name, Ty},
where Ty is equal to ty.

182 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if M is not a constant.

Comments
A more precise alternative to dest_const.

See also
Term.mk const, Term.dest thy const, Term.is const, Term.dest abs,
Term.dest comb, Term.dest var.

dest_thy_type (Type)

dest_thy_type
: hol_type -> {Thy:string, Name:string,

Args:hol_type list}

Synopsis
Breaks apart a type (other than a variable type).

Description
If ty is an application of a type operator Tyop, which was declared in theory Thy, to a
list of types Args, then dest_thy_type ty returns {Tyop,Thy,Args}.

Failure
Fails if ty is a type variable.

Example

- dest_thy_type (alpha --> bool);
> val it = {Args = [‘:’a‘, ‘:bool‘], Thy = "min", Tyop = "fun"} :

- try dest_thy_type alpha;

Exception raised at Type.dest_thy_type:

See also
Type.mk thy type, Type.dest type, Type.mk type, Term.mk thy const.

dest type 183

dest_type (Type)

dest_type : hol_type -> string * hol_type list

Synopsis
Breaks apart a non-variable type.

Description
If ty is a type constant, then dest_type t returns (ty,[]). If ty is a compound type
(ty1,...,tyn)tyop, then dest_type ty returns (tyop,[ty1,...,tyn]).

Failure
Fails if ty is a type variable.

Example

- dest_type bool;
> val it = ("bool", []) : string * hol_type list

- dest_type (alpha --> bool);
> val it = ("fun", [‘:’a‘, ‘:bool‘]) : string * hol_type list

Comments
A more precise alternative is dest_thy_type, which tells which theory the type operator
was declared in.

See also
Type.mk type, Type.dest thy type, Type.dest vartype.

dest_var (Term)

dest_var : term -> string * hol_type

Synopsis
Breaks apart a variable into name and type.

184 Chapter 1. Pre-defined ML Identifiers

Description
If M is a HOL variable, then dest_var M returns (v,ty), where v is the name of the
variable, an ty is its type.

Failure
Fails if M is not a variable.

See also
Term.mk var, Term.is var, Term.dest const, Term.dest comb, Term.dest abs.

dest_vartype (Type)

dest_vartype : hol_type -> string

Synopsis
Breaks a type variable down to its name.

Failure
Fails with dest_vartype if the type is not a type variable.

Example

- dest_vartype alpha;
> val it = "’a" : string

- try dest_vartype bool;

Exception raised at Type.dest_vartype:
not a type variable

See also
Type.mk vartype, Type.is vartype, Type.dest type.

DISCARD_TAC (Tactic)

DISCARD_TAC : thm_tactic

disch 185

Synopsis
Discards a theorem already present in a goal’s assumptions.

Description
When applied to a theorem A’ |- s and a goal, DISCARD_TAC checks that s is simply T

(true), or already exists (up to alpha-conversion) in the assumption list of the goal. In
either case, the tactic has no effect. Otherwise, it fails.

A ?- t
======== DISCARD_TAC (A’ |- s)
A ?- t

Failure
Fails if the above conditions are not met, i.e. the theorem’s conclusion is not T or already
in the assumption list (up to alpha-conversion).

See also
Tactical.POP ASSUM, Tactical.POP ASSUM LIST.

disch (HolKernel)

disch : ((term * term list) -> term list)

Synopsis
Removes those elements of a list of terms that are alpha equivalent to a given term.

Description
Given a pair ("t",tl), disch removes those elements of tl that are alpha equivalent to
"t".

Example

disch (Term‘\x:bool.T‘, [Term‘A = T‘,Term‘B = 3‘,Term‘\y:bool.T‘]);
[‘A = T‘,‘B = 3‘] : term list

See also
Lib.filter.

186 Chapter 1. Pre-defined ML Identifiers

DISCH (Thm)

DISCH : (term -> thm -> thm)

Synopsis
Discharges an assumption.

Description

A |- t
-------------------- DISCH u
A - {u} |- u ==> t

Failure
DISCH will fail if u is not boolean.

Comments
The term u need not be a hypothesis. Discharging u will remove all identical and alpha-
equivalent hypotheses.

See also
Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN, Tactic.FILTER DISCH TAC,
Thm cont.FILTER DISCH THEN, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,
Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

DISCH_ALL (Drule)

DISCH_ALL : (thm -> thm)

Synopsis
Discharges all hypotheses of a theorem.

Description

A1, ..., An |- t
---------------------------- DISCH_ALL
|- A1 ==> ... ==> An ==> t

Failure
DISCH_ALL will not fail if there are no hypotheses to discharge, it will simply return the
theorem unchanged.

DISCH TAC 187

Comments
Users should not rely on the hypotheses being discharged in any particular order. Two
or more alpha-convertible hypotheses will be discharged by a single implication; users
should not rely on which hypothesis appears in the implication.

See also
Thm.DISCH, Tactic.DISCH TAC, Thm cont.DISCH THEN, Drule.NEG DISCH,
Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN, Tactic.STRIP TAC,
Drule.UNDISCH, Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

DISCH_TAC (Tactic)

DISCH_TAC : tactic

Synopsis
Moves the antecedent of an implicative goal into the assumptions.

Description

A ?- u ==> v
============== DISCH_TAC
A u {u} ?- v

Note that DISCH_TAC treats ~u as u ==> F, so will also work when applied to a goal with
a negated conclusion.

Failure
DISCH_TAC will fail for goals which are not implications or negations.

Uses
Solving goals of the form u ==> v by rewriting v with u, although the use of DISCH_THEN
is usually more elegant in such cases.

Comments
If the antecedent already appears in the assumptions, it will be duplicated.

See also
Thm.DISCH, Drule.DISCH ALL, Thm cont.DISCH THEN, Tactic.FILTER DISCH TAC,
Thm cont.FILTER DISCH THEN, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,
Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

188 Chapter 1. Pre-defined ML Identifiers

DISCH_THEN (Thm_cont)

DISCH_THEN : (thm_tactic -> tactic)

Synopsis
Undischarges an antecedent of an implication and passes it to a theorem-tactic.

Description
DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing it. This
new theorem is passed to the theorem-tactic given as DISCH_THEN’s argument. The con-
sequent tactic is then applied. Thus:

DISCH_THEN f (asl, t1 ==> t2) = f(ASSUME t1) (asl,t2)

For example, if

A ?- t
======== f (ASSUME u)
B ?- v

then

A ?- u ==> t
============== DISCH_THEN f

B ?- v

Note that DISCH_THEN treats ~u as u ==> F.

Failure
DISCH_THEN will fail for goals which are not implications or negations.

Example
The following shows how DISCH_THEN can be used to preprocess an antecedent before

DISJ1 189

adding it to the assumptions.

A ?- (x = y) ==> t
==================== DISCH_THEN (ASSUME_TAC o SYM)

A u {y = x} ?- t

In many cases, it is possible to use an antecedent and then throw it away:

A ?- (x = y) ==> t x
====================== DISCH_THEN (\th. PURE_REWRITE_TAC [th])

A ?- t y

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Drule.NEG DISCH,
Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN, Tactic.STRIP TAC,
Drule.UNDISCH, Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

DISJ1 (Thm)

DISJ1 : thm -> term -> thm

Synopsis
Introduces a right disjunct into the conclusion of a theorem.

Description

A |- t1
--------------- DISJ1 (A |- t1) t2
A |- t1 \/ t2

Failure
Fails unless the term argument is boolean.

Example

- DISJ1 TRUTH F;
> val it = |- T \/ F : thm

See also
Tactic.DISJ1 TAC, Thm.DISJ2, Tactic.DISJ2 TAC, Thm.DISJ CASES.

190 Chapter 1. Pre-defined ML Identifiers

DISJ1_TAC (Tactic)

DISJ1_TAC : tactic

Synopsis
Selects the left disjunct of a disjunctive goal.

Description

A ?- t1 \/ t2
=============== DISJ1_TAC

A ?- t1

Failure
Fails if the goal is not a disjunction.

See also
Thm.DISJ1, Thm.DISJ2, Tactic.DISJ2 TAC.

DISJ2 (Thm)

DISJ2 : term -> thm -> thm

Synopsis
Introduces a left disjunct into the conclusion of a theorem.

Description

A |- t2
--------------- DISJ2 "t1"
A |- t1 \/ t2

Failure
Fails if the term argument is not boolean.

DISJ2 TAC 191

Example

- DISJ2 F TRUTH;
> val it = |- F \/ T : thm

See also
Thm.DISJ1, Tactic.DISJ1 TAC, Tactic.DISJ2 TAC, Thm.DISJ CASES.

DISJ2_TAC (Tactic)

DISJ2_TAC : tactic

Synopsis
Selects the right disjunct of a disjunctive goal.

Description

A ?- t1 \/ t2
=============== DISJ2_TAC

A ?- t2

Failure
Fails if the goal is not a disjunction.

See also
Thm.DISJ1, Tactic.DISJ1 TAC, Thm.DISJ2.

DISJ_CASES (Thm)

DISJ_CASES : (thm -> thm -> thm -> thm)

Synopsis
Eliminates disjunction by cases.

Description
The rule DISJ_CASES takes a disjunctive theorem, and two ‘case’ theorems, each with
one of the disjuncts as a hypothesis while sharing alpha-equivalent conclusions. A new

192 Chapter 1. Pre-defined ML Identifiers

theorem is returned with the same conclusion as the ‘case’ theorems, and the union of
all assumptions excepting the disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t A2 u {t2} |- t
-- DISJ_CASES

A u A1 u A2 |- t

Failure
Fails if the first argument is not a disjunctive theorem, or if the conclusions of the other
two theorems are not alpha-convertible.

Example
Specializing the built-in theorem num_CASES gives the theorem:

th = |- (m = 0) \/ (?n. m = SUC n)

Using two additional theorems, each having one disjunct as a hypothesis:

th1 = (m = 0 |- (PRE m = m) = (m = 0))
th2 = (?n. m = SUC n" |- (PRE m = m) = (m = 0))

a new theorem can be derived:

- DISJ_CASES th th1 th2;
> val it = |- (PRE m = m) = (m = 0) : thm

Comments
Neither of the ‘case’ theorems is required to have either disjunct as a hypothesis, but
otherwise DISJ_CASES is pointless.

See also
Tactic.DISJ CASES TAC, Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THEN2,
Drule.DISJ CASES UNION, Thm.DISJ1, Thm.DISJ2.

DISJ_CASES_TAC (Tactic)

DISJ_CASES_TAC : thm_tactic

Synopsis
Produces a case split based on a disjunctive theorem.

DISJ CASES THEN 193

Description
Given a theorem th of the form A |- u \/ v, DISJ_CASES_TAC th applied to a goal pro-
duces two subgoals, one with u as an assumption and one with v:

A ?- t
============================ DISJ_CASES_TAC (A |- u \/ v)
A u {u} ?- t A u {v}?- t

Failure
Fails if the given theorem does not have a disjunctive conclusion.

Example
Given the simple fact about arithmetic th, |- (m = 0) \/ (?n. m = SUC n), the tactic
DISJ_CASES_TAC th can be used to produce a case split:

- DISJ_CASES_TAC th ([],Term‘(P:num -> bool) m‘);
([([‘m = 0‘], ‘P m‘),

([‘?n. m = SUC n‘], ‘P m‘)], fn) : tactic_result

Uses
Performing a case analysis according to a disjunctive theorem.

See also
Tactic.ASSUME TAC, Tactic.ASM CASES TAC, Tactic.COND CASES TAC,
Thm cont.DISJ CASES THEN, Tactic.STRUCT CASES TAC.

DISJ_CASES_THEN (Thm_cont)

DISJ_CASES_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each disjunct of a disjunctive theorem.

Description
If the theorem-tactic f:thm->tactic applied to either ASSUMEd disjunct produces results

194 Chapter 1. Pre-defined ML Identifiers

as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f (u |- u) and ========= f (v |- v)
A ?- t1 A ?- t2

then applying DISJ_CASES_THEN f (|- u \/ v) to the goal (A ?- t) produces two sub-
goals.

A ?- t
====================== DISJ_CASES_THEN f (|- u \/ v)
A ?- t1 A ?- t2

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN ASSUME_TAC th

produces two subgoals, each with one disjunct as an added assumption:

?n. m = SUC n ?- (PRE m = m) = (m = 0)

m = 0 ?- (PRE m = m) = (m = 0)

Uses
Building cases tactics. For example, DISJ_CASES_TAC could be defined by:

let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC

Comments
Use DISJ_CASES_THEN2 to apply different tactic generating functions to each case.

See also
Thm cont.STRIP THM THEN, Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN,
Thm cont.CONJUNCTS THEN2, Tactic.DISJ CASES TAC, Thm cont.DISJ CASES THEN2,
Thm cont.DISJ CASES THENL.

DISJ CASES THEN2 195

DISJ_CASES_THEN2 (Thm_cont)

DISJ_CASES_THEN2 : (thm_tactic -> thm_tactical)

Synopsis
Applies separate theorem-tactics to the two disjuncts of a theorem.

Description
If the theorem-tactics f1 and f2, applied to the ASSUMEd left and right disjunct of a theo-
rem |- u \/ v respectively, produce results as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f1 (u |- u) and ========= f2 (v |- v)
A ?- t1 A ?- t2

then applying DISJ_CASES_THEN2 f1 f2 (|- u \/ v) to the goal (A ?- t) produces two
subgoals.

A ?- t
====================== DISJ_CASES_THEN2 f1 f2 (|- u \/ v)
A ?- t1 A ?- t2

Failure
Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has
any hypothesis which is not alpha-convertible to an assumption of the goal.

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN2 SUBST1_TAC ASSUME_TAC th

to the goal will produce two subgoals

?n. m = SUC n ?- (PRE m = m) = (m = 0)

?- (PRE 0 = 0) = (0 = 0)

The first subgoal has had the disjunct m = 0 used for a substitution, and the second has

196 Chapter 1. Pre-defined ML Identifiers

added the disjunct to the assumption list. Alternatively, applying the tactic

DISJ_CASES_THEN2 SUBST1_TAC (CHOOSE_THEN SUBST1_TAC) th

to the goal produces the subgoals:

?- (PRE(SUC n) = SUC n) = (SUC n = 0)

?- (PRE 0 = 0) = (0 = 0)

Uses
Building cases tacticals. For example, DISJ_CASES_THEN could be defined by:

let DISJ_CASES_THEN f = DISJ_CASES_THEN2 f f

See also
Thm cont.STRIP THM THEN, Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN,
Thm cont.CONJUNCTS THEN2, Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THENL.

DISJ_CASES_THENL (Thm_cont)

DISJ_CASES_THENL : (thm_tactic list -> thm_tactic)

Synopsis
Applies theorem-tactics in a list to the corresponding disjuncts in a theorem.

Description
If the theorem-tactics f1...fn applied to the ASSUMEd disjuncts of a theorem

|- d1 \/ d2 \/...\/ dn

produce results as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f1 (d1 |- d1) and ... and ========= fn (dn |- dn)
A ?- t1 A ?- tn

then applying DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn) to the goal (A ?- t)

DISJ CASES UNION 197

produces n subgoals.

A ?- t
======================= DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn)
A ?- t1 ... A ?- tn

DISJ_CASES_THENL is defined using iteration, hence for theorems with more than n

disjuncts, dn would itself be disjunctive.

Failure
Fails if the number of tactic generating functions in the list exceeds the number of
disjuncts in the theorem. An invalid tactic is produced if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Uses
Used when the goal is to be split into several cases, where a different tactic-generating
function is to be applied to each case.

See also
Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN, Thm cont.CONJUNCTS THEN2,
Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THEN2, Thm cont.STRIP THM THEN.

DISJ_CASES_UNION (Drule)

DISJ_CASES_UNION : thm -> thm -> thm -> thm

Synopsis
Makes an inference for each arm of a disjunct.

Description
Given a disjunctive theorem, and two additional theorems each having one disjunct as
a hypothesis, a new theorem with a conclusion that is the disjunction of the conclusions
of the last two theorems is produced. The hypotheses include the union of hypotheses
of all three theorems less the two disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t3 A2 u {t2} |- t4
-- DISJ_CASES_UNION

A u A1 u A2 |- t3 \/ t4

Failure
Fails if the first theorem is not a disjunction.

198 Chapter 1. Pre-defined ML Identifiers

Example
The built-in theorem LESS_CASES can be specialized to:

th1 = |- m < n \/ n <= m

and used with two additional theorems:

th2 = (m < n |- (m MOD n = m))
th3 = ({0 < n, n <= m} |- (m MOD n) = ((m - n) MOD n))

to derive a new theorem:

- DISJ_CASES_UNION th1 th2 th3;
val it = [0 < n] |- (m MOD n = m) \/ (m MOD n = (m - n) MOD n) : thm

See also
Thm.DISJ CASES, Tactic.DISJ CASES TAC, Thm.DISJ1, Thm.DISJ2.

DISJ_IMP (Drule)

DISJ_IMP : (thm -> thm)

Synopsis
Converts a disjunctive theorem to an equivalent implicative theorem.

Description
The left disjunct of a disjunctive theorem becomes the negated antecedent of the newly
generated theorem.

A |- t1 \/ t2
----------------- DISJ_IMP
A |- ~t1 ==> t2

Failure
Fails if the theorem is not a disjunction.

disjunction 199

Example
Specializing the built-in theorem LESS_CASES gives the theorem:

th = |- m < n \/ n <= m

to which DISJ_IMP may be applied:

- DISJ_IMP th;
> val it = |- ~m < n ==> n <= m : thm

See also
Thm.DISJ CASES.

disjunction (boolSyntax)

disjunction : term

Synopsis
Constant denoting logical disjunction.

Description
The ML variable boolSyntax.disjunction is bound to the term bool$\/.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.negation, boolSyntax.conditional,
boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

dom_rng (Type)

dom_rng : hol_type -> hol_type * hol_type

Synopsis
Breaks a function type into domain and range types.

200 Chapter 1. Pre-defined ML Identifiers

Description
If ty has the form ty1 -> ty2, then dom_rng ty yields (ty1,ty2).

Failure
Fails if ty is not a function type.

Example

- dom_rng (bool --> alpha);
> val it = (‘:bool‘, ‘:’a‘) : hol_type * hol_type

- try dom_rng bool;

Exception raised at Type.dom_rng:
not a function type

See also
Type.-->, Type.dest type, Type.dest thy type.

e (goalstackLib)

e : tactic -> goalstack

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function e is part of the subgoal package. It is an abbreviation for expand. For a
description of the subgoal package, see set_goal.

Failure
As for expand.

Uses
Doing a step in an interactive goal-directed proof.

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.expand,
goalstackLib.expandf, goalstackLib.g, get state, goalstackLib.p, print state,
goalstackLib.r, rotate, save top thm, goalstackLib.set goal, set state,
goalstackLib.top goal, goalstackLib.top thm, VALID.

el 201

el (Lib)

el : int -> ’a list -> ’a

Synopsis
Extracts a specified element from a list.

Description
el i [x1,...,xn] returns xi. Note that the elements are numbered starting from 1, not
0.

Failure
Fails with el if the integer argument is less than 1 or greater than the length of the list.

Example

- el 3 [1,2,7,1];
> val it = 7 : int

See also
Lib.index.

emit_ERR (Feedback)

emit_ERR : bool ref

Synopsis
Flag controlling output of HOL_ERR exceptions.

Description
The boolean flag emit_ERR tells whether an application of HOL_ERR should be printed.
Its value is consulted by Raise when it attempts to print a textual representation of its
argument exception. This flag is not commonly used, and it may disappear or change
in the future.

The default value of emit_ERR is true.

202 Chapter 1. Pre-defined ML Identifiers

Example

- Raise (mk_HOL_ERR "Module" "function" "message");

Exception raised at Module.function:
message
! Uncaught exception:
! HOL_ERR

- emit_ERR := false;
> val it = () : unit

- Raise (mk_HOL_ERR "Module" "function" "message");
! Uncaught exception:
! HOL_ERR

See also
Feedback, Feedback.Raise, Feedback.emit MESG, Feedback.emit WARNING.

emit_MESG (Feedback)

emit_MESG : bool ref

Synopsis
Flag controlling output of HOL_MESG function.

Description
The boolean flag emit_MESG is consulted by HOL_MESG when it attempts to print its argu-
ment. This flag is not commonly used, and it may disappear or change in the future.

The default value of emit_MESG is true.

emit WARNING 203

Example

- HOL_MESG "Joy to the world.";
<<HOL message: Joy to the world.>>

- emit_MESG := false;
> val it = () : unit

- HOL_MESG "Peace on Earth.";
> val it = () : unit

See also
Feedback, Feedback.HOL MESG, Feedback.emit ERR, Feedback.emit WARNING.

emit_WARNING (Feedback)

emit_WARNING : bool ref

Synopsis
Flag controlling output of HOL_WARNING function.

Description
The boolean flag emit_WARNING is consulted by HOL_WARNING when it attempts to print
its argument. This flag is not commonly used, and it may disappear or change in the
future.

The default value of emit_WARNING is true.

Example

- HOL_WARNING "Clock" "watcher" "Time is running out.";
<<HOL warning: Clock.watcher: Time is running out.>>
> val it = () : unit

- emit_WARNING := false;
> val it = () : unit

- HOL_WARNING "Clock" "watcher" "Time is running out.";
> val it = () : unit

See also
Feedback, Feedback.HOL WARNING, Feedback.emit ERR, Feedback.emit MESG.

204 Chapter 1. Pre-defined ML Identifiers

empty_rewrites (Rewrite)

empty_rewrites: rewrites

Synopsis
The empty database of rewrite rules.

Uses
Used to build other rewrite sets.

See also
Rewrite.bool rewrites, Rewrite.implicit rewrites, Rewrite.add rewrites,
Rewrite.add implicit rewrites, Rewrite.set implicit rewrites.

empty_tmset (Term)

empty_tmset : term set

Synopsis
Empty set of terms.

Description
The value empty_tmset represents an empty set of terms. The set has a built-in ordering,
which is given by Term.compare.

Comments
Used as a starting point for building sets of terms.

See also
Term.compare, Term.empty varset.

empty_varset (Term)

empty_varset : term set

end itlist 205

Synopsis
Empty set of term variables.

Description
The value empty_varset represents an empty set of term variables. The set has a built-in
ordering, which is given by Term.var_compare.

Comments
Used as a starting point for building sets of variables.

See also
Term.var compare, Term.empty tmset.

end_itlist (Lib)

end_itlist : (’a -> ’a -> ’a) -> ’a list -> ’a)

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
end_itlist f [x1,...,xn] returns f x1 (... (f x(n-1) xn)...). Returns x for a one-
element list [x].

Failure
Fails if list is empty, or if an application of f raises an exception.

Example

- end_itlist (curry op+) [1,2,3,4];
> val it = 10 : int

See also
Lib.itlist, Lib.rev itlist, Lib.itlist2, Lib.rev itlist2.

end_time (Lib)

end_time : Timer.cpu_timer -> unit

206 Chapter 1. Pre-defined ML Identifiers

Synopsis
Check a running timer, and print out how long it has been running.

Description
An application end_time timer looks to see how long timer has been running, and prints
out the elapsed runtime, garbage collection time, and system time.

Failure
Never fails.

Example

- val clock = start_time();
> val clock = <cpu_timer> : cpu_timer

- use "foo.sml";
> ... output omitted ...

- end_time clock;
runtime: 525.996s, gctime: 0.000s, systime: 525.996s.
> val it = () : unit

Comments
A start_time ... end_time pair is for use when calling time would be clumsy, e.g., when
multiple function applications are to be timed.

See also
Lib.start time, Lib.time.

enumerate (Lib)

enumerate : int -> ’a list -> (int * ’a) list

Synopsis
Number each element of a list, in ascending order.

Description
An invocation of enumerate i [x1, ..., xn] returns the list [(i,x1), (i+1,x2), ..., (i+n-1,xn)].

Failure
Never fails.

EQ IMP RULE 207

Example

- enumerate 0 ["komodo", "iguana", "gecko", "gila"];
> val it = [(0, "komodo"), (1, "iguana"), (2, "gecko"), (3, "gila")]

EQ_IMP_RULE (Thm)

EQ_IMP_RULE : thm -> thm * thm

Synopsis
Derives forward and backward implication from equality of boolean terms.

Description
When applied to a theorem A |- t1 = t2, where t1 and t2 both have type bool, the
inference rule EQ_IMP_RULE returns the theorems A |- t1 ==> t2 and A |- t2 ==> t1.

A |- t1 = t2
----------------------------------- EQ_IMP_RULE
A |- t1 ==> t2 A |- t2 ==> t1

Failure
Fails unless the conclusion of the given theorem is an equation between boolean terms.

See also
Thm.EQ MP, Tactic.EQ TAC, Drule.IMP ANTISYM RULE.

EQ_MP (Thm)

EQ_MP : thm -> thm -> thm

Synopsis
Equality version of the Modus Ponens rule.

208 Chapter 1. Pre-defined ML Identifiers

Description
When applied to theorems A1 |- t1 = t2 and A2 |- t1, the inference rule EQ_MP returns
the theorem A1 u A2 |- t2.

A1 |- t1 = t2 A2 |- t1
-------------------------- EQ_MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is equational and its left side is the same as the conclusion
of the second theorem (and is therefore of type bool), up to alpha-conversion.

See also
Thm.EQ IMP RULE, Drule.IMP ANTISYM RULE, Thm.MP.

EQ_TAC (Tactic)

EQ_TAC : tactic

Synopsis
Reduces goal of equality of boolean terms to forward and backward implication.

Description
When applied to a goal A ?- t1 = t2, where t1 and t2 have type bool, the tactic EQ_TAC

returns the subgoals A ?- t1 ==> t2 and A ?- t2 ==> t1.

A ?- t1 = t2
================================= EQ_TAC
A ?- t1 ==> t2 A ?- t2 ==> t1

Failure
Fails unless the conclusion of the goal is an equation between boolean terms.

See also
Thm.EQ IMP RULE, Drule.IMP ANTISYM RULE.

EQF_ELIM (Drule)

EQF_ELIM : (thm -> thm)

EQF INTRO 209

Synopsis
Replaces equality with F by negation.

Description

A |- tm = F
------------- EQF_ELIM

A |- ~tm

Failure
Fails if the argument theorem is not of the form A |- tm = F.

See also
Drule.EQF INTRO, Drule.EQT ELIM, Drule.EQT INTRO.

EQF_INTRO (Drule)

EQF_INTRO : (thm -> thm)

Synopsis
Converts negation to equality with F.

Description

A |- ~tm
------------- EQF_INTRO
A |- tm = F

Failure
Fails if the argument theorem is not a negation.

See also
Drule.EQF ELIM, Drule.EQT ELIM, Drule.EQT INTRO.

EQT_ELIM (Drule)

EQT_ELIM : (thm -> thm)

210 Chapter 1. Pre-defined ML Identifiers

Synopsis
Eliminates equality with T.

Description

A |- tm = T
------------- EQT_ELIM

A |- tm

Failure
Fails if the argument theorem is not of the form A |- tm = T.

See also
Drule.EQT INTRO, Drule.EQF ELIM, Drule.EQF INTRO.

EQT_INTRO (Drule)

EQT_INTRO : (thm -> thm)

Synopsis
Introduces equality with T.

Description

A |- tm
------------- EQF_INTRO
A |- tm = T

Failure
Never fails.

See also
Drule.EQT ELIM, Drule.EQF ELIM, Drule.EQF INTRO.

equal (Lib)

equal : ’’a -> ’’a -> bool

equality 211

Synopsis
Curried form of ML equality

Description
In some programming situations it is useful to use equality in a curried form. Although
it is easy to code up on demand, the equal function is provided for convenience.

Failure
Never fails.

Example

- filter (equal 1) [1,2,1,4,5];
> val it = [1, 1] : int list

equality (boolSyntax)

equality : term

Synopsis
Constant denoting logical equality.

Description
The ML variable boolSyntax.equality is bound to the term min$=.

See also
boolSyntax.implication, boolSyntax.select, boolSyntax.T, boolSyntax.F,
boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

ERR_outstream (Feedback)

ERR_outstream : TextIO.outstream ref

212 Chapter 1. Pre-defined ML Identifiers

Synopsis
Reference to output stream used when printing HOL_ERR

Description
The value of reference cell ERR_outstream controls where Raise prints its argument.

The default value of ERR_outstream is TextIO.stdErr.

Example

- val ostrm = TextIO.openOut "foo";
> val ostrm = <outstream> : outstream

- ERR_outstream := ostrm;
> val it = () : unit

- Raise (mk_HOL_ERR "Foo" "bar" "incomprehensible input");
! Uncaught exception:
! HOL_ERR

- TextIO.closeOut ostrm;
> val it = () : unit

- val istrm = TextIO.openIn "foo";
> val istrm = <instream> : instream

- print (TextIO.inputAll istrm);

Exception raised at Foo.bar:
incomprehensible input

See also
Feedback, Feedback.HOL ERR, Feedback.Raise, Feedback.MESG outstream,
Feedback.WARNING outstream.

ERR_to_string (Feedback)

ERR_to_string : (error_record -> string) ref

Synopsis
Alterable function for formatting HOL_ERR

error record 213

Description
ERR_to_string is a reference to a function for formatting the argument to an application
of HOL_ERR. It can be used to customize Raise.

The default value of ERR_to_string is format_ERR.

Example

- fun alt_ERR_report {origin_structure,origin_function,message} =
String.concat["This just in from ",origin_function, " at ",

origin_structure, " : ", message, "\n"];

- ERR_to_string := alt_ERR_report;

- Raise (HOL_ERR {origin_structure = "Foo",
origin_function = "bar",
message = "incomprehensible input"});

This just in from bar at Foo : incomprehensible input
! Uncaught exception:
! HOL_ERR

See also
Feedback, Feedback.error record, Feedback.HOL ERR, Feedback.Raise,
Feedback.MESG to string, Feedback.WARNING to string.

error_record (Feedback)

type error_record = {origin_structure : string,
origin_function : string,
message : string}

Synopsis
Type abbreviation for HOL exceptions in Feedback module.

Description
The type abbreviation error_record declares the standard format of HOL exceptions.
The origin_structure field denotes the module that the exception has been raised in,
the origin_function field gives the name of the function the exception has been raised
in, and the message field should give an explanation of why the exception has been
raised.

214 Chapter 1. Pre-defined ML Identifiers

See also
Feedback, Feedback.HOL ERR, Feedback.format ERR, Feedback.ERR to string.

Eta (Thm)

Eta : thm -> thm

Synopsis
Perform one step of eta-reduction on the right hand side of an equational theorem.

Description

A |- M = (\x. (N x))
--------------------- x not free in N
A |- M = N

Failure
If the right hand side of the equation is not an eta-redex, or if the theorem is not an
equation.

Example

- val INC_DEF = new_definition ("INC_DEF", Term‘INC = \x. 1 + x‘);
> val INC_DEF = |- INC = (\x. 1 + x) : thm

- Eta INC_DEF;
> val it = |- INC = $+ 1 : thm

See also
Thm.Beta, Term.eta conv, Thm.ETA CONV.

eta_conv (Term)

eta_conv : term -> term

Synopsis
Performs one step of eta-reduction.

ETA CONV 215

Description
Eta-reduction is an important operation in the lambda calculus. A step of eta-reduction
may be performed by eta_conv M, where M is a lambda abstraction of the following
form: \v. (N v), i.e., a lambda abstraction whose body is an application of a term N to
the bound variable v. Moreover, v must not occur free in M. If this proviso is met, an
invocation eta_conv (\v. (N v)) is equal to N.

Failure
If M is not of the specified form, or if v occurs free in N.

Example

- eta_conv (Term ‘\n. PRE n‘);
> val it = ‘PRE‘ : term

Comments
Eta-reduction embodies the principle of extensionality, which is basic to the HOL logic.

See also
Thm.ETA CONV.

ETA_CONV (Thm)

ETA_CONV : conv

Synopsis
Performs a toplevel eta-conversion.

Description
ETA_CONV maps an eta-redex \x. (t x), where x does not occur free in t, to the theorem
|- (\x. (t x)) = t.

Failure
Fails if the input term is not an eta-redex.

See also
Thm.BETA CONV, Thm.ALPHA, Term.eta conv.

216 Chapter 1. Pre-defined ML Identifiers

etyvar (Type)

etyvar : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.etyvar is bound to the type variable ’e.

See also
Type.alpha, Type.beta, Type.gamma, Type.delta, Type.ftyvar, Type.bool.

EVAL (bossLib)

EVAL : conv

Synopsis
Evaluate a term by deduction.

Description
An invocation EVAL M symbolically evaluates M by applying the defining equations of
constants occurring in M. These equations are held in a mutable datastructure that is
automatically added to by Hol_datatype, Define, and tprove. The underlying algorithm
is call-by-value with a few differences, see the entry for CBV_CONV for details.

Failure
Never fails, but may diverge.

Example

- EVAL (Term ‘REVERSE (MAP (\x. x + a) [x;y;z])‘);
> val it = |- REVERSE (MAP (\x. x + a) [x; y; z]) = [z + a; y + a; x + a]

: thm

Comments
In order for recursive functions over numbers to be applied by EVAL, pattern matching
over SUC and 0 needs to be replaced by destructors. For example, the equations for FACT
would have to be rephrased as FACT n = if n = 0 then 1 else n * FACT (n-1).

EVAL RULE 217

See also
computeLib.CBV CONV, computeLib.RESTR EVAL CONV, bossLib.EVAL TAC,
computeLib.monitoring, computeLib.the compset, computeLib.add funs,
computeLib.add persistent funs, computeLib.add convs, bossLib.Define.

EVAL_RULE (bossLib)

EVAL_RULE : thm -> thm

Synopsis
Evaluate conclusion of a theorem.

Description
An invocation EVAL_RULE th symbolically evaluates the conclusion of th by applying the
defining equations of constants which occur in the conclusion of th. These equations are
held in a mutable datastructure that is automatically added to by Hol_datatype, Define,
and tprove. The underlying algorithm is call-by-value with a few differences, see the
entry for CBV_CONV for details.

Failure
Never fails, but may diverge.

Example

- val th = ASSUME(Term ‘x = MAP FACT (REVERSE [1;2;3;4;5;6;7;8;9;10])‘);
> val th = [.] |- x = MAP FACT (REVERSE [1; 2; 3; 4; 5; 6; 7; 8; 9; 10])

- EVAL_RULE th;
> val it = [.] |- x = [3628800; 362880; 40320; 5040; 720; 120; 24; 6; 2; 1]

- hyp it;
> val it = [‘x = MAP FACT (REVERSE [1; 2; 3; 4; 5; 6; 7; 8; 9; 10])‘]

Comments
In order for recursive functions over numbers to be applied by EVAL_RULE, pattern match-
ing over SUC and 0 needs to be replaced by destructors. For example, the equations for
FACT would have to be rephrased as FACT n = if n = 0 then 1 else n * FACT (n-1).

See also
bossLib.EVAL, bossLib.EVAL TAC, computeLib.CBV CONV.

218 Chapter 1. Pre-defined ML Identifiers

EVAL_TAC (bossLib)

EVAL_TAC : tactic

Synopsis
Evaluate a goal deductively.

Description
Applying EVAL_TAC to a goal A ?- g results in EVAL being applied to g to obtain |- g = g’.
This theorem is used to transform the goal to A ?- g’.

The notion of evaluation is based around rules for replacing constants by their (equa-
tional) definitions. Thus EVAL_TAC is currently suited to evaluation of expressions that
look like functional programs. Evaluation of inductive relations is not currently sup-
ported.

Failure
Shouldn’t fail, but may diverge.

Example
EVAL_TAC reduces the goal ?- P (REVERSE (FLAT [[x; y]; [a; b; c; d]])) to the goal

?- P [d; c; b; a; y; x]

Comments
The main problem with EVAL_TAC is knowing when it will terminate. One typical cause
of non-termination is that a constant in the goal has not been added to the_compset.
Another is that a test in a conditional in the expression may involve a variable.

Uses
Symbolic evaluation.

See also
bossLib.EVAL.

EVERY (Tactical)

EVERY : (tactic list -> tactic)

EVERY ASSUM 219

Synopsis
Sequentially applies all the tactics in a given list of tactics.

Description
When applied to a list of tactics [T1; ... ;Tn], and a goal g, the tactical EVERY applies
each tactic in sequence to every subgoal generated by the previous one. This can be
represented as:

EVERY [T1;...;Tn] = T1 THEN ... THEN Tn

If the tactic list is empty, the resulting tactic has no effect.

Failure
The application of EVERY to a tactic list never fails. The resulting tactic fails iff any of
the component tactics do.

Comments
It is possible to use EVERY instead of THEN, but probably stylistically inferior. EVERY is
more useful when applied to a list of tactics generated by a function.

See also
Tactical.FIRST, Tactical.MAP EVERY, Tactical.THEN.

EVERY_ASSUM (Tactical)

EVERY_ASSUM : (thm_tactic -> tactic)

Synopsis
Sequentially applies all tactics given by mapping a function over the assumptions of a
goal.

Description
When applied to a theorem-tactic f and a goal ({A1,...,An} ?- C), the EVERY_ASSUM

tactical maps f over a list of ASSUMEd assumptions then applies the resulting tactics, in
sequence, to the goal:

EVERY_ASSUM f ({A1,...,An} ?- C)
= (f(A1 |- A1) THEN ... THEN f(An |- An)) ({A1,...,An} ?- C)

If the goal has no assumptions, then EVERY_ASSUM has no effect.

220 Chapter 1. Pre-defined ML Identifiers

Failure
The application of EVERY_ASSUM to a theorem-tactic and a goal fails if the theorem-tactic
fails when applied to any of the ASSUMEd assumptions of the goal, or if any of the result-
ing tactics fail when applied sequentially.

See also
Tactical.ASSUM LIST, Tactical.MAP EVERY, Tactical.MAP FIRST, Tactical.THEN.

EVERY_CONJ_CONV (Conv)

EVERY_CONJ_CONV : conv -> conv

Synopsis
Applies a conversion to every top-level conjunct in a term.

Description
The term EVERY_CONJ_CONV c t takes the conversion c and applies this to every top-level
conjunct within term t. A top-level conjunct is a sub-term that can be reached from the
root of the term by breaking apart only conjunctions. The terms affected by c are those
that would be returned by a call to strip_conj c. In particular, if the term as a whole is
not a conjunction, then the conversion will be applied to the whole term.

If the result of the application of the conversion to one of the conjuncts is one of the
constants true or false, then one of two standard rewrites is applied, simplifying the
resulting term. If one of the conjuncts is converted to false, then the conversion will not
be applied to the remaining conjuncts (the conjuncts are worked on from left to right),
and the result of the whole application will simply be false. Alternatively, conjuncts that
are converted to true will not appear in the final result at all.

Failure
Fails if the conversion argument fails when applied to one of the top-level conjuncts in
a term.

Example

- EVERY_CONJ_CONV BETA_CONV (Term‘(\x. x /\ y) p‘);
> val it = |- (\x. x /\ y) p = p /\ y : thm
- EVERY_CONJ_CONV BETA_CONV (Term‘(\y. y /\ p) q /\ (\z. z) r‘);
> val it = |- (\y. y /\ p) q /\ (\z. z) r = (q /\ p) /\ r : thm

Uses
Useful for applying a conversion to all of the “significant” sub-terms within a term with-

EVERY CONV 221

out having to worry about the exact structure of its conjunctive skeleton.

See also
Conv.EVERY DISJ CONV, Conv.RATOR CONV, Conv.RAND CONV, Conv.LAND CONV.

EVERY_CONV (Conv)

EVERY_CONV : (conv list -> conv)

Synopsis
Applies in sequence all the conversions in a given list of conversions.

Description
EVERY_CONV [c1;...;cn] "t" returns the result of applying the conversions c1, ..., cn in
sequence to the term "t". The conversions are applied in the order in which they are
given in the list. In particular, if ci "ti" returns |- ti=ti+1 for i from 1 to n, then
EVERY_CONV [c1;...;cn] "t1" returns |- t1=t(n+1). If the supplied list of conversions
is empty, then EVERY_CONV returns the identity conversion. That is, EVERY_CONV [] "t"

returns |- t=t.

Failure
EVERY_CONV [c1;...;cn] "t" fails if any one of the conversions c1, ..., cn fails when
applied in sequence as specified above.

See also
Conv.THENC.

EVERY_DISJ_CONV (Conv)

EVERY_DISJ_CONV : conv -> conv

Synopsis
Applies a conversion to every top-level disjunct in a term.

Description
The term EVERY_DISJ_CONV c t takes the conversion c and applies this to every top-level
disjunct within term t. A top-level disjunct is a sub-term that can be reached from the

222 Chapter 1. Pre-defined ML Identifiers

root of the term by breaking apart only disjunctions. The terms affected by c are those
that would be returned by a call to strip_disj c. In particular, if the term as a whole is
not a disjunction, then the conversion will be applied to the whole term.

If the result of the application of the conversion to one of the disjuncts is one of the
constants true or false, then one of two standard rewrites is applied, simplifying the
resulting term. If one of the disjuncts is converted to true, then the conversion will not
be applied to the remaining disjuncts (the disjuncts are worked on from left to right),
and the result of the whole application will simply be true. Alternatively, disjuncts that
are converted to false will not appear in the final result at all.

Failure
Fails if the conversion argument fails when applied to one of the top-level disjuncts in
the term.

Example

- EVERY_DISJ_CONV BETA_CONV
(Term‘(\x. x /\ p) q \/ (\x. x) r \/ (\y. s /\ y) u‘);

> val it =
|- (\x. x /\ p) q \/ (\x. x) r \/ (\y. s /\ y) u = q /\ p \/ r \/ s /\ u
: thm

- EVERY_DISJ_CONV REDUCE_CONV ‘‘3 < x \/ 2 < 3 \/ 2 EXP 1000 < 10‘‘;
> val it = |- 3 < x \/ 2 < 3 \/ 2 EXP 1000 < 10 = T : thm

Uses
Useful for applying a conversion to all of the “significant” sub-terms within a term with-
out having to worry about the exact structure of its disjunctive skeleton.

See also
Conv.EVERY CONJ CONV, Conv.RATOR CONV, Conv.RAND CONV, Conv.LAND CONV.

EVERY_TCL (Thm_cont)

EVERY_TCL : (thm_tactical list -> thm_tactical)

Synopsis
Composes a list of theorem-tacticals.

EXISTENCE 223

Description
When given a list of theorem-tacticals and a theorem, EVERY_TCL simply composes their
effects on the theorem. The effect is:

EVERY_TCL [ttl1;...;ttln] = ttl1 THEN_TCL ... THEN_TCL ttln

In other words, if:

ttl1 ttac th1 = ttac th2 ... ttln ttac thn = ttac thn’

then:

EVERY_TCL [ttl1;...;ttln] ttac th1 = ttac thn’

If the theorem-tactical list is empty, the resulting theorem-tactical behaves in the same
way as ALL_THEN, the identity theorem-tactical.

Failure
The application to a list of theorem-tacticals never fails.

See also
Thm cont.FIRST TCL, Thm cont.ORELSE TCL, Thm cont.REPEAT TCL, Thm cont.THEN TCL.

EXISTENCE (Conv)

EXISTENCE : (thm -> thm)

Synopsis
Deduces existence from unique existence.

Description
When applied to a theorem with a unique-existentially quantified conclusion, EXISTENCE
returns the same theorem with normal existential quantification over the same variable.

A |- ?!x. p
------------- EXISTENCE
A |- ?x. p

Failure
Fails unless the conclusion of the theorem is unique-existentially quantified.

224 Chapter 1. Pre-defined ML Identifiers

See also
Conv.EXISTS UNIQUE CONV.

existential (boolSyntax)

existential : term

Synopsis
Constant denoting existential quantification.

Description
The ML variable boolSyntax.existential is bound to the term bool$?.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.exists1, boolSyntax.conjunction,
boolSyntax.disjunction, boolSyntax.negation, boolSyntax.conditional,
boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

exists (Lib)

exists : (’a -> bool) -> ’a list -> bool

Synopsis
Check if a predicate holds somewhere in a list

Description
An invocation exists P l returns true if P holds of some element of l. Since there are
no elements of [], exists P [] always returns false.

Failure
When searching for an element of l that P holds of, it may happen that an application
of P to an element of l raises an exception. In that case, exists P l raises an exception.

EXISTS 225

Example

- exists (fn i => i mod 2 = 0) [1,3,4];
> val it = true : bool

- exists (fn _ => raise Fail "") [];
> val it = false : bool

- exists (fn _ => raise Fail "") [1];
! Uncaught exception:
! Fail ""

See also
Lib.all, Lib.first, Lib.tryfind.

EXISTS (Thm)

EXISTS : term * term -> thm -> thm

Synopsis
Introduces existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, the first term an existentially quantified
pattern indicating the desired form of the result, and the second a witness whose sub-
stitution for the quantified variable gives a term which is the same as the conclusion of
the theorem, EXISTS gives the desired theorem.

A |- p[u/x]
------------- EXISTS (?x. p, u)
A |- ?x. p

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate how it is possible to deduce different things from the

226 Chapter 1. Pre-defined ML Identifiers

same theorem:

- EXISTS (Term ‘?x. x=T‘,T) (REFL T);
> val it = |- ?x. x = T : thm

- EXISTS (Term ‘?x:bool. x=x‘,T) (REFL T);
> val it = |- ?x. x = x : thm

See also
Thm.CHOOSE, Tactic.EXISTS TAC.

existential (boolSyntax)

exists1 : term

Synopsis
Constant denoting the unique existence quantifier.

Description
The ML variable boolSyntax.exists1 is bound to the term bool$?!.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

EXISTS_AND_CONV (Conv)

EXISTS_AND_CONV : conv

Synopsis
Moves an existential quantification inwards through a conjunction.

EXISTS EQ 227

Description
When applied to a term of the form ?x. P /\ Q, where x is not free in both P and Q,
EXISTS_AND_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (?x. P /\ Q) = (?x.P) /\ Q

is returned. If x is free in Q but not in P, then the result is:

|- (?x. P /\ Q) = P /\ (?x.Q)

And if x is free in neither P nor Q, then the result is:

|- (?x. P /\ Q) = (?x.P) /\ (?x.Q)

Failure
EXISTS_AND_CONV fails if it is applied to a term not of the form ?x. P /\ Q, or if it is
applied to a term ?x. P /\ Q in which the variable x is free in both P and Q.

See also
Conv.AND EXISTS CONV, Conv.LEFT AND EXISTS CONV, Conv.RIGHT AND EXISTS CONV.

EXISTS_EQ (Drule)

EXISTS_EQ : (term -> thm -> thm)

Synopsis
Existentially quantifies both sides of an equational theorem.

Description
When applied to a variable x and a theorem whose conclusion is equational, A |- t1 = t2,
the inference rule EXISTS_EQ returns the theorem A |- (?x. t1) = (?x. t2), provided
the variable x is not free in any of the assumptions.

A |- t1 = t2
------------------------ EXISTS_EQ "x" [where x is not free in A]
A |- (?x.t1) = (?x.t2)

Failure
Fails unless the theorem is equational with both sides having type bool, or if the term is
not a variable, or if the variable to be quantified over is free in any of the assumptions.

228 Chapter 1. Pre-defined ML Identifiers

See also
Thm.AP TERM, Drule.EXISTS IMP, Drule.FORALL EQ, Drule.MK EXISTS,
Drule.SELECT EQ.

EXISTS_IMP (Drule)

EXISTS_IMP : (term -> thm -> thm)

Synopsis
Existentially quantifies both the antecedent and consequent of an implication.

Description
When applied to a variable x and a theorem A |- t1 ==> t2, the inference rule EXISTS_IMP

returns the theorem A |- (?x. t1) ==> (?x. t2), provided x is not free in the assump-
tions.

A |- t1 ==> t2
-------------------------- EXISTS_IMP "x" [where x is not free in A]
A |- (?x.t1) ==> (?x.t2)

Failure
Fails if the theorem is not implicative, or if the term is not a variable, or if the term is a
variable but is free in the assumption list.

See also
Drule.EXISTS EQ.

EXISTS_IMP_CONV (Conv)

EXISTS_IMP_CONV : conv

Synopsis
Moves an existential quantification inwards through an implication.

EXISTS NOT CONV 229

Description
When applied to a term of the form ?x. P ==> Q, where x is not free in both P and Q,
EXISTS_IMP_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (?x. P ==> Q) = (!x.P) ==> Q

is returned. If x is free in Q but not in P, then the result is:

|- (?x. P ==> Q) = P ==> (?x.Q)

And if x is free in neither P nor Q, then the result is:

|- (?x. P ==> Q) = (!x.P) ==> (?x.Q)

Failure
EXISTS_IMP_CONV fails if it is applied to a term not of the form ?x. P ==> Q, or if it is
applied to a term ?x. P ==> Q in which the variable x is free in both P and Q.

See also
Conv.LEFT IMP FORALL CONV, Conv.RIGHT IMP EXISTS CONV.

EXISTS_NOT_CONV (Conv)

EXISTS_NOT_CONV : conv

Synopsis
Moves an existential quantification inwards through a negation.

Description
When applied to a term of the form ?x.~P, the conversion EXISTS_NOT_CONV returns the
theorem:

|- (?x.~P) = ~(!x. P)

Failure
Fails if applied to a term not of the form ?x.~P.

See also
Conv.FORALL NOT CONV, Conv.NOT EXISTS CONV, Conv.NOT FORALL CONV.

230 Chapter 1. Pre-defined ML Identifiers

EXISTS_OR_CONV (Conv)

EXISTS_OR_CONV : conv

Synopsis
Moves an existential quantification inwards through a disjunction.

Description
When applied to a term of the form ?x. P \/ Q, the conversion EXISTS_OR_CONV returns
the theorem:

|- (?x. P \/ Q) = (?x.P) \/ (?x.Q)

Failure
Fails if applied to a term not of the form ?x. P \/ Q.

See also
Conv.OR EXISTS CONV, Conv.LEFT OR EXISTS CONV, Conv.RIGHT OR EXISTS CONV.

EXISTS_TAC (Tactic)

EXISTS_TAC : (term -> tactic)

Synopsis
Reduces existentially quantified goal to one involving a specific witness.

Description
When applied to a term u and a goal ?x. t, the tactic EXISTS_TAC reduces the goal to
t[u/x] (substituting u for all free instances of x in t, with variable renaming if necessary
to avoid free variable capture).

A ?- ?x. t
============= EXISTS_TAC "u"
A ?- t[u/x]

Failure
Fails unless the goal’s conclusion is existentially quantified and the term supplied has
the same type as the quantified variable in the goal.

exists tyvar 231

Example
The goal:

?- ?x. x=T

can be solved by:

EXISTS_TAC "T" THEN REFL_TAC

See also
Thm.EXISTS.

exists_tyvar (Type)

exists_tyvar : (hol_type -> bool) -> hol_type -> bool

Synopsis
Checks if a type variable satisfying a given condition exists in a type.

Description
An invocation exists_tyvar P ty searches ty for a type variable satisfying the predicate
P. The value true is returned if the search is successful; otherwise false is the result.

Failure
If P fails when applied to a type variable encountered in the course of searching ty.

Example

- exists_tyvar (equal beta) (alpha --> beta --> bool);
> val it = true : bool

Comments
This function is more efficient, in some cases, than exists P o type_vars.

EXISTS_UNIQUE_CONV (Conv)

EXISTS_UNIQUE_CONV : conv

232 Chapter 1. Pre-defined ML Identifiers

Synopsis
Expands with the definition of unique existence.

Description
Given a term of the form "?!x.P[x]", the conversion EXISTS_UNIQUE_CONV proves that
this assertion is equivalent to the conjunction of two statements, namely that there
exists at least one value x such that P[x], and that there is at most one value x for which
P[x] holds. The theorem returned is:

|- (?! x. P[x]) = (?x. P[x]) /\ (!x x’. P[x] /\ P[x’] ==> (x = x’))

where x’ is a primed variant of x that does not appear free in the input term. Note that
the quantified variable x need not in fact appear free in the body of the input term. For
example, EXISTS_UNIQUE_CONV "?!x.T" returns the theorem:

|- (?! x. T) = (?x. T) /\ (!x x’. T /\ T ==> (x = x’))

Failure
EXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!x.P".

See also
Conv.EXISTENCE.

exn_to_string (Feedback)

exn_to_string : exn -> string

Synopsis
Map an exception into a string

Description
The function exn_to_string maps an exception to a string. However, in the case of the
Interrupt exception, it is not mapped to a string, but is instead raised. This avoids the
possibility of suppressing the propagation of Interrupt to the top level.

Failure
Never fails.

expand 233

Example

- exn_to_string Interrupt;
> Interrupted.

- exn_to_string Div;
> val it = "Div" : string

- print
(exn_to_string (mk_HOL_ERR "Foo" "bar" "incomprehensible input"));

Exception raised at Foo.bar:
incomprehensible input
> val it = () : unit

See also
Feedback, Feedback.HOL ERR, Feedback.ERR to string.

expand (goalstackLib)

expand : tactic -> goalstack

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function expand is part of the subgoal package. It may be abbreviated by the func-
tion e. It applies a tactic to the current goal to give a new proof state. The previous
state is stored on the backup list. If the tactic produces subgoals, the new proof state is
formed from the old one by removing the current goal from the goal stack and adding
a new level consisting of its subgoals. The corresponding justification is placed on the
justification stack. The new subgoals are printed. If more than one subgoal is produced,
they are printed from the bottom of the stack so that the new current goal is printed
last.

If a tactic solves the current goal (returns an empty subgoal list), then its justification
is used to prove a corresponding theorem. This theorem is incorporated into the justi-
fication of the parent goal and printed. If the subgoal was the last subgoal of the level,
the level is removed and the parent goal is proved using its (new) justification. This
process is repeated until a level with unproven subgoals is reached. The next goal on

234 Chapter 1. Pre-defined ML Identifiers

the goal stack then becomes the current goal. This goal is printed. If all the subgoals
are proved, the resulting proof state consists of the theorem proved by the justifications.

The tactic applied is a validating version of the tactic given. It ensures that the justifi-
cation of the tactic does provide a proof of the goal from the subgoals generated by the
tactic. It will cause failure if this is not so. The tactical VALID performs this validation.

For a description of the subgoal package, see set_goal.

Failure

expand tac fails if the tactic tac fails for the top goal. It will diverge if the tactic diverges
for the goal. It will fail if there are no unproven goals. This could be because no goal
has been set using set_goal or because the last goal set has been completely proved. It
will also fail in cases when the tactic is invalid.

expand 235

Example

- expand CONJ_TAC;
- expand CONJ_TAC;
OK..
NO_PROOFS! Uncaught exception:
! NO_PROOFS

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

- expand CONJ_TAC;
OK..
2 subgoals:
> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

: goalstack

- expand (REWRITE_TAC[listTheory.HD]);
OK..

Goal proved.
|- HD [1; 2; 3] = 1

Remaining subgoals:
> val it =

TL [1; 2; 3] = [2; 3]

: goalstack

- expand (REWRITE_TAC[listTheory.TL]);
OK..

Goal proved.
|- TL [1; 2; 3] = [2; 3]
> val it =

Initial goal proved.
|- (HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3]) : goalstack

In the following example an invalid tactic is used. It is invalid because it assumes

236 Chapter 1. Pre-defined ML Identifiers

something that is not on the assumption list of the goal. The justification adds this
assumption to the assumption list so the justification would not prove the goal that was
set.

- g ‘1=2‘;
> val it =

Proof manager status: 2 proofs.
2. Completed: |- (HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])
1. Incomplete:

Initial goal:
1 = 2

: proofs
- expand (REWRITE_TAC[ASSUME (Term ‘1=2‘)]);
OK..

Exception raised at Tactical.VALID:
Invalid tactic
! Uncaught exception:
! HOL_ERR

Uses
Doing a step in an interactive goal-directed proof.

See also
goalstackLib.b, goalstackLib.backup, goalstackLib.e, goalstackLib.expandf,
goalstackLib.g, goalstackLib.set goal, goalstackLib.p, goalstackLib.r,
goalstackLib.rotate, goalstackLib.top goal, goalstackLib.top thm,
Tactical.VALID.

expandf (goalstackLib)

expandf : (tactic -> unit)

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function expandf is a faster version of expand. It does not use a validated version of
the tactic. That is, no check is made that the justification of the tactic does prove the

expandf 237

goal from the subgoals it generates. If an invalid tactic is used, the theorem ultimately
proved may not match the goal originally set. Alternatively, failure may occur when
the justifications are applied in which case the theorem would not be proved. For a
description of the subgoal package, see under set_goal.

Failure

Calling expandf tac fails if the tactic tac fails for the top goal. It will diverge if the tactic
diverges for the goal. It will fail if there are no unproven goals. This could be because
no goal has been set using set_goal or because the last goal set has been completely
proved. If an invalid tactic, whose justification actually fails, has been used earlier in
the proof, expandf tac may succeed in applying tac and apparently prove the current
goal. It may then fail as it applies the justifications of the tactics applied earlier.

Example

- g ‘HD[1;2;3] = 1‘;

‘HD[1;2;3] = 1‘

() : void

- expandf (REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- HD[1;2;3] = 1

Previous subproof:
goal proved
() : void

The following example shows how the use of an invalid tactic can yield a theorem which

238 Chapter 1. Pre-defined ML Identifiers

does not correspond to the goal set.

- set_goal([], Term ‘1=2‘);
‘1 = 2‘

() : void

- expandf (REWRITE_TAC[ASSUME (Term‘1=2‘)]);
OK..
goal proved
. |- 1 = 2

Previous subproof:
goal proved
() : void

The proof assumed something which was not on the assumption list. This assumption
appears in the assumption list of the theorem proved, even though it was not in the
goal. An attempt to perform the proof using expand fails. The validated version of the
tactic detects that the justification produces a theorem which does not correspond to
the goal set. It therefore fails.

Uses
Saving CPU time when doing goal-directed proofs, since the extra validation is not done.
Redoing proofs quickly that are already known to work.

Comments
The CPU time saved may cause misery later. If an invalid tactic is used, this will only
be discovered when the proof has apparently been finished and the justifications are
applied.

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.e,
goalstackLib.expand, goalstackLib.g, get state, goalstackLib.p, print state,
goalstackLib.r, rotate, save top thm, goalstackLib.set goal, set state,
goalstackLib.top goal, goalstackLib.top thm, VALID.

export_rewrites (BasicProvers)

export_rewrites : string list -> unit

export theory 239

Synopsis
Exports theorems so that they merge with the “stateful” rewriter’s simpset.

Description
A call to export_rewrites strlist causes the theorems named by the strings in strlist

to be merged into the simpset value maintained behind the function srw_ss() when the
theory generated by the script file is loaded.

The theory is also augmented with an element in its signature of the form <thyname>_rwts

of type simpLib.ssdata. This value is the collection of all the theorems specified in the
previous call to export_rewrites.

Failure
Never fails directly. However, if a string in the parameter does not correspond to a
theorem exported by the theory (using save_thm, say), then the theory file resulting from
the execution of the script that includes the call to export_rewrites will not compile.

See also
bossLib.augment srw ss, bossLib.srw ss, bossLib.SRW TAC.

export_theory (Theory)

export_theory : unit -> unit

Synopsis
Write a theory segment to disk.

Description
An invocation export_theory() saves the current theory segment to disk. All parents,
definitions, axioms, and stored theorems of the segment are saved in such a way that,
when the theory is loaded from disk in a later session, the full theory in place at the
time export_theory was called is re-instated.

If the current theory segment is named thy, then export_theory() will create ML files
thyTheory.sig and thyTheory.sml, in the current directory at the time export_theory is
invoked. These files need to be compiled before they become usable. In the standard
way of doing things, the Holmake facility will handle this task.

240 Chapter 1. Pre-defined ML Identifiers

Once a theory segment has been exported and compiled, it is available for use. It can
be brought into an interactive proof session via

load "thyTheory";

When the segment is loaded, its parents, axioms, theorems, and definitions are in-
corporated into the current theory (recall that this notion is different than the current
theory segment).

Failure
A call to export_theory may fail if the disk file cannot be opened. A call to export_theory

will also fail if some bindings are such that the name of the binding is not a valid ML
identifier. In that case, export_theory will report all such bad names. These can be
changed with set_MLname, and then export_theory may be attempted again.

Example

- save_thm("foo", REFL (Term ‘x:bool‘));
> val it = |- x = x : thm

- export_theory();
Exporting theory "scratch" ... done.
> val it = () : unit

Comments
Note that export_theory exports the state of the theory, and not that of the ML environ-
ment. If one wants to restore the state of the ML environment in existence at the time
export_theory() is invoked, special steps have to be taken; see adjoin_to_theory.

See also
Theory.new theory, Theory.adjoin to theory, Theory.set MLname, Holmake.

EXT (Drule)

EXT : thm -> thm

Synopsis
Derives equality of functions from extentional equivalence.

F 241

Description
When applied to a theorem A |- !x. t1 x = t2 x, the inference rule EXT returns the
theorem A |- t1 = t2.

A |- !x. t1 x = t2 x
---------------------- EXT [where x is not free in t1 or t2]

A |- t1 = t2

Failure
Fails if the theorem does not have the form indicated above, or if the variable x is free
in either of the functions t1 or t2.

Comments
This rule is expressed as an equivalence in the theorem boolTheory.FUN_EQ_THM.

See also
Thm.AP THM, Thm.ETA CONV, Conv.FUN EQ CONV.

F (boolSyntax)

F : term

Synopsis
Constant denoting falsity.

Description
The ML variable boolSyntax.F is bound to the term bool$F.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

fail (Feedback)

fail : unit -> ’a

242 Chapter 1. Pre-defined ML Identifiers

Synopsis
Raise a HOL_ERR.

Description
The function fail raises a HOL_ERR with default values. This is useful when detailed
error tracking is not necessary.

Failure
Always fails.

Example

- fail() handle e => Raise e;

Exception raised at ??.??:
fail
! Uncaught exception:
! HOL_ERR

See also
Feedback, Feedback.failwith, Feedback.Raise, Feedback.HOL ERR.

FAIL_TAC (Tactical)

FAIL_TAC : (string -> tactic)

Synopsis
Tactic which always fails, with the supplied string.

Description
Whatever goal it is applied to, FAIL_TAC s always fails with the string s.

Failure
The application of FAIL_TAC to a string never fails; the resulting tactic always fails.

Example
The following example uses the fact that if a tactic t1 solves a goal, then the tactic
t1 THEN t2 never results in the application of t2 to anything, because t1 produces no

failwith 243

subgoals. In attempting to solve the following goal:

?- x => T | T

the tactic

REWRITE_TAC[] THEN FAIL_TAC ‘Simple rewriting failed to solve goal‘

will fail with the message provided, whereas:

CONV_TAC COND_CONV THEN FAIL_TAC ‘Using COND_CONV failed to solve goal‘

will silently solve the goal because COND_CONV reduces it to just ?- T.

See also
Tactical.ALL TAC, Tactical.NO TAC.

failwith (Feedback)

failwith : string -> ’a

Synopsis
Raise a HOL_ERR.

Description
The function failwith raises a HOL_ERR with default values. This is useful when detailed
error tracking is not necessary.
failwith differs from fail in that it takes an extra string argument, which is typically

used to tell which function failwith is being called from.

Failure
Always fails.

Example

- failwith "foo" handle e => Raise e;

Exception raised at ??.failwith:
foo
! Uncaught exception:
! HOL_ERR

See also
Feedback, Feedback.fail, Feedback.Raise, Feedback.HOL ERR.

244 Chapter 1. Pre-defined ML Identifiers

Feedback

structure Feedback

Synopsis
Module for messages, warnings, errors, and tracing of HOL functions.

Description
The Feedback structure provides facilities for raising and viewing HOL errors, and also
for monitoring tools as they run.

fetch (DB)

fetch : string -> string -> thm

Synopsis
Fetch a theorem by theory and name.

Description
An invocation fetch thy name searches through the currently loaded theory segments
in an attempt to find a theorem, axiom, or definition stored under name in theory thy.

Failure
If the specified theorem, axiom, or definition cannot be located.

Example

- DB.fetch "bool" "NOT_FORALL_THM";
> val it = |- !P. ~(!x. P x) = ?x. ~P x : thm

See also
DB.thms, DB.thy, DB.theorems, DB.axioms, DB.definitions.

filter (Lib)

filter : (’a -> bool) -> ’a list -> ’a list)

FILTER ASM REWRITE RULE 245

Synopsis
Filters a list to the sublist of elements satisfying a predicate.

Description
filter P l applies P to every element of l, returning a list of those that satisfy P, in the
order they appeared in the original list.

Failure
If P x fails for some element x of l.

Comments
Identical to gather.

See also
Lib.gather, Lib.mapfilter, Lib.partition.

FILTER_ASM_REWRITE_RULE (Rewrite)

FILTER_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem including built-in rewrites and some of the theorem’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
theorem. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used (along with the set of basic tautologies and the
given theorem list) to rewrite the theorem. See GEN_REWRITE_RULE for more information
on rewriting.

Failure
FILTER_ASM_REWRITE_RULE does not fail. Using FILTER_ASM_REWRITE_RULE may result in
a diverging sequence of rewrites. In such cases FILTER_ONCE_ASM_REWRITE_RULE may be
used.

Uses
This rule can be applied when rewriting with all assumptions results in divergence.
Typically, the predicate can model checks as to whether a certain variable appears on the
left-hand side of an equational assumption, or whether the assumption is in disjunctive
form.

246 Chapter 1. Pre-defined ML Identifiers

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ONCE ASM REWRITE RULE,
Rewrite.FILTER PURE ASM REWRITE RULE, Rewrite.FILTER PURE ONCE ASM REWRITE RULE,
Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE,
Rewrite.REWRITE RULE.

FILTER_ASM_REWRITE_TAC (Rewrite)

FILTER_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal including built-in rewrites and some of the goal’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
goal. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used (along with the set of basic tautologies and the
given theorem list) to rewrite the goal. See GEN_REWRITE_TAC for more information on
rewriting.

Failure
FILTER_ASM_REWRITE_TAC does not fail, but it can result in an invalid tactic if the rewrite
is invalid. This happens when a theorem used for rewriting has assumptions which are
not alpha-convertible to assumptions of the goal. Using FILTER_ASM_REWRITE_TAC may
result in a diverging sequence of rewrites. In such cases FILTER_ONCE_ASM_REWRITE_TAC

may be used.

Uses
This tactic can be applied when rewriting with all assumptions results in divergence, or
in an unwanted proof state. Typically, the predicate can model checks as to whether a
certain variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form. Thus it allows choice of assumptions to rewrite
with in a position-independent fashion.

FILTER DISCH TAC 247

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ONCE ASM REWRITE TAC,
Rewrite.FILTER PURE ASM REWRITE TAC, Rewrite.FILTER PURE ONCE ASM REWRITE TAC,
Rewrite.GEN REWRITE TAC, Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC,
Rewrite.REWRITE TAC.

FILTER_DISCH_TAC (Tactic)

FILTER_DISCH_TAC : (term -> tactic)

Synopsis
Conditionally moves the antecedent of an implicative goal into the assumptions.

Description
FILTER_DISCH_TAC will move the antecedent of an implication into the assumptions, pro-
vided its parameter does not occur in the antecedent.

A ?- u ==> v
============== FILTER_DISCH_TAC w
A u {u} ?- v

Note that DISCH_TAC treats ~u as u ==> F. Unlike DISCH_TAC, the antecedent will be
STRIPed into its various components before being ASSUMEd. This stripping includes gen-
erating multiple goals for case-analysis of disjunctions. Also, unlike DISCH_TAC, should
any component of the discharged antecedent directly imply or contradict the goal, then
this simplification will also be made. Again, unlike DISCH_TAC, FILTER_DISCH_TAC will
not duplicate identical or alpha-equivalent assumptions.

Failure
FILTER_DISCH_TAC will fail if a term which is identical, or alpha-equivalent to w occurs
free in the antecedent, or if the theorem is not an implication or a negation.

Comments
FILTER_DISCH_TAC w behaves like FILTER_DISCH_THEN STRIP_ASSUME_TAC w.

248 Chapter 1. Pre-defined ML Identifiers

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,
Thm cont.FILTER DISCH THEN, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,
Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

FILTER_DISCH_THEN (Thm_cont)

FILTER_DISCH_THEN : (thm_tactic -> term -> tactic)

Synopsis
Conditionally gives to a theorem-tactic the antecedent of an implicative goal.

Description
If FILTER_DISCH_THEN’s second argument, a term, does not occur in the antecedent, then
FILTER_DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing
it. This new theorem is passed to FILTER_DISCH_THEN’s first argument, which is subse-
quently expanded. For example, if

A ?- t
======== f (ASSUME u)
B ?- v

then

A ?- u ==> t
============== FILTER_DISCH_THEN f

B ?- v

Note that FILTER_DISCH_THEN treats ~u as u ==> F.

Failure
FILTER_DISCH_THEN will fail if a term which is identical, or alpha-equivalent to w occurs
free in the antecedent. FILTER_DISCH_THEN will also fail if the theorem is an implication
or a negation.

Comments
FILTER_DISCH_THEN is most easily understood by first understanding DISCH_THEN.

Uses
For preprocessing an antecedent before moving it to the assumptions, or for using an-
tecedents and then throwing them away.

FILTER GEN TAC 249

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,
Tactic.FILTER DISCH TAC, Drule.NEG DISCH, Tactic.STRIP TAC, Drule.UNDISCH,
Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

FILTER_GEN_TAC (Tactic)

FILTER_GEN_TAC : (term -> tactic)

Synopsis
Strips off a universal quantifier, but fails for a given quantified variable.

Description
When applied to a term s and a goal A ?- !x. t, the tactic FILTER_GEN_TAC fails if the
quantified variable x is the same as s, but otherwise advances the goal in the same way
as GEN_TAC, i.e. returns the goal A ?- t[x’/x] where x’ is a variant of x chosen to avoid
clashing with any variables free in the goal’s assumption list. Normally x’ is just x.

A ?- !x. t
============== FILTER_GEN_TAC "s"
A ?- t[x’/x]

Failure
Fails if the goal’s conclusion is not universally quantified or the quantified variable is
equal to the given term.

See also
Thm.GEN, Tactic.GEN TAC, Drule.GENL, Drule.GEN ALL, Thm.SPEC, Drule.SPECL,
Drule.SPEC ALL, Tactic.SPEC TAC, Tactic.STRIP TAC.

FILTER_ONCE_ASM_REWRITE_RULE (Rewrite)

FILTER_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem once including built-in rewrites and some of its assumptions.

250 Chapter 1. Pre-defined ML Identifiers

Description
The first argument is a predicate applied to the assumptions. The theorem is rewritten
with the assumptions for which the predicate returns true, the given list of theorems,
and the tautologies stored in basic_rewrites. It searches the term of the theorem once,
without applying rewrites recursively. Thus it avoids the divergence which can result
from the application of FILTER_ASM_REWRITE_RULE. For more information on rewriting
rules, see GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a theorem, al-
lowing control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,
Rewrite.FILTER PURE ASM REWRITE RULE, Rewrite.FILTER PURE ONCE ASM REWRITE RULE,
Rewrite.GEN REWRITE RULE, Rewrite.ONCE ASM REWRITE RULE, Conv.ONCE DEPTH CONV,
Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,
Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

FILTER_ONCE_ASM_REWRITE_TAC (Rewrite)

FILTER_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal once including built-in rewrites and some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The goal is rewritten with
the assumptions for which the predicate returns true, the given list of theorems, and
the tautologies stored in basic_rewrites. It searches the term of the goal once, without
applying rewrites recursively. Thus it avoids the divergence which can result from the
application of FILTER_ASM_REWRITE_TAC. For more information on rewriting tactics, see
GEN_REWRITE_TAC.

Failure
Never fails.

FILTER PGEN TAC 251

Uses
This function is useful when rewriting with a subset of assumptions of a goal, allowing
control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER PURE ASM REWRITE TAC, Rewrite.FILTER PURE ONCE ASM REWRITE TAC,
Rewrite.GEN REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC, Conv.ONCE DEPTH CONV,
Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,
Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC.

FILTER_PGEN_TAC (PairRules)

FILTER_PGEN_TAC : (term -> tactic)

Synopsis
Strips off a paired universal quantifier, but fails for a given quantified pair.

Description
When applied to a term q and a goal A ?- !p. t, the tactic FILTER_PGEN_TAC fails if the
quantified pair p is the same as p, but otherwise advances the goal in the same way as
PGEN_TAC, i.e. returns the goal A ?- t[p’/p] where p’ is a variant of p chosen to avoid
clashing with any variables free in the goal’s assumption list. Normally p’ is just p.

A ?- !p. t
============== FILTER_PGEN_TAC "q"
A ?- t[p’/p]

Failure
Fails if the goal’s conclusion is not a paired universal quantifier or the quantified pair is
equal to the given term.

See also
Tactic.FILTER GEN TAC, PairRules.PGEN, PairRules.PGEN TAC, PairRules.PGENL,
PGEN ALL, PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL,
PairRules.PSPEC TAC, PairRules.PSTRIP TAC.

FILTER_PSTRIP_TAC (PairRules)

FILTER_PSTRIP_TAC : (term -> tactic)

252 Chapter 1. Pre-defined ML Identifiers

Synopsis
Conditionally strips apart a goal by eliminating the outermost connective.

Description
Stripping apart a goal in a more careful way than is done by PSTRIP_TAC may be neces-
sary when dealing with quantified terms and implications. FILTER_PSTRIP_TAC behaves
like PSTRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_PSTRIP_TAC u is a tactic that removes one outermost oc-
currence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t,
provided the term being stripped does not contain u. FILTER_PSTRIP_TAC will strip
paired universal quantifications. A negation ~t is treated as the implication t ==> F.
FILTER_PSTRIP_TAC also breaks apart conjunctions without applying any filtering.

If t is a universally quantified term, FILTER_PSTRIP_TAC u strips off the quantifier:

A ?- !p. v
================ FILTER_PSTRIP_TAC "u" [where p is not u]

A ?- v[p’/p]

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the assumptions A. If t is a conjunction, no filtering is done and FILTER_PSTRIP_TAC

simply splits the conjunction:

A ?- v /\ w
================= FILTER_PSTRIP_TAC "u"
A ?- v A ?- w

If t is an implication and the antecedent does not contain a free instance of u, then
FILTER_PSTRIP_TAC u moves the antecedent into the assumptions and recursively splits
the antecedent according to the following rules (see PSTRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- (?p. w) ==> v
====================
A u {w[p’/p]} ?- v

where p’ is a variant of the pair p.

Failure
FILTER_PSTRIP_TAC u (A,t) fails if t is not a universally quantified term, an implica-
tion, a negation or a conjunction; or if the term being stripped contains u in the sense
described above (conjunction excluded).

FILTER PSTRIP THEN 253

Uses
FILTER_PSTRIP_TAC is used when stripping outer connectives from a goal in a more del-
icate way than PSTRIP_TAC. A typical application is to keep stripping by using the tactic
REPEAT (FILTER_PSTRIP_TAC u) until one hits the term u at which stripping is to stop.

See also
PairRules.PGEN TAC, PairRules.PSTRIP GOAL THEN, PairRules.FILTER PSTRIP THEN,
PairRules.PSTRIP TAC, Tactic.FILTER STRIP TAC.

FILTER_PSTRIP_THEN (PairRules)

FILTER_PSTRIP_THEN : (thm_tactic -> term -> tactic)

Synopsis
Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description
Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u re-
moves one outer connective (!, ==>, or ~) from t, if the term being stripped does not
contain a free instance of u. Note that FILTER_PSTRIP_THEN will strip paired universal
quantifiers. A negation ~t is treated as the implication t ==> F. The theorem-tactic ttac

is applied only when stripping an implication, by using the antecedent stripped off.
FILTER_PSTRIP_THEN also breaks conjunctions.
FILTER_PSTRIP_THEN behaves like PSTRIP_GOAL_THEN, if the term being stripped does

not contain a free instance of u. In particular, FILTER_PSTRIP_THEN PSTRIP_ASSUME_TAC

behaves like FILTER_PSTRIP_TAC.

Failure
FILTER_PSTRIP_THEN ttac u (A,t) fails if t is not a paired universally quantified term,
an implication, a negation or a conjunction; or if the term being stripped contains the
term u (conjunction excluded); or if the application of ttac fails, after stripping the
goal.

Uses
FILTER_PSTRIP_THEN is used to manipulate intermediate results using theorem-tactics, af-
ter stripping outer connectives from a goal in a more delicate way than PSTRIP_GOAL_THEN.

See also
PairRules.PGEN TAC, PairRules.PSTRIP GOAL THEN, Thm cont.FILTER STRIP THEN,
PairRules.PSTRIP TAC, PairRules.FILTER PSTRIP TAC.

254 Chapter 1. Pre-defined ML Identifiers

FILTER_PURE_ASM_REWRITE_RULE (Rewrite)

FILTER_PURE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm ->thm)

Synopsis
Rewrites a theorem with some of the theorem’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
theorem. The first argument (a predicate on terms) is applied to all assumptions, and
the ones which return true are used to rewrite the goal. See GEN_REWRITE_RULE for more
information on rewriting.

Failure
FILTER_PURE_ASM_REWRITE_RULE does not fail. Using FILTER_PURE_ASM_REWRITE_RULE may
result in a diverging sequence of rewrites. In such cases FILTER_PURE_ONCE_ASM_REWRITE_RULE
may be used.

Uses
This rule can be applied when rewriting with all assumptions results in divergence.
Typically, the predicate can model checks as to whether a certain variable appears on the
left-hand side of an equational assumption, or whether the assumption is in disjunctive
form.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,
Rewrite.FILTER ONCE ASM REWRITE RULE, Rewrite.FILTER PURE ONCE ASM REWRITE RULE,
Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE,
Rewrite.REWRITE RULE.

FILTER_PURE_ASM_REWRITE_TAC (Rewrite)

FILTER_PURE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

FILTER PURE ONCE ASM REWRITE RULE 255

Synopsis
Rewrites a goal with some of the goal’s assumptions.

Description
This function implements selective rewriting with a subset of the assumptions of the
goal. The first argument (a predicate on terms) is applied to all assumptions, and the
ones which return true are used to rewrite the goal. See GEN_REWRITE_TAC for more
information on rewriting.

Failure
FILTER_PURE_ASM_REWRITE_TAC does not fail, but it can result in an invalid tactic if the
rewrite is invalid. This happens when a theorem used for rewriting has assumptions
which are not alpha-convertible to assumptions of the goal. Using FILTER_PURE_ASM_REWRITE_TAC

may result in a diverging sequence of rewrites. In such cases FILTER_PURE_ONCE_ASM_REWRITE_TAC
may be used.

Uses
This tactic can be applied when rewriting with all assumptions results in divergence, or
in an unwanted proof state. Typically, the predicate can model checks as to whether a
certain variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form. Thus it allows choice of assumptions to rewrite
with in a position-independent fashion.

Another use is to improve performance when there are many assumptions which are
not applicable. Rewriting, though a powerful method of proving theorems in HOL,
can result in a reduced performance due to the pattern matching and the number of
primitive inferences involved.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.FILTER PURE ONCE ASM REWRITE TAC,
Rewrite.GEN REWRITE TAC, Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC,
Rewrite.REWRITE TAC.

FILTER_PURE_ONCE_ASM_REWRITE_RULE
(Rewrite)

FILTER_PURE_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem once using some of its assumptions.

256 Chapter 1. Pre-defined ML Identifiers

Description
The first argument is a predicate applied to the assumptions. The theorem is rewritten
with the assumptions for which the predicate returns true and the given list of theorems.
It searches the term of the theorem once, without applying rewrites recursively. Thus it
avoids the divergence which can result from the application of FILTER_PURE_ASM_REWRITE_RULE.
For more information on rewriting rules, see GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This function is useful when rewriting with a subset of assumptions of a theorem, al-
lowing control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,
Rewrite.FILTER ONCE ASM REWRITE RULE, Rewrite.FILTER PURE ASM REWRITE RULE,
Rewrite.GEN REWRITE RULE, Rewrite.ONCE ASM REWRITE RULE, Conv.ONCE DEPTH CONV,
Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,
Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

FILTER_PURE_ONCE_ASM_REWRITE_TAC(Rewrite)

FILTER_PURE_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)

Synopsis
Rewrites a goal once using some of its assumptions.

Description
The first argument is a predicate applied to the assumptions. The goal is rewritten with
the assumptions for which the predicate returns true and the given list of theorems. It
searches the term of the goal once, without applying rewrites recursively. Thus it avoids
the divergence which can result from the application of FILTER_PURE_ASM_REWRITE_TAC.
For more information on rewriting tactics, see GEN_REWRITE_TAC.

Failure
Never fails.

FILTER STRIP TAC 257

Uses
This function is useful when rewriting with a subset of assumptions of a goal, allowing
control of the number of rewriting passes.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.FILTER PURE ASM REWRITE TAC,
Rewrite.GEN REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC, Conv.ONCE DEPTH CONV,
Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,
Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC.

FILTER_STRIP_TAC (Tactic)

FILTER_STRIP_TAC : (term -> tactic)

Synopsis
Conditionally strips apart a goal by eliminating the outermost connective.

Description
Stripping apart a goal in a more careful way than is done by STRIP_TAC may be necessary
when dealing with quantified terms and implications. FILTER_STRIP_TAC behaves like
STRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_STRIP_TAC u is a tactic that removes one outermost oc-
currence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t,
provided the term being stripped does not contain u. A negation ~t is treated as the im-
plication t ==> F. FILTER_STRIP_TAC u also breaks apart conjunctions without applying
any filtering.

If t is a universally quantified term, FILTER_STRIP_TAC u strips off the quantifier:

A ?- !x.v
================ FILTER_STRIP_TAC "u" [where x is not u]

A ?- v[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, no filtering is done and FILTER_STRIP_TAC u simply splits the conjunction:

A ?- v /\ w
================= FILTER_STRIP_TAC "u"
A ?- v A ?- w

If t is an implication and the antecedent does not contain a free instance of u, then

258 Chapter 1. Pre-defined ML Identifiers

FILTER_STRIP_TAC u moves the antecedent into the assumptions and recursively splits
the antecedent according to the following rules (see STRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v
====================
A u {w[x’/x]} ?- v

where x’ is a variant of x.

Failure
FILTER_STRIP_TAC u (A,t) fails if t is not a universally quantified term, an implication, a
negation or a conjunction; or if the term being stripped contains u in the sense described
above (conjunction excluded).

Example
When trying to solve the goal

?- !n. m <= n /\ n <= m ==> (m = n)

the universally quantified variable n can be stripped off by using

FILTER_STRIP_TAC "m:num"

and then the implication can be stripped apart by using

FILTER_STRIP_TAC "m:num = n"

Uses
FILTER_STRIP_TAC is used when stripping outer connectives from a goal in a more del-
icate way than STRIP_TAC. A typical application is to keep stripping by using the tactic
REPEAT (FILTER_STRIP_TAC u) until one hits the term u at which stripping is to stop.

See also
Tactic.CONJ TAC, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,
Tactic.FILTER GEN TAC, Tactic.STRIP ASSUME TAC, Tactic.STRIP TAC.

FILTER_STRIP_THEN (Thm_cont)

FILTER_STRIP_THEN : (thm_tactic -> term -> tactic)

find 259

Synopsis
Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description
Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u re-
moves one outer connective (!, ==>, or ~) from t, if the term being stripped does not
contain a free instance of u. A negation ~t is treated as the implication t ==> F. The
theorem-tactic ttac is applied only when stripping an implication, by using the an-
tecedent stripped off. FILTER_STRIP_THEN also breaks conjunctions.
FILTER_STRIP_THEN behaves like STRIP_GOAL_THEN, if the term being stripped does not

contain a free instance of u. In particular, FILTER_STRIP_THEN STRIP_ASSUME_TAC behaves
like FILTER_STRIP_TAC.

Failure
FILTER_STRIP_THEN ttac u (A,t) fails if t is not a universally quantified term, an impli-
cation, a negation or a conjunction; or if the term being stripped contains the term u

(conjunction excluded); or if the application of ttac fails, after stripping the goal.

Example
When solving the goal

?- (n = 1) ==> (n * n = n)

the application of FILTER_STRIP_THEN SUBST1_TAC "m:num" results in the goal

?- 1 * 1 = 1

Uses
FILTER_STRIP_THEN is used when manipulating intermediate results using theorem-tactics,
after stripping outer connectives from a goal in a more delicate way than STRIP_GOAL_THEN.

See also
Tactic.CONJ TAC, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,
Tactic.FILTER GEN TAC, Tactic.FILTER STRIP TAC, Tactic.STRIP ASSUME TAC,
Tactic.STRIP GOAL THEN.

find (DB)

find : string -> data list

260 Chapter 1. Pre-defined ML Identifiers

Synopsis
Search for theory element by name fragment.

Description
An invocation DB.find s returns a list of theory elements which have been stored with
a name in which s occurs as a proper substring, ignoring case distinctions. All currently
loaded theory segments are searched.

Failure
Never fails. If nothing suitable can be found, the empty list is returned.

Example

- DB.find "inc";
> val it =

[(("arithmetic", "MULT_INCREASES"),
(|- !m n. 1 < m /\ 0 < n ==> SUC n <= m * n, Thm)),
(("bool", "BOOL_EQ_DISTINCT"), (|- ~(T = F) /\ ~(F = T), Thm)),
(("list", "list_distinct"), (|- !a1 a0. ~([] = a0::a1), Thm)),
(("sum", "sum_distinct"), (|- !x y. ~(INL x = INR y), Thm)),
(("sum", "sum_distinct1"), (|- !x y. ~(INR y = INL x), Thm))]

: ((string * string) * (thm * class)) list

Uses
Finding theorems in interactive proof sessions.

See also
DB.match, DB.apropos, DB.thy, DB.theorems.

find (hol88Lib)

find : (’a -> bool) -> ’a list -> ’a

Synopsis
Returns the first list element that satisfies a predicate.

Description
Identical to Lib.first.

See also
Lib.first, Lib.tryfind, Lib.mem, Lib.exists, hol88Lib.forall, Lib.assoc,
Lib.rev assoc.

find 261

find (Lib)

find : (’a -> bool) -> ’a list -> ’a

Synopsis
Returns the first list element that satisfies a predicate.

Description
An invocation find P [x1,...,xn] returns the first xi in [x1,...,xn] such that (P xi)

is true.

Failure
Fails if no element satisfies the predicate. This will always be the case if the list is empty.
Also fails if P xi fails for any element xi of the list.

Comments
Lib.first is equivalent.

See also
Lib.first, Lib.tryfind, Lib.mem, Lib.exists, Lib.assoc, Lib.rev assoc.

first (Lib)

first : (’a -> bool) -> ’a list -> ’a

Synopsis
Return first element in list that predicate holds of.

Description
An invocation first P [x1,...,xk,...xn] returns xk if P xk returns true and P xi (1 <= i < k)

equals false.

Failure
If P xi is false for every element in list, then first P list raises an exception. When
searching for an element of list that P holds of, it may happen that an application of P
to an element of list raises an exception e. In that case, first P list also raises e.

262 Chapter 1. Pre-defined ML Identifiers

Example

- first (fn i => i mod 2 = 0) [1,3,4,5];
> val it = 4 : int

- first (fn i => i mod 2 = 0) [1,3,5,7];
! Uncaught exception:
! HOL_ERR

- first (fn _ => raise Fail "") [1];
! Uncaught exception:
! Fail ""

See also
Lib.exists, Lib.tryfind, Lib.all, Lib.exists.

FIRST (Tactical)

FIRST : (tactic list -> tactic)

Synopsis
Applies the first tactic in a tactic list which succeeds.

Description
When applied to a list of tactics [T1;...;Tn], and a goal g, the tactical FIRST tries ap-
plying the tactics to the goal until one succeeds. If the first tactic which succeeds is Tm,
then the effect is the same as just Tm. Thus FIRST effectively behaves as follows:

FIRST [T1;...;Tn] = T1 ORELSE ... ORELSE Tn

Failure
The application of FIRST to a tactic list never fails. The resulting tactic fails iff all the
component tactics do when applied to the goal, or if the tactic list is empty.

See also
Tactical.EVERY, Tactical.ORELSE.

FIRST_ASSUM (Tactical)

FIRST_ASSUM : (thm_tactic -> tactic)

FIRST CONV 263

Synopsis
Maps a theorem-tactic over the assumptions, applying first successful tactic.

Description
The tactic

FIRST_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the ASSUMEd
assumptions (A1 |- A1), ..., (An |- An) and which succeeds when applied to the goal.
Failures of ttac to produce a tactic are ignored.

Failure
Fails if ttac (Ai |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_ASSUM (\asm. CONTR_TAC asm ORELSE ACCEPT_TAC asm)

searches the assumptions for either a contradiction or the desired conclusion. The tactic

FIRST_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal,
reducing the goal to the antecedent of the corresponding instance of this implication.

See also
Tactical.ASSUM LIST, Tactical.EVERY, Tactical.EVERY ASSUM, Tactical.FIRST,
Tactical.MAP EVERY, Tactical.MAP FIRST.

FIRST_CONV (Conv)

FIRST_CONV : (conv list -> conv)

Synopsis
Apply the first of the conversions in a given list that succeeds.

Description
FIRST_CONV [c1;...;cn] "t" returns the result of applying to the term "t" the first con-
version ci that succeeds when applied to "t". The conversions are tried in the order in
which they are given in the list.

264 Chapter 1. Pre-defined ML Identifiers

Failure
FIRST_CONV [c1;...;cn] "t" fails if all the conversions c1, ..., cn fail when applied to
the term "t". FIRST_CONV cs "t" also fails if cs is the empty list.

See also
Conv.ORELSEC.

FIRST_TCL (Thm_cont)

FIRST_TCL : (thm_tactical list -> thm_tactical)

Synopsis
Applies the first theorem-tactical in a list which succeeds.

Description
When applied to a list of theorem-tacticals, a theorem-tactic and a theorem, FIRST_TCL
returns the tactic resulting from the application of the first theorem-tactical to the
theorem-tactic and theorem which succeeds. The effect is the same as:

FIRST_TCL [ttl1;...;ttln] = ttl1 ORELSE_TCL ... ORELSE_TCL ttln

Failure
FIRST_TCL fails iff each tactic in the list fails when applied to the theorem-tactic and
theorem. This is trivially the case if the list is empty.

See also
Thm cont.EVERY TCL, Thm cont.ORELSE TCL, Thm cont.REPEAT TCL, Thm cont.THEN TCL.

FIRST_X_ASSUM (Tactical)

Tactical.FIRST_X_ASSUM : thm_tactic -> tactic

Synopsis
Maps a theorem-tactic over the assumptions, applying first successful tactic and remov-
ing the assumption that gave rise to the successful tactic.

flatten 265

Description
The tactic

FIRST_X_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the ASSUMEd
assumptions (A1 |- A1), ..., (An |- An) and which succeeds when applied to the goal.
The assumption which produced the successful theorem-tactic is removed from the as-
sumption list (before ttac is applied). Failures of ttac to produce a tactic are ignored.

Failure
Fails if ttac (Ai |- Ai) fails for every assumption Ai, or if the assumption list is empty,
or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_X_ASSUM SUBST_ALL_TAC

searches the assumptions for an equality and causes its right hand side to be substituted
for its left hand side throughout the goal and assumptions. It also removes the equality
from the assumption list. Using FIRST_ASSUM above would leave an equality on the
assumption list of the form x = x. The tactic

FIRST_X_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal,
reducing the goal to the antecedent of the corresponding instance of this implication
and removing the implication from the assumption list.

Comments
The “X” in the name of this tactic is a mnemonic for the “crossing out” or removal of the
assumption found.

See also
Tactical.ASSUM LIST, Tactical.EVERY, Tactical.PAT ASSUM, Tactical.EVERY ASSUM,
Tactical.FIRST, Tactical.MAP EVERY, Tactical.MAP FIRST, Thm cont.UNDISCH THEN.

flatten (Lib)

flatten : ’a list list -> ’a list

266 Chapter 1. Pre-defined ML Identifiers

Synopsis
Removes one level of bracketing from a list.

Description
An invocation flatten [[x11,...,x1k1],...,[xn1,...,xnkn]] yields the list [x1,...,x1k1,...,xn1,...,xn

Failure
Never fails.

Example

- flatten [[1,2,3],[],[4,5]];
> val it = [1, 2, 3, 4, 5] : int list

- flatten ([[[]]] : int list list list);
> val it = [[]] : int list list

for (Lib)

for : int -> int -> (int -> ’a) -> ’a list

Synopsis
Functional ‘for’ loops.

Description
An application for b t f is equal to [f b, f (b+1), ..., f t]. If b is greater than t,
the empty list is returned.

Failure
If f i fails for b <= i <= t.

Example

- for 97 122 Char.chr;
> val it =

[#"a", #"b", #"c", #"d", #"e", #"f", #"g", #"h", #"i", #"j", #"k", #"l",
#"m", #"n", #"o", #"p", #"q", #"r", #"s", #"t", #"u", #"v", #"w", #"x",
#"y", #"z"] : char list

See also
Lib.for se.

for se 267

for_se (Lib)

for_se : int -> int -> (int -> unit) -> unit

Synopsis
Side-effecting ‘for’ loops.

Description
An application for_se b t f is equal to (f b; f (b+1); ...; f t). If b is greater than
t, then for_se b t f does no evaluation, in particular f b is not evaluated.

Failure
If f i fails for b <= i <= t.

Example

- let val A = Array.array(26,#" ")
in

for_se 0 25 (fn i => Array.update(A,i, Char.chr (i+97)))
; for_se 0 25 (print o Char.toString o curry Array.sub A)
; print "\n"

end;

abcdefghijklmnopqrstuvwxyz
> val it = () : unit

See also
Lib.for.

FORALL_AND_CONV (Conv)

FORALL_AND_CONV : conv

Synopsis
Moves a universal quantification inwards through a conjunction.

268 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term of the form !x. P /\ Q, the conversion FORALL_AND_CONV returns
the theorem:

|- (!x. P /\ Q) = (!x.P) /\ (!x.Q)

Failure
Fails if applied to a term not of the form !x. P /\ Q.

See also
Conv.AND FORALL CONV, Conv.LEFT AND FORALL CONV, Conv.RIGHT AND FORALL CONV.

FORALL_EQ (Drule)

FORALL_EQ : (term -> thm -> thm)

Synopsis
Universally quantifies both sides of an equational theorem.

Description
When applied to a variable x and a theorem A |- t1 = t2, whose conclusion is an equa-
tion between boolean terms, FORALL_EQ returns the theorem A |- (!x. t1) = (!x. t2),
unless the variable x is free in any of the assumptions.

A |- t1 = t2
------------------------ FORALL_EQ "x" [where x is not free in A]
A |- (!x.t1) = (!x.t2)

Failure
Fails if the theorem is not an equation between boolean terms, or if the supplied term is
not simply a variable, or if the variable is free in any of the assumptions.

See also
Thm.AP TERM, Drule.EXISTS EQ, Drule.SELECT EQ.

FORALL_IMP_CONV (Conv)

FORALL_IMP_CONV : conv

FORALL NOT CONV 269

Synopsis
Moves a universal quantification inwards through an implication.

Description
When applied to a term of the form !x. P ==> Q, where x is not free in both P and Q,
FORALL_IMP_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (!x. P ==> Q) = (?x.P) ==> Q

is returned. If x is free in Q but not in P, then the result is:

|- (!x. P ==> Q) = P ==> (!x.Q)

And if x is free in neither P nor Q, then the result is:

|- (!x. P ==> Q) = (?x.P) ==> (!x.Q)

Failure
FORALL_IMP_CONV fails if it is applied to a term not of the form !x. P ==> Q, or if it is
applied to a term !x. P ==> Q in which the variable x is free in both P and Q.

See also
Conv.LEFT IMP EXISTS CONV, Conv.RIGHT IMP FORALL CONV.

FORALL_NOT_CONV (Conv)

FORALL_NOT_CONV : conv

Synopsis
Moves a universal quantification inwards through a negation.

Description
When applied to a term of the form !x.~P, the conversion FORALL_NOT_CONV returns the
theorem:

|- (!x.~P) = ~(?x. P)

Failure
Fails if applied to a term not of the form !x.~P.

270 Chapter 1. Pre-defined ML Identifiers

See also
Conv.EXISTS NOT CONV, Conv.NOT EXISTS CONV, Conv.NOT FORALL CONV.

FORALL_OR_CONV (Conv)

FORALL_OR_CONV : conv

Synopsis
Moves a universal quantification inwards through a disjunction.

Description
When applied to a term of the form !x. P \/ Q, where x is not free in both P and Q,
FORALL_OR_CONV returns a theorem of one of three forms, depending on occurrences of
the variable x in P and Q. If x is free in P but not in Q, then the theorem:

|- (!x. P \/ Q) = (!x.P) \/ Q

is returned. If x is free in Q but not in P, then the result is:

|- (!x. P \/ Q) = P \/ (!x.Q)

And if x is free in neither P nor Q, then the result is:

|- (!x. P \/ Q) = (!x.P) \/ (!x.Q)

Failure
FORALL_OR_CONV fails if it is applied to a term not of the form !x. P \/ Q, or if it is applied
to a term !x. P \/ Q in which the variable x is free in both P and Q.

See also
Conv.OR FORALL CONV, Conv.LEFT OR FORALL CONV, Conv.RIGHT OR FORALL CONV.

FORK_CONV (Conv)

FORK_CONV : (conv * conv) -> conv

format ERR 271

Synopsis
Applies a pair of conversions to the arguments of a binary operator.

Description
If the conversion c1 maps a term t1 to the theorem |- t1 = t1’, and the conversion c2

maps t2 to |- t2 = t2’, then the conversion FORK_CONV (c1,c2) maps terms of the form
f t1 t2 to theorems of the form |- f t1 t2 = f t1’ t2’.

Failure
FORK_CONV (c1,c2) t will fail if t is not of the general form f t1 t2, or if c1 fails when
applied to t1, or if c2 fails when applied to t2, or if c1 or c2 aren’t really conversions,
and thereby fail to return appropriate equational theorems.

Example

- FORK_CONV (BETA_CONV,REDUCE_CONV) (Term‘(\x. x + 1)y * (10 DIV 3)‘);
> val it = |- (\x. x + 1) y * (10 DIV 3) = (y + 1) * 3 : thm

See also
Conv.BINOP CONV, Conv.LAND CONV, Conv.RAND CONV, Conv.RATOR CONV.

format_ERR (Feedback)

format_ERR : error_record -> string

Synopsis
Maps argument record of HOL_ERR to a string

Description
The format_ERR function maps the argument of an application of HOL_ERR to a string. It
is the default function used by ERR_to_string.

Failure
Never fails.

272 Chapter 1. Pre-defined ML Identifiers

Example

- print
(format_ERR {origin_structure = "Foo",

origin_function = "bar",
message = "incomprehensible input"});

Exception raised at Foo.bar:
incomprehensible input
> val it = () : unit

See also
Feedback, Feedback.ERR to string, Feedback.format MESG, Feedback.format WARNING.

format_MESG (Feedback)

format_MESG : string -> string

Synopsis
Maps argument of HOL_MESG to a string

Description
The format_MESG function maps a string to a string. Usually, the input string is the
argument of an invocation of HOL_MESG. format_MESG is the default function used by
MESG_to_string.

Failure
Never fails.

Example

- print (format_MESG "Hello world.");
<<HOL message: Hello world.>>

See also
Feedback, Feedback.MESG to string, Feedback.format ERR, Feedback.format WARNING.

format_WARNING (Feedback)

format_WARNING : string -> string -> string -> string

free in 273

Synopsis
Maps arguments of HOL_WARNING to a string

Description
The format_WARNING function maps three strings to a string. Usually, the input strings are
the arguments to an invocation of HOL_WARNING. format_WARNING is the default function
used by WARNING_to_string.

Failure
Never fails.

Example

- print (format_WARNING "Module" "function" "Gadzooks!");
<<HOL warning: Module.function: Gadzooks!>>

See also
Feedback, Feedback.WARNING to string, Feedback.format ERR, Feedback.format MESG.

free_in (Term)

free_in : term -> term -> bool

Synopsis
Tests if one term is free in another.

Description
When applied to two terms t1 and t2, the function free_in returns true if t1 is free in
t2, and false otherwise. It is not necessary that t1 be simply a variable. A term M occurs
free in N when all the free variables of M are not bound at some occurrence of M in N.

Failure
Never fails.

Example
In the following example free_in returns false because the x in SUC x in the second

274 Chapter 1. Pre-defined ML Identifiers

term is bound:

- free_in (Term ‘SUC x‘)
(Term ‘!x. SUC x = x + 1‘);

> val it = false : bool

whereas the following call returns true because the first instance of x in the second term
is free, even though there is also a bound instance:

- free_in (Term ‘x:bool‘)
(Term ‘x /\ ?x. x=T‘);

> val it = true : bool

See also
Term.free vars, Term.FVL.

free_vars (Term)

free_vars : term -> term list

Synopsis
Returns the set of free variables in a term.

Description
An invocation free_vars tm returns a list representing the set of term variables occur-
ring in tm.

Failure
Never fails.

Example

- free_vars (Term ‘x /\ y /\ y ==> x‘);
> val it = [‘y‘, ‘x‘] : term list

Comments
Code should not depend on how elements are arranged in the result of free_vars.
free_vars is not efficient for large terms with many free variables. Demanding appli-

cations should be coded with FVL.

free vars lr 275

See also
Term.FVL, Term.free vars lr, Term.free varsl, Term.empty varset, Type.type vars.

free_vars_lr (Term)

free_vars_lr : term -> term list

Synopsis
Returns the set of free variables in a term, in order.

Description
An invocation free_vars_lr ty returns a list representing the set of type variables oc-
curring in ty. The list will be in order of variable occurrence when scanning the parse
tree of the term from left to right. This is usually, but need not be, the textual order
when the term is printed.

Failure
Never fails.

Example

- free_vars_lr (Term ‘x /\ y /\ y ==> z‘);
> val it = [‘x‘, ‘y‘, ‘z‘] : term list

Comments
free_vars_lr is not efficient for large terms with many free variables. More strenuous
applications should use high performance set implementations available in the Standard
ML Basis Library.

Uses
free_vars_lr can be used to build pleasing quantifier prefixes.

See also
Term.FVL, Term.free vars, Term.empty varset, Type.type vars.

free_varsl (Term)

free_varsl : term list -> term list

276 Chapter 1. Pre-defined ML Identifiers

Synopsis
Returns the set of free variables in a list of terms.

Description
An invocation free_varsl [t1,...,tn] returns a list representing the set of free term
variables occurring in t1,...,tn.

Failure
Never fails.

Example

- free_varsl [Term ‘x /\ y /\ y ==> x‘,
Term ‘!x. x ==> p ==> y‘];

> val it = [‘x‘, ‘y‘, ‘p‘] : term list

Comments
Code should not depend on how elements are arranged in the result of free_varsl.
free_varsl is not efficient for large terms with many free variables. Demanding ap-

plications should be coded with FVL.

See also
Term.FVL, Term.free vars lr, Term.free vars, Term.empty varset, Type.type vars.

frees (hol88Lib)

hol88Lib.frees : term -> term list

Synopsis
Returns a list of the variables which are free in a term.

Description
Found in the hol88 library. When applied to a term, frees returns a list of the free
variables in that term. There are no repetitions in the list produced even if there are
multiple free instances of some variables.

Failure
Never fails.

freesl 277

Example
Clearly in the following term, x and y are free, whereas z is bound:

- frees (--‘(x=1) /\ (y=2) /\ (!z. z >= 0)‘--);
> val it = [(--‘x‘--),(--‘y‘--)] : term list

Comments
The function frees is not in the standard hol98 kernel; the function free_vars is used
instead. WARNING: the order of the list returned by frees and free_vars is different.

- val tm = (--‘x (y:num):bool‘--);
> val tm = (--‘x y‘--) : term
- free_vars tm
> val it = [(--‘y‘--),(--‘x‘--)] : term list
- frees tm;
> val it = [(--‘x‘--),(--‘y‘--)] : term list

It ought to be the case that the result of a call to frees (or free_vars) is treated as
a set, that is, the order of the free variables should be immaterial. This is sometimes
not possible; for example the result of gen_all (and hence the results of GEN_ALL and
new_axiom) necessarily depends on the order of the variables returned from frees. The
problem comes when users write code that depends on the order of quantification. For
example, contrary to some expectations, it is not the case that (tm being a closed term
already)

GEN_ALL (SPEC_ALL tm) = tm

where “=” is interpreted as identity or alpha-convertibility.

See also
hol88Lib.freesl, Term.free in, thm frees.

freesl (hol88Lib)

Compat.freesl : term list -> term list

Synopsis
Returns a list of the free variables in a list of terms.

278 Chapter 1. Pre-defined ML Identifiers

Description
Found in the hol88 library. When applied to a list of terms, freesl returns a list of
the variables which are free in any of those terms. There are no repetitions in the list
produced even if several terms contain the same free variable.

Failure
Never fails, unless the hol88 library has not been loaded.

Example
In the following example there are two free instances each of x and y, whereas the only
instances of z are bound:

- freesl [(--‘x+y=2‘--), (--‘!z. z >= (x-y)‘--)];
val it = [(--‘x‘--),(--‘y‘--)] : term list

Comments
freesl is not in hol90; use free_varsl instead. WARNING: One can not depend on the
order of the list returned by freesl to be identical to that returned by free_varsl. They
are coded in terms of frees and free_vars, and thus the discussion in the documentation
for frees applies by extension.

See also
hol88Lib.frees, Term.free in, thm frees.

FREEZE_THEN (Tactic)

FREEZE_THEN : thm_tactical

Synopsis
‘Freezes’ a theorem to prevent instantiation of its free variables.

Description
FREEZE_THEN expects a tactic-generating function f:thm->tactic and a theorem (A1 |- w)

as arguments. The tactic-generating function f is applied to the theorem (w |- w). If

FREEZE THEN 279

this tactic generates the subgoal:

A ?- t
========= f (w |- w)
A ?- t1

then applying FREEZE_THEN f (A1 |- w) to the goal (A ?- t) produces the subgoal:

A ?- t
========= FREEZE_THEN f (A1 |- w)
A ?- t1

Since the term w is a hypothesis of the argument to the function f, none of the free
variables present in w may be instantiated or generalized. The hypothesis is discharged
by PROVE_HYP upon the completion of the proof of the subgoal.

Failure
Failures may arise from the tactic-generating function. An invalid tactic arises if the
hypotheses of the theorem are not alpha-convertible to assumptions of the goal.

Example
Given the goal (["b < c"; "a < b"], "(SUC a) <= c"), and the specialized variant of
the theorem LESS_TRANS:

th = |- !p. a < b /\ b < p ==> a < p

IMP_RES_TAC th will generate several unneeded assumptions:

{b < c, a < b, a < c, !p. c < p ==> b < p, !a’. a’ < a ==> a’ < b}
?- (SUC a) <= c

which can be avoided by first ‘freezing’ the theorem, using the tactic

FREEZE_THEN IMP_RES_TAC th

This prevents the variables a and b from being instantiated.

{b < c, a < b, a < c} ?- (SUC a) <= c

Uses
Used in serious proof hacking to limit the matches achievable by resolution and rewrit-
ing.

See also
Thm.ASSUME, Tactic.IMP RES TAC, Drule.PROVE HYP, Tactic.RES TAC, Conv.REWR CONV.

280 Chapter 1. Pre-defined ML Identifiers

FRONT_CONJ_CONV (Drule)

FRONT_CONJ_CONV: term list -> term -> thm

Synopsis
Moves a specified conjunct to the beginning of a conjunction.

Description
Given a list of boolean terms [t1,...,t,...,tn] and a term t which occurs in the list,
FRONT_CONJ_CONV returns:

|- (t1 /\ ... /\ t /\ ... /\ tn) = (t /\ t1 /\ ... /\ tn)

That is, FRONT_CONJ_CONV proves that t can be moved to the ‘front’ of a conjunction of
several terms.

Failure
FRONT_CONJ_CONV [t1,...,tn] t fails if t does not occur in the list [t1,...,tn] or if any
of t1, ..., tn do not have type bool.

Comments
This is not a true conversion, so perhaps it ought to be called something else.

front_last (Lib)

Lib.front_last : ’a list -> ’a list * ’a

Synopsis
Takes a non-empty list L and returns a pair (front,last) such that front @ [last] = L.

Failure
Fails if the list is empty.

fst 281

Example

- front_last [1];
> val it = ([],1) : int list * int

- front_last [1,2,3];
> val it = ([1,2],3) : int list * int

See also
Lib.butlast, Lib.last.

fst (Lib)

fst : (’a * ’b) -> ’a

Synopsis
Extracts the first component of a pair.

Description
fst (x,y) returns x.

Failure
Never fails. However, notice that fst (x,y,z) fails to typecheck, since (x,y,z) is not a
pair.

282 Chapter 1. Pre-defined ML Identifiers

Example

- fst (1, "foo");
> val it = 1 : int

- fst (1, "foo", []);
! Toplevel input:
! fst (1, "foo", []);
! ^^^^^^^^^^^^^^
! Type clash: expression of type
! ’g * ’h * ’i
! cannot have type
! ’j * ’k
! because the tuple has the wrong number of components

- fst (1, ("foo", []));
> val it = 1 : int

See also
Lib.snd.

ftyvar (Type)

ftyvar : hol_type

Synopsis
Common type variable.

Description
The ML variable Type.ftyvar is bound to the type variable ’f.

See also
Type.alpha, Type.beta, Type.gamma, Type.delta, Type.etyvar, Type.bool.

FULL_SIMP_TAC (bossLib)

simpLib.FULL_SIMP_TAC : simpset -> thm list -> tactic

FULL SIMP TAC 283

Synopsis
Simplifies the goal (assumptions as well as conclusion) with the given simpset.

Description
FULL_SIMP_TAC is a powerful simplification tactic that simplifies all of a goal. It proceeds
by applying simplification to each assumption of the goal in turn, accumulating simpli-
fied assumptions as it goes. These simplified assumptions are used to simplify further
assumptions, and all of the simplified assumptions are used as additional rewrites when
the conclusion of the goal is simplified.

In addition, simplified assumptions are added back onto the goal using the equivalent
of STRIP_ASSUME_TAC and this causes automatic skolemization of existential assumptions,
case splits on disjunctions, and the separate assumption of conjunctions. If an assump-
tion is simplified to TRUTH, then this is left on the assumption list. If an assumption is
simplified to falsity, this proves the goal.

Failure
FULL_SIMP_TAC never fails, but it may diverge.

Example
Here FULL_SIMP_TAC is used to prove a goal:

> FULL_SIMP_TAC arith_ss [] (map Term [‘x = 3‘, ‘x < 2‘],
Term ‘?y. x * y = 51‘)

- val it = ([], fn) : tactic_result

Using LESS_OR_EQ |- !m n. m <= n = m < n \/ (m = n), a useful case split can be in-
duced in the next goal:

> FULL_SIMP_TAC bool_ss [LESS_OR_EQ] (map Term [‘x <= y‘, ‘x < z‘],
Term ‘x + y < z‘);

- val it =
([([‘x < y‘, ‘x < z‘], ‘x + y < z‘),

([‘x = y‘, ‘x < z‘], ‘y + y < z‘)], fn)
: tactic_result

Note that the equality x = y is not used to simplify the subsequent assumptions, but is
used to simplify the conclusion of the goal.

Comments
The application of STRIP_ASSUME_TAC to simplified assumptions means that FULL_SIMP_TAC
can cause unwanted case-splits and other undesirable transformations to occur in one’s
assumption list. If one wants to apply the simplifier to assumptions without this occur-
ring, the best approach seems to be the use of RULE_ASSUM_TAC and SIMP_RULE.

284 Chapter 1. Pre-defined ML Identifiers

See also
bossLib.ASM SIMP TAC, bossLib.SIMP CONV, bossLib.SIMP RULE, bossLib.SIMP TAC.

FULL_SIMP_TAC (simpLib)

FULL_SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.FULL_SIMP_TAC is identical to simpLib.FULL_SIMP_TAC.

See also
bossLib.FULL SIMP TAC.

FUN_EQ_CONV (Conv)

FUN_EQ_CONV : conv

Synopsis
Equates normal and extensional equality for two functions.

Description
The conversion FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. When
supplied with a term argument of the form f = g, where f and g are functions of type
ty1->ty2, FUN_EQ_CONV returns the theorem:

|- (f = g) = (!x. f x = g x)

where x is a variable of type ty1 chosen by the conversion.

Failure
FUN_EQ_CONV tm fails if tm is not an equation f = g, where f and g are functions.

funpow 285

Uses
Used for proving equality of functions.

See also
Drule.EXT, Conv.X FUN EQ CONV.

funpow (Lib)

funpow : int -> (’a -> ’a) -> ’a -> ’a

Synopsis
Iterates a function a fixed number of times.

Description
funpow n f x applies f to x, n times, giving the result f (f ... (f x)...) where the
number of f’s is n. If n is not positive, the result is x.

Failure
funpow n f x fails if any of the n applications of f fail.

Example
Apply tl three times to a list:

- funpow 3 tl [1,2,3,4,5];
> [4, 5] : int list

Apply tl zero times:

- funpow 0 tl [1,2,3,4,5];
> [1; 2; 3; 4; 5] : int list

Apply tl six times to a list of only five elements:

- funpow 6 tl [1,2,3,4,5];
! Uncaught exception:
! List.Empty

See also
Lib.repeat.

286 Chapter 1. Pre-defined ML Identifiers

FVL (Term)

FVL : term list -> term set -> term set

Synopsis
Efficient computation of the set of free variables in a list of terms.

Description
An invocation FVL [t1,...,tn] V adds the set of free variables found in t1,...,tn to
the accumulator V.

Failure
Never fails.

Example

- FVL [Term ‘v1 /\ v2 ==> v2 \/ v3‘] empty_varset;
> val it = <set> : term set

- HOLset.listItems it;
> val it = [‘v1‘, ‘v2‘, ‘v3‘] : term list

Comments
Preferable to free_varsl when the number of free variables becomes large.

See also
HOLset, Term.empty varset, Term.free varsl, Term.free vars.

g (goalstackLib)

g : term frag list -> proofs

Synopsis
Initializes the subgoal package with a new goal which has no assumptions.

gamma 287

Description
The call

g ‘tm‘

is equivalent to

set_goal([],Term‘tm‘)

and clearly more convenient if a goal has no assumptions. For a description of the
subgoal package, see set_goal.

Failure
Fails unless the argument term has type bool.

Example

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: GoalstackPure.proofs

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.e,
goalstackLib.expand, goalstackLib.expandf, get state, goalstackLib.p,
print state, goalstackLib.r, rotate, save top thm, goalstackLib.set goal,
set state, goalstackLib.top goal, goalstackLib.top thm.

gamma (Type)

gamma : hol_type

Synopsis
Common type variable.

288 Chapter 1. Pre-defined ML Identifiers

Description
The ML variable Type.gamma is bound to the type variable ’c.

See also
Type.alpha, Type.beta, Type.delta, Type.bool.

gather (Lib)

gather : (’a -> bool) -> ’a list -> ’a list)

Synopsis
Filters a list to the sublist of elements satisfying a predicate.

Description
gather P l applies P to every element of l, returning a list of those that satisfy P, in the
order they appeared in the original list.

Failure
If P x fails for some element x of l.

Comments
Identical to filter.

See also
Lib.filter, Lib.mapfilter, Lib.partition.

GEN (Thm)

GEN : term -> thm -> thm

Synopsis
Generalizes the conclusion of a theorem.

GEN ALL 289

Description
When applied to a term x and a theorem A |- t, the inference rule GEN returns the
theorem A |- !x. t, provided x is a variable not free in any of the assumptions. There
is no compulsion that x should be free in t.

A |- t
------------ GEN x [where x is not free in A]
A |- !x. t

Failure
Fails if x is not a variable, or if it is free in any of the assumptions.

Example
The following example shows how the above side-condition prevents the derivation of
the theorem x=T |- !x. x=T, which is clearly invalid.

- show_types := true;
> val it = () : unit

- val t = ASSUME (Term ‘x=T‘);
> val t = [.] |- (x :bool) = T : thm

- try (GEN (Term ‘x:bool‘)) t;
Exception raised at Thm.GEN:
variable occurs free in hypotheses
! Uncaught exception:
! HOL_ERR

See also
Drule.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,
Drule.SPEC ALL, Tactic.SPEC TAC.

GEN_ALL (Drule)

Drule.GEN_ALL : thm -> thm

Synopsis
Generalizes the conclusion of a theorem over its own free variables.

290 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a theorem A |- t, the inference rule GEN_ALL returns the theorem
A |- !x1...xn. t, where the xi are all the variables, if any, which are free in t but not
in the assumptions.

A |- t
------------------ GEN_ALL
A |- !x1...xn. t

Failure
Never fails.

Comments
WARNING: hol90 GEN_ALL does not always return the same result as GEN_ALL in hol88.
Sometimes people write code that depends on the order of the quantification. They
shouldn’t.

See also
Thm.GEN, Drule.GENL, Drule.GEN ALL, Thm.SPEC, Drule.SPECL, Drule.SPEC ALL,
Tactic.SPEC TAC.

GEN_ALPHA_CONV (Drule)

GEN_ALPHA_CONV : term -> conv

Synopsis
Renames the bound variable of an abstraction, a quantified term, or other binder appli-
cation.

Description
The conversion GEN_ALPHA_CONV provides alpha conversion for lambda abstractions of
the form \y.t, quantified terms of the forms !y.t, ?y.t or ?!y.t, and epsilon terms of
the form @y.t. In general, if B is a binder constant, then GEN_ALPHA_CONV implements
alpha conversion for applications of the form B y.t.

If tm is an abstraction \y.t or an application of a binder to an abstraction B y.t,
where the bound variable y has type ty, and if x is a variable also of type ty, then

GEN BETA CONV 291

GEN_ALPHA_CONV x tm returns one of the theorems:

|- (\y.t) = (\x’. t[x’/y])
|- (B y.t) = (B x’. t[x’/y])

depending on whether the input term is \y.t or B y.t respectively. The variable x’:ty

in the resulting theorem is a primed variant of x chosen so as not to be free in the term
provided as the second argument to GEN_ALPHA_CONV.

Failure
GEN_ALPHA_CONV x tm fails if x is not a variable, or if tm does not have one of the forms
\y.t or B y.t, where B is a binder. GEN_ALPHA_CONV x tm also fails if tm does have one of
these forms, but types of the variables x and y differ.

See also
Thm.ALPHA, Drule.ALPHA CONV, boolSyntax.new binder definition.

GEN_BETA_CONV (PairedLamda)

GEN_BETA_CONV : conv

Synopsis
Beta-reduces single or paired beta-redexes, creating a paired argument if needed.

Description
The conversion GEN_BETA_CONV will perform beta-reduction of simple beta-redexes in
the manner of BETA_CONV, or of tupled beta-redexes in the manner of PAIRED_BETA_CONV.
Unlike the latter, it will force through a beta-reduction by introducing arbitrarily nested
pair destructors if necessary. The following shows the action for one level of pairing;
others are similar.

GEN_BETA_CONV "(\(x,y). t) p" = t[(FST p)/x, (SND p)/y]

Failure
GEN_BETA_CONV tm fails if tm is neither a simple nor a tupled beta-redex.

292 Chapter 1. Pre-defined ML Identifiers

Example
The following examples show the action of GEN_BETA_CONV on tupled redexes. In the
following, it acts in the same way as PAIRED_BETA_CONV:

- pairLib.GEN_BETA_CONV (Term ‘(\(x,y). x + y) (1,2)‘);
val it = |- (\(x,y). x + y)(1,2) = 1 + 2 : thm

whereas in the following, the operand of the beta-redex is not a pair, so FST and SND are
introduced:

- pairLib.GEN_BETA_CONV (Term ‘(\(x,y). x + y) numpair‘);
> val it = |- (\(x,y). x + y) numpair = FST numpair + SND numpair : thm

The introduction of FST and SND will be done more than once as necessary:

- pairLib.GEN_BETA_CONV (Term ‘(\(w,x,y,z). w + x + y + z) (1,triple)‘);
> val it =

|- (\(w,x,y,z). w + x + y + z) (1,triple) =
1 + FST triple + FST (SND triple) + SND (SND triple) : thm

See also
Thm.BETA CONV, PairedLambda.PAIRED BETA CONV.

GEN_MESON_TAC (mesonLib)

GEN_MESON_TAC : int -> int -> int -> thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using both the given theorems and
the assumptions in the search.

Description
GEN_MESON_TAC is the function which provides the underlying implementation of the
model elimination solver used by both MESON_TAC and ASM_MESON_TAC. The three integer
parameters correspond to various ways in which the search can be tuned.

The first is the minimum depth at which to search. Setting this to a number greater
than zero can save time if its clear that there will not be a proof of such a small depth.
ASM_MESON_TAC and MESON_TAC always use a value of 0 for this parameter.

The second is the maximum depth to which to search. Setting this low will stop the
search taking too long, but may cause the engine to miss proofs it would otherwise

GEN PALPHA CONV 293

find. The setting of this variable for ASM_MESON_TAC and MESON_TAC is done through the
reference variable mesonLib.max_depth. This is set to 30 by default, but most proofs do
not need anything like this depth.

The third parameter is the increment used to increase the depth of search done by
the proof search procedure.

The approach used is iterative deepening, so with a call to

GEN_MESON_TAC mn mx inc

the algorithm looks for a proof of depth mn, then for one of depth mn + inc, then at
depth mn + 2 * inc etc. Once the depth gets greater than mx, the proof search stops.

Failure
GEN_MESON_TAC fails if it searches to a depth equal to the second integer parameter with-
out finding a proof. Shouldn’t fail otherwise.

Uses
The construction of tailored versions of MESON_TAC and ASM_MESON_TAC.

See also
mesonLib.ASM MESON TAC, mesonLib.MESON TAC.

GEN_PALPHA_CONV (PairRules)

GEN_PALPHA_CONV : term -> conv

Synopsis
Renames the bound pair of a paired abstraction, quantified term, or other binder.

Description
The conversion GEN_PALPHA_CONV provides alpha conversion for lambda abstractions of
the form \p.t, quantified terms of the forms !p.t, ?p.t or ?!p.t, and epsilon terms of
the form @p.t.

The renaming of pairs is as described for PALPHA_CONV.

Failure
GEN_PALPHA_CONV q tm fails if q is not a variable, or if tm does not have one of the re-
quired forms. GEN_ALPHA_CONV q tm also fails if tm does have one of these forms, but
types of the variables p and q differ.

294 Chapter 1. Pre-defined ML Identifiers

See also
Drule.GEN ALPHA CONV, PairRules.PALPHA, PairRules.PALPHA CONV.

GEN_REWRITE_CONV (Rewrite)

GEN_REWRITE_CONV : ((conv -> conv) -> thm list -> thm list -> conv)

Synopsis
Rewrites a term, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replace-
ments on the subterms of an object theorem. This replacement is mediated by the use
of REWR_CONV, which finds matches between left-hand sides of given equations in a term
and applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments
to the function. These are at first transformed into a form suitable for rewriting. Con-
junctions are separated into individual rewrites. Theorems with conclusions of the form
"~t" are transformed into the corresponding equations "t = F". Theorems "t" which
are not equations are cast as equations of form "t = T".

If a theorem is used to rewrite a term, its assumptions are added to the assumptions
of the returned theorem. The matching involved uses variable instantiation. Thus, all
free variables are generalized, and terms are instantiated before substitution. Theorems
may have universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facili-
tate implementing other rewriting tools. However, they are considered in an order-
independent fashion. (That is, the ordering is an implementation detail which is not
specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_CONV fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

GEN REWRITE RULE 295

Uses
This conversion is used in the system to implement all other rewritings conversions, and
may provide a user with a method to fine-tune rewriting of terms.

Example
Suppose we have a term of the form:

"(1 + 2) + 3 = (3 + 1) + 2"

and we would like to rewrite the left-hand side with the theorem ADD_SYM without chang-
ing the right hand side. This can be done by using:

GEN_REWRITE_CONV (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_CONV, would match and substitute on both sides,
which would not be the desirable result.

As another example, REWRITE_CONV could be implemented as

GEN_REWRITE_CONV TOP_DEPTH_CONV basic_rewrites

which specifies that matches should be searched recursively starting from the whole
term of the theorem, and basic_rewrites must be added to the user defined set of
theorems employed in rewriting.

See also
Rewrite.ONCE REWRITE CONV, Rewrite.PURE REWRITE CONV, Conv.REWR CONV,
Rewrite.REWRITE CONV.

GEN_REWRITE_RULE (Rewrite)

GEN_REWRITE_RULE : ((conv -> conv) -> thm list -> thm list -> thm -> thm)

Synopsis
Rewrites a theorem, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replace-
ments on the subterms of an object theorem. This replacement is mediated by the use
of REWR_CONV, which finds matches between left-hand sides of given equations in a term
and applies the substitution.

296 Chapter 1. Pre-defined ML Identifiers

Equations used in rewriting are obtained from the theorem lists given as arguments
to the function. These are at first transformed into a form suitable for rewriting. Con-
junctions are separated into individual rewrites. Theorems with conclusions of the form
"~t" are transformed into the corresponding equations "t = F". Theorems "t" which
are not equations are cast as equations of form "t = T".

If a theorem is used to rewrite the object theorem, its assumptions are added to
the assumptions of the returned theorem, unless they are alpha-convertible to existing
assumptions. The matching involved uses variable instantiation. Thus, all free variables
are generalized, and terms are instantiated before substitution. Theorems may have
universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facili-
tate implementing other rewriting tools. However, they are considered in an order-
independent fashion. (That is, the ordering is an implementation detail which is not
specified.)

The search strategy for finding matching subterms is the first argument to the rule.
Matching and substitution may occur at any level of the term, according to the specified
search strategy: the whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary depth until no matches
occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_RULE fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used.

Uses
This rule is used in the system to implement all other rewriting rules, and may provide
a user with a method to fine-tune rewriting of theorems.

Example
Suppose we have a theorem of the form:

thm = |- (1 + 2) + 3 = (3 + 1) + 2

and we would like to rewrite the left-hand side with the theorem ADD_SYM without chang-
ing the right hand side. This can be done by using:

GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_RULE, would match and substitute on both sides,
which would not be the desirable result.

GEN REWRITE TAC 297

As another example, REWRITE_RULE could be implemented as

GEN_REWRITE_RULE TOP_DEPTH_CONV basic_rewrites

which specifies that matches should be searched recursively starting from the whole
term of the theorem, and basic_rewrites must be added to the user defined set of
theorems employed in rewriting.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Conv.REWR CONV,
Rewrite.REWRITE RULE.

GEN_REWRITE_TAC (Rewrite)

GEN_REWRITE_TAC : ((conv -> conv) -> thm list -> thm list -> tactic)

Synopsis
Rewrites a goal, selecting terms according to a user-specified strategy.

Description
Distinct rewriting tactics differ in the search strategies used in finding subterms on
which to apply substitutions, and the built-in theorems used in rewriting. In the case of
REWRITE_TAC, this is a recursive traversal starting from the body of the goal’s conclusion
part, while in the case of ONCE_REWRITE_TAC, for example, the search stops as soon as
a term on which a substitution is possible is found. GEN_REWRITE_TAC allows a user to
specify a more complex strategy for rewriting.

The basis of pattern-matching for rewriting is the notion of conversions, through
the application of REWR_CONV. Conversions are rules for mapping terms with theorems
equating the given terms to other semantically equivalent ones.

When attempting to rewrite subterms recursively, the use of conversions (and there-
fore rewrites) can be automated further by using functions which take a conversion
and search for instances at which they are applicable. Examples of these functions
are ONCE_DEPTH_CONV and RAND_CONV. The first argument to GEN_REWRITE_TAC is such a
function, which specifies a search strategy; i.e. it specifies how subterms (on which
substitutions are allowed) should be searched for.

The second and third arguments are lists of theorems used for rewriting. The or-
der in which these are used is not specified. The theorems need not be in equational
form: negated terms, say "~ t", are transformed into the equivalent equational form

298 Chapter 1. Pre-defined ML Identifiers

"t = F", while other non-equational theorems with conclusion of form "t" are cast as
the corresponding equations "t = T". Conjunctions are separated into the individual
components, which are used as distinct rewrites.

Failure
GEN_REWRITE_TAC fails if the search strategy fails. It may also cause a non-terminating
sequence of rewrites, depending on the search strategy used. The resulting tactic is
invalid when a theorem which matches the goal (and which is thus used for rewriting it
with) has a hypothesis which is not alpha-convertible to any of the assumptions of the
goal. Applying such an invalid tactic may result in a proof of a theorem which does not
correspond to the original goal.

Uses
Detailed control of rewriting strategy, allowing a user to specify a search strategy.

Example
Given a goal such as:

?- a - (b + c) = a - (c + b)

we may want to rewrite only one side of it with a theorem, say ADD_SYM. Rewriting tactics
which operate recursively result in divergence; the tactic ONCE_REWRITE_TAC [ADD_SYM]

rewrites on both sides to produce the following goal:

?- a - (c + b) = a - (b + c)

as ADD_SYM matches at two positions. To rewrite on only one side of the equation, the
following tactic can be used:

GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM]

which produces the desired goal:

?- a - (c + b) = a - (c + b)

As another example, one can write a tactic which will behave similarly to REWRITE_TAC

but will also include ADD_CLAUSES in the set of theorems to use always:

let ADD_REWRITE_TAC = GEN_REWRITE_TAC TOP_DEPTH_CONV
(ADD_CLAUSES . basic_rewrites) ;;

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE TAC,
Rewrite.PURE REWRITE TAC, Conv.REWR CONV, Rewrite.REWRITE TAC.

GEN TAC 299

GEN_TAC (Tactic)

GEN_TAC : tactic

Synopsis
Strips the outermost universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x. t, the tactic GEN_TAC reduces it to A ?- t[x’/x] where
x’ is a variant of x chosen to avoid clashing with any variables free in the goal’s assump-
tion list. Normally x’ is just x.

A ?- !x. t
============== GEN_TAC
A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified.

Uses
The tactic REPEAT GEN_TAC strips away any universal quantifiers, and is commonly used
before tactics relying on the underlying term structure.

See also
Tactic.FILTER GEN TAC, Thm.GEN, Drule.GENL, Drule.GEN ALL, Thm.SPEC,
Drule.SPECL, Drule.SPEC ALL, Tactic.SPEC TAC, Tactic.STRIP TAC,
Tactic.X GEN TAC.

gen_tyvar (Type)

gen_tyvar : unit -> hol_type

Synopsis
Generate a fresh type variable

300 Chapter 1. Pre-defined ML Identifiers

Description
An invocation gen_tyvar() generates a type variable tyv not seen in the current session.
Furthermore, the concrete syntax of tyv is such that tyv is not obtainable by mk_vartype,
or by parsing.

Failure
Never fails.

Example

- gen_tyvar();
> val it = ‘:%%gen_tyvar%%1‘ : hol_type

- try Type ‘:%%gen_tyvar%%1‘;

Exception raised at Parse.hol_type parser:
Couldn’t make any sense with remaining input of "%%gen_tyvar%%1"

- try mk_vartype "%%gen_tyvar%%1";

Exception raised at Type.mk_vartype:
incorrect syntax

Comments
In general, the actual name returned by gen_tyvar should not be relied on.

Uses
Useful for coding some proof procedures.

See also
Term.genvar, Term.variant.

GENL (Drule)

GENL : term list -> thm -> thm

Synopsis
Generalizes zero or more variables in the conclusion of a theorem.

genvar 301

Description
When applied to a term list [x1,...,xn] and a theorem A |- t, the inference rule GENL

returns the theorem A |- !x1...xn. t, provided none of the variables xi are free in any
of the assumptions. It is not necessary that any or all of the xi should be free in t.

A |- t
------------------ GENL [x1,...,xn] [where no xi is free in A]
A |- !x1...xn. t

Failure
Fails unless all the terms in the list are variables, none of which are free in the assump-
tion list.

See also
Thm.GEN, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL, Drule.SPEC ALL,
Tactic.SPEC TAC.

genvar (Term)

genvar : type -> term

Synopsis
Returns a variable whose name has not been used previously.

Description
When given a type, genvar returns a variable of that type whose name has not been
used for a variable or constant in the HOL session so far.

Failure
Never fails.

Example
The following indicates the typical stylized form of the names (this should not be relied

302 Chapter 1. Pre-defined ML Identifiers

on, of course):

- genvar bool;
> val it = ‘%%genvar%%1380‘ : term

- genvar (Type‘:num‘);
> val it = ‘%%genvar%%1381‘ : term

Note that one can anticipate genvar:

- mk_var("%%genvar%%1382",bool);
> val it = ‘%%genvar%%1382‘ : term

- genvar bool;
> val it = ‘%%genvar%%1382‘ : term

This shortcoming could be guarded against, but it doesn’t seem worth it currently. It
doesn’t seem to affect the soundness of the implementation of HOL; at worst, a proof
procedure may fail because it doesn’t have a sufficiently fresh variable.

Uses
The unique variables are useful in writing derived rules, for specializing terms without
having to worry about such things as free variable capture. If the names are to be visible
to a typical user, the function variant can provide rather more meaningful names.

See also
Drule.GSPEC, Term.variant.

genvars (Term)

genvars : hol_type -> int -> term list

Synopsis
Generate a specified number of fresh variables.

Description
An invocation genvars ty n will invoke genvar n times and return the resulting list of
variables.

Failure
Never fails. If n is less-than-or-equal to zero, the empty list is returned.

genvarstruct 303

Example

- genvars alpha 3;
> val it = [‘%%genvar%%1558‘, ‘%%genvar%%1559‘, ‘%%genvar%%1560‘] : term list

See also
Term.genvar, Term.mk var.

genvarstruct (pairSyntax)

genvarstruct : hol_type -> term

Synopsis
Returns a pair structure of variables whose names have not been previously used.

Description
When given a product type, genvarstruct returns a paired structure of variables whose
names have not been used for variables or constants in the HOL session so far. The
structure of the term returned will be identical to the structure of the argument.

Failure
Never fails.

Example
The following example illustrates the behaviour of genvarstruct:

- genvarstruct (type_of (Term ‘((1,2),(x:’a,x:’a))‘));
> val it = ‘((%%genvar%%1535,%%genvar%%1536),%%genvar%%1537,%%genvar%%1538)‘

: term

Uses
Unique variables are useful in writing derived rules, for specializing terms without hav-
ing to worry about such things as free variable capture. It is often important in such
rules to keep the same structure. If not, genvar will be adequate. If the names are to
be visible to a typical user, the function pvariant can provide rather more meaningful
names.

See also
Term.genvar, PairRules.GPSPEC, pairSyntax.pvariant.

304 Chapter 1. Pre-defined ML Identifiers

GPSPEC (PairRules)

GPSPEC : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with unique pairs.

Description
When applied to a theorem A |- !p1...pn. t, where the number of universally quan-
tified variables may be zero, GPSPEC returns A |- t[g1/p1]...[gn/pn], where the gi is
paired structures of the same structure as pi and made up of distinct variables , chosen
by genvar.

A |- !p1...pn. t
------------------------- GPSPEC
A |- t[g1/p1]...[gn/pn]

Failure
Never fails.

Uses
GPSPEC is useful in writing derived inference rules which need to specialize theorems
while avoiding using any variables that may be present elsewhere.

See also
Drule.GSPEC, PairRules.PGEN, PairRules.PGENL, Term.genvar, PGEN ALL,
PairRules.PGEN TAC, PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL,
PairRules.PSPEC TAC, PairRules.PSPEC PAIR.

GSPEC (Drule)

GSPEC : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with unique variables.

GSUBST TAC 305

Description
When applied to a theorem A |- !x1...xn. t, where the number of universally quan-
tified variables may be zero, GSPEC returns A |- t[g1/x1]...[gn/xn], where the gi are
distinct variable names of the appropriate type, chosen by genvar.

A |- !x1...xn. t
------------------------- GSPEC
A |- t[g1/x1]...[gn/xn]

Failure
Never fails.

Uses
GSPEC is useful in writing derived inference rules which need to specialize theorems
while avoiding using any variables that may be present elsewhere.

See also
Thm.GEN, Drule.GENL, Term.genvar, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC,
Drule.SPECL, Drule.SPEC ALL, Tactic.SPEC TAC.

GSUBST_TAC (Tactic)

GSUBST_TAC : ((term * term) list -> term -> term) -> thm list -> tactic

Synopsis
Makes term substitutions in a goal using a supplied substitution function.

Description
GSUBST_TAC is the basic substitution tactic by means of which other tactics such as
SUBST_OCCS_TAC and SUBST_TAC are defined. Given a list [(v1,w1),...,(vk,wk)] of pairs
of terms and a term w, a substitution function replaces occurrences of wj in w with vj

according to a specific substitution criterion. Such a criterion may be, for example, to
substitute all the occurrences or only some selected ones of each wj in w.

Given a substitution function sfn, GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un] (A,t)

replaces occurrences of ti in t with ui according to sfn.

A ?- t
============================= GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un]
A ?- t[u1,...,un/t1,...,tn]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, while they are recorded in the proof. If any Ai is not a subset of

306 Chapter 1. Pre-defined ML Identifiers

A (up to alpha-conversion), then GSUBST_TAC sfn [A1|-t1=u1,...,An|-tn=un] results in
an invalid tactic.
GSUBST_TAC automatically renames bound variables to prevent free variables in ui

becoming bound after substitution.

Failure
GSUBST_TAC sfn [th1,...,thn] (A,t) fails if the conclusion of each theorem in the list
is not an equation. No change is made to the goal if the occurrences to be substituted
according to the substitution function sfn do not appear in t.

Uses
GSUBST_TAC is used to define substitution tactics such as SUBST_OCCS_TAC and SUBST_TAC.
It may also provide the user with a tool for tailoring substitution tactics.

See also
Tactic.SUBST1 TAC, Tactic.SUBST OCCS TAC, Tactic.SUBST TAC.

GSYM (Conv)

GSYM : thm -> thm

Synopsis
Reverses the first equation(s) encountered in a top-down search.

Description
The inference rule GSYM reverses the first equation(s) encountered in a top-down search
of the conclusion of the argument theorem. An equation will be reversed iff it is not
a proper subterm of another equation. If a theorem contains no equations, it will be
returned unchanged.

A |- ..(s1 = s2)...(t1 = t2)..
-------------------------------- GSYM
A |- ..(s2 = s1)...(t2 = t1)..

Failure
Never fails, and never loops infinitely.

HALF MK ABS 307

Example

- arithmeticTheory.ADD;
> val it = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) : thm

- GSYM arithmeticTheory.ADD;
> val it = |- (!n. n = 0 + n) /\ (!m n. SUC(m + n) = (SUC m) + n) : thm

See also
Drule.NOT EQ SYM, Thm.REFL, Thm.SYM.

HALF_MK_ABS (Drule)

HALF_MK_ABS : (thm -> thm)

Synopsis
Converts a function definition to lambda-form.

Description
When applied to a theorem A |- !x. t1 x = t2, whose conclusion is a universally quan-
tified equation, HALF_MK_ABS returns the theorem A |- t1 = \x. t2.

A |- !x. t1 x = t2
-------------------- HALF_MK_ABS [where x is not free in t1]
A |- t1 = (\x. t2)

Failure
Fails unless the theorem is a singly universally quantified equation whose left-hand side
is a function applied to the quantified variable, or if the variable is free in that function.

See also
Thm.ETA CONV, Drule.MK ABS, Thm.MK COMB, Drule.MK EXISTS.

HALF_MK_PABS (PairRules)

HALF_MK_PABS : (thm -> thm)

308 Chapter 1. Pre-defined ML Identifiers

Synopsis
Converts a function definition to lambda-form.

Description
When applied to a theorem A |- !p. t1 p = t2, whose conclusion is a universally quan-
tified equation, HALF_MK_PABS returns the theorem A |- t1 = (\p. t2).

A |- !p. t1 p = t2
-------------------- HALF_MK_PABS [where p is not free in t1]
A |- t1 = (\p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation whose left-
hand side is a function applied to the quantified pair, or if any of the the variables in the
quantified pair is free in that function.

See also
Drule.HALF MK ABS, PairRules.PETA CONV, PairRules.MK PABS, PairRules.MK PEXISTS.

hash (Lib)

hash : int -> string -> int * int -> int

Synopsis
Hash function for strings.

Description
An invocation hash i s (j,k) takes an integer i and uses that to construct a function
that, given a string s, will produce values approximately equally distributed among the
numbers less than i. The argument j gives an index in the string to start from. The k

argument is an accumulator, which is useful when hashing a collection of strings.

Failure
Never fails.

Example

- hash 13 "ishkabibble" (0,0);
> val it = 5 : int

Comments
For better results, the i parameter should be a prime.

hidden 309

This is probably not an industrial strength hash function.

hidden (Parse)

hidden : string -> bool

Synopsis
Checks to see if a given name has been hidden.

Description
A call hidden c where c is the name of a constant, will check to see if the given name
had been hidden by a previous call to Parse.hide.

Failure
Never fails.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory.

See also
Parse.hide, Parse.reveal.

hide (Parse)

hide : string -> ({Name : string, Thy : string} list *
{Name : string, Thy : string} list)

Synopsis
Stops the quotation parser from recognizing a constant.

Description
A call hide c where c is a string that maps to one or more constants, will prevent the
quotation parser from parsing it as such; it will just be parsed as a variable. (A string
maps to a set of possible constants because of the possibility of overloading.) The

310 Chapter 1. Pre-defined ML Identifiers

function returns two lists. Both specify constants by way of pairs of strings. The first
list is of constants that the string might have mapped to in parsing (specifically, in the
absyn_to_term stage of parsing), and the second is the list of constants that would have
tried to be printed as the string. It is important to note that the two lists need not be
the same.

The effect can be reversed by Parse.update_overload_maps. The function reveal is
only the inverse of hide if the only constants mapped to by the string all have that string
as their names. (These constants will all be in different theories.)

Failure
Never fails.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in
a theory. Further, (re-)defining a string hidden with hide will reveal it once more.

See also
Parse.hidden, Parse.known constants, Parse.reveal, Parse.set known constants,
Parse.update overload maps.

Hol_datatype (bossLib)

Hol_datatype : type quotation -> unit

Synopsis
Define a concrete datatype.

Description
Many formalizations require the definition of new types. For example, ML-style datatypes
are commonly used to model the abstract syntax of programming languages and the
state-space of elaborate transition systems. In HOL, such datatypes (at least, those that
are inductive, or, alternatively, have a model in an initial algebra) may be specified using
the invocation Hol_datatype ‘<spec>‘, where <spec> should conform to the following

Hol datatype 311

grammar:

spec ::= [<binding> ;]* <binding>

binding ::= <ident> = [<clause> |]* <clause>
| <ident> = <| [<ident> : <type> ;]* <ident> : <type> |>

clause ::= <ident>
| <ident> of [<type> =>]* <type>

When a datatype is successfully defined, a number of standard theorems are automati-
cally proved about the new type: the constructors of the type are proved to be injective
and disjoint, induction and case analysis theorems are proved, and each type also has
a ‘size’ function defined for it. All these theorems are stored in the current theory and
added to a database accessed via the functions in TypeBase.

The notation used to declare datatypes is, unfortunately, not the same as that of ML.
For example, an ML declaration

datatype (’a,’b) btree = Leaf of ’a
| Node of (’a,’b) btree * ’b * (’a,’b) btree

would most likely be declared in HOL as

Hol_datatype ‘btree = Leaf of ’a
| Node of btree => ’b => btree‘

The => notation in a HOL datatype description is intended to replace * in an ML datatype
description, and highlights the fact that, in HOL, constructors are by default curried.
Note also that any type parameters for the new type are not allowed; they are inferred
(in an arbitrary order) from the right hand side of the binding.

When a record type is defined, the parser is adjusted to allow new syntax (appropriate
for records), and a number of useful simplification theorems are also proved. The most
useful of the latter are automatically stored in the TypeBase and can be inspected using
the simpls_of function. For further details on record types, see the DESCRIPTION.

Example
In the following, we shall give an overview of the kinds of types that may be defined by
Hol_datatype.

312 Chapter 1. Pre-defined ML Identifiers

To start, enumerated types can be defined as in the following example:

Hol_datatype ‘enum = A1 | A2 | A3 | A4 | A5
| A6 | A7 | A8 | A9 | A10
| A11 | A12 | A13 | A14 | A15
| A16 | A17 | A18 | A19 | A20
| A21 | A22 | A23 | A24 | A25
| A26 | A27 | A28 | A29 | A30‘

Other non-recursive types may be defined as well:

Hol_datatype ‘foo = N of num
| B of bool
| Fn of ’a -> ’b
| Pr of ’a # ’b‘

Turning to recursive types, we can define a type of binary trees where the leaves are
numbers.

- Hol_datatype ‘tree = Leaf of num
| Node of tree => tree‘

We have already seen a type of binary trees having polymorphic values at internal nodes.
This time, we will declare it in ”paired” format.

Hol_datatype ‘tree = Leaf of ’a
| Node of tree # ’b # tree‘

This specification seems closer to the declaration that one might make in ML, but is
more difficult to deal with in proof than the curried format used above.

Hol datatype 313

The basic syntax of the named lambda calculus is easy to describe:

- load "stringTheory";
> val it = () : unit

- Hol_datatype ‘lambda = Var of string
| Const of ’a
| Comb of lambda => lambda
| Abs of lambda => lambda‘

The syntax for ‘de Bruijn’ terms is roughly similar:

Hol_datatype ‘dB = Var of string
| Const of ’a
| Bound of num
| Comb of dB => dB
| Abs of dB‘

Arbitrarily branching trees may be defined by allowing a node to hold the list of its
subtrees. In such a case, leaf nodes do not need to be explicitly declared.

Hol_datatype ‘ntree = Node of ’a => ntree list‘

A type of ‘first order terms’ can be declared as follows:

Hol_datatype ‘term = Var of string
| Fnapp of string # term list‘

Mutally recursive types may also be defined. The following, extracted by Elsa Gunter

314 Chapter 1. Pre-defined ML Identifiers

from the Definition of Standard ML, captures a subset of Core ML.

Hol_datatype
‘atexp = var_exp of string

| let_exp of dec => exp ;

exp = aexp of atexp
| app_exp of exp => atexp
| fn_exp of match ;

match = match of rule
| matchl of rule => match ;

rule = rule of pat => exp ;

dec = val_dec of valbind
| local_dec of dec => dec
| seq_dec of dec => dec ;

valbind = bind of pat => exp
| bindl of pat => exp => valbind
| rec_bind of valbind ;

pat = wild_pat
| var_pat of string‘

Simple record types may be introduced using the <| ... |> notation.

Hol_datatype ‘state = <| Reg1 : num; Reg2 : num; Waiting : bool |>‘

The use of record types may be recursive. For example, the following declaration could
be used to formalize a simple file system.

Hol_datatype
‘file = Text of string

| Dir of directory
;

directory = <| owner : string ;
files : (string # file) list |>‘

Failure
Now we address some types that cannot be declared with Hol_datatype. In some cases
they cannot exist in HOL at all; in others, the type can be built in the HOL logic, but
Hol_datatype is not able to make the definition.

Hol datatype 315

First, an empty type is not allowed in HOL, so the following attempt is doomed to
fail.

Hol_datatype ‘foo = A of foo‘

So called ‘nested types’, which are occasionally quite useful, cannot at present be built
with Hol_datatype:

Hol_datatype ‘btree = Leaf of ’a
| Node of (’a # ’a) btree‘

Co-inductive types may not currently be built with Hol_datatype:

Hol_datatype ‘lazylist = Nil
| Cons of ’a # (one -> lazylist)‘

This type can however be built in HOL: see llistTheory.
Finally, for cardinality reasons, HOL does not allow the following attempt to model

the untyped lambda calculus as a set (note the -> in the clause for the Abs constructor):

Hol_datatype ‘lambda = Var of string
| Const of ’a
| Comb of lambda => lambda
| Abs of lambda -> lambda‘

Instead, one would have to build a theory of complete partial orders (or something
similar) with which to model the untyped lambda calculus.

Comments
The consequences of an invocation of Hol_datatype are stored in the current theory
segment and in TypeBase. The principal consequences of a datatype definition are the
primitive recursion and induction theorems. These provide the ability to define simple
functions over the type, and an induction principle for the type. For a type named ty,
the primitive recursion theorem is stored under ty_Axiom and the induction theorem is
put under ty_induction. Other consequences include the distinctness of constructors
(ty_distinct), and the injectivity of constructors (ty_11). A ‘degenerate’ version of
ty_induction is also stored under ty_nchotomy: it provides for reasoning by cases on
the construction of elements of ty. Finally, some special-purpose theorems are stored
: ty_case_cong gives a congruence theorem for ”case” statements on elements of ty.
These case statements are introduced by ty_case_def. Also, a definition of the ”size” of
the type is added to the current theory, under the name ty_size_def.

316 Chapter 1. Pre-defined ML Identifiers

For example, invoking

Hol_datatype ‘tree = Leaf of num
| Node of tree => tree‘;

results in the definitions

tree_case_def =
|- (!f f1 a. case f f1 (Leaf a) = f a) /\

!f f1 a0 a1. case f f1 (Node a0 a1) = f1 a0 a1

tree_size_def
|- (!a. tree_size (Leaf a) = 1 + a) /\

!a0 a1. tree_size (Node a0 a1) = 1 + (tree_size a0 + tree_size a1)

being added to the current theory. The following theorems about the datatype are also
stored in the current theory.

tree_Axiom
|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\
!a0 a1. fn (Node a0 a1) = f1 a0 a1 (fn a0) (fn a1)

tree_induction
|- !P. (!n. P (Leaf n)) /\

(!t t0. P t /\ P t0 ==> P (Node t t0))
==>
!t. P t

tree_nchotomy |- !t. (?n. t = Leaf n) \/ ?t’ t0. t = Node t’ t0

tree_11
|- (!a a’. (Leaf a = Leaf a’) = (a = a’)) /\

!a0 a1 a0’ a1’. (Node a0 a1 = Node a0’ a1’) = (a0=a0’) /\ (a1=a1’)

tree_distinct |- !a1 a0 a. ~(Leaf a = Node a0 a1)

tree_case_cong
|- !M M’ f f1.

(M = M’) /\
(!a. (M’ = Leaf a) ==> (f a = f’ a)) /\
(!a0 a1. (M’ = Node a0 a1) ==> (f1 a0 a1 = f1’ a0 a1))
==>
(case f f1 M = case f’ f1’ M’)

When a type involving records is defined, many more definitions are made and added
to the current theory.

Hol defn 317

A definition of mutually recursives types results in the above theorems and definitions
being added for each of the defined types.

See also
Definition.new type definition, TotalDefn.Define, IndDefLib.Hol reln, TypeBase.

Hol_defn (bossLib)

Hol_defn : string -> term quotation -> defn

Synopsis
General-purpose function definition facility.

Description
Hol_defn allows one to define functions, recursive functions in particular, while defer-
ring termination issues. Hol_defn should be used when Define or xDefine fails, or when
the context required by Define or xDefine is too much.
Hol_defn takes the same arguments as xDefine.
Hol_defn s q automatically constructs termination constraints for the function speci-

fied by q, defines the function, derives the specified equations, and proves an induction
theorem. All these results are packaged up in the returned defn value. The defn type
is best thought of as an intermediate step in the process of deriving the unconstrained
equations and induction theorem for the function.

The termination conditions constructed by Hol_defn are for a function that takes a
single tuple as an argument. This is an artifact of the way that recursive functions are
modelled.

A prettyprinter, which prints out a summary of the known information on the results
of Hol_defn, has been installed in the interactive system.
Hol_defn may be found in bossLib and also in Defn.

Failure
Hol_defn s q fails if s is not an alphanumeric identifier.
Hol_defn s q fails if q fails to parse or typecheck.
Hol_defn may extract unsatisfiable termination conditions when asked to define a

higher-order recursion involving a higher-order function that the termination condition
extraction mechanism of Hol_defn is unaware of.

318 Chapter 1. Pre-defined ML Identifiers

Example

Here we attempt to define a quick-sort function qsort:

- Hol_defn "qsort"
‘(qsort ___ [] = []) /\
(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))
(x :: qsort ord (FILTER (ord x) rst)))‘;

<<HOL message: inventing new type variable names: ’a>>
> val it =

HOL function definition (recursive)

Equation(s) :
[...]
|- (qsort v0 [] = []) /\

(qsort ord (x::rst) =
APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x::qsort ord (FILTER (ord x) rst)))

Induction :
[...]
|- !P.

(!v0. P v0 []) /\
(!ord x rst.

P ord (FILTER ($~ o ord x) rst) /\
P ord (FILTER (ord x) rst) ==> P ord (x::rst))

==> !v v1. P v v1

Termination conditions :
0. WF R
1. !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)
2. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

In the following we give an example of how to use Hol_defn to define a nested recursion.
In processing this definition, an auxiliary function N_aux is defined. The termination

Hol defn 319

conditions of N are phrased in terms of N_aux for technical reasons.

- Hol_defn "ninety1"
‘N x = if x>100 then x-10

else N(N(x+11))‘;

> val it =
HOL function definition (nested recursion)

Equation(s) :
[...] |- N x = (if x > 100 then x - 10 else N (N (x + 11)))

Induction :
[...]

|- !P.
(!x. (~(x > 100) ==> P (x + 11)) /\

(~(x > 100) ==> P (N (x + 11))) ==> P x)
==>
!v. P v

Termination conditions :
0. WF R
1. !x. ~(x > 100) ==> R (x + 11) x
2. !x. ~(x > 100) ==> R (N_aux R (x + 11)) x

Comments
An invocation of Hol_defn is usually the first step in a multi-step process that ends with
unconstrained recursion equations for a function, along with an induction theorem.
Hol_defn is used to construct the function and synthesize its termination conditions;
next, one invokes tgoal to set up a goal to prove termination of the function. The
termination proof usually starts with an invocation of WF_REL_TAC. After the proof is
over, the desired recursion equations and induction theorem are available for further
use.

It is occasionally important to understand, at least in part, how Hol_defn constructs
termination constraints. In some cases, it is necessary for users to influence this process
in order to have correct termination constraints extracted. The process is driven by
so-called congruence theorems for particular HOL constants. For example, suppose
we were interested in defining a ‘destructor-style‘ version of the factorial function over
natural numbers:

fact n = if n=0 then 1 else n * fact (n-1).

In the absence of a congruence theorem for the ‘if-then-else‘ construct, Hol_defn

320 Chapter 1. Pre-defined ML Identifiers

would extract the termination constraints

0. WF R
1. !n. R (n - 1) n

which are unprovable, because the context of the recursive call has not been taken ac-
count of. This example is in fact not a problem for HOL, since the following congruence
theorem is known to Hol_defn:

|- !b b’ x x’ y y’.
(b = b’) /\
(b’ ==> (x = x’)) /\
(~b’ ==> (y = y’)) ==>
((if b then x else y) = (if b’ then x’ else y’))

This theorem is interpreted by Hol_defn as an ordered sequence of instructions to
follow when the termination condition extractor hits an ‘if-then-else‘. The theorem is
read as follows:

When an instance ‘if B then X else Y‘ is encountered while the
extractor traverses the function definition, do the following:

1. Go into B and extract termination conditions TCs(B) from
any recursive calls in it. This returns a theorem
TCs(B) |- B = B’.

2. Assume B’ and extract termination conditions from any
recursive calls in X. This returns a theorem
TCs(X) |- X = X’. Each element of TCs(X) will have
the form "B’ ==> M".

3. Assume ~B’ and extract termination conditions from any
recursive calls in Y. This returns a theorem
TCs(Y) |- Y = Y’. Each element of TCs(Y) will have
the form "~B’ ==> M".

4. By equality reasoning with (1), (2), and (3), derive

TCs(B) u TCs(X) u TCs(Y)
|-
(if B then X else Y) = (if B’ then X’ else Y’)

5. Replace "if B then X else Y" by "if B’ then X’ else Y’".

The accumulated termination conditions are propagated until the extraction process
finishes, and appear as hypotheses in the final result. In our example, context is prop-

Hol defn 321

erly accounted for in recursive calls under either branch of an ‘if-then-else‘. Thus the
extracted termination conditions for fact are

0. WF R
1. !n. ~(n = 0) ==> R (n - 1) n

and are easy to prove.

Now we discuss congruence theorems for higher-order functions. A ‘higher-order‘ re-
cursion is one in which a higher-order function is used to apply the recursive function
to arguments. In order for the correct termination conditions to be proved for such a
recursion, congruence rules for the higher order function must be known to the ter-
mination condition extraction mechanism. Congruence rules for common higher-order
functions, e.g., MAP, EVERY, and EXISTS for lists, are already known to the mechanism.
However, at times, one must manually prove and install a congruence theorem for a
higher-order function.

For example, suppose we define a higher-order function SIGMA for summing the results
of a function in a list. We then use SIGMA in the definition of a function for summing the

322 Chapter 1. Pre-defined ML Identifiers

results of a function in a arbitrarily (finitely) branching tree.

- Define ‘(SIGMA f [] = 0) /\
(SIGMA f (h::t) = f h + SIGMA f t)‘;

- Hol_datatype ‘ltree = Node of ’a => ltree list‘;
> val it = () : unit

- Defn.Hol_defn
"ltree_sigma" (* higher order recursion *)
‘ltree_sigma f (Node v tl) = f v + SIGMA (ltree_sigma f) tl‘;

> val it =
HOL function definition (recursive)

Equation(s) :
[..] |- ltree_sigma f (Node v tl)

= f v + SIGMA (\a. ltree_sigma f a) tl

Induction :
[..] |- !P. (!f v tl. (!a. P f a) ==> P f (Node v tl))

==> !v v1. P v v1

Termination conditions :
0. WF R
1. !tl v f a. R (f,a) (f,Node v tl) : defn

The termination conditions for ltree_sigma seem to require finding a wellfounded rela-
tion R such that the pair (f,a) is R-less than (f, Node v tl). However, this is a hopeless
task, since there is no relation between a and Node v tl, besides the fact that they are
both ltrees. The termination condition extractor has not performed properly, because
it didn’t know a congruence rule for SIGMA. Such a congruence theorem is the following:

SIGMA_CONG =
|- !l1 l2 f g.

(l1=l2) /\ (!x. MEM x l2 ==> (f x = g x)) ==>
(SIGMA f l1 = SIGMA g l2)

Once Hol_defn has been told about this theorem, via write_congs, the termination
conditions extracted for the definition are provable, since a is a proper subterm of

Hol defn 323

Node v tl.

- local open DefnBase
in
val _ = write_congs (SIGMA_CONG::read_congs())
end;

- Defn.Hol_defn
"ltree_sigma"
‘ltree_sigma f (Node v tl) = f v + SIGMA (ltree_sigma f) tl‘;

> val it =
HOL function definition (recursive)

Equation(s) : ... (* as before *)
Induction : ... (* as before *)

Termination conditions :
0. WF R
1. !v f tl a. MEM a tl ==> R (f,a) (f,Node v tl)

One final point : for every HOL datatype defined by application of Hol_datatype, a
congruence theorem is automatically proved for the ‘case’ constant for that type, and
stored in the TypeBase. For example, the following congruence theorem for num_case is
stored in the TypeBase:

|- !f’ f b’ b M’ M.
(M = M’) /\
((M’ = 0) ==> (b = b’)) /\
(!n. (M’ = SUC n) ==> (f n = f’ n))
==>
(num_case b f M = num_case b’ f’ M’)

This allows the contexts of recursive calls in branches of ‘case’ expressions to be tracked.

See also
Defn.tgoal, Defn.tprove, bossLib.WF REL TAC, bossLib.Define, bossLib.xDefine,
DefnBase.read congs, DefnBase.write congs, bossLib.Hol datatype.

Hol_defn (Defn)

Hol_defn : string -> term quotation -> thm

324 Chapter 1. Pre-defined ML Identifiers

Synopsis
Function definition facility.

Description
bossLib.Hol_defn is identical to Defn.Hol_defn.

See also
bossLib.Hol defn.

HOL_ERR (Feedback)

HOL_ERR : {message : string, origin_function : string,
origin_structure : string} -> exn

Synopsis
Standard HOL exception

Description
HOL_ERR is the single exception that HOL functions are expected to raise when they
encounter an anomalous situation.

Example
Building an application of HOL_ERR and binding it to an ML variable

val test_exn =
HOL_ERR {origin_structure = "Foo",

origin_function = "bar",
message = "incomprehensible input"};

yields

val test_exn = HOL_ERR : exn

One can scrutinize the contents of an application of HOL_ERR by pattern matching:

- val HOL_ERR r = test_exn;

> val r = {message = "incomprehensible input",
origin_function = "bar",
origin_structure = "Foo"}

In current ML implementations supporting HOL, exceptions that propagate to the top

HOL MESG 325

level without being handled do not print informatively:

- raise test_exn;
! Uncaught exception:
! HOL_ERR

In such cases, the functions Raise and exn_to_string can be used to obtain useful
information:

- Raise test_exn;

Exception raised at Foo.bar:
incomprehensible input
! Uncaught exception:
! HOL_ERR

- print(exn_to_string test_exn);

Exception raised at Foo.bar:
incomprehensible input
> val it = () : unit

See also
Feedback, Feedback.error record, Feedback.mk HOL ERR, Feedback.Raise,
Feedback.exn to string.

HOL_MESG (Feedback)

HOL_MESG : string -> unit

Synopsis
Prints out a message in a special format.

Description
HOL_MESG prints out its argument after formatting it a bit. The formatting is controlled by
the function held in MESG_to_string, which is format_MESG by default. The output stream
that the message is printed on is controlled by MESG_outstream, and is TextIO.stdOut by
default.

There are three kinds of informative messages that the Feedback structure supports:
errors, warnings, and messages. Errors are signalled by the raising of an exception

326 Chapter 1. Pre-defined ML Identifiers

built from HOL_ERR; warnings, which are printed by HOL_WARNING, are less severe than er-
rors, and lead to a warning message being printed; finally, messages have no pejorative
weight at all, and may be freely employed, via HOL_MESG, to keep users informed in the
normal course of processing.

Failure
The invocation fails if the formatting or output routines fail.

Example

- HOL_MESG "Ack.";
<<HOL message: Ack.>>

See also
Feedback, Feedback.HOL ERR, Feedback.Raise, Feedback.HOL WARNING,
Feedback.MESG to string, Feedback.format MESG, Feedback.MESG outstream.

Hol_reln (bossLib)

Hol_reln : term quotation -> (thm * thm * thm)

Synopsis
Defines inductive relations.

Description
The Hol_reln function is used to define inductively characterised relations. It takes a
term quotation as input and attempts to define the relations there specified. The input
term quotation must parse to a term that conforms to the following grammar:

<input-format> ::= <clause> /\ <input-format> | <clause>
<clause> ::= (!x1 .. xn. <hypothesis> ==> <conclusion>)
<conclusion> ::= <con> sv1 sv2
<hypothesis> ::= any term
<con> ::= a new relation constant

The sv1 terms that appear after a constant name are so-called ”schematic variables”. The
same variables must always follow the same constant name throughout the definition.
These variables and the names of the constants-to-be must not be quantified over in each
<clause>. Otherwise, a <clause> must not include any free variables. (The universal
quantifiers at the head of the clause can be used to bind free variables, but it is also

Hol reln 327

permissible to use existential quantification in the hypotheses. If a clause has no free
variables, it is permissible to have no universal quantification.)

The Hol_reln function may be used to define multiple relations. These may or may
not be mutually recursive. The clauses for each relation need not be contiguous.

The function returns three theorems. Each is also saved in the current theory seg-
ment. The first is a conjunction of implications that will be the same as the input term
quotation. This theorem is saved under the name <stem>_rules, where <stem> is the
name of the first relation defined by the function. The second is the induction principle
for the relations, saved under the name <stem>_ind. The third is the cases theorem for
the relations, saved under the name <stem>_cases. The cases theorem is of the form

(!a0 .. an. R1 a0 .. an = <R1’s first rule possibility> \/
<R1’s second rule possibility> \/ ...)

/\
(!a0 .. am. R2 a0 .. am = <R2’s first rule possibility> \/

<R2’s second rule possibility> \/ ...)
/\

...

Failure

The Hol_reln function will fail if the provided quotation does not parse to a term of
the specified form. It will also fail if a clause’s only free variables do not follow a
relation name, or if a relation name is followed by differing schematic variables. If
the definition principle can not prove that the characterisation is inductive (as would
happen if a hypothesis included a negated occurence of one of the relation names),
then the same theorems are returned, but with extra assumptions stating the required
inductive property.

If the name of the new constants are such that they will produce invalid SML identi-
fiers when bound in a theory file, using export_theory will fail, and suggest the use of
set_MLname to fix the problem.

328 Chapter 1. Pre-defined ML Identifiers

Example
Defining ODD and EVEN:

- Hol_reln‘EVEN 0 /\
(!n. ODD n ==> EVEN (n + 1)) /\
(!n. EVEN n ==> ODD (n + 1))‘;

> val it =
(|- EVEN 0 /\ (!n. ODD n ==> EVEN (n + 1)) /\

!n. EVEN n ==> ODD (n + 1),

|- !EVEN’ ODD’.
EVEN’ 0 /\ (!n. ODD’ n ==> EVEN’ (n + 1)) /\
(!n. EVEN’ n ==> ODD’ (n + 1)) ==>
(!a0. EVEN a0 ==> EVEN’ a0) /\ !a1. ODD a1 ==> ODD’ a1,

|- (!a0. EVEN a0 = (a0 = 0) \/
?n. (a0 = n + 1) /\ ODD n) /\

!a1. ODD a1 = ?n. (a1 = n + 1) /\ EVEN n)

: thm * thm * thm

Defining reflexive and transitive closure, using a schematic variable. This is appropriate
because it is RTC R that has the inductive characterisation, not RTC itself.

- Hol_reln ‘(!x. RTC R x x) /\
(!x z. (?y. R x y /\ RTC R y z) ==> RTC R x z)‘;

<<HOL message: inventing new type variable names: ’a>>
> val it =

(|- !R. (!x. RTC R x x) /\
!x z. (?y. R x y /\ RTC R y z) ==> RTC R x z,

|- !R RTC’.
(!x. RTC’ x x) /\
(!x z. (?y. R x y /\ RTC’ y z) ==> RTC’ x z) ==>
!a0 a1. RTC R a0 a1 ==> RTC’ a0 a1,

|- !R a0 a1. RTC R a0 a1 =
(a1 = a0) \/ ?y. R a0 y /\ RTC R y a1)

: thm * thm * thm

Comments
Being a definition principle, the Hol_reln function takes a quotation rather than a term.
The structure IndDefRules provides functions for applying the results of an invocation
of Hol_reln.

Hol reln 329

See also
bossLib.Define, bossLib.Hol datatype, IndDefRules.

Hol_reln (IndDefLib)

Hol_reln : term quotation -> thm * thm * thm

Synopsis
Definition facility for inductive predicates.

Description
bossLib.Hol_reln is identical to IndDefLib.Hol_reln.

See also
bossLib.Hol reln.

hol_type (Type)

eqtype hol_type

Synopsis
Type of HOL types.

Description
The ML type hol_type represents the type of HOL types.

Comments
Since hol_type is an ML eqtype, any two hol_types ty1 and ty2 can be tested for equality
by ty1 = ty2.

See also
Term.term.

HOL_WARNING (Feedback)

HOL_WARNING : string -> string -> string -> unit

330 Chapter 1. Pre-defined ML Identifiers

Synopsis
Prints out a message in a special format.

Description
There are three kinds of informative messages that the Feedback structure supports:
errors, warnings, and messages. Errors are signalled by the raising of an exception built
from HOL_ERR; warnings, which are printed by HOL_WARNING, are less severe than errors,
and lead only to a formatted message being printed; finally, messages have no pejorative
weight at all, and may be freely employed, via HOL_MESG, to keep users informed in the
normal course of processing.
HOL_WARNING prints out its arguments after formatting them. The formatting is con-

trolled by the function held in WARNING_to_string, which is format_WARNING by default.
The output stream that the message is printed on is controlled by WARNING_outstream,
and is TextIO.stdOut by default.

A call HOL_WARNING s1 s2 s3 is formatted with the assumption that s1 and s2 are the
names of the module and function, respectively, from which the warning is emitted.
The string s3 is the actual warning message.

Failure
The invocation fails if the formatting or output routines fail.

Example

- HOL_WARNING "Module" "function" "stern message.";
<<HOL warning: Module.function: stern message.>>

See also
Feedback, Feedback.HOL ERR, Feedback.Raise, Feedback.HOL MESG,
Feedback.WARNING to string, Feedback.format WARNING, Feedback.WARNING outstream.

hyp (Thm)

hyp : thm -> term list

Synopsis
Returns the hypotheses of a theorem.

Description
When applied to a theorem A |- t, the function hyp returns A, the list of hypotheses of
the theorem.

I 331

Failure
Never fails.

See also
Thm.dest thm, Thm.concl.

I (Lib)

I : ’a -> ’a

Synopsis
Performs identity operation: I x = x.

Failure
Never fails.

See also
Lib, Lib.##, Lib.A, Lib.B, Lib.C, Lib.K, o, Lib.S, Lib.W.

IMP_ANTISYM_RULE (Drule)

IMP_ANTISYM_RULE : thm -> thm -> thm

Synopsis
Deduces equality of boolean terms from forward and backward implications.

Description
When applied to the theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t1, the inference rule
IMP_ANTISYM_RULE returns the theorem A1 u A2 |- t1 = t2.

A1 |- t1 ==> t2 A2 |- t2 ==> t1
------------------------------------- IMP_ANTISYM_RULE

A1 u A2 |- t1 = t2

Failure
Fails unless the theorems supplied are a complementary implicative pair as indicated
above.

332 Chapter 1. Pre-defined ML Identifiers

See also
Thm.EQ IMP RULE, Thm.EQ MP, Tactic.EQ TAC.

IMP_CANON (Drule)

IMP_CANON : (thm -> thm list)

Synopsis
Puts theorem into a ‘canonical’ form.

Description
IMP_CANON puts a theorem in ‘canonical’ form by removing quantifiers and breaking apart
conjunctions, as well as disjunctions which form the antecedent of implications. It
applies the following transformation rules:

A |- t1 /\ t2 A |- !x. t A |- (t1 /\ t2) ==> t
------------------- ------------ ------------------------
A |- t1 A |- t2 A |- t A |- t1 ==> (t2 ==> t)

A |- (t1 \/ t2) ==> t A |- (?x. t1) ==> t2
------------------------------- ----------------------
A |- t1 ==> t A |- t2 ==> t A |- t1[x’/x] ==> t2

Failure
Never fails, but if there is no scope for one of the above reductions, merely gives a list
whose only member is the original theorem.

Comments
This is a rather ad-hoc inference rule, and its use is not recommended.

See also
Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS, Thm.DISJ1, Thm.DISJ2,
Thm.EXISTS, Thm.SPEC.

IMP_CONJ (Drule)

IMP_CONJ : (thm -> thm -> thm)

IMP ELIM 333

Synopsis
Conjoins antecedents and consequents of two implications.

Description
When applied to theorems A1 |- p ==> r and A2 |- q ==> s, the IMP_CONJ inference
rule returns the theorem A1 u A2 |- p /\ q ==> r /\ s.

A1 |- p ==> r A2 |- q ==> s
-------------------------------- IMP_CONJ

A1 u A2 |- p /\ q ==> r /\ s

Failure
Fails unless the conclusions of both theorems are implicative.

See also
Thm.CONJ.

IMP_ELIM (Drule)

IMP_ELIM : (thm -> thm)

Synopsis
Transforms |- s ==> t into |- ~s \/ t.

Description
When applied to a theorem A |- s ==> t, the inference rule IMP_ELIM returns the theo-
rem A |- ~s \/ t.

A |- s ==> t
-------------- IMP_ELIM
A |- ~s \/ t

Failure
Fails unless the theorem is implicative.

See also
Thm.NOT INTRO, Thm.NOT ELIM.

334 Chapter 1. Pre-defined ML Identifiers

IMP_RES_FORALL_CONV (res_quanLib)

IMP_RES_FORALL_CONV : conv

Synopsis
Converts an implication to a restricted universal quantification.

Description
When applied to a term of the form !x. x IN P ==> Q, the conversion IMP_RES_FORALL_CONV

returns the theorem:

|- (!x. x IN P ==> Q) = !x::P. Q

Failure
Fails if applied to a term not of the form !x. x IN P ==> Q.

See also
res quanLib.RES FORALL CONV.

IMP_RES_TAC (Tactic)

IMP_RES_TAC : thm_tactic

Synopsis
Enriches assumptions by repeatedly resolving an implication with them.

Description
Given a theorem th, the theorem-tactic IMP_RES_TAC uses RES_CANON to derive a canonical
list of implications, each of which has the form:

A |- u1 ==> u2 ==> ... ==> un ==> v

IMP_RES_TAC then tries to repeatedly ‘resolve’ these theorems against the assumptions
of a goal by attempting to match the antecedents u1, u2, ..., un (in that order) to some
assumption of the goal (i.e. to some candidate antecedents among the assumptions). If

IMP RES THEN 335

all the antecedents can be matched to assumptions of the goal, then an instance of the
theorem

A u {a1,...,an} |- v

called a ‘final resolvent’ is obtained by repeated specialization of the variables in the im-
plicative theorem, type instantiation, and applications of modus ponens. If only the first
i antecedents u1, ..., ui can be matched to assumptions and then no further matching is
possible, then the final resolvent is an instance of the theorem:

A u {a1,...,ai} |- u(i+1) ==> ... ==> v

All the final resolvents obtained in this way (there may be several, since an antecedent
ui may match several assumptions) are added to the assumptions of the goal, in the
stripped form produced by using STRIP_ASSUME_TAC. If the conclusion of any final re-
solvent is a contradiction ‘F’ or is alpha-equivalent to the conclusion of the goal, then
IMP_RES_TAC solves the goal.

Failure
Never fails.

See also
Thm cont.IMP RES THEN, Drule.RES CANON, Tactic.RES TAC, Thm cont.RES THEN.

IMP_RES_THEN (Thm_cont)

IMP_RES_THEN : thm_tactical

Synopsis
Resolves an implication with the assumptions of a goal.

Description
The function IMP_RES_THEN is the basic building block for resolution in HOL. This is not
full higher-order, or even first-order, resolution with unification, but simply one way
simultaneous pattern-matching (resulting in term and type instantiation) of the an-
tecedent of an implicative theorem to the conclusion of another theorem (the candidate
antecedent).

336 Chapter 1. Pre-defined ML Identifiers

Given a theorem-tactic ttac and a theorem th, the theorem-tactical IMP_RES_THEN uses
RES_CANON to derive a canonical list of implications from th, each of which has the form:

Ai |- !x1...xn. ui ==> vi

IMP_RES_THEN then produces a tactic that, when applied to a goal A ?- g attempts
to match each antecedent ui to each assumption aj |- aj in the assumptions A. If the
antecedent ui of any implication matches the conclusion aj of any assumption, then
an instance of the theorem Ai u {aj} |- vi, called a ‘resolvent’, is obtained by special-
ization of the variables x1, ..., xn and type instantiation, followed by an application of
modus ponens. There may be more than one canonical implication and each implica-
tion is tried against every assumption of the goal, so there may be several resolvents
(or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified
sequence to the goal. That is,

IMP_RES_THEN ttac th (A ?- g)

has the effect of:

MAP_EVERY (mapfilter ttac [... , (Ai u {aj} |- vi) , ...]) (A ?- g)

where the theorems Ai u {aj} |- vi are all the consequences that can be drawn by
a (single) matching modus-ponens inference from the assumptions of the goal A ?- g

and the implications derived from the supplied theorem th. The sequence in which
the theorems Ai u {aj} |- vi are generated and the corresponding tactics applied is
unspecified.

Failure
Evaluating IMP_RES_THEN ttac th fails if the supplied theorem th is not an implication,
or if no implications can be derived from th by the transformation process described
under the entry for RES_CANON. Evaluating IMP_RES_THEN ttac th (A ?- g) fails if no
assumption of the goal A ?- g can be resolved with the implication or implications
derived from th. Evaluation also fails if there are resolvents, but for every resolvent
Ai u {aj} |- vi evaluating the application ttac (Ai u {aj} |- vi) fails—that is, if for
every resolvent ttac fails to produce a tactic. Finally, failure is propagated if any of the
tactics that are produced from the resolvents by ttac fails when applied in sequence to
the goal.

Example
The following example shows a straightforward use of IMP_RES_THEN to infer an equa-
tional consequence of the assumptions of a goal, use it once as a substitution in the

IMP TRANS 337

conclusion of goal, and then ‘throw it away’. Suppose the goal is:

a + n = a ?- !k. k - n = k

By the built-in theorem:

ADD_INV_0 = |- !m n. (m + n = m) ==> (n = 0)

the assumption of this goal implies that n equals 0. A single-step resolution with this
theorem followed by substitution:

IMP_RES_THEN SUBST1_TAC ADD_INV_0

can therefore be used to reduce the goal to:

a + n = a ?- !k. k - 0 = m

Here, a single resolvent a + n = a |- n = 0 is obtained by matching the antecedent of
ADD_INV_0 to the assumption of the goal. This is then used to substitute 0 for n in the
conclusion of the goal.

See also
Tactic.IMP RES TAC, Drule.MATCH MP, Drule.RES CANON, Tactic.RES TAC,
Thm cont.RES THEN.

IMP_TRANS (Drule)

IMP_TRANS : (thm -> thm -> thm)

Synopsis
Implements the transitivity of implication.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t3, the inference rule
IMP_TRANS returns the theorem A1 u A2 |- t1 ==> t3.

A1 |- t1 ==> t2 A2 |- t2 ==> t3
----------------------------------- IMP_TRANS

A1 u A2 |- t1 ==> t3

Failure
Fails unless the theorems are both implicative, with the consequent of the first being the
same as the antecedent of the second (up to alpha-conversion).

338 Chapter 1. Pre-defined ML Identifiers

See also
Drule.IMP ANTISYM RULE, Thm.SYM, Thm.TRANS.

implication (boolSyntax)

implication : term

Synopsis
Constant denoting logical implication.

Description
The ML variable boolSyntax.implication is bound to the term min$==>.

See also
boolSyntax.equality, boolSyntax.select, boolSyntax.T, boolSyntax.F,
boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

implicit_rewrites (Rewrite)

implicit_rewrites: unit -> rewrites

Synopsis
Contains a number of theorems used, by default, in rewriting.

Description
The variable implicit_rewrites holds a collection of rewrite rules commonly used to

implicit rewrites 339

simplify expressions. These rules include the clause for reflexivity:

|- !x. (x = x) = T

as well as rules to reason about equality:

|- !t.
((T = t) = t) /\ ((t = T) = t) /\ ((F = t) = ~t) /\ ((t = F) = ~t)

Negations are manipulated by the following clauses:

|- (!t. ~~t = t) /\ (~T = F) /\ (~F = T)

The set of tautologies includes truth tables for conjunctions, disjunctions, and impli-
cations:

|- !t.
(T /\ t = t) /\
(t /\ T = t) /\
(F /\ t = F) /\
(t /\ F = F) /\
(t /\ t = t)

|- !t.
(T \/ t = T) /\
(t \/ T = T) /\
(F \/ t = t) /\
(t \/ F = t) /\
(t \/ t = t)

|- !t.
(T ==> t = t) /\
(t ==> T = T) /\
(F ==> t = T) /\
(t ==> t = T) /\
(t ==> F = ~t)

Simple rules for reasoning about conditionals are given by:

|- !t1 t2. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2)

Rewriting with the following tautologies allows simplification of universally and exis-
tentially quantified variables and abstractions:

|- !t. (!x. t) = t
|- !t. (?x. t) = t
|- !t1 t2. (\x. t1)t2 = t1

The value of implicit_rewrites can be augmented by add_implicit_rewrites and
altered by set_implicit_rewrites.

340 Chapter 1. Pre-defined ML Identifiers

The initial value of implicit_rewrites is bool_rewrites.

Uses
The rewrite rules held in implicit_rewrites are automatically included in the simplifi-
cations performed by some of the rewriting tools.

See also
Rewrite.GEN REWRITE RULE, Rewrite.GEN REWRITE TAC, Rewrite.REWRITE RULE,
Rewrite.REWRITE TAC, Rewrite.bool rewrites, Rewrite.set implicit rewrites,
Rewrite.add implicit rewrites.

ind (Type)

ind : hol_type

Synopsis
Basic type constant.

Description
The ML variable Type.ind is bound to the HOL type constant ind. The axiom INFINITY_AX

in boolTheory states that ind represents an infinite set of individuals.

See also
Type.bool, Type.-->.

IndDefRules

structure IndDefRules

Synopsis
Tom Melham’s inference support for inductive definitions

Description
IndDefRules provides support for reasoning about inductively defined relations, includ-
ing a general induction tactic, and an entrypoint for deriving so-called ‘strong’ rule
induction.

index 341

index (Lib)

index : (’a -> bool) -> ’a list -> int

Synopsis
Finds index of first list element for which predicate holds.

Description
An application index P l returns the index (0-based) to the first element (in a left-to-
right scan) of l that P holds of.

Failure
If P doesn’t hold of any element of l, then index P l fails. If P x fails for any x encoun-
tered in the scan, then index P l fails.

Example

- index (equal 3) [1,2,3];
> val it = 2 : int

- let fun even i = (i mod 2 = 0)
in try (index even) [1,3,5,7,9]
end;

Exception raised at Lib.index:
no such element
! Uncaught exception:
! HOL_ERR

- index (equal 3 o hd) [[1],[],[2,3]];
! Uncaught exception:
! Empty

See also
Lib.el.

Induct (bossLib)

Induct : tactic

342 Chapter 1. Pre-defined ML Identifiers

Synopsis
Performs structural induction over the type of the goal’s outermost universally quanti-
fied variable.

Description
Given a universally quantified goal, Induct attempts to perform an induction based on
the type of the leading universally quantified variable. The induction theorem to be
used is looked up in the TypeBase database, which holds useful facts about the system’s
defined types. Induct may also be used to reason about mutually recursive types.

Failure
Induct fails if the goal is not universally quantified, or if the type of the variable univer-
sally quantified does not have an induction theorem in the TypeBase database.

Example
If attempting to prove

!list. LENGTH (REVERSE list) = LENGTH list

one can apply Induct to begin a proof by induction on list.

- e Induct;

This results in the base and step cases of the induction as new goals.

?- LENGTH (REVERSE []) = LENGTH []

LENGTH (REVERSE list) = LENGTH list
?- !h. LENGTH (REVERSE (h::list)) = LENGTH (h::list)

The same tactic can be used for induction over numbers. For example expanding the
goal

?- !n. n > 2 ==> !x y z. ~(x EXP n + y EXP n = z EXP n)

with Induct yields the two goals

?- 0 > 2 ==> !x y z. ~(x EXP 0 + y EXP 0 = z EXP 0)

n > 2 ==> !x y z. ~(x EXP n + y EXP n = z EXP n)
?- SUC n > 2 ==> !x y z. ~(x EXP SUC n + y EXP SUC n = z EXP SUC n)

Induct can also be used to perform induction on mutually recursive types. For exam-

Induct 343

ple, given the datatype

Hol_datatype
‘exp = VAR of string (* variables *)

| IF of bexp => exp => exp (* conditional *)
| APP of string => exp list (* function application *)

;
bexp = EQ of exp => exp (* boolean expressions *)

| LEQ of exp => exp
| AND of bexp => bexp
| OR of bexp => bexp
| NOT of bexp‘

one can use Induct to prove that all objects of type exp and bexp are of a non-zero
size. (Recall that size definitions are automatically defined for datatypes.) Typically,
mutually recursive types lead to mutually recursive induction schemes having multiple
predicates. The scheme for the above definition has 3 predicates: P0, P1, and P2, which
respectively range over expressions, boolean expressions, and lists of expressions.

|- !P0 P1 P2.
(!a. P0 (VAR a)) /\
(!b e e0. P1 b /\ P0 e /\ P0 e0 ==> P0 (IF b e e0)) /\
(!l. P2 l ==> !b. P0 (APP b l)) /\
(!e e0. P0 e /\ P0 e0 ==> P1 (EQ e e0)) /\
(!e e0. P0 e /\ P0 e0 ==> P1 (LEQ e e0)) /\
(!b b0. P1 b /\ P1 b0 ==> P1 (AND b b0)) /\
(!b b0. P1 b /\ P1 b0 ==> P1 (OR b b0)) /\
(!b. P1 b ==> P1 (NOT b)) /\
P2 [] /\
(!e l. P0 e /\ P2 l ==> P2 (e::l))
==>

(!e. P0 e) /\ (!b. P1 b) /\ !l. P2 l

Invoking Induct on a goal such as

!e. 0 < exp_size e

yields the three subgoals

?- !s. 0 < exp_size (APP s l)

[0 < exp_size e, 0 < exp_size e’] ?- 0 < exp_size (IF b e e’)

?- !s. 0 < exp_size (VAR s)

In this case, P1 and P2 have been vacuously instantiated in the application of Induct,

344 Chapter 1. Pre-defined ML Identifiers

since it detects that only P0 is needed. However, it is also possible to use Induct to start
the proofs of

(!e. 0 < exp_size e) /\ (!b. 0 < bexp_size b)

and

(!e. 0 < exp_size e) /\
(!b. 0 < bexp_size b) /\
(!list. 0 < exp1_size list)

See also
bossLib.Induct on, bossLib.completeInduct on, bossLib.measureInduct on,
Prim rec.INDUCT THEN, bossLib.Cases, bossLib.Hol datatype, goalstackLib.g,
goalstackLib.e.

Induct (SingleStep)

Induct : tactic

Synopsis
Induct on leading universally quantified variable in a goal.

Description
bossLib.Induct is identical to SingleStep.Induct.

See also
bossLib.Induct.

Induct_on (bossLib)

Induct_on : term -> tactic

Synopsis
Performs structural induction, using the type of the given term.

Induct on 345

Description
Given a term M, Induct_on attempts to perform an induction based on the type of M.
The induction theorem to be used is extracted from the TypeBase database, which holds
useful facts about the system’s defined types.
Induct_on can be used to specify variables that are buried in the quantifier prefix,

i.e., not the leading quantified variable. Induct_on can also perform induction on non-
variable terms. If M is a non-variable term that does not occur bound in the goal, then
Induct_on equates M to a new variable v (one not occurring in the goal), moves all
hypotheses in which free variables of M occur to the conclusion of the goal, adds the
antecedent v = M, and quantifies all free variables of M before universally quantifying v

and then finally inducting on v.
Induct_on may also be used to apply an induction theorem coming from declaration

of a mutually recursive datattype.

Failure
Induct_on fails if an induction theorem corresponding to the type of M is not found in
the TypeBase database.

Example
If attempting to prove

!x. LENGTH (REVERSE x) = LENGTH x

one can apply Induct_on ‘x‘ to begin a proof by induction on the list structure of x. In
this case, Induct_on serves as an explicit version of Induct.

See also
bossLib.Induct, bossLib.completeInduct on, bossLib.measureInduct on,
Prim rec.INDUCT THEN, bossLib.Cases, bossLib.Hol datatype, goalstackLib.g,
goalstackLib.e.

Induct_on (SingleStep)

Induct_on : term -> tactic

Synopsis
Induct on given term.

Description
bossLib.Induct_on is identical to SingleStep.Induct_on.

346 Chapter 1. Pre-defined ML Identifiers

See also
bossLib.Induct on.

INDUCT_TAC (numLib)

INDUCT_TAC : tactic

Synopsis
Performs tactical proof by mathematical induction on the natural numbers.

Description
INDUCT_TAC reduces a goal !n.P[n], where n has type num, to two subgoals corresponding
to the base and step cases in a proof by mathematical induction on n. The induction
hypothesis appears among the assumptions of the subgoal for the step case. The speci-
fication of INDUCT_TAC is:

A ?- !n. P
== INDUCT_TAC
A ?- P[0/n] A u {P} ?- P[SUC n’/n]

where n’ is a primed variant of n that does not appear free in the assumptions A (usually,
n’ just equals n). When INDUCT_TAC is applied to a goal of the form !n.P, where n does
not appear free in P, the subgoals are just A ?- P and A u {P} ?- P.

Failure
INDUCT_TAC g fails unless the conclusion of the goal g has the form !n.t, where the
variable n has type num.

See also
INDUCT.

INDUCT_THEN (Prim_rec)

INDUCT_THEN : (thm -> thm_tactic -> tactic)

Synopsis
Structural induction tactic for automatically-defined concrete types.

INDUCT THEN 347

Description
The function INDUCT_THEN implements structural induction tactics for arbitrary concrete
recursive types of the kind definable by define_type. The first argument to INDUCT_THEN

is a structural induction theorem for the concrete type in question. This theorem must
have the form of an induction theorem of the kind returned by prove_induction_thm.
When applied to such a theorem, the function INDUCT_THEN constructs specialized tactic
for doing structural induction on the concrete type in question.

The second argument to INDUCT_THEN is a function that determines what is be done
with the induction hypotheses in the goal-directed proof by structural induction. Sup-
pose that th is a structural induction theorem for a concrete data type ty, and that
A ?- !x.P is a universally-quantified goal in which the variable x ranges over values of
type ty. If the type ty has n constructors C1, ..., Cn and ‘Ci(vs)’ represents a (curried)
application of the ith constructor to a sequence of variables, then if ttac is a function
that maps the induction hypotheses hypi of the ith subgoal to the tactic:

A ?- P[Ci(vs)/x]
====================== MAP_EVERY ttac hypi

A1 ?- Gi

then INDUCT_THEN th ttac is an induction tactic that decomposes the goal A ?- !x.P

into a set of n subgoals, one for each constructor, as follows:

A ?- !x.P
================================ INDUCT_THEN th ttac

A1 ?- G1 ... An ?- Gn

The resulting subgoals correspond to the cases in a structural induction on the variable
x of type ty, with induction hypotheses treated as determined by ttac.

Failure
INDUCT_THEN th ttac g fails if th is not a structural induction theorem of the form re-
turned by prove_induction_thm, or if the goal does not have the form A ?- !x:ty.P

where ty is the type for which th is the induction theorem, or if ttac fails for any
subgoal in the induction.

Example
The built-in structural induction theorem for lists is:

|- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l)

When INDUCT_THEN is applied to this theorem, it constructs and returns a specialized

348 Chapter 1. Pre-defined ML Identifiers

induction tactic (parameterized by a theorem-tactic) for doing induction on lists:

- val LIST_INDUCT_THEN = INDUCT_THEN listTheory.list_INDUCT;

The resulting function, when supplied with the thm_tactic ASSUME_TAC, returns a tac-
tic that decomposes a goal ?- !l.P[l] into the base case ?- P[NIL] and a step case
P[l] ?- !h. P[CONS h l], where the induction hypothesis P[l] in the step case has been
put on the assumption list. That is, the tactic:

LIST_INDUCT_THEN ASSUME_TAC

does structural induction on lists, putting any induction hypotheses that arise onto the
assumption list:

A ?- !l. P
===
A |- P[NIL/l] A u {P[l’/l]} ?- !h. P[(CONS h l’)/l]

Likewise LIST_INDUCT_THEN STRIP_ASSUME_TAC will also do induction on lists, but will
strip induction hypotheses apart before adding them to the assumptions (this may be
useful if P is a conjunction or a disjunction, or is existentially quantified). By contrast,
the tactic:

LIST_INDUCT_THEN MP_TAC

will decompose the goal as follows:

A ?- !l. P
===
A |- P[NIL/l] A ?- P[l’/l] ==> !h. P[CONS h l’/l]

That is, the induction hypothesis becomes the antecedent of an implication expressing
the step case in the induction, rather than an assumption of the step-case subgoal.

See also
Datatype.define type, Prim rec.new recursive definition,
Prim rec.prove cases thm, Prim rec.prove constructors distinct,
Prim rec.prove constructors one one, Prim rec.prove induction thm,
Prim rec.prove rec fn exists.

bool_compset (computeLib)

bool_compset : unit -> compset

insert 349

Synopsis
Creates a new simplification set to use with computeLib.CBV_CONV for basic computa-
tions.

Description
This function creates a new simplification set to use with the compute library perform-
ing computations about operations on primitive booleans and numerals (in binary rep-
resentation) such as LET, conditional, implication, conjunction, disjunction, negation,
FST, SND, addition, subtraction, multiplication, division, modulo, exponentiation, etc.

We assume here that the canonical representation of the naturals is the binary one.
Therefore, defining function by pattern matching using SUC will not be recognized. For
instance, defining the exponentaition function as

|- (n EXP 0 = 1) /\ (n EXP (SUC p) = n * n EXP p)

It is possible to make this definition work by using the following lemma:

|- (exp n p = if n = 0 then 1 else n * (exp n (p-1)))

Example

- CBV_CONV (bool_compset()) (--‘EVERY (\n. EVEN n) [4;6;8;10;12;14;16]‘--);
> val it = |- EVERY (\n. EVEN n) [4; 6; 8; 10; 12; 14; 16] = T : thm

See also
computeLib.CBV CONV, REDUCE CONV.

insert (Lib)

insert ’’a -> ’’a list -> ’’a list

Synopsis
Add an element to a list if it is not already there.

Description
If x is already in list, then insert x list equals list. Otherwise, x becomes an element
of list.

Failure
Never fails.

350 Chapter 1. Pre-defined ML Identifiers

Example

- insert 1 [3,2];
> val it = [1, 3, 2] : int list

- insert 1 it;
> val it = [1, 3, 2] : int list

Comments
In some programming situations, it is convenient to implement sets by lists, in which
case insert may be helpful. However, such an implementation is only suitable for small
sets. Serious implementations of sets may be found in the Standard ML Basis Library.

ML equality types are used in the implementation of insert and its kin. This limits
its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

One should not write code that depends on where the ‘list-as-set’ algorithms place
elements in the list which is being considered as a set.

See also
Lib.op insert, Lib.mem, Lib.mk set, Lib.union, Lib.U, Lib.set diff,
Lib.subtract, Lib.intersect, Lib.null intersection, Lib.set eq.

inst (Term)

inst : (hol_type,hol_type)subst -> term -> term

Synopsis
Performs type instantiations in a term.

Description
The function inst should be used as follows:

inst [{redex_1, residue_1},...,{redex_n, residue_n}] tm

where each ‘redex’ is a hol_type variable, and each ‘residue’ is a hol_type and tm a
term to be type-instantiated. This call will replace each occurrence of a redex in tm

by its associated residue. Replacement is done in parallel, i.e., once a redex has been
replaced by its residue, at some place in the term, that residue at that place will not
itself be replaced in the current call. Bound term variables may be renamed in order to
preserve the term structure.

INST 351

Failure
Never fails. A redex that is not a variable is simply ignored.

Example

- show_types := true;
> val it = () : unit

- inst [alpha |-> Type‘:num‘] (Term‘(x:’a) = (x:’a)‘)
> val it = ‘(x :num) = x‘ : term

- inst [bool |-> Type‘:num‘] (Term‘x:bool‘);
> val it = ‘(x :bool)‘ : term

- inst [alpha |-> bool] (mk_abs(Term‘x:bool‘,Term‘x:’a‘))
> val it = ‘\(x’ :bool). (x :bool)‘ : term

See also
Type.type subst, Lib.|->.

INST (Thm)

INST : (term,term) subst -> thm -> thm

Synopsis
Instantiates free variables in a theorem.

Description
INST is a rule for substituting arbitrary terms for free variables in a theorem.

A |- t INST [x1 |-> t1,...,xn |-> tn]

A[t1,...,tn/x1,...,xn]
|-

t[t1,...,tn/x1,...,xn]

Failure
Fails if, for 1 <= i <= n, some xi is not a variable, or if some xi has a different type than
its intended replacement ti.

352 Chapter 1. Pre-defined ML Identifiers

Example
In the following example a theorem is instantiated for a specific term:

- load"arithmeticTheory";

- CONJUNCT1 arithmeticTheory.ADD_CLAUSES;
> val it = |- 0 + m = m : thm

- INST [‘‘m:num‘‘ |-> ‘‘2*x‘‘]
(CONJUNCT1 arithmeticTheory.ADD_CLAUSES);

val it = |- 0 + (2 * x) = 2 * x : thm

See also
Drule.INST TY TERM, Thm.INST TYPE, Drule.ISPEC, Drule.ISPECL, Thm.SPEC,
Drule.SPECL, Drule.SUBS, Term.subst, Thm.SUBST, Lib.|->.

INST_TY_TERM (Drule)

INST_TY_TERM :
(term,term)subst * (hol_type,hol_type)subst -> thm -> thm

Synopsis
Instantiates terms and types of a theorem.

Description
INST_TY_TERM instantiates types in a theorem, in the same way INST_TYPE does. Then it
instantiates some or all of the free variables in the resulting theorem, in the same way
as INST.

Failure
INST_TY_TERM fails under the same conditions as either INST or INST_TYPE fail.

See also
Thm.INST, Thm.INST TYPE, Drule.ISPEC, Thm.SPEC, Drule.SUBS, Thm.SUBST.

INST_TYPE (Thm)

INST_TYPE : (hol_type,hol_type) subst -> thm -> thm

INST TYPE 353

Synopsis
Instantiates types in a theorem.

Description
INST_TYPE is a primitive rule in the HOL logic, which allows instantiation of type vari-
ables.

A |- t
----------------------------------- INST_TYPE[vty1|->ty1,..., vtyn|->tyn]
A[ty1,...,tyn/vty1,...,vtyn]
|-
t[ty1,...,tyn/vty1,...,vtyn]

Type substitution is performed throughout the hypotheses and the conclusion,. Variables
will be renamed if necessary to prevent distinct variables becoming identical after the
instantiation.

Failure
Never fails.

Uses
INST_TYPE enables polymorphic theorems to be used at any type.

Example
Supposing one wanted to specialize the theorem EQ_SYM_EQ for particular values, the
first attempt could be to use SPECL as follows:

- SPECL [‘‘a:num‘‘, ‘‘b:num‘‘] EQ_SYM_EQ;
uncaught exception HOL_ERR

The failure occurred because EQ_SYM_EQ contains polymorphic types. The desired spe-
cialization can be obtained by using INST_TYPE:

- load "numTheory";

- SPECL [Term ‘a:num‘, Term‘b:num‘]
(INST_TYPE [alpha |-> Type‘:num‘] EQ_SYM_EQ);

> val it = |- (a = b) = (b = a) : thm

See also
Term.inst, Thm.INST, Drule.INST TY TERM, Lib.|->.

354 Chapter 1. Pre-defined ML Identifiers

int_of_string (hol88Lib)

Compat.int_of_string : string -> int

Synopsis
Maps a string of numbers to the corresponding integer.

Description
Found in the hol88 library. Given a string representing an integer in standard decimal
notation, possibly including a leading plus sign or minus sign and/or leading zeros,
int_of_string returns the corresponding integer constant.

Failure
Fails unless the string is a valid decimal representation as specified above. It will not be
found unless the hol88 library has been loaded.

Comments
Not found in hol90, since the author always got it backwards; use string_to_int in-
stead. Likewise, string_of_int is not found in hol90; use int_to_string.

See also
ascii, ascii code, hol88Lib.string of int, int to string, string to int.

int_sort (Lib)

int_sort : int list -> int list

Synopsis
Sorts a list of integers using the <= relation.

Description
The call int_sort list is equal to sort (curry (op <=)). That is, it is the specialization
of sort to the usual notion of less-than-or-equal on ML integers.

Failure
Never fails.

int to string 355

Example
A simple example is:

- int_sort [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9];
> val it = [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 9] : int list

Comments
The Standard ML Basis Library also provides implementations of sorting.

See also
Lib.sort.

int_to_string (Lib)

int_to_string : int -> string

Synopsis
Translates an integer into a string.

Description
An application int_to_string i returns the printable form of i.

Failure
Never fails.

Example

- int_to_string 12323;
> val it = "12323" : string

- int_to_string ~1;
> val it = "~1" : string

Comments
Equivalent functionality can be found in the ML Standard Basis Library function Int.toString.

See also
Lib.string to int.

356 Chapter 1. Pre-defined ML Identifiers

intersect (Lib)

intersect : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the intersection of two ‘sets’.

Description
intersect l1 l2 returns a list consisting of those elements of l1 that also appear in l2.

Failure
Never fails.

Example

- intersect [1,2,3] [3,5,4,1];
> val it = [1, 3] : int list

Comments
Do not make the assumption that the order of items in the list returned by intersect

is fixed. Later implementations may use different algorithms, and return a different
concrete result while still meeting the specification.

High performance finite set operations may be found in the ML Standard Basis Library.
ML equality types are used in the implementation of intersect and its kin. This limits

its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op intersect, Lib.union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq,
Lib.set diff.

IPSPEC (PairRules)

IPSPEC : (term -> thm -> thm)

Synopsis
Specializes a theorem, with type instantiation if necessary.

IPSPECL 357

Description
This rule specializes a paired quantification as does PSPEC; it differs from it in also
instantiating the type if needed:

A |- !p:ty.tm
----------------------- IPSPEC "q:ty’"

A |- tm[q/p]

(where q is free for p in tm, and ty’ is an instance of ty).

Failure
IPSPEC fails if the input theorem is not universally quantified, if the type of the given
term is not an instance of the type of the quantified variable, or if the type variable is
free in the assumptions.

See also
Drule.ISPEC, Drule.INST TY TERM, Thm.INST TYPE, PairRules.IPSPECL,
PairRules.PSPEC, match.

IPSPECL (PairRules)

IPSPECL : (term list -> thm -> thm)

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
IPSPECL is an iterative version of IPSPEC

A |- !p1...pn.tm
---------------------------- IPSPECL ["q1",...,"qn"]
A |- t[q1,...qn/p1,...,pn]

(where qi is free for pi in tm).

Failure
IPSPECL fails if the list of terms is longer than the number of quantified variables in the
term, if the type instantiation fails, or if the type variable being instantiated is free in
the assumptions.

358 Chapter 1. Pre-defined ML Identifiers

See also
Drule.ISPECL, Thm.INST TYPE, Drule.INST TY TERM, PairRules.IPSPEC, MATCH,
Thm.SPEC, PairRules.PSPECL.

is_abs (Term)

is_abs : (term -> bool)

Synopsis
Tests a term to see if it is an abstraction.

Description
is_abs "\var. t" returns true. If the term is not an abstraction the result is false.

Failure
Never fails.

See also
Term.mk abs, Term.dest abs, Term.is var, Term.is const, Term.is comb.

is_arb (boolSyntax)

is_arb : term -> bool

Synopsis
Tests a term to see if it’s an instance of ARB.

Description
Returns true if and only if M has the form ARB.

Uses
None known.

See also
boolSyntax.mk arb, boolSyntax.dest arb.

is bool case 359

is_bool_case (boolSyntax)

is_bool_case : term -> bool

Synopsis
Tests a case expression over bool.

Description
If M has the form bool_case M1 M2 b, then is_bool_case M returns true. Otherwise, it
returns false.

Failure
Never fails.

See also
boolSyntax.mk bool case, boolSyntax.dest bool case.

is_comb (Term)

is_comb : term -> bool

Synopsis
Tests a term to see if it is a combination (function application).

Description
If term M has the form f x, then is_comb M equals true. Otherwise, the result is false.

Failure
Never fails

See also
Term.mk comb, Term.dest comb, Term.is var, Term.is const, Term.is abs.

is_cond (boolSyntax)

is_cond : term -> bool

360 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tests a term to see if it is a conditional.

Description
If M has the form if t then t1 else t2 then is_cond M returns true If the term is not a
conditional the result is false.

Failure
Never fails.

See also
boolSyntax.mk cond, boolSyntax.dest cond.

is_conj (boolSyntax)

is_conj : term -> bool

Synopsis
Tests a term to see if it is a conjunction.

Description
If M has the form t1 /\ t2, then is_conj M returns true. If M is not a conjunction the
result is false.

Failure
Never fails.

See also
boolSyntax.mk conj, boolSyntax.dest conj.

is_cons (listSyntax)

is_cons : (term -> bool)

Synopsis
Tests a term to see if it is an application of CONS.

is const 361

Description
is_cons returns true of a term representing a non-empty list. Otherwise it returns false.

Failure
Never fails.

See also
listSyntax.mk cons, listSyntax.dest cons, listSyntax.mk list,
listSyntax.dest list, listSyntax.is list.

is_const (Term)

is_const : term -> bool

Synopsis
Tests a term to see if it is a constant.

Description
If c is an instance of a previously declared HOL constant, then is_const c returns true;
otherwise the result is false.

Failure
Never fails.

See also
Term.mk const, Term.dest const, Term.is var, Term.is comb, Term.is abs.

is_disj (boolSyntax)

is_disj : term -> bool

Synopsis
Tests a term to see if it is a disjunction.

Description
If M has the form t1 \/ t2, then is_disj M returns true. If M is not a disjunction the
result is false.

362 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

See also
boolSyntax.mk disj, boolSyntax.dest disj.

is_eq (boolSyntax)

is_eq : term -> bool

Synopsis
Tests a term to see if it is an equation.

Description
If M has the form t1 = t2 then is_eq M returns true. If M is not an equation the result is
false.

Failure
Never fails.

See also
boolSyntax.mk eq, boolSyntax.dest eq.

is_exists (boolSyntax)

is_exists : term -> bool

Synopsis
Tests a term to see if it is an existential quantification.

Description
If M has the form ?v. t then is_exists M returns true. If the term is not an existential
quantification the result is false.

Failure
Never fails.

is exists1 363

See also
boolSyntax.mk exists, boolSyntax.dest exists.

is_exists1 (boolSyntax)

is_exists1 : term -> bool

Synopsis
Tests a term to see if it is a unique existence term.

Description
If M has the form ?!v. t then is_exists1 M returns true. If the term is not a unique
existence quantification the result is false.

Failure
Never fails.

See also
boolSyntax.mk exists1, boolSyntax.dest exists.

is_forall (boolSyntax)

is_forall : term -> bool

Synopsis
Tests a term to see if it is a universal quantification.

Description
If M is a term with the form !x. t, then is_forall M returns true. If M is not a universal
quantification the result is false.

Failure
Never fails.

See also
boolSyntax.mk forall, boolSyntax.dest forall.

364 Chapter 1. Pre-defined ML Identifiers

is_gen_tyvar (Type)

is_gen_tyvar : hol_type -> bool

Synopsis
Checks if a type variable has been created by gen_tyvar.

Failure
Never fails.

Example

- is_gen_tyvar (gen_tyvar());
> val it = true : bool

- is_gen_tyvar bool;
> val it = false : bool

See also
Type.gen tyvar.

is_genvar (Term)

is_genvar : term -> bool

Synopsis
Tells if a variable has been built by invoking genvar.

Description
is_genvar v attempts to tell if v has been created by a call to genvar.

Failure
Never fails.

is imp 365

Example

- is_genvar (genvar bool);
> val it = true : bool

- is_genvar (mk_var ("%%genvar%%3",bool));
> val it = true : bool

Comments
As the second example shows, it is possible to fool is_genvar. However, it is useful for
derived proof tools which use it as part of their internal operations.

See also
Term.is var, Term.genvar, Type.is gen tyvar, Type.gen tyvar.

is_imp (boolSyntax)

is_imp : term -> bool

Synopsis
Tests a term to see if it is an implication or a negation.

Description
If M has the form t1 ==> t2, or the form ~t, then is_imp M returns true. If the term is
neither an implication nor a negation the result is false.

Failure
Never fails.

Comments
Yields true of negations because dest_imp destructs negations (for backwards compati-
bility with PPLAMBDA). Use is_imp_only if you don’t want this behaviour.

See also
boolSyntax.mk imp, boolSyntax.dest imp, boolSyntax.is imp only,
boolSyntax.dest imp only.

is_imp_only (boolSyntax)

is_imp_only : term -> bool

366 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tests a term to see if it is an implication.

Description
If M has the form t1 ==> t2 then is_imp_only M returns true. If the term is not an
implication, the result is false.

Failure
Never fails.

See also
boolSyntax.is imp, boolSyntax.mk imp, boolSyntax.dest imp,
boolSyntax.dest imp only, boolSyntax.list mk imp, boolSyntax.strip imp.

is_let (boolSyntax)

is_let : term -> bool

Synopsis
Tests a term to see if it is a let-expression.

Description
If tm is a term of the form LET M N, then dest_let tm returns true. Otherwise, it returns
false.

Failure
Never fails.

Example

- Term ‘LET f x‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it = ‘LET f x‘ : term

- is_let it;
> val it = true : bool

- is_let (Term ‘let x = P /\ Q in x \/ x‘);
> val it = true : bool

See also
boolSyntax.mk let, boolSyntax.dest let.

is list 367

is_list (listSyntax)

is_list : (term -> bool)

Synopsis
Tests a term to see if it is a list.

Description
is_list returns true of a term representing a list. Otherwise it returns false.

Failure
Never fails.

See also
listSyntax.mk list, listSyntax.dest list, listSyntax.mk cons,
listSyntax.dest cons, listSyntax.is cons.

is_neg (boolSyntax)

is_neg : term -> bool

Synopsis
Tests a term to see if it is a negation.

Description
If M has the form ~t, then is_neg M returns true. If the term is not a negation the result
is false.

Failure
Never fails.

See also
boolSyntax.mk neg, boolSyntax.dest neg.

is_pabs (pairSyntax)

is_pabs : term -> bool

368 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tests a term to see if it is a paired abstraction.

Description
is_pabs "\pair. t" returns true. If the term is not a paired abstraction the result is
false.

Failure
Never fails.

See also
Term.is abs, pairSyntax.mk pabs, pairSyntax.dest pabs.

is_pair (pairSyntax)

is_pair : (term -> bool)

Synopsis
Tests a term to see if it is a pair.

Description
is_pair "(t1,t2)" returns true. If the term is not a pair the result is false.

Failure
Never fails.

See also
pairSyntax.mk pair, pairSyntax.dest pair.

is_pexists (pairSyntax)

is_pexists : (term -> bool)

Synopsis
Tests a term to see if it as a paired existential quantification.

is pforall 369

Description
is_pexists "?pair. t" returns true. If the term is not a paired existential quantification
the result is false.

Failure
Never fails.

See also
boolSyntax.is exists, pairSyntax.mk pexists, pairSyntax.dest pexists.

is_pforall (pairSyntax)

is_pforall : (term -> bool)

Synopsis
Tests a term to see if it is a paired universal quantification.

Description
is_pforall "!pair. t" returns true. If the term is not a a paired universal quantifica-
tion the result is false.

Failure
Never fails.

See also
boolSyntax.is forall, pairSyntax.mk pforall, pairSyntax.dest pforall.

is_prod (pairSyntax)

is_prod : hol_type -> bool

Synopsis
Tests a type to see if it is a product type.

Description
If ty is a type of the form ty1 # ty2, then is_prod ty returns true.

370 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

See also
pairSyntax.dest prod, pairSyntax.mk prod.

is_pselect (pairSyntax)

is_pselect : (term -> bool)

Synopsis
Tests a term to see if it is a paired choice-term.

Description
is_select "@pair. t" returns true. If the term is not a paired choice-term the result is
false.

Failure
Never fails.

See also
boolSyntax.is select, pairSyntax.mk pselect, pairSyntax.dest pselect.

is_pvar (pairSyntax)

is_pvar : (term -> bool)

Synopsis
Tests a term to see if it is a paired structure of variables.

Description
is_pvar "pvar" returns true iff pvar is a paired structure of variables. For example,
((a:*,b:*),(d:*,e:*)) is a paired structure of variables, (1,2) is not.

Failure
Never fails.

is res abstract 371

See also
Term.is var.

is_res_abstract (res_quanLib)

is_res_abstract : term -> bool

Synopsis
Tests a term to see if it is a restricted abstraction.

Description
is_res_abstract "\var::P. t" returns true. If the term is not a restricted abstraction
the result is false.

Failure
Never fails.

See also
res quanLib.mk res abstract, res quanLib.dest res abstract.

is_res_exists (res_quanLib)

is_res_exists : term -> bool

Synopsis
Tests a term to see if it is a restricted existential quantification.

Description
is_res_exists "?var::P. t" returns true. If the term is not a restricted existential
quantification the result is false.

Failure
Never fails.

See also
res quanLib.mk res exists, res quanLib.dest res exists.

372 Chapter 1. Pre-defined ML Identifiers

is_res_exists_unique (res_quanLib)

is_res_exists_unique : term -> bool

Synopsis
Tests a term to see if it is a restricted unique existential quantification.

Description
is_res_exists_unique "?!var::P. t" returns true. If the term is not a restricted unique
existential quantification the result is false.

Failure
Never fails.

See also
res quanLib.mk res exists unique, res quanLib.dest res exists unique.

is_res_forall (res_quanLib)

is_res_forall : term -> bool

Synopsis
Tests a term to see if it is a restricted universal quantification.

Description
is_res_forall "!var::P. t" returns true. If the term is not a restricted universal quan-
tification the result is false.

Failure
Never fails.

See also
res quanLib.mk res forall, res quanLib.dest res forall.

is_res_select (res_quanLib)

is_res_select : term -> bool

is select 373

Synopsis
Tests a term to see if it is a restricted choice quantification.

Description
is_res_select "@var::P. t" returns true. If the term is not a restricted choice quantifi-
cation the result is false.

Failure
Never fails.

See also
res quanLib.mk res select, res quanLib.dest res select.

is_select (boolSyntax)

is_select : (term -> bool)

Synopsis
Tests a term to see if it is a choice binding.

Description
is_select "@var. t" returns true. If the term is not an epsilon-term the result is false.

Failure
Never fails.

See also
boolSyntax.mk select, boolSyntax.dest select.

is_type (Type)

is_type : hol_type -> bool

Synopsis
Tests whether a HOL type is not a type variable.

374 Chapter 1. Pre-defined ML Identifiers

Description
is_type ty returns true if ty is an application of a type operator and false otherwise.

Failure
Never fails.

See also
Type.op arity, Type.mk type, Type.mk thy type, Type.dest type,
Type.dest thy type.

is_var (Term)

is_var : term -> bool

Synopsis
Tests a term to see if it is a variable.

Description
If M is a HOL variable, then is_var M returns true. If the term is not a variable the result
is false.

Failure
Never fails.

See also
Term.mk var, Term.dest var, Term.is const, Term.is comb, Term.is abs.

is_vartype (Type)

is_vartype : type -> bool

Synopsis
Tests a type to see if it is a type variable.

Failure
Never fails.

isEmpty 375

Example

- is_vartype Type.alpha;
> val it = true : bool

- is_vartype bool;
> val it = false : bool

- is_vartype (Type ‘:’a -> bool‘);
> val it = false : bool

See also
Type.mk vartype, Type.dest vartype.

isEmpty (Tag)

isEmpty : tag -> bool

Synopsis
Tells if a tag is empty.

Description
An invocation isEmpty t returns true just in case t is the empty tag. Only theorems
built solely by HOL proof have an empty tag.

Failure
Never fails.

Example

- Tag.isEmpty (Thm.tag NOT_FORALL_THM);
> val it = true : bool

See also
Thm.tag, Thm.mk oracle thm.

ISPEC (Drule)

ISPEC : (term -> thm -> thm)

376 Chapter 1. Pre-defined ML Identifiers

Synopsis
Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a quantified variable as does SPEC; it differs from it in also instanti-
ating the type if needed:

A |- !x:ty.tm
----------------------- ISPEC "t:ty’"

A |- tm[t/x]

(where t is free for x in tm, and ty’ is an instance of ty).

Failure
ISPEC fails if the input theorem is not universally quantified, if the type of the given
term is not an instance of the type of the quantified variable, or if the type variable is
free in the assumptions.

See also
Drule.INST TY TERM, Thm.INST TYPE, Drule.ISPECL, Thm.SPEC, Term.match term.

ISPECL (Drule)

ISPECL : term list -> thm -> thm

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
ISPECL is an iterative version of ISPEC

A |- !x1...xn.t
---------------------------- ISPECL [t1,...,tn]
A |- t[t1,...tn/x1,...,xn]

(where ti is free for xi in tm).

Failure
ISPECL fails if the list of terms is longer than the number of quantified variables in the
term, if the type instantiation fails, or if the type variable being instantiated is free in
the assumptions.

istream 377

See also
Thm.INST TYPE, Drule.INST TY TERM, Drule.ISPEC, Drule.PART MATCH, Thm.SPEC,
Drule.SPECL.

istream (Lib)

type (’a,’b) istream

Synopsis
Type of imperative streams

Description
The type (’a,’b) istream is an abstract type of imperative streams. These may be
created with mk_istream, advanced by next, accessed by state, and reset with reset.

Comments
Purely functional streams are well-known in functional programming, and more ele-
gant. However, this type proved useful in implementing some imperative ‘gensym’-like
algorithms used in HOL.

See also
Lib.mk istream, Lib.next, Lib.state, Lib.reset.

itlist (Lib)

itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
itlist f [x1,...,xn] b returns

f x1 (f x2 ... (f xn b)...)

An invocation itlist f list b returns b if list is empty.

378 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if some application of f fails.

Example

- itlist (curry op+) [1,2,3,4] 0;
val it = 10 : int

See also
Lib.itlist2, Lib.rev itlist, Lib.rev itlist2, Lib.end itlist.

itlist2 (Lib)

itlist2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Synopsis
Applies a function to corresponding elements of 2 lists.

Description
itlist2 f [x1,...,xn] [y1,...,yn] z returns

f x1 y1 (f x2 y2 ... (f xn yn z)...)

An invocation itlist2 f list1 list2 b returns b if list1 and list2 are empty.

Failure
Fails if the two lists are of different lengths, or if one of the applications of f fails.

Example

- itlist2 (fn x => fn y => fn z => (x,y)::z) [1,2] [3,4] [];
> val it = [(1,3), (2,4)] : (int * int) list

See also
Lib.itlist, Lib.rev itlist, Lib.rev itlist2, Lib.end itlist.

K (Lib)

K : ’a -> ’b -> ’a

known constants 379

Synopsis
Forms a constant function: K x y = x.

Failure
Never fails.

See also
Lib.##, Lib.A, Lib.B, Lib.C, Lib.I, Lib.S, Lib.W.

known_constants (Parse)

Parse.known_constants : unit -> string list

Synopsis
Returns the list of constants known to the parser.

Description
A call to this functions returns the list of constants that will be treated as such by the
parser. Those constants with names not on the list will be parsed as if they were vari-
ables.

Failure
Never fails.

See also
Parse.hide, Parse.reveal, Parse.set known constants.

LAND_CONV (Conv)

LAND_CONV : conv -> conv

Synopsis
Applies a conversion to the left-hand argument of a binary operator.

380 Chapter 1. Pre-defined ML Identifiers

Description
If c is a conversion that maps a term t1 to the theorem |- t1 = t1’, then the conversion
LAND_CONV c maps applications of the form f t1 t2 to theorems of the form:

|- f t1 t2 = f t1’ t2

Failure
LAND_CONV c tm fails if tm is not an application where the rator of the application is in
turn another application, or if tm has this form but the conversion c fails when applied
to the term t2. The function returned by LAND_CONV c may also fail if the ML function
c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

Example

- LAND_CONV REDUCE_CONV (Term‘(3 + 5) * 7‘);
> val it = |- (3 + 5) * 7 = 8 * 7 : thm

See also
Conv.ABS CONV, Conv.BINOP CONV, Conv.RAND CONV, Conv.RATOR CONV.

last (Lib)

last : ’a list -> ’a

Synopsis
Computes the last element of a list.

Description
last [x1,...,xn] returns xn.

Failure
Fails if the list is empty.

See also
Lib.butlast, Lib.el, Lib.front last.

LAST EXISTS CONV 381

LAST_EXISTS_CONV (Conv)

Conv.LAST_EXISTS_CONV : conv -> conv

Synopsis
Applies a conversion to the last existential quantifier (and its body) in a chain.

Description
Application of LAST_EXISTS_CONV c to the term ‘‘?x1 .. xn x. body‘‘ will apply c to
the term ‘‘?x. body‘‘. If the result of this application is the term t, then the result of
the whole will be ‘‘?x1 .. xn. t‘‘.

Failure
Fails if the term is not existentially quantified, or if the conversion c fails when it is
applied.

See also
Conv.BINDER CONV, Conv.STRIP QUANT CONV.

LEFT_AND_EXISTS_CONV (Conv)

LEFT_AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the left conjunct outwards through a conjunction.

Description
When applied to a term of the form (?x.P) /\ Q, the conversion LEFT_AND_EXISTS_CONV

returns the theorem:

|- (?x.P) /\ Q = (?x’. P[x’/x] /\ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) /\ Q.

382 Chapter 1. Pre-defined ML Identifiers

See also
Conv.AND EXISTS CONV, Conv.EXISTS AND CONV, Conv.RIGHT AND EXISTS CONV.

LEFT_AND_FORALL_CONV (Conv)

LEFT_AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the left conjunct outwards through a conjunction.

Description
When applied to a term of the form (!x.P) /\ Q, the conversion LEFT_AND_FORALL_CONV

returns the theorem:

|- (!x.P) /\ Q = (!x’. P[x’/x] /\ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!x.P) /\ Q.

See also
Conv.AND FORALL CONV, Conv.FORALL AND CONV, Conv.RIGHT AND FORALL CONV.

LEFT_AND_PEXISTS_CONV (PairRules)

LEFT_AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the left conjunct outwards through a con-
junction.

Description
When applied to a term of the form (?p. t) /\ u, the conversion LEFT_AND_PEXISTS_CONV

returns the theorem:

|- (?p. t) /\ u = (?p’. t[p’/p] /\ u)

where p’ is a primed variant of the pair p that does not contains variables free in the
input term.

LEFT AND PFORALL CONV 383

Failure
Fails if applied to a term not of the form (?p. t) /\ u.

See also
Conv.LEFT AND EXISTS CONV, PairRules.AND PEXISTS CONV,
PairRules.PEXISTS AND CONV, PairRules.RIGHT AND PEXISTS CONV.

LEFT_AND_PFORALL_CONV (PairRules)

LEFT_AND_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the left conjunct outwards through a con-
junction.

Description
When applied to a term of the form (!p. t) /\ u, the conversion LEFT_AND_PFORALL_CONV

returns the theorem:

|- (!p. t) /\ u = (!p’. t[p’/p] /\ u)

where p’ is a primed variant of p that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) /\ u.

See also
Conv.LEFT AND FORALL CONV, PairRules.AND PFORALL CONV,
PairRules.PFORALL AND CONV, PairRules.RIGHT AND PFORALL CONV.

LEFT_IMP_EXISTS_CONV (Conv)

LEFT_IMP_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the antecedent outwards through an implication.

384 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term of the form (?x.P) ==> Q, the conversion LEFT_IMP_EXISTS_CONV

returns the theorem:

|- (?x.P) ==> Q = (!x’. P[x’/x] ==> Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) ==> Q.

See also
Conv.FORALL IMP CONV, Conv.RIGHT IMP FORALL CONV.

LEFT_IMP_FORALL_CONV (Conv)

LEFT_IMP_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the antecedent outwards through an implication.

Description
When applied to a term of the form (!x.P) ==> Q, the conversion LEFT_IMP_FORALL_CONV

returns the theorem:

|- (!x.P) ==> Q = (?x’. P[x’/x] ==> Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!x.P) ==> Q.

See also
Conv.EXISTS IMP CONV, Conv.RIGHT IMP FORALL CONV.

LEFT_IMP_PEXISTS_CONV (PairRules)

LEFT_IMP_PEXISTS_CONV : conv

LEFT IMP PFORALL CONV 385

Synopsis
Moves a paired existential quantification of the antecedent outwards through an impli-
cation.

Description
When applied to a term of the form (?p. t) ==> u, the conversion LEFT_IMP_PEXISTS_CONV

returns the theorem:

|- (?p. t) ==> u = (!p’. t[p’/p] ==> u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (?p. t) ==> u.

See also
Conv.LEFT IMP EXISTS CONV, PairRules.PFORALL IMP CONV,
PairRules.RIGHT IMP PFORALL CONV.

LEFT_IMP_PFORALL_CONV (PairRules)

LEFT_IMP_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the antecedent outwards through an impli-
cation.

Description
When applied to a term of the form (!p. t) ==> u, the conversion LEFT_IMP_PFORALL_CONV

returns the theorem:

|- (!p. t) ==> u = (?p’. t[p’/p] ==> u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) ==> u.

386 Chapter 1. Pre-defined ML Identifiers

See also
Conv.LEFT IMP FORALL CONV, PairRules.PEXISTS IMP CONV,
PairRules.RIGHT IMP PFORALL CONV.

LEFT_LIST_PBETA (PairRules)

LEFT_LIST_PBETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level paired beta-redex on the left-hand side of an equa-
tion.

Description
When applied to an equational theorem, LEFT_LIST_PBETA applies paired beta-reduction
over a top-level chain of beta-redexes to the left-hand side (only). Variables are renamed
if necessary to avoid free variable capture.

A |- (\p1...pn. t) q1 ... qn = s
---------------------------------- LEFT_LIST_BETA

A |- t[q1/p1]...[qn/pn] = s

Failure
Fails unless the theorem is equational, with its left-hand side being a top-level paired
beta-redex.

See also
Drule.RIGHT LIST BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,
PairRules.PBETA TAC, PairRules.LIST PBETA CONV, PairRules.LEFT PBETA,
PairRules.RIGHT PBETA, PairRules.RIGHT LIST PBETA.

LEFT_OR_EXISTS_CONV (Conv)

LEFT_OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the left disjunct outwards through a disjunction.

LEFT OR FORALL CONV 387

Description
When applied to a term of the form (?x.P) \/ Q, the conversion LEFT_OR_EXISTS_CONV

returns the theorem:

|- (?x.P) \/ Q = (?x’. P[x’/x] \/ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (?x.P) \/ Q.

See also
Conv.EXISTS OR CONV, Conv.OR EXISTS CONV, Conv.RIGHT OR EXISTS CONV.

LEFT_OR_FORALL_CONV (Conv)

LEFT_OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the left disjunct outwards through a disjunction.

Description
When applied to a term of the form (!x.P) \/ Q, the conversion LEFT_OR_FORALL_CONV

returns the theorem:

|- (!x.P) \/ Q = (!x’. P[x’/x] \/ Q)

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!x.P) \/ Q.

See also
Conv.OR FORALL CONV, Conv.FORALL OR CONV, Conv.RIGHT OR FORALL CONV.

LEFT_OR_PEXISTS_CONV (PairRules)

LEFT_OR_PEXISTS_CONV : conv

388 Chapter 1. Pre-defined ML Identifiers

Synopsis
Moves a paired existential quantification of the left disjunct outwards through a dis-
junction.

Description
When applied to a term of the form (?p. t) \/ u, the conversion LEFT_OR_PEXISTS_CONV

returns the theorem:

|- (?p. t) \/ u = (?p’. t[p’/p] \/ u)

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form (?p. t) \/ u.

See also
Conv.LEFT OR EXISTS CONV, PairRules.PEXISTS OR CONV, PairRules.OR PEXISTS CONV,
PairRules.RIGHT OR PEXISTS CONV.

LEFT_OR_PFORALL_CONV (PairRules)

LEFT_OR_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the left disjunct outwards through a disjunc-
tion.

Description
When applied to a term of the form (!p. t) \/ u, the conversion LEFT_OR_FORALL_CONV

returns the theorem:

|- (!p. t) \/ u = (!p’. t[p’/p] \/ u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) \/ u.

LEFT PBETA 389

See also
Conv.LEFT OR FORALL CONV, PairRules.OR PFORALL CONV, PairRules.PFORALL OR CONV,
PairRules.RIGHT OR PFORALL CONV.

LEFT_PBETA (PairRules)

LEFT_PBETA : (thm -> thm)

Synopsis
Beta-reduces a top-level paired beta-redex on the left-hand side of an equation.

Description
When applied to an equational theorem, LEFT_PBETA applies paired beta-reduction at
top level to the left-hand side (only). Variables are renamed if necessary to avoid free
variable capture.

A |- (\x. t1) t2 = s
---------------------- LEFT_PBETA

A |- t1[t2/x] = s

Failure
Fails unless the theorem is equational, with its left-hand side being a top-level paired
beta-redex.

See also
Drule.RIGHT BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,
PairRules.PBETA TAC, PairRules.RIGHT PBETA, PairRules.RIGHT LIST PBETA,
PairRules.LEFT LIST PBETA.

let_tm (boolSyntax)

let_tm : term

Synopsis
Constant denoting let expressions.

390 Chapter 1. Pre-defined ML Identifiers

Description
The ML variable boolSyntax.let_tm is bound to the term bool$LET.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.bool case,
boolSyntax.arb.

lhs (boolSyntax)

lhs : term -> term

Synopsis
Returns the left-hand side of an equation.

Description
If M has the form t1 = t2 then lhs M returns t1.

Failure
Fails if the term is not an equation.

See also
boolSyntax.rhs, boolSyntax.dest eq, boolSyntax.mk eq.

doc.

Lib.doc

structure Lib

Synopsis
Collection of commonly used functions

Description
Lib is a collection of functions that have been found useful in writing the HOL system.

Comments
The SML Basis Library offers alternatives to some of the functions found in Lib.

LIST BETA CONV 391

LIST_BETA_CONV (Drule)

LIST_BETA_CONV : conv

Synopsis
Performs an iterated beta conversion.

Description
The conversion LIST_BETA_CONV maps terms of the form

"(\x1 x2 ... xn. u) v1 v2 ... vn"

to the theorems of the form

|- (\x1 x2 ... xn. u) v1 v2 ... vn = u[v1/x1][v2/x2] ... [vn/xn]

where u[vi/xi] denotes the result of substituting vi for all free occurrences of xi in u,
after renaming sufficient bound variables to avoid variable capture.

Failure
LIST_BETA_CONV tm fails if tm does not have the form "(\x1 ... xn. u) v1 ... vn" for n
greater than 0.

Example

- LIST_BETA_CONV (Term ‘(\x y. x+y) 1 2‘);
> val it = |- (\x y. x + y)1 2 = 1 + 2 : thm

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.RIGHT BETA,
Drule.RIGHT LIST BETA.

list_compare (Lib)

list_compare : (’a * ’a -> order) -> ’a list * ’a list -> order

Synopsis
Lifts a comparison function to a lexicographic ordering on lists.

392 Chapter 1. Pre-defined ML Identifiers

Description
An application list_compare comp (L1,L2) uses comp as a basis for comparing the lists L1
and L2 lexicographically, in left-to-right order. The returned value is one of {LESS, EQUAL, GREATER}.

Failure
If comp fails when applied to corresponding elements of L1 and L2.

Example

- list_compare Int.compare ([1,2,3,4], [1,2,3,4]);
> val it = EQUAL : order

- list_compare Int.compare ([1,2,3,4], [1,2,3,4,5]);
> val it = LESS : order

- list_compare Int.compare ([1,2,3,4], [1,2,3,2]);
> val it = GREATER : order

LIST_CONJ (Drule)

LIST_CONJ : thm list -> thm

Synopsis
Conjoins the conclusions of a list of theorems.

Description

A1 |- t1 ... An |- tn
---------------------------------- LIST_CONJ
A1 u ... u An |- t1 /\ ... /\ tn

Failure
LIST_CONJ fails if applied to an empty list of theorems.

Comments
LIST_CONJ does not check for alpha-equivalence of assumptions when forming their
union. If a particular assumption is duplicated within one of the input theorems as-
sumption lists, then it may be duplicated in the resulting assumption list.

list mk abs 393

See also
Drule.BODY CONJUNCTS, Thm.CONJ, Thm.CONJUNCT1, Thm.CONJUNCT2, Drule.CONJUNCTS,
Drule.CONJ PAIR, Tactic.CONJ TAC.

list_mk_abs (boolSyntax)

list_mk_abs : term list * term -> term

Synopsis
Iteratively constructs abstractions.

Description
list_mk_abs([x1,...,xn],t) returns the term \x1 ... xn.t.

Failure
Fails if the terms in the list are not variables.

See also
boolSyntax.strip abs, Term.mk abs.

list_mk_abs (Term)

list_mk_abs : term list * term -> term

Synopsis
Performs a sequence of lambda binding operations.

Description
An application list_mk_abs ([v1,...,vn], M) yields the term \v1 ... vn. M. Free oc-
currences of v1,...,vn in M become bound in the result.

Failure
Fails if if some vi (1 ¡= i ¡= n) is not a variable.

394 Chapter 1. Pre-defined ML Identifiers

Example

- list_mk_abs ([mk_var("v1",bool),mk_var("v2",bool),mk_var("v3",bool)],
Term ‘v1 /\ v2 /\ v3‘);

> val it = ‘\v1 v2 v3. v1 /\ v2 /\ v3‘ : term

Comments
In the current implementation, list_mk_abs is more efficient than iteration of mk_abs for
larger tasks.

See also
Term.mk abs, boolSyntax.list mk forall, boolSyntax.list mk exists.

list_mk_binder (Term)

list_mk_binder : term option -> term list * term -> term

Synopsis
Performs a sequence of variable binding operations on a term

Description
An application list_mk_binder (SOME c) ([v1,...,vn],M) builds the term c (\v1. ... (c (\vn. M) ...)

The term c should be a binder, that is, a constant that takes a lambda abstraction and
returns a bound term. Thus list_mk_binder implements Church’s view that variable
binding operations should be reduced to lambda-binding.

An application list_mk_binder NONE ([v1,...,vn],M) builds the term \v1...vn. M.

Failure
list_mk_binder opt ([v1,...,vn],M) fails if some vi 1 <= i <= n is not a variable. It
also fails if the constructed term c (\v1. ... (c (\vn. M) ...)) is not well typed.

Example
Repeated existential quantification is easy to code up using list_mk_binder. For testing,

list mk binder 395

we make a list of boolean variables.

- fun upto b t acc = if b >= t then rev acc else upto (b+1) t (b::acc)

fun vlist n = map (C (curry mk_var) bool o concat "v" o int_to_string)
(upto 0 n []);

val vars = vlist 100;

> val vars =
[‘v0‘, ‘v1‘, ‘v2‘, ‘v3‘, ‘v4‘, ‘v5‘, ‘v6‘, ‘v7‘, ‘v8‘, ‘v9‘, ‘v10‘, ‘v11‘,
‘v12‘, ‘v13‘, ‘v14‘, ‘v15‘, ‘v16‘, ‘v17‘, ‘v18‘, ‘v19‘, ‘v20‘, ‘v21‘,
‘v22‘, ‘v23‘, ‘v24‘, ‘v25‘, ‘v26‘, ‘v27‘, ‘v28‘, ‘v29‘, ‘v30‘, ‘v31‘,
‘v32‘, ‘v33‘, ‘v34‘, ‘v35‘, ‘v36‘, ‘v37‘, ‘v38‘, ‘v39‘, ‘v40‘, ‘v41‘,
‘v42‘, ‘v43‘, ‘v44‘, ‘v45‘, ‘v46‘, ‘v47‘, ‘v48‘, ‘v49‘, ‘v50‘, ‘v51‘,
‘v52‘, ‘v53‘, ‘v54‘, ‘v55‘, ‘v56‘, ‘v57‘, ‘v58‘, ‘v59‘, ‘v60‘, ‘v61‘,
‘v62‘, ‘v63‘, ‘v64‘, ‘v65‘, ‘v66‘, ‘v67‘, ‘v68‘, ‘v69‘, ‘v70‘, ‘v71‘,
‘v72‘, ‘v73‘, ‘v74‘, ‘v75‘, ‘v76‘, ‘v77‘, ‘v78‘, ‘v79‘, ‘v80‘, ‘v81‘,
‘v82‘, ‘v83‘, ‘v84‘, ‘v85‘, ‘v86‘, ‘v87‘, ‘v88‘, ‘v89‘, ‘v90‘, ‘v91‘,
‘v92‘, ‘v93‘, ‘v94‘, ‘v95‘, ‘v96‘, ‘v97‘, ‘v98‘, ‘v99‘] : term list

Now we exercise list_mk_binder.

- val exl_tm = list_mk_binder (SOME boolSyntax.existential)
(vars, list_mk_conj vars);

> val exl_tm =
‘?v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38
v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52 v53 v54 v55 v56
v57 v58 v59 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69 v70 v71 v72 v73 v74
v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92
v93 v94 v95 v96 v97 v98 v99.
v0 /\ v1 /\ v2 /\ v3 /\ v4 /\ v5 /\ v6 /\ v7 /\ v8 /\ v9 /\ v10 /\
v11 /\ v12 /\ v13 /\ v14 /\ v15 /\ v16 /\ v17 /\ v18 /\ v19 /\ v20 /\
v21 /\ v22 /\ v23 /\ v24 /\ v25 /\ v26 /\ v27 /\ v28 /\ v29 /\ v30 /\
v31 /\ v32 /\ v33 /\ v34 /\ v35 /\ v36 /\ v37 /\ v38 /\ v39 /\ v40 /\
v41 /\ v42 /\ v43 /\ v44 /\ v45 /\ v46 /\ v47 /\ v48 /\ v49 /\ v50 /\
v51 /\ v52 /\ v53 /\ v54 /\ v55 /\ v56 /\ v57 /\ v58 /\ v59 /\ v60 /\
v61 /\ v62 /\ v63 /\ v64 /\ v65 /\ v66 /\ v67 /\ v68 /\ v69 /\ v70 /\
v71 /\ v72 /\ v73 /\ v74 /\ v75 /\ v76 /\ v77 /\ v78 /\ v79 /\ v80 /\
v81 /\ v82 /\ v83 /\ v84 /\ v85 /\ v86 /\ v87 /\ v88 /\ v89 /\ v90 /\
v91 /\ v92 /\ v93 /\ v94 /\ v95 /\ v96 /\ v97 /\ v98 /\ v99‘ : term

Comments
Terms with many consecutive binders should be constructed using list_mk_binder and
its instantiations list_mk_abs, list_mk_forall, and list_mk_exists. In the current im-
plementation of HOL, iterating mk_abs, mk_forall, or mk_exists is far slower for terms

396 Chapter 1. Pre-defined ML Identifiers

with many consecutive binders.

See also
Term.list mk abs, boolSyntax.list mk forall, boolSyntax.list mk exists,
Term.strip binder.

list_mk_comb (Term)

list_mk_comb : term * term list -> term

Synopsis
Iteratively constructs combinations (function applications).

Description
list_mk_comb(t,[t1,...,tn]) returns t t1 ... tn.

Failure
Fails if the types of t1,...,tn are not equal to the argument types of t. It is not necessary
for all the arguments of t to be given. In particular the list of terms t1,...,tn may be
empty.

Example

- list_mk_comb(conditional,[T, mk_var("one",alpha), mk_var("two",alpha)]);
> val it = ‘(if T then one else two)‘ : term

- list_mk_comb(universal,[]);
> val it = ‘$!‘ : term

- try list_mk_comb(universal,[F]);

Exception raised at Term.list_mk_comb:
incompatible types

See also
boolSyntax.strip comb, Term.mk comb.

list_mk_conj (boolSyntax)

list_mk_conj : term list -> term

list mk disj 397

Synopsis
Constructs the conjunction of a list of terms.

Description
list_mk_conj([t1,...,tn]) returns t1 /\ ... /\ tn.

Failure
Fails if the list is empty or if the list has more than one element, one or more of which
are not of type bool.

Example

- list_mk_conj [T,F,T];
> val it = ‘T /\ F /\ T‘ : term

- try list_mk_conj [T,mk_var("x",alpha),F];

Exception raised at boolSyntax.mk_conj:
Non-boolean argument

- list_mk_conj [mk_var("x",alpha)];
> val it = ‘x‘ : term

See also
boolSyntax.strip conj, boolSyntax.mk conj.

list_mk_disj (boolSyntax)

list_mk_disj : term list -> term

Synopsis
Constructs the conjunction of a list of terms.

Description
list_mk_disj([t1,...,tn]) returns t1 /\ ... /\ tn.

Failure
Fails if the list is empty or if the list has more than one element, one or more of which
are not of type bool.

398 Chapter 1. Pre-defined ML Identifiers

Example

- list_mk_disj [T,F,T];
> val it = ‘T \/ F \/ T‘ : term

- try list_mk_disj [T,mk_var("x",alpha),F];

Exception raised at boolSyntax.mk_disj:
Non-boolean argument

- list_mk_disj [mk_var("x",alpha)];
> val it = ‘x‘ : term

See also
boolSyntax.strip disj, boolSyntax.mk disj.

list_mk_exists (boolSyntax)

list_mk_exists : term list * term -> term

Synopsis
Iteratively constructs an existential quantification.

Description
list_mk_exists([x1,...,xn],t) returns ?x1 ... xn. t.

Failure
Fails if the terms in the list are not variables or if t is not of type bool and the list of
terms is non-empty. If the list of terms is empty the type of t can be anything.

See also
boolSyntax.strip exists, boolSyntax.mk exists.

LIST_MK_EXISTS (Drule)

LIST_MK_EXISTS : (term list -> thm -> thm)

list mk forall 399

Synopsis
Multiply existentially quantifies both sides of an equation using the given variables.

Description
When applied to a list of terms [x1;...;xn], where the xi are all variables, and a theo-
rem A |- t1 = t2, the inference rule LIST_MK_EXISTS existentially quantifies both sides
of the equation using the variables given, none of which should be free in the assump-
tion list.

A |- t1 = t2
-------------------------------------- LIST_MK_EXISTS ["x1";...;"xn"]
A |- (?x1...xn. t1) = (?x1...xn. t2)

Failure
Fails if any term in the list is not a variable or is free in the assumption list, or if the
theorem is not equational.

See also
Drule.EXISTS EQ, Drule.MK EXISTS.

list_mk_forall (boolSyntax)

list_mk_forall : term list * term -> term

Synopsis
Iteratively constructs a universal quantification.

Description
list_mk_forall([x1,...,xn],t) returns !x1 ... xn. t.

Failure
Fails if the terms in the list are not variables or if t is not of type bool and the list of
terms is non-empty. If the list of terms is empty the type of t can be anything.

See also
boolSyntax.strip forall, boolSyntax.mk forall.

400 Chapter 1. Pre-defined ML Identifiers

list_mk_fun (boolSyntax)

list_mk_fun : hol_type list * hol_type -> hol_type

Synopsis
Iteratively constructs function types.

Description
list_mk_fun([ty1,...,tyn],ty) returns ty1 -> (... (tyn -> t)...).

Failure
Never fails.

Example

- list_mk_fun ([alpha,bool],beta);
> val it = ‘:’a -> bool -> ’b‘ : hol_type

See also
boolSyntax.strip fun, Type.mk type, Type.-->.

list_mk_imp (boolSyntax)

list_mk_imp : term list * term -> term

Synopsis
Iteratively constructs implications.

Description
list_mk_imp([t1,...,tn],t) returns t1 ==> (... (tn ==> t)...).

Failure
Fails if any of t1,...,tn are not of type bool. Also fails if the list of terms is non-empty
and t is not of type bool. If the list of terms is empty the type of t can be anything.

list mk pabs 401

Example

- list_mk_imp ([T,F],T);
> val it = ‘T ==> F ==> T‘ : term

- try list_mk_imp ([T,F],mk_var("x",alpha));
evaluation failed list_mk_imp

- list_mk_imp ([],mk_var("x",alpha));
> val it = ‘x‘ : term

See also
boolSyntax.strip imp, boolSyntax.mk imp.

list_mk_pabs (pairSyntax)

list_mk_pabs : term list * term -> term

Synopsis
Iteratively constructs paired abstractions.

Description
list_mk_pabs([p1,...,pn], t) returns \p1 ... pn. t.

Failure
Fails with list_mk_pabs if the terms in the list are not paired structures of variables.

See also
boolSyntax.list mk abs, pairSyntax.strip pabs, pairSyntax.mk pabs.

list_mk_pair (pairSyntax)

list_mk_pair : term list -> term

Synopsis
Constructs a tuple from a list of terms.

402 Chapter 1. Pre-defined ML Identifiers

Description
list_mk_pair([t1,...,tn]) returns the term (t1,...,tn).

Failure
Fails if the list is empty.

Example

- pairSyntax.list_mk_pair [Term ‘1‘, T, Term ‘2‘];
> val it = ‘(1,T,2)‘ : term

- pairSyntax.list_mk_pair [Term ‘1‘];
> val it = ‘1‘ : term

See also
pairSyntax.strip pair, pairSyntax.mk pair.

LIST_MK_PEXISTS (PairRules)

LIST_MK_PEXISTS : (term list -> thm -> thm)

Synopsis
Multiply existentially quantifies both sides of an equation using the given pairs.

Description
When applied to a list of terms [p1;...;pn], where the pi are all paired structures of
variables, and a theorem A |- t1 = t2, the inference rule LIST_MK_PEXISTS existentially
quantifies both sides of the equation using the pairs given, none of the variables in the
pairs should be free in the assumption list.

A |- t1 = t2
-------------------------------------- LIST_MK_PEXISTS ["x1";...;"xn"]
A |- (?x1...xn. t1) = (?x1...xn. t2)

Failure
Fails if any term in the list is not a paired structure of variables, or if any variable is free
in the assumption list, or if the theorem is not equational.

See also
Drule.LIST MK EXISTS, PairRules.PEXISTS EQ, PairRules.MK PEXISTS.

LIST MK PFORALL 403

LIST_MK_PFORALL (PairRules)

LIST_MK_PFORALL : (term list -> thm -> thm)

Synopsis
Multiply universally quantifies both sides of an equation using the given pairs.

Description
When applied to a list of terms [p1;...;pn], where the pi are all paired structures of
variables, and a theorem A |- t1 = t2, the inference rule LIST_MK_PFORALL universally
quantifies both sides of the equation using the pairs given, none of the variables in the
pairs should be free in the assumption list.

A |- t1 = t2
-------------------------------------- LIST_MK_PFORALL ["x1";...;"xn"]
A |- (!x1...xn. t1) = (!x1...xn. t2)

Failure
Fails if any term in the list is not a paired structure of variables, or if any variable is free
in the assumption list, or if the theorem is not equational.

See also
Drule.LIST MK EXISTS, PairRules.PFORALL EQ, PairRules.MK PFORALL.

list_mk_res_exists (res_quanLib)

list_mk_res_exists : ((term # term) list # term) -> term)

Synopsis
Iteratively constructs a restricted existential quantification.

Description

list_mk_res_exists([("x1","P1");...;("xn","Pn")],"t")

returns "?x1::P1. ... ?xn::Pn. t".

404 Chapter 1. Pre-defined ML Identifiers

Failure
Fails with list_mk_res_exists if the first terms xi in the pairs are not a variable or if the
second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If the
list is empty the type of t can be anything.

See also
res quanLib.strip res exists, res quanLib.mk res exists.

list_mk_res_forall (res_quanLib)

list_mk_res_forall : (term # term) list # term) -> term

Synopsis
Iteratively constructs a restricted universal quantification.

Description

list_mk_res_forall([("x1","P1");...;("xn","Pn")],"t")

returns "!x1::P1. ... !xn::Pn. t".

Failure
Fails with list_mk_res_forall if the first terms xi in the pairs are not a variable or if the
second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If the
list is empty the type of t can be anything.

See also
res quanLib.strip res forall, res quanLib.mk res forall.

LIST_MP (Drule)

LIST_MP : (thm list -> thm -> thm)

Synopsis
Performs a chain of Modus Ponens inferences.

LIST PBETA CONV 405

Description
When applied to theorems A1 |- t1, ..., An |- tn and a theorem which is a chain of
implications with the successive antecedents the same as the conclusions of the theo-
rems in the list (up to alpha-conversion), A |- t1 ==> ... ==> tn ==> t, the LIST_MP

inference rule performs a chain of MP inferences to deduce A u A1 u ... u An |- t.

A1 |- t1 ... An |- tn A |- t1 ==> ... ==> tn ==> t
--- LIST_MP

A u A1 u ... u An |- t

Failure
Fails unless the theorem is a chain of implications whose consequents are the same as
the conclusions of the list of theorems (up to alpha-conversion), in sequence.

See also
Thm.EQ MP, Drule.MATCH MP, Tactic.MATCH MP TAC, Thm.MP, Tactic.MP TAC.

LIST_PBETA_CONV (PairRules)

LIST_PBETA_CONV : conv

Synopsis
Performs an iterated paired beta-conversion.

Description
The conversion LIST_PBETA_CONV maps terms of the form

(\p1 p2 ... pn. t) q1 q2 ... qn

to the theorems of the form

|- (\p1 p2 ... pn. t) q1 q2 ... qn = t[q1/p1][q2/p2] ... [qn/pn]

where t[qi/pi] denotes the result of substituting qi for all free occurrences of pi in t,
after renaming sufficient bound variables to avoid variable capture.

Failure
LIST_PBETA_CONV tm fails if tm does not have the form (\p1 ... pn. t) q1 ... qn for n

greater than 0.

406 Chapter 1. Pre-defined ML Identifiers

Example

- LIST_PBETA_CONV (Term ‘(\(a,b) (c,d) . a + b + c + d) (1,2) (3,4)‘);
> val it = |- (\(a,b) (c,d). a + b + c + d) (1,2) (3,4) = 1 + 2 + 3 + 4 : thm

See also
Drule.LIST BETA CONV, PairRules.PBETA CONV, Conv.BETA RULE, Tactic.BETA TAC,
PairRules.RIGHT PBETA, PairRules.RIGHT LIST PBETA, PairRules.LEFT PBETA,
PairRules.LEFT LIST PBETA.

list_ss (bossLib)

list_ss : simpset

Synopsis

Simplification set for lists.

Description

The simplification set list_ss is a version of arith_ss enhanced for the theory of
lists. The following rewrites are currently used to augment those already present from

list ss 407

arith_ss:

|- (!l. APPEND [] l = l) /\
!l1 l2 h. APPEND (h::l1) l2 = h::APPEND l1 l2

|- (!l1 l2 l3. (APPEND l1 l2 = APPEND l1 l3) = (l2 = l3)) /\
!l1 l2 l3. (APPEND l2 l1 = APPEND l3 l1) = (l2 = l3)

|- (!l. EL 0 l = HD l) /\ !l n. EL (SUC n) l = EL n (TL l)
|- (!P. EVERY P [] = T) /\ !P h t. EVERY P (h::t) = P h /\ EVERY P t
|- (FLAT [] = []) /\ !h t. FLAT (h::t) = APPEND h (FLAT t)
|- (LENGTH [] = 0) /\ !h t. LENGTH (h::t) = SUC (LENGTH t)
|- (!f. MAP f [] = []) /\ !f h t. MAP f (h::t) = f h::MAP f t
|- (!f. MAP2 f [] [] = []) /\

!f h1 t1 h2 t2.
MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2

|- (!x. MEM x [] = F) /\ !x h t. MEM x (h::t) = (x = h) \/ MEM x t
|- (NULL [] = T) /\ !h t. NULL (h::t) = F
|- (REVERSE [] = []) /\ !h t. REVERSE (h::t) = APPEND (REVERSE t) [h]
|- (SUM [] = 0) /\ !h t. SUM (h::t) = h + SUM t
|- !h t. HD (h::t) = h
|- !h t. TL (h::t) = t
|- !l1 l2 l3. APPEND l1 (APPEND l2 l3) = APPEND (APPEND l1 l2) l3
|- !l. ~NULL l ==> (HD l::TL l = l)
|- !a0 a1 a0’ a1’. (a0::a1 = a0’::a1’) = (a0 = a0’) /\ (a1 = a1’)
|- !l1 l2. LENGTH (APPEND l1 l2) = LENGTH l1 + LENGTH l2
|- !l f. LENGTH (MAP f l) = LENGTH l
|- !f l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)
|- !a1 a0. ~(a0::a1 = [])
|- !a1 a0. ~([] = a0::a1)
|- !l f. ((MAP f l = []) = (l = [])) /\

(([] = MAP f l) = (l = []))
|- !l. APPEND l [] = l
|- !l x. ~(l = x::l) /\ ~(x::l = l)
|- (!v f. case v f [] = v) /\

!v f a0 a1. case v f (a0::a1) = f a0 a1
|- (!l1 l2. ([] = APPEND l1 l2) = (l1 = []) /\ (l2 = [])) /\

!l1 l2. (APPEND l1 l2 = []) = (l1 = []) /\ (l2 = [])
|- (ZIP ([][]) = []) /\

!x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2)
|- (UNZIP [] = ([],[])) /\

!x l. UNZIP (x::l) = (FST x::FST (UNZIP l),SND x::SND (UNZIP l))
|- !P l1 l2. EVERY P (APPEND l1 l2) = EVERY P l1 /\ EVERY P l2
|- !P l1 l2. EXISTS P (APPEND l1 l2) = EXISTS P l1 \/ EXISTS P l2
|- !e l1 l2. MEM e (APPEND l1 l2) = MEM e l1 \/ MEM e l2
|- (!x. LAST [x] = x) /\ !x y z. LAST (x::y::z) = LAST (y::z)
|- (!x. FRONT [x] = []) /\ !x y z. FRONT (x::y::z) = x::FRONT (y::z)
|- (!f e. FOLDL f e [] = e) /\

!f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l
|- (!f e. FOLDR f e [] = e) /\

!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l)

See also
BasicProvers.RW TAC, BasicProvers.SRW TAC, simpLib.SIMP TAC, simpLib.SIMP CONV,

408 Chapter 1. Pre-defined ML Identifiers

simpLib.SIMP RULE, BasicProvers.bool ss, bossLib.std ss, bossLib.arith ss.

listDB (DB)

listDB : unit -> data list

Synopsis
All theorems, axioms, and definitions in the currently loaded theory segments.

Description
An invocation listDB() returns everything that has been stored in all theory segments
currently loaded.

Example

- length (listDB());
> val it = 736 : int

See also
DB.thy, DB.theorems, DB.definitions, DB.axioms, DB.find, DB.match.

map2 (Lib)

map2 : (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list

Synopsis
Maps a function over two lists to create one new list.

Description
map2 f [x1,...,xn] [y1,...,yn] returns [f x1 y1,...,f xn yn].

Failure
Fails if the two lists are of different lengths. Also fails if any f xi yi fails.

MAP EVERY 409

Example

- map2 (curry op+) [1,2,3] [3,2,1];
> val it = [4, 4, 4] : int list

See also
Lib.itlist, Lib.rev itlist, Lib.itlist2, Lib.rev itlist2.

MAP_EVERY (Tactical)

MAP_EVERY : ((* -> tactic) -> * list -> tactic)

Synopsis
Sequentially applies all tactics given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the
elements of which have the same type as f’s domain type, MAP_EVERY maps the function
f over the list, producing a list of tactics, then applies these tactics in sequence as in the
case of EVERY. The effect is:

MAP_EVERY f [x1;...;xn] = (f x1) THEN ... THEN (f xn)

If the operand list is empty, then MAP_EVERY has no effect.

Failure
The application of MAP_EVERY to a function and operand list fails iff the function fails
when applied to any element in the list. The resulting tactic fails iff any of the resulting
tactics fails.

Example
A convenient way of doing case analysis over several boolean variables is:

MAP_EVERY BOOL_CASES_TAC ["var1:bool";...;"varn:bool"]

See also
Tactical.EVERY, Tactical.FIRST, Tactical.MAP FIRST, Tactical.THEN.

410 Chapter 1. Pre-defined ML Identifiers

MAP_FIRST (Tactical)

MAP_FIRST : ((* -> tactic) -> * list -> tactic)

Synopsis
Applies first tactic that succeeds in a list given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the
elements of which have the same type as f’s domain type, MAP_FIRST maps the function
f over the list, producing a list of tactics, then tries applying these tactics to the goal
till one succeeds. If f(xm) is the first to succeed, then the overall effect is the same as
applying f(xm). Thus:

MAP_FIRST f [x1;...;xn] = (f x1) ORELSE ... ORELSE (f xn)

Failure
The application of MAP_FIRST to a function and tactic list fails iff the function does when
applied to any of the elements of the list. The resulting tactic fails iff all the resulting
tactics fail when applied to the goal.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.MAP EVERY, Tactical.ORELSE.

mapfilter (Lib)

mapfilter : (’a -> ’b) -> ’a list -> ’b list

Synopsis
Applies a function to every element of a list, returning a list of results for those elements
for which application succeeds.

Failure
If f x raises Interrupt for some element x of l, then mapfilter f l fails.

match 411

Example

- mapfilter hd [[1,2,3],[4,5],[],[6,7,8],[]];
> val it = [1, 4, 6] : int list

See also
Lib.filter, Lib.gather.

match (DB)

match : string list -> term -> data list

Synopsis
Attempt to find matching theorems in the specified theories.

Description
An invocation DB.match [s1,...,sn] M collects all theorems, definitions, and axioms of
the theories designated by s1,...,sn that have a subterm that matches M. If there are no
matches, the empty list is returned.

The strings s1,...,sn should be a subset of the currently loaded theory segments. The
string "-" may be used to designate the current theory segment. If the list of theories is
empty, then all currently loaded theories are searched.

Failure
Never fails.

412 Chapter 1. Pre-defined ML Identifiers

Example

- DB.match ["bool","pair"] (Term ‘(a = b) = c‘);
<<HOL message: inventing new type variable names: ’a>>
> val it =

[(("bool", "EQ_CLAUSES"),
(|- !t.((T = t) = t) /\ ((t = T) = t) /\

((F = t) = ~t) /\ ((t = F) = ~t), Db.Thm)),
(("bool", "EQ_EXPAND"),
(|- !t1 t2. (t1 = t2) = t1 /\ t2 \/ ~t1 /\ ~t2, Db.Thm)),
(("bool", "EQ_IMP_THM"),
(|- !t1 t2. (t1 = t2) = (t1 ==> t2) /\ (t2 ==> t1), Db.Thm)),
(("bool", "EQ_SYM_EQ"), (|- !x y. (x = y) = (y = x), Db.Thm)),
(("bool", "FUN_EQ_THM"), (|- !f g. (f = g) = !x. f x = g x, Db.Thm)),
(("bool", "OR_IMP_THM"), (|- !A B. (A = B \/ A) = B ==> A, Db.Thm)),
(("bool", "REFL_CLAUSE"), (|- !x. (x = x) = T, Db.Thm)),
(("pair", "CLOSED_PAIR_EQ"),
(|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b), Db.Thm)),
(("pair", "CURRY_ONE_ONE_THM"),
(|- (CURRY f = CURRY g) = (f = g), Db.Thm)),
(("pair", "PAIR_EQ"), (|- ((x,y) = (a,b)) = (x = a) /\ (y = b), Db.Thm)),
(("pair", "UNCURRY_ONE_ONE_THM"),
(|- (UNCURRY f = UNCURRY g) = (f = g), Db.Thm))] :

((string * string) * (thm * class)) list

Comments
The notion of matching is a restricted version of higher-order matching.

Uses
For locating theorems when doing interactive proof.

See also
DB.matcher, DB.matchp, DB.find, DB.theorems, Db.thy, Db.listDB.

MATCH_ACCEPT_TAC (Tactic)

MATCH_ACCEPT_TAC : thm_tactic

Synopsis
Solves a goal which is an instance of the supplied theorem.

MATCH MP 413

Description
When given a theorem A’ |- t and a goal A ?- t’ where t can be matched to t’ by
instantiating variables which are either free or universally quantified at the outer level,
including appropriate type instantiation, MATCH_ACCEPT_TAC completely solves the goal.

A ?- t’
========= MATCH_ACCEPT_TAC (A’ |- t)

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has a conclusion which is instantiable to match that of the goal.

Example
The following example shows variable and type instantiation at work. We can use the
polymorphic list theorem HD:

HD = |- !h t. HD(CONS h t) = h

to solve the goal:

?- HD [1;2] = 1

simply by:

MATCH_ACCEPT_TAC HD

See also
Tactic.ACCEPT TAC.

MATCH_MP (Drule)

MATCH_MP : thm -> thm -> thm

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !x1...xn. t1 ==> t2 and A2 |- t1’, the inference
rule MATCH_MP matches t1 to t1’ by instantiating free or universally quantified variables

414 Chapter 1. Pre-defined ML Identifiers

in the first theorem (only), and returns a theorem A1 u A2 |- !xa..xk. t2’, where t2’

is a correspondingly instantiated version of t2. Polymorphic types are also instantiated
if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any which were universally quantified over in the first argument theorem
will be universally quantified over in the result, and in the same order.

A1 |- !x1..xn. t1 ==> t2 A2 |- t1’
-------------------------------------- MATCH_MP

A1 u A2 |- !xa..xk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly universally quantified) implication
whose antecedent can be instantiated to match the conclusion of the second theorem,
without instantiating any variables which are free in A1, the first theorem’s assumption
list.

Example
In this example, automatic renaming occurs to maintain the most general form of the
theorem, and the variant corresponding to z is universally quantified over, since it was
universally quantified over in the first argument theorem.

- val ith = (GENL [Term ‘x:num‘, Term ‘z:num‘]
o DISCH_ALL
o AP_TERM (Term ‘$+ (w + z)‘))

(ASSUME (Term ‘x:num = y‘));
> val ith = |- !x z. (x = y) ==> (w + z + x = w + z + y) : thm

- val th = ASSUME (Term ‘w:num = z‘);
> val th = [w = z] |- w = z : thm

- MATCH_MP ith th;
> val it = [w = z] |- !z’. w’ + z’ + w = w’ + z’ + z : thm

See also
Thm.EQ MP, Tactic.MATCH MP TAC, Thm.MP, Tactic.MP TAC.

MATCH_MP_TAC (Tactic)

MATCH_MP_TAC : thm_tactic

match term 415

Synopsis
Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

A’ |- !x1...xn. s ==> !y1...ym. t

MATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitu-
tion and/or type instance of t to the corresponding instance of s. Any variables free in
s but not in t will be existentially quantified in the resulting subgoal:

A ?- !v1...vi. t’
====================== MATCH_MP_TAC (A’ |- !x1...xn. s ==> !y1...tm. t)

A ?- ?z1...zp. s’

where z1, ..., zp are (type instances of) those variables among x1, ..., xn that do not
occur free in t. Note that this is not a valid tactic unless A’ is a subset of A.

Failure
Fails unless the theorem is an (optionally universally quantified) implication whose con-
sequent can be instantiated to match the goal. The generalized variables v1, ..., vi must
occur in s’ in order for the conclusion t of the supplied theorem to match t’.

See also
Thm.EQ MP, Drule.MATCH MP, Thm.MP, Tactic.MP TAC.

match_term (Term)

match_term : term -> term -> (term,term) subst * (hol_type,hol_type) subst

Synopsis
Finds instantiations to match one term to another.

Description
An application match_term M N attempts to find a set of type and term instantiations for
M to make it alpha-convertible to N. If match_term succeeds, it returns the instantiations

416 Chapter 1. Pre-defined ML Identifiers

in the form of a pair containing a term substitution and a type substitution. In particular,
if match_term pat ob succeeds in returning a value (S,T), then

aconv (subst S (inst T pat)) ob.

Failure
Fails if the term cannot be matched by one-way instantiation.

Example
The following shows how match_term could be used to match the conclusion of a theo-
rem to a term.

- val th = REFL (Term ‘x:’a‘);
val th = |- x = x : thm

- match_term (concl th) (Term ‘1 = 1‘);
val it = ([{redex = ‘x‘, residue = ‘1‘}],

[{redex = ‘:’a‘, residue = ‘:num‘}])
: term subst * hol_type subst

- INST_TY_TERM it th;
val it = |- 1 = 1

Comments
For instantiating theorems PART_MATCH is usually easier to use.

See also
Type.match type, Drule.INST TY TERM, Drule.PART MATCH.

match_terml (Term)

match_terml
: hol_type list -> term set -> term -> term

-> (term,term) subst * (hol_type,hol_type) subst

Synopsis
Match two terms while restricting some instantiations.

match terml 417

Description
An invocation match_terml avoid_tys avoid_tms pat ob (tmS,tyS), if it does not raise
an exception, returns a pair of substitutions (S,T) such that

aconv (subst S (inst T pat)) ob.

The arguments avoid_tys and avoid_tms specify type and term variables in pat that are
not allowed to become redexes in S and T.

Failure
match_terml will fail if no S and T meeting the above requirements can be found. If a
match (S,T) between pat and ob can be found, but elements of avoid_tys would appear
as redexes in T or elements of avoid_tms would appear as redexes in S, then match_terml

will also fail.

Example

- val (S,T) = match_terml [] empty_varset
(Term ‘\x:’a. x = f (y:’b)‘)
(Term ‘\a. a = ~p‘);

> val S = [{redex = ‘(f :’b -> ’a)‘, residue = ‘$~‘},
{redex = ‘(y :’b)‘, residue = ‘(p :bool)‘}] : ...

val T = [{redex = ‘:’b‘, residue = ‘:bool‘},
{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

- match_terml [alpha] empty_varset (* forbid instantiation of ’a *)
(Term ‘\x:’a. x = f (y:’b)‘)
(Term ‘\a. a = ~p‘);

! Uncaught exception:
! HOL_ERR

- match_terml [] (HOLset.add(empty_varset,mk_var("y",beta)))
(Term ‘\x:’a. x = f (y:’b)‘)
(Term ‘\a. a = ~p‘);

! Uncaught exception:
! HOL_ERR

See also
Term.match term, Term.raw match, Term.subst, Term.inst, Type.match typel,
Type.type subst.

418 Chapter 1. Pre-defined ML Identifiers

match_type (Type)

match_type : hol_type -> hol_type -> hol_type subst

Synopsis
Calculates a substitution theta such that instantiating the first argument with theta

equals the second argument.

Description
If match_type ty1 ty2 succeeds, then

type_subst (match_type ty1 ty2) ty1 = ty2

Failure
If no such substitution can be found.

Example

- match_type alpha (Type‘:num‘);
> val it = [{redex = ‘:’a‘, residue = ‘:num‘}] : hol_type subst

- let val patt = Type‘:(’a -> bool) -> ’b‘
val ty = Type‘:(num -> bool) -> bool‘

in
type_subst (match_type patt ty) patt = ty

end;
> val it = true : bool

- match_type (alpha --> alpha)
(ind --> bool);

! Uncaught exception:
! HOL_ERR

See also
Term.match term, HolKernel.ho match term, Type.type subst.

match typel 419

match_typel (Type)

match_typel : hol_type list -> hol_type -> hol_type
-> (hol_type, hol_type) subst

Synopsis
Match types with restrictions.

Description
An invocation match_typel away pat ty matches pat to ty in the same way as match_type,
but prohibits any of the type variables in away from being instantiated. In effect, the
elements of away, although type variables, are treated as constants in pat during the
matching process.

Failure
An invocation of match_typel away pat ty will fail if match_type pat ty would fail. It
will also fail if match_type pat ty would succeed giving a substitution [{redex_1,residue_1},...,{

where one or more of the redex_i are members of away.

Example
In the first example, we perform a normal match operation

- match_typel [] (alpha --> beta --> gamma)
(bool --> ind --> delta);

> val it = [{redex = ‘:’c‘, residue = ‘:’d‘},
{redex = ‘:’b‘, residue = ‘:ind‘},
{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

Now we require that gamma, although a type variable in the pattern, not be instantiable.
In the first try, the match succeeds because ’c is mapped only to itself. In the second, it

420 Chapter 1. Pre-defined ML Identifiers

fails because an association is made between ’c and ’d.

- match_typel [gamma] (alpha --> beta --> gamma)
(bool --> ind --> gamma);

> val it = [{redex = ‘:’b‘, residue = ‘:ind‘},
{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

- match_typel [gamma] (alpha --> beta --> gamma)
(bool --> ind --> delta);

! Uncaught exception:
! HOL_ERR

Comments
The use of away allows matching to take account of type variables that are ’frozen’ (by
occurring in the hypotheses of a theorem, for example). This allows certain fruitless
proof attempts to be avoided at the matching stage.

See also
Type.match type, Term.match term., HolKernel.ho match term, Type.type subst.

matcher (DB)

matcher : (term -> term -> ’a) -> string list -> term -> data list

Synopsis
All theory elements matching a given term.

Description
An invocation matcher pm [thy1,...,thyn] M collects all elements of the theory seg-
ments thy1,...,thyn that have a subterm N such that pm M does not fail (raise an excep-
tion) when applied to N. Thus matcher potentially traverses all subterms of all theorems
in all the listed theories in its search for ‘matches’.

If the list of theory segments is empty, then all currently loaded segments are exam-
ined. The string "-" may be used to designate the current theory segment.

Failure
Never fails, but may return an empty list.

matcher 421

Example

- DB.matcher match_term ["relation"] (Term ‘P \/ Q‘);
> val it =

[(("relation", "RC_def"), (|- !R x y. RC R x y = (x = y) \/ R x y, Def)),
(("relation", "RTC_CASES1"),
(|- !R x y. RTC R x y = (x = y) \/ ?u. R x u /\ RTC R u y, Thm)),
(("relation", "RTC_CASES2"),
(|- !R x y. RTC R x y = (x = y) \/ ?u. RTC R x u /\ R u y, Thm)),
(("relation", "RTC_TC_RC"),
(|- !R x y. RTC R x y ==> RC R x y \/ TC R x y, Thm)),
(("relation", "TC_CASES1"),
(|- !R x z. TC R x z ==> R x z \/ ?y. R x y /\ TC R y z, Thm)),
(("relation", "TC_CASES2"),
(|- !R x z. TC R x z ==> R x z \/ ?y. TC R x y /\ R y z, Thm))] :

((string * string) * (thm * class)) list

- DB.matcher (ho_match_term [] empty_varset) [] (Term ‘?x. P x \/ Q x‘);
<<HOL message: inventing new type variable names: ’a>>
> val it =

[(("arithmetic", "ODD_OR_EVEN"),
(|- !n. ?m. (n = SUC (SUC 0) * m) \/ (n = SUC (SUC 0) * m + 1), Thm)),
(("bool", "EXISTS_OR_THM"),
(|- !P Q. (?x. P x \/ Q x) = (?x. P x) \/ ?x. Q x, Thm)),
(("bool", "LEFT_OR_EXISTS_THM"),
(|- !P Q. (?x. P x) \/ Q = ?x. P x \/ Q, Thm)),
(("bool", "RIGHT_OR_EXISTS_THM"),
(|- !P Q. P \/ (?x. Q x) = ?x. P \/ Q x, Thm)),
(("sum", "IS_SUM_REP"),
(|- !f.

IS_SUM_REP f =
?v1 v2.

(f = (\b x y. (x = v1) /\ b)) \/ (f = (\b x y. (y = v2) /\ ~b)),
Def))] : ((string * string) * (thm * class)) list

Comments
Usually, pm will be a pattern-matcher, but it need not be.

See also
DB.match, DB.apropos, DB.matchp, DB.find.

422 Chapter 1. Pre-defined ML Identifiers

matchp (DB)

matchp : (thm -> bool) -> string list -> data list

Synopsis

All theory elements satisfying a predicate.

Description

An invocation matchp P [thy1,...,thyn] collects all elements of the theory segments
thy1,...,thyn that P holds of. If the list of theory segments is empty, then all currently
loaded segments are examined. The string "-" may be used to designate the current
theory segment.

Failure

Fails if P fails when applied to a theorem in one of the theories being searched.

matchp 423

Example
The following query returns all unconditional rewrite rules in the theory pair.

- matchp (is_eq o snd o strip_forall o concl) ["pair"];
> val it =

[(("pair", "CLOSED_PAIR_EQ"),
(|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b), Thm)),
(("pair", "COMMA_DEF"), (|- !x y. (x,y) = ABS_prod (MK_PAIR x y), Def)),
(("pair", "CURRY_DEF"), (|- !f x y. CURRY f x y = f (x,y), Def)),
(("pair", "CURRY_ONE_ONE_THM"), (|- (CURRY f = CURRY g) = (f = g), Thm)),
(("pair", "CURRY_UNCURRY_THM"), (|- !f. CURRY (UNCURRY f) = f, Thm)),
(("pair", "ELIM_PEXISTS"),
(|- (?p. P (FST p) (SND p)) = ?p1 p2. P p1 p2, Thm)),
(("pair", "ELIM_PFORALL"),
(|- (!p. P (FST p) (SND p)) = !p1 p2. P p1 p2, Thm)),
(("pair", "ELIM_UNCURRY"),
(|- !f. UNCURRY f = (\x. f (FST x) (SND x)), Thm)),
(("pair", "EXISTS_PROD"), (|- (?p. P p) = ?p_1 p_2. P (p_1,p_2), Thm)),
(("pair", "FORALL_PROD"), (|- (!p. P p) = !p_1 p_2. P (p_1,p_2), Thm)),
(("pair", "FST"), (|- !x y. FST (x,y) = x, Thm)),
(("pair", "IS_PAIR_DEF"),
(|- !P. IS_PAIR P = ?x y. P = MK_PAIR x y, Def)),
(("pair", "LAMBDA_PROD"),
(|- !P. (\p. P p) = (\(p1,p2). P (p1,p2)), Thm)),
(("pair", "LET2_RAND"),
(|- !P M N. P (let (x,y) = M in N x y) = (let (x,y) = M in P (N x y)),
Thm)),

(("pair", "LET2_RATOR"),
(|- !M N b. (let (x,y) = M in N x y) b = (let (x,y) = M in N x y b),
Thm)),

(("pair", "LEX_DEF"),
(|- !R1 R2. R1 LEX R2 = (\(s,t) (u,v). R1 s u \/ (s = u) /\ R2 t v),
Def)),

(("pair", "MK_PAIR_DEF"),
(|- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y)), Def)),
(("pair", "PAIR"), (|- !x. (FST x,SND x) = x, Def)),
(("pair", "pair_case_def"), (|- case = UNCURRY, Def)),
(("pair", "pair_case_thm"), (|- case f (x,y) = f x y, Thm)),
(("pair", "PAIR_EQ"), (|- ((x,y) = (a,b)) = (x = a) /\ (y = b), Thm)),
(("pair", "PAIR_MAP"),
(|- !f g p. (f ## g) p = (f (FST p),g (SND p)), Def)),
(("pair", "PAIR_MAP_THM"),
(|- !f g x y. (f ## g) (x,y) = (f x,g y), Thm)),
(("pair", "PEXISTS_THM"), (|- !P. (?x y. P x y) = ?(x,y). P x y, Thm)),
(("pair", "PFORALL_THM"), (|- !P. (!x y. P x y) = !(x,y). P x y, Thm)),
(("pair", "RPROD_DEF"),
(|- !R1 R2. RPROD R1 R2 = (\(s,t) (u,v). R1 s u /\ R2 t v), Def)),
(("pair", "SND"), (|- !x y. SND (x,y) = y, Thm)),
(("pair", "UNCURRY"), (|- !f v. UNCURRY f v = f (FST v) (SND v), Def)),
(("pair", "UNCURRY_CURRY_THM"), (|- !f. UNCURRY (CURRY f) = f, Thm)),
(("pair", "UNCURRY_DEF"), (|- !f x y. UNCURRY f (x,y) = f x y, Thm)),
(("pair", "UNCURRY_ONE_ONE_THM"),
(|- (UNCURRY f = UNCURRY g) = (f = g), Thm)),
(("pair", "UNCURRY_VAR"),

424 Chapter 1. Pre-defined ML Identifiers

max_print_depth (Globals)

max_print_depth : int ref

Synopsis
Sets depth bound on prettyprinting.

Description
The reference variable max_print_depth is used to define the maximum depth of print-
ing for the pretty printer. If the number of blocks (an internal notion used by the
prettyprinter) becomes greater than the value set by max_print_depth then the blocks
are abbreviated by the holophrast By default, the value of max_print_depth is ~1.
This is interpreted to mean ‘print everything’.

Failure
Never fails.

Example
To change the maximum depth setting to 10, the command will be:

- max_print_depth := 10;
> val it = () : unit

The theorem numeralTheory.numeral_distrib then prints as follows:

- numeralTheory.numeral_distrib;
> val it =

|- (!n. 0 + n = n) /\ (!n. n + 0 = n) /\
(!n m. NUMERAL n + NUMERAL m = NUMERAL (iZ (n + m))) /\
(!n. 0 * n = 0) /\ (!n. n * 0 = 0) /\
(!n m. * = NUMERAL (... * ...)) /\
(!n. ... - ... = 0) /\ (!n. ... = ...) /\ (!...) /\ ... /\ ...

: thm

measureInduct_on (bossLib)

measureInduct_on : term quotation -> tactic

mem 425

Synopsis
Perform complete induction with a supplied measure function.

Description
If q parses into a well-typed term M N, an invocation measureInduct_on q begins a proof
by induction, using M to map N into a number. The term N should occur free in the
current goal.

Failure
If M N does not parse into a term or if N does not occur free in the current goal.

Example
Suppose we wish to prove P (APPEND l1 l2) by induction on the length of l1. Then
measureInduct_on ‘LENGTH ll‘ yields the goal

{ !y. LENGTH y < LENGTH l1 ==> P (APPEND y l2) } ?- P (APPEND l1 l2)

See also
bossLib.completeInduct on, bossLib.Induct, bossLib.Induct on.

mem (Lib)

mem : ’’a -> ’’a list -> bool

Synopsis
Tests whether a list contains a certain member.

Description
An invocation mem x [x1,...,xn] returns true if some xi in the list is equal to x. Other-
wise it returns false.

Failure
Never fails.

Comments
Note that the type of the members of the list must be an SML equality type. If set
operations on a non-equality type are desired, use the ‘op ’ variants, which take an
equality predicate as an extra argument.

High performance finite set operations may be found in the ML Standard Basis Library.

426 Chapter 1. Pre-defined ML Identifiers

See also
Lib.op mem, Lib.insert, Lib.find, Lib.tryfind, Lib.exists, Lib.all, Lib.assoc,
Lib.rev assoc.

merge (Tag)

merge : tag -> tag -> tag

Synopsis
Combine two tags into one.

Description
When two theorems interact via inference, their tags are merged. This propagates to
the new theorem the fact that either or both were constructed via shortcut.

Failure
Never fails.

Example

- Tag.merge (Tag.read "foo") (Tag.read "bar");
> val it = Kerneltypes.TAG(["bar", "foo"], []) : tag

- Tag.merge it (Tag.read "foo");
> val it = Kerneltypes.TAG(["bar", "foo"], []) : tag

Comments
Although it is not harmful to use this entrypoint, there is little reason to, since the merge
operation is only used inside the HOL kernel.

See also
Tag.read, Thm.mk oracle thm, Thm.tag.

MESG_outstream (Feedback)

MESG_outstream : TextIO.outstream ref

MESG to string 427

Synopsis
Reference to output stream used when printing HOL_MESG

Description
The value of reference cell MESG_outstream controls where HOL_MESG prints its argument.

The default value of MESG_outstream is TextIO.stdOut.

Example

- val ostrm = TextIO.openOut "foo";
> val ostrm = <outstream> : outstream

- MESG_outstream := ostrm;
> val it = () : unit

- HOL_MESG "Nattering nabobs of negativity.";
> val it = () : unit

- TextIO.closeOut ostrm;
> val it = () : unit

- val istrm = TextIO.openIn "foo";
> val istrm = <instream> : instream

- print (TextIO.inputAll istrm);
<<HOL message: Nattering nabobs of negativity.>>

See also
Feedback, Feedback.HOL MESG, Feedback.ERR outstream, Feedback.WARNING outstream,
Feedback.emit MESG.

MESG_to_string (Feedback)

MESG_to_string : (string -> string) ref

Synopsis
Alterable function for formatting HOL_MESG

Description
MESG_to_string is a reference to a function for formatting the argument to an applica-
tion of HOL_MESG.

428 Chapter 1. Pre-defined ML Identifiers

The default value of MESG_to_string is format_MESG.

Example

- fun alt_MESG_report s = String.concat["Dear HOL user: ", s, "\n"];

- MESG_to_string := alt_MESG_report;

- HOL_MESG "Hi there."

Dear HOL user: Hi there.
> val it = () : unit

See also
Feedback, Feedback.HOL MESG, Feedback.format MESG, Feedback.ERR to string,
Feedback.WARNING to string.

MESON_TAC (mesonLib)

MESON_TAC : thm list -> tactic

Synopsis
Performs first order proof search to prove the goal, using the given theorems as addi-
tional assumptions in the search.

Description
MESON_TAC performs first order proof using the model elimination algorithm. This algo-
rithm is semi-complete for pure first order logic. It makes special provision for handling
polymorphic and higher-order values, and often this is sufficient. It does not handle
conditional expressions at all, and these should be eliminated before MESON_TAC is ap-
plied.
MESON_TAC works by first converting the problem instance it is given into an internal

format where it can do proof search efficiently, without having to do proof search at the
level of HOL inference. If a proof is found, this is translated back into applications of
HOL inference rules, proving the goal.

The feedback given by MESON_TAC is controlled by the level of the integer reference
variable mesonLib.chatting. At level zero, nothing is printed. At the default level of
one, a line of dots is printed out as the proof progresses. At all other values for this
variable, MESON_TAC is most verbose. If the proof is progressing quickly then it is often

MK ABS 429

worth waiting for it to go quite deep into its search. Once a proof slows down, it is not
usually worth waiting for it after it has gone through a few (no more than five or six)
levels. (At level one, a “level” is represented by the printing of a single dot.)

Failure
MESON_TAC fails if it searches to a depth equal to the contents of the reference variable
mesonLib.max_depth (set to 30 by default, but changeable by the user) without finding
a proof. Shouldn’t fail otherwise.

Uses
MESON_TAC can only progress the goal to a successful proof of the (whole) goal or not at
all. In this respect it differs from tactics such as simplification and rewriting. Its ability
to solve existential goals and to make effective use of transitivity theorems make it a
particularly powerful tactic.

Comments
The assumptions of a goal are ignored when MESON_TAC is applied. To include assump-
tions use ASM_MESON_TAC.

See also
mesonLib.ASM MESON TAC, mesonLib.GEN MESON TAC.

MK_ABS (Drule)

MK_ABS : (thm -> thm)

Synopsis
Abstracts both sides of an equation.

Description
When applied to a theorem A |- !x. t1 = t2, whose conclusion is a universally quan-
tified equation, MK_ABS returns the theorem A |- \x. t1 = \x. t2.

A |- !x. t1 = t2
-------------------------- MK_ABS
A |- (\x. t1) = (\x. t2)

Failure
Fails unless the theorem is a (singly) universally quantified equation.

430 Chapter 1. Pre-defined ML Identifiers

See also
Thm.ABS, Drule.HALF MK ABS, Thm.MK COMB, Drule.MK EXISTS.

mk_abs (Term)

mk_abs : term * term -> term

Synopsis
Constructs an abstraction.

Description
mk_abs (v, t) returns the lambda abstraction \v. t. All free occurrences of v in t

thereby become bound.

Failure
Fails if v is not a variable.

See also
Term.dest abs, Term.is abs, boolSyntax.list mk abs, Term.mk var, Term.mk const,
Term.mk comb.

mk_arb (boolSyntax)

mk_arb : hol_type -> term

Synopsis
Creates a type instance of the ARB constant.

Description
For any HOL type ty, mk_arb ty creates a type instance of the ARB constant.

Failure
Never fails.

Comments
ARB is a constant of type ’a. It is sometimes used for creating pseudo-partial functions.

mk bool case 431

See also
boolSyntax.dest arb, boolSyntax.is arb, boolSyntax.arb.

mk_bool_case (boolSyntax)

mk_bool_case : term * term * term -> term

Synopsis
Constructs a case expression over bool.

Description
mk_bool_case M1 M2 b returns bool_case M1 M2 b. The prettyprinter displays this as
case b of T -> M1 || F -> M2. The bool_case constant may be thought of as a pattern-
matching version of the conditional.

Failure
Fails if b is not of type bool. Also fails if M1 and M2 do not have the same type.

Example

- mk_bool_case (Term‘f x‘,Term‘b:’b‘,Term‘x:bool‘);
<<HOL message: inventing new type variable names: ’a, ’b>>

> val it = ‘case x of T -> f x || F -> b‘ : term

See also
boolSyntax.dest bool case, boolSyntax.is bool case.

mk_comb (Term)

mk_comb : term * term -> term

Synopsis
Constructs a combination (function application).

Description
mk_comb (t1,t2) returns the combination t1 t2.

432 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if t1 does not have a function type, or if t1 has a function type, but its domain does
not equal the type of t2.

Example

- mk_comb (neg_tm,T);

> val it = ‘~T‘ : term

- mk_comb(T, T) handle e => Raise e;

Exception raised at Term.mk_comb:
incompatible types

See also
Term.dest comb, Term.is comb, Term.list mk comb, Term.mk var, Term.mk const,
Term.mk abs.

MK_COMB (Thm)

MK_COMB : thm * thm -> thm

Synopsis
Proves equality of combinations constructed from equal functions and operands.

Description
When applied to theorems A1 |- f = g and A2 |- x = y, the inference rule MK_COMB

returns the theorem A1 u A2 |- f x = g y.

A1 |- f = g A2 |- x = y
--------------------------- MK_COMB

A1 u A2 |- f x = g y

Failure
Fails unless both theorems are equational and f and g are functions whose domain types
are the same as the types of x and y respectively.

See also
Thm.AP TERM, Thm.AP THM, Tactic.MK COMB TAC.

MK COMB TAC 433

MK_COMB_TAC (Tactic)

MK_COMB_TAC : tactic

Synopsis
Breaks an equality between applications into two equality goals: one for the functions,
and other for the arguments.

Description
MK_COMB_TAC reduces a goal of the form A ?- f x = g y to the goals A ?- f = g and
A ?- x = y.

A ?- f x = g y
=========================== MK_COMB_TAC

A ?- f = g, A ?- x = y

Failure
Fails unless the goal is equational, with both sides being applications.

See also
Thm.MK COMB, Thm.AP TERM, Thm.AP THM, Tactic.AP THM TAC.

mk_cond (boolSyntax)

mk_cond : term * term * term -> term

Synopsis
Constructs a conditional term.

Description
mk_cond(t,t1,t2) constructs an application COND t t1 t2. This is rendered by the pret-
typrinter as if t then t1 else t2.

Failure
Fails if t is not of type bool or if t2 and t2 are of different types.

434 Chapter 1. Pre-defined ML Identifiers

Comments
The prettyprinter can be trained to print if t then t1 else t2 as t => t1 | t2.

See also
boolSyntax.dest cond, boolSyntax.is cond.

mk_conj (boolSyntax)

mk_conj : term * term -> term

Synopsis
Constructs a conjunction.

Description
mk_conj(t1, t2) returns the term t1 /\ t2.

Failure
Fails if t1 and t2 do not both have type bool.

See also
boolSyntax.dest conj, boolSyntax.is conj, boolSyntax.list mk conj,
boolSyntax.strip conj.

mk_cons (listSyntax)

mk_cons : {hd :term, tl :term} -> term

Synopsis
Constructs a CONS pair.

Description
mk_cons{hd = t, tl = ‘[t1;...;tn]‘} returns ‘[t;t1;...;tn]‘.

Failure
Fails if tl is not a list or if hd is not of the same type as the elements of the list.

mk const 435

See also
listSyntax.dest cons, listSyntax.is cons, listSyntax.mk list,
listSyntax.dest list, listSyntax.is list.

mk_const (Term)

mk_const : string * hol_type -> term

Synopsis
Constructs a constant.

Description
If n is a string that has been previously declared to be a constant with type ty and
and ty1 is an instance of ty, then mk_const(n,ty1) returns the specified instance of the
constant.

(A type ty1 is an ’instance’ of a type ty2 when match_type ty2 ty1 does not fail.)
Note, however, that constants with the same name (and type) may be declared in

different theories. If two theories having constants with the same name n are in the an-
cestry of the current theory, then mk_const(n,ty) will issue a warning before arbitrarily
selecting which constant to construct. In such situations, mk_thy_const allows one to
specify exactly which constant to use.

Failure
Fails if n is not the name of a known constant, or if ty is not an instance of the type that
the constant has in the signature.

Example

- mk_const ("T", bool);
> val it = ‘T‘ : term

- mk_const ("=", bool --> bool --> bool);
> val it = ‘$=‘ : term

- try mk_const ("test", bool);
Exception raised at Term.mk_const:
test not found

The following example shows a new constant being introduced that has the same
name as the standard equality of HOL. Then we attempt to make an instance of that

436 Chapter 1. Pre-defined ML Identifiers

constant.

- new_constant ("=", bool --> bool --> bool);
> val it = () : unit

- mk_const("=", bool --> bool --> bool);
<<HOL warning: Term.mk_const: "=": more than one possibility>>

> val it = ‘$=‘ : term

See also
Term.mk thy const, Term.dest const, Term.is const, Term.mk var, Term.mk comb,
Term.mk abs, Type.match type.

mk_disj (boolSyntax)

mk_disj : term * term -> term

Synopsis
Constructs a disjunction.

Description
If t1 and t2 are terms, both of type bool, then mk_disj(t1,t2) returns the term t1 \/ t2.

Failure
Fails if t1 or t2 does not have type bool.

See also
boolSyntax.dest disj, boolSyntax.is disj, boolSyntax.list mk disj,
boolSyntax.strip disj.

mk_eq (boolSyntax)

mk_eq : term * term -> term

Synopsis
Constructs an equation.

mk exists 437

Description
mk_eq(t1, t2) returns the term t1 = t2.

Failure
Fails if the type of t1 is not equal to that of t2.

See also
boolSyntax.dest eq, boolSyntax.is eq.

mk_exists (boolSyntax)

mk_exists : term * term -> term

Synopsis
Term constructor for existential quantification.

Description
If v is a variable and t is a term of type bool, then mk_exists (v,t) returns the term
?v. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest exists, boolSyntax.is exists, boolSyntax.list mk exists,
boolSyntax.strip exists.

MK_EXISTS (Drule)

MK_EXISTS : (thm -> thm)

Synopsis
Existentially quantifies both sides of a universally quantified equational theorem.

438 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a theorem A |- !x. t1 = t2, the inference rule MK_EXISTS returns the
theorem A |- (?x. t1) = (?x. t2).

A |- !x. t1 = t2
-------------------------- MK_EXISTS
A |- (?x. t1) = (?x. t2)

Failure
Fails unless the theorem is a singly universally quantified equation.

See also
Thm.AP TERM, Drule.EXISTS EQ, Thm.GEN, Drule.LIST MK EXISTS, Drule.MK ABS.

mk_exists1 (boolSyntax)

mk_exists1 : term * term -> term

Synopsis
Term constructor for unique existence.

Description
If v is a variable and t is a term of type bool, then mk_exists1 (v,t) returns the term
?!v. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest exists1, boolSyntax.is exists1.

mk_forall (boolSyntax)

mk_forall : term * term -> term

Synopsis
Term constructor for universal quantification.

mk HOL ERR 439

Description
If v is a variable and t is a term of type bool, then mk_forall (v,t) returns the term
!v. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest forall, boolSyntax.is forall, boolSyntax.list mk forall,
boolSyntax.strip forall.

mk_HOL_ERR (Feedback)

mk_HOL_ERR : string -> string -> string -> exn

Synopsis
Creates an application of HOL_ERR.

Description
mk_HOL_ERR provides a curried interface to the standard HOL_ERR exception; experience
has shown that this is often more convenient.

Failure
Never fails.

Example

- mk_HOL_ERR "Module" "function" "message"

> val it = HOL_ERR : exn

- print(exn_to_string it);

Exception raised at Module.function:
message
> val it = () : unit

See also
Feedback, Feedback.HOL ERR, Feedback.error record.

440 Chapter 1. Pre-defined ML Identifiers

mk_imp (boolSyntax)

mk_imp : term * term -> term

Synopsis
Constructs an implication.

Description
If t1 and t2 are terms of type bool, then mk_imp(t1,t2) constructs the term t1 ==> t2.

Failure
Fails if t1 and t2 are not both of type bool.

See also
boolSyntax.dest imp, boolSyntax.dest imp only, boolSyntax.is imp,
boolSyntax.is imp only, boolSyntax.list mk imp.

mk_istream (Lib)

mk_istream : (’a -> ’a) -> ’a -> (’a -> ’b) -> (’a,’b) istream

Synopsis
Create a stream.

Description
An application mk_istream trans init proj creates an imperative stream of elements.
The stream is generated by applying trans to the state. The first element in the stream
state is init. The value of the state is obtained by applying proj.

Failure
If an application of trans or proj fails when applied to the state.

Example
The following creates a stream of distinct strings.

- mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string);
> val it = <istream> : (int, string) istream

Comments
It is aesthetically unpleasant that the underlying implementation type is visible.

mk let 441

See any book on ML programming to see how functional streams are built.

See also
Lib.next, Lib.state, Lib.reset.

mk_let (boolSyntax)

mk_let : term * term -> term

Synopsis
Constructs a let term.

Description
The invocation mk_let (M,N) returns the term ‘LET M N‘. If M is of the form \x.t then
the result will be pretty-printed as let x = N in t. Since LET M N is defined to be M N,
one can think of a let-expression as a suspended beta-redex (if that helps).

Failure
Fails if the types of M and N are such that LET M N is not well-typed, i.e., the type of M

must be a function type, and the type of N must equal the domain of the type of M.

Example

- mk_let(Term‘\x. x \/ x‘, Term‘Q /\ R‘);
> val it = ‘let x = Q /\ R in x \/ x‘ : term

Comments
let expressions may be nested.

Pairing can also be used in the let syntax, provided pairTheory has been loaded. The
library pairLib provides support for manipulating ‘paired’ lets.

See also
boolSyntax.dest let, boolSyntax.is let, pairLib.

mk_list (listSyntax)

mk_list : {els : term list, ty : hol_type} -> term

442 Chapter 1. Pre-defined ML Identifiers

Synopsis
Constructs an object-level (HOL) list from an ML list of terms.

Description
mk_list{els = [t1, ..., tn], ty = ty} returns [t1;...;tn]:ty list. The type argu-
ment is required so that empty lists can be constructed.

Failure
Fails if any term in the list is not of the type specified as the second argument.

See also
listSyntax.dest list, listSyntax.is list, listSyntax.mk cons,
listSyntax.dest cons, listSyntax.is cons.

mk_neg (boolSyntax)

mk_neg : (term -> term)

Synopsis
Constructs a negation.

Description
mk_neg "t" returns "~t".

Failure
Fails with mk_neg unless t is of type bool.

See also
boolSyntax.dest neg, boolSyntax.is neg.

mk_oracle_thm (Thm)

mk_oracle_thm : tag -> term list * term -> thm

Synopsis
Construct a theorem without proof, and tag it.

mk oracle thm 443

Description

In principle, nearly every theorem of interest can be proved in HOL by using only the
axioms and primitive rules of inference. The use of ML to orchestrate larger inference
steps from the primitives, along with support in HOL for goal-directed proof, consider-
ably eases the task of formal proof. Nearly every theorem of interest can therefore be
produced as the end product of a chain of primitive inference steps, and HOL imple-
mentations strive to keep this purity.

However, it is occasionally useful to interface HOL with trusted external tools that
also produce, in some sense, theorems that would be derivable in HOL. It is clearly a
burden to require that HOL proofs accompany such theorems so that they can be (re-
)derived in HOL. In order to support greater interoperation of proof tools, therefore,
HOL provides the notion of a ‘tagged’ theorem.

A tagged theorem is manufactured by invoking mk_oracle_thm tag (A,w), where A is
a list of HOL terms of type bool, and w is also a HOL term of boolean type. No proof
is done; the sequent is merely injected into the type of theorems, and the tag value is
attached to it. The result is the theorem A |- w.

The tag value stays with the theorem, and it propagates in a hereditary fashion to
any theorem derived from the tagged theorem. Thus, if one examines a theorem with
Thm.tag and finds that it has no tag, then the theorem has been derived purely by proof
steps in the HOL logic. Otherwise, shortcuts have been taken, and the external tools,
also known as ‘oracles’, used to make the shortcuts are signified by the tags.

Failure

If some element of A does not have type bool, or w does not have type bool.

444 Chapter 1. Pre-defined ML Identifiers

Example
In the following, we construct a tag and then make a rogue rule of inference.

- val tag = Tag.read "SimonSays";
> val tag = Kerneltypes.TAG(["SimonSays"], []) : tag

- val SimonThm = mk_oracle_thm tag;
> val SimonThm = fn : term list * term -> thm

- val th = SimonThm ([], Term ‘!x. x‘);;
> val th = |- !x. x : thm

- val th1 = SPEC F th;
> val th1 = |- F : thm

- (show_tags := true; th1);
> val it = [oracles: SimonSays] [axioms:] [] |- F : thm

Tags accumulate in a manner similar to logical hypotheses.

- CONJ th1 th1;
> val it = [oracles: SimonSays] [axioms:] [] |- F /\ F : thm

- val SerenaThm = mk_oracle_thm (Tag.read "Serena");
> val SerenaThm = fn : term list * term -> thm

- CONJ th1 (SerenaThm ([],T));
> val it = [oracles: Serena, SimonSays] [axioms:] [] |- F /\ T : thm

Comments
It is impossible to detach a tag from a theorem.

See also
Thm.mk thm, Tag.read, Thm.tag, Theory.mk axiom.

MK_PABS (PairRules)

MK_PABS : (thm -> thm)

Synopsis
Abstracts both sides of an equation.

mk pabs 445

Description
When applied to a theorem A |- !p. t1 = t2, whose conclusion is a paired universally
quantified equation, MK_PABS returns the theorem A |- (\p. t1) = (\p. t2).

A |- !p. t1 = t2
-------------------------- MK_PABS
A |- (\p. t1) = (\p. t2)

Failure
Fails unless the theorem is a (singly) paired universally quantified equation.

See also
Drule.MK ABS, PairRules.PABS, PairRules.HALF MK PABS, PairRules.MK PEXISTS.

mk_pabs (pairSyntax)

mk_pabs : term * term -> term

Synopsis
Constructs a paired abstraction.

Description
If M is the tuple (v1,..(..)..,vn), and N is an arbitrary term, then mk_pabs (M,N) returns
the paired abstraction ‘\(v1,..(..)..,vn).N‘.

Failure
Fails unless M is an arbitrarily nested pair composed from variables, with no repetitions
of variables.

See also
pairSyntax.dest pabs, pairSyntax.is pabs, Term.mk abs.

MK_PAIR (PairRules)

MK_PAIR : thm -> thm -> thm

446 Chapter 1. Pre-defined ML Identifiers

Synopsis
Proves equality of pairs constructed from equal components.

Description
When applied to theorems A1 |- a = x and A2 |- b = y, the inference rule MK_PAIR

returns the theorem A1 u A2 |- (a,b) = (x,y).

A1 |- a = x A2 |- b = y
--------------------------- MK_PAIR
A1 u A2 |- (a,b) = (x,y)

Failure
Fails unless both theorems are equational.

mk_pair (pairSyntax)

mk_pair : term * term -> term

Synopsis
Constructs object-level pair from a pair of terms.

Description
mk_pair (t1,t2) returns (t1,t2).

Failure
Never fails.

See also
pairSyntax.dest pair, pairSyntax.is pair, pairSyntax.list mk pair.

MK_PEXISTS (PairRules)

MK_PEXISTS : (thm -> thm)

Synopsis
Existentially quantifies both sides of a universally quantified equational theorem.

MK PFORALL 447

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PEXISTS returns the
theorem A |- (?x. t1) = (?x. t2).

A |- !p. t1 = t2
-------------------------- MK_PEXISTS
A |- (?p. t1) = (?p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PairRules.PEXISTS EQ, PairRules.PGEN, PairRules.LIST MK PEXISTS,
PairRules.MK PABS.

MK_PFORALL (PairRules)

MK_PFORALL : (thm -> thm)

Synopsis
Universally quantifies both sides of a universally quantified equational theorem.

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PFORALL returns the
theorem A |- (!x. t1) = (!x. t2).

A |- !p. t1 = t2
-------------------------- MK_PFORALL
A |- (!p. t1) = (!p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PairRules.PFORALL EQ, PairRules.LIST MK PFORALL, PairRules.MK PABS.

mk_primed_var (Term)

mk_primed_var : string * hol_type -> term

448 Chapter 1. Pre-defined ML Identifiers

Synopsis
Primes a variable name sufficiently to make it distinct from all constants.

Description
When applied to a record made from a string v and a type ty, the function mk_primed_var

constructs a variable whose name consists of v followed by however many primes are
necessary to make it distinct from any constants in the current theory.

Failure
Never fails.

Example

- new_theory "wombat";
> val it = () : unit

- mk_primed_var("x", bool);
> val it = ‘x‘ : term

- new_constant("x", alpha);
> val it = () : unit

- mk_primed_var("x", bool);
> val it = ‘x’‘ : term

See also
Term.genvar, Term.variant, Globals.priming.

mk_prod (pairSyntax)

mk_prod : hol_type * hol_type -> hol_type

Synopsis
Constructs a product type from two constituent types.

Description
mk_prod(ty1, ty2) returns ty1 # t2.

Failure
Never fails.

MK PSELECT 449

See also
pairSyntax.is prod, pairSyntax.dest prod.

MK_PSELECT (PairRules)

MK_PSELECT : (thm -> thm)

Synopsis
Quantifies both sides of a universally quantified equational theorem with the choice
quantifier.

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PSELECT returns the
theorem A |- (@x. t1) = (@x. t2).

A |- !p. t1 = t2
-------------------------- MK_PSELECT
A |- (@p. t1) = (@p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PairRules.PSELECT EQ, PairRules.MK PABS.

mk_res_abstract (res_quanLib)

mk_res_abstract : (term # term # term) -> term

Synopsis
Term constructor for restricted abstraction.

Description
mk_res_abstract("var","P","t") returns "\var :: P . t".

450 Chapter 1. Pre-defined ML Identifiers

Failure
Fails with mk_res_abstract if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res abstract, res quanLib.is res abstract.

mk_res_exists (res_quanLib)

mk_res_exists : ((term # term # term) -> term)

Synopsis
Term constructor for restricted existential quantification.

Description
mk_res_exists("var","P","t") returns "?var :: P . t".

Failure
Fails with mk_res_exists if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res exists, res quanLib.is res exists,
res quanLib.list mk res exists.

mk_res_exists_unique (res_quanLib)

mk_res_exists_unique : (term # term # term) -> term

Synopsis
Term constructor for restricted unique existential quantification.

Description
mk_res_exists_unique ("var","P","t") returns "?!var :: P . t".

mk res forall 451

Failure
Fails with mk_res_exists_unique if the first term is not a variable or if P and t are not of
type ":bool".

See also
res quanLib.dest res exists unique, res quanLib.is res exists unique.

mk_res_forall (res_quanLib)

mk_res_forall : (term # term # term) -> term

Synopsis
Term constructor for restricted universal quantification.

Description
mk_res_forall("var","P","t") returns "!var :: P . t".

Failure
Fails with mk_res_forall if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res forall, res quanLib.is res forall,
res quanLib.list mk res forall.

mk_res_select (res_quanLib)

mk_res_select : (term # term # term) -> term

Synopsis
Term constructor for restricted choice quantification.

Description
mk_res_select("var","P","t") returns "@var :: P . t".

452 Chapter 1. Pre-defined ML Identifiers

Failure
Fails with mk_res_select if the first term is not a variable or if P and t are not of type
":bool".

See also
res quanLib.dest res select, res quanLib.is res select.

mk_select (boolSyntax)

mk_select : term * term -> term

Synopsis
Constructs a choice-term.

Description
If v is a variable and t is a term of type bool, then mk_select (v,t) returns @var. t.

Failure
Fails if v is not a variable or if t is not of type bool.

See also
boolSyntax.dest select, boolSyntax.is select.

mk_set (Lib)

mk_set : ’’a list -> ’’a list

Synopsis
Transforms a list into one with distinct elements.

Description
An invocation mk_set list returns a list consisting of the distinct members of list. In
particular, the result list has no repeated elements.

Failure
Never fails.

mk simpset 453

Example

- mk_set [1,1,1,2,2,2,3,3,4];
> val it = [1, 2, 3, 4] : int list

Comments
In some programming situations, it is convenient to implement sets by lists, in which
case mk_set may be helpful. However, such an implementation is only suitable for small
sets. Serious implementations of sets may be found in the Standard ML Basis Library.

ML equality types are used in the implementation of mk_set and its kin. This limits
its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op mk set, Lib.mem, Lib.insert, Lib.union, Lib.U, Lib.set diff,
Lib.subtract, Lib.intersect, Lib.null intersection, Lib.set eq.

mk_simpset (simpLib)

simpLib.mk_simpset : ssdata list -> simpset

Synopsis
Creates a simpset by combining a list of ssdata values.

Failure
Never fails.

Uses
Creates simpsets, which are a necessary argument to any simplification function.

See also
simpLib.++, simpLib.rewrites, simpLib.SIMP CONV.

mk_thm (Thm)

mk_thm : term list * term -> thm

454 Chapter 1. Pre-defined ML Identifiers

Synopsis
Creates an arbitrary theorem (dangerous!)

Description
The function mk_thm can be used to construct an arbitrary theorem. It is applied to a
pair consisting of the desired assumption list (possibly empty) and conclusion. All the
terms therein should be of type bool.

mk_thm([a1,...,an],c) = ({a1,...,an} |- c)

mk_thm is an application of mk_oracle_thm, and every application of it tags the resulting
theorem with MK_THM.

Failure
Fails unless all the terms provided for assumptions and conclusion are of type bool.

Example
The following shows how to create a simple contradiction:

- val falsity = mk_thm([],boolSyntax.F);
> val falsity = |- F : thm

- Globals.show_tags := true;
> val it = () : unit

- falsity;
> val it = [oracles: MK_THM] [axioms:] [] |- F : thm

Comments
Although mk_thm can be useful for experimentation or temporarily plugging gaps, its use
should be avoided if at all possible in important proofs, because it can be used to create
theorems leading to contradictions. The example above is a trivial case, but it is all too
easy to create a contradiction by asserting ‘obviously sound’ theorems.

All theorems which are likely to be needed can be derived using only HOL’s inbuilt ax-
ioms and primitive inference rules, which are provably sound (see the DESCRIPTION).
Basing all proofs, normally via derived rules and tactics, on just these axioms and infer-
ence rules gives proofs which are (apart from bugs in HOL or the underlying system)
completely secure. This is one of the great strengths of HOL, and it is foolish to sacrifice
it to save a little work.

Because of the way tags are propagated during proof, a theorem proved with the aid
of mk_thm is detectable by examining its tag.

See also
Theory.new axiom, Thm.mk oracle thm, Thm.tag, Globals.show tags.

mk thy const 455

mk_thy_const (Term)

mk_thy_const : {Thy:string, Name:string, Ty:hol_type} -> term

Synopsis
Constructs a constant.

Description
If n is a string that has been previously declared to be a constant with type ty in theory
thy, and ty1 is an instance of ty, then mk_thy_const{Name=n, Thy=thy, Ty=ty1} returns
the specified instance of the constant.

(A type ty1 is an ’instance’ of a type ty2 when match_type ty2 ty1 does not fail.)

Failure
Fails if n is not the name of a constant in theory thy, if thy is not in the ancestry of the
current theory, or if ty1 is not an instance of ty.

Example

- mk_thy_const {Name="T", Thy="bool", Ty=bool};
> val it = ‘T‘ : term

- try mk_thy_const {Name = "bar", Thy="foo", Ty=bool};
Exception raised at Term.mk_thy_const:
"foo$bar" not found

See also
Term.dest thy const, Term.mk const, Term.dest const, Term.is const, Term.mk var,
Term.mk comb, Term.mk abs, Type.match type.

mk_thy_type (Type)

mk_thy_type
: {Thy:string, Name:string, Args:hol_type list} -> hol_type

Synopsis
Constructs a type.

456 Chapter 1. Pre-defined ML Identifiers

Description
If s is a string that has been previously declared to be a type with arity type n in theory
thy, and the length of tyl is equal to n, then mk_thy_type{Tyop=s, Thy=thy, Args=tyl}

returns the requested compound type.

Failure
Fails if s is not the name of a type in theory thy, if thy is not in the ancestry of the
current theory, or if n is not the length of tyl.

Example

- mk_thy_type {Tyop="fun", Thy="min", Args = [alpha,bool]};
> val it = ‘:’a -> bool‘ : hol_type

- try mk_thy_type {Tyop="bar", Thy="foo", Args = []};

Exception raised at Type.mk_thy_type:
"foo$bar" not found

Comments
In general, mk_thy_type is to be preferred over mk_type because HOL provides a fresh
namespace for each theory (mk_type is a holdover from a time when there was only one
namespace shared by all theories).

See also
Type.mk type, Type.dest thy type, Term.mk const, Term.mk thy const, decls,
op arity.

mk_type (Type)

mk_type : string * hol_type list -> hol_type

Synopsis
Constructs a compound type.

Description
mk_type(tyop,[ty1,...,tyn]) returns the HOL type (ty1,...,tyn)tyop, provided tyop

is the name of a known n-ary type constructor.

mk var 457

Failure
Fails if tyop is not the name of a known type, or if tyop is known, but the length of the
list of argument types is not equal to the arity of tyop.

Example

- mk_type ("bool",[]);
> val it = ‘:bool‘ : hol_type

- mk_type ("fun",[alpha,it]);
> val it = ‘:’a -> bool‘ : hol_type

Comments
Note that type operators with the same name (and arity) may be declared in different
theories. If two theories having type operators with the same name s are in the ancestry
of the current theory, then mk_type(s,tyl) will issue a warning before arbitrarily select-
ing which type operator to use. In such situations, it is preferable to use mk_thy_type

since it allows one to specify exactly which type operator to use.

See also
Type.mk thy type, Type.dest type, Type.mk vartype, Type.-->.

mk_var (Term)

mk_var : string * hol_type -> term

Synopsis
Constructs a variable of given name and type.

Description
If v is a string and ty is a HOL type, then mk_var(v, ty) returns a HOL variable.

Failure
Never fails.

Comments
mk_var can be used to construct variables with names which are not acceptable to the
term parser. In particular, a variable with the name of a known constant can be con-
structed using mk_var.

458 Chapter 1. Pre-defined ML Identifiers

See also
Term.dest var, Term.is var, Term.mk const, Term.mk comb, Term.mk abs.

mk_vartype (Type)

mk_vartype : string -> hol_type

Synopsis
Constructs a type variable of the given name.

Failure
Fails if the string does not begin with ’.

Example

- mk_vartype "’giraffe";
> val it = ‘:’giraffe‘ : hol_type

- try mk_vartype "test";

Exception raised at Type.mk_vartype:
incorrect syntax

See also
Type.dest vartype, Type.is vartype, Type.mk type.

mlquote (Lib)

mlquote : string -> string

Synopsis
Put quotation marks around a string.

Description
Like quote, mlquote s puts quotation marks around a string. However, it also transforms
the characters in a string so that, when printed, it would be a valid ML lexeme.

monitoring 459

Failure
Never fails

Example

- print (quote "foo\nbar" ^ "\n");
"foo
bar"
> val it = () : unit

- print (mlquote "foo\nbar" ^ "\n");
"foo\nbar"
> val it = () : unit

See also
Lib.quote.

monitoring (computeLib)

monitoring : (term -> bool) option ref

Synopsis
Monitoring support for evaluation

Description
The reference variable monitoring provides a simple way to view the operation of EVAL,
EVAL_RULE, and EVAL_TAC. The initial value of monitoring is NONE. If one wants to mon-
itor the expansion of a function, defined with constant c, then setting monitoring to
SOME (same_const c) will tell the system to print out the expansion of c by the evalua-
tion entrypoints. To monitor the expansions of a collection of functions, defined with
c1,...,cn, then monitoring can be set to

SOME (fn x => same_const c1 x orelse ... orelse same_const cn x)

Failure
Never fails.

460 Chapter 1. Pre-defined ML Identifiers

Example

- val [FACT] = decls "FACT";
> val FACT = ‘FACT‘ : term

- computeLib.monitoring := SOME (same_const FACT);

- EVAL (Term ‘FACT 4‘);
FACT 4 = (if 4 = 0 then 1 else 4 * FACT (PRE 4))
FACT 3 = (if 3 = 0 then 1 else 3 * FACT (PRE 3))
FACT 2 = (if 2 = 0 then 1 else 2 * FACT (PRE 2))
FACT 1 = (if 1 = 0 then 1 else 1 * FACT (PRE 1))
FACT 0 = (if 0 = 0 then 1 else 0 * FACT (PRE 0))
> val it = |- FACT 4 = 24 : thm

See also
computeLib.RESTR EVAL CONV, Term.decls.

MP (Thm)

MP : thm -> thm -> thm

Synopsis
Implements the Modus Ponens inference rule.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t1, the inference rule MP returns
the theorem A1 u A2 |- t2.

A1 |- t1 ==> t2 A2 |- t1
---------------------------- MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is an implication whose antecedent is the same as the
conclusion of the second theorem (up to alpha-conversion).

See also
Thm.EQ MP, Drule.LIST MP, Drule.MATCH MP, Tactic.MATCH MP TAC, Tactic.MP TAC.

MP TAC 461

MP_TAC (Tactic)

MP_TAC : thm_tactic

Synopsis
Reduces a goal to implication from a known theorem.

Description
When applied to the theorem A’ |- s and the goal A ?- t, the tactic MP_TAC reduces the
goal to A ?- s ==> t. Unless A’ is a subset of A, this is an invalid tactic.

A ?- t
============== MP_TAC (A’ |- s)
A ?- s ==> t

Failure
Never fails.

See also
Tactic.MATCH MP TAC, Thm.MP, Tactic.UNDISCH TAC.

NEG_DISCH (Drule)

NEG_DISCH : term -> thm -> thm

Synopsis
Discharges an assumption, transforming |- s ==> F into |- ~s.

Description
When applied to a term s and a theorem A |- t, the inference rule NEG_DISCH returns

462 Chapter 1. Pre-defined ML Identifiers

the theorem A - {s} |- s ==> t, or if t is just F, returns the theorem A - {s} |- ~s.

A |- F
-------------------- NEG_DISCH [special case]

A - {s} |- ~s

A |- t
-------------------- NEG_DISCH [general case]
A - {s} |- s ==> t

Failure
Fails unless the supplied term has type bool.

See also
Thm.DISCH, Thm.NOT ELIM, Thm.NOT INTRO.

negation (boolSyntax)

negation : term

Synopsis
Constant denoting logical negation.

Description
The ML variable boolSyntax.negation is bound to the term bool$~.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.conditional,
boolSyntax.bool case, boolSyntax.let tm, boolSyntax.arb.

new_axiom (Theory)

new_axiom : string * term -> thm

new binder 463

Synopsis
Install a new axiom in the current theory.

Description
If M is a term of type bool, a call new_axiom(name,M) creates a theorem

|- tm

and stores it away in the current theory segment under name.

Failure
Fails if the given term does not have type bool.

Example

- new_axiom("untrue", Term ‘!x. x = 1‘);
> val it = |- !x. x = 1 : thm

Comments
For most purposes, it is unnecessary to declare new axioms: all of classical mathematics
can be derived by definitional extension alone. Proceeding by definition is not only more
elegant, but also guarantees the consistency of the deductions made. However, there
are certain entities which cannot be modelled in simple type theory without further
axioms, such as higher transfinite ordinals.

See also
Thm.mk thm, Definition.new definition, Definition.new specification.

new_binder (boolSyntax)

new_binder : string * hol_type -> unit

Synopsis
Sets up a new binder in the current theory.

Description
A call new_binder(bnd,ty) declares a new binder bnd in the current theory. The type
must be of the form (’a -> ’b) -> ’c, because being a binder, bnd will apply to an

464 Chapter 1. Pre-defined ML Identifiers

abstraction; for example

!x:bool. (x=T) \/ (x=F)

is actually a prettyprinting of

$! (\x. (x=T) \/ (x=F))

Failure
Fails if the type does not correspond to the above pattern.

Example

- new_theory "anorak";
() : unit

- new_binder ("!!", (bool-->bool)-->bool);;
() : unit

- Term ‘!!x. T‘;
> val it = ‘!! x. T‘ : term

See also
Theory.constants, Theory.new constant, boolSyntax.new infix,
Definition.new definition, boolSyntax.new infixl definition,
boolSyntax.new infixr definition, boolSyntax.new binder definition.

new_binder_definition (boolSyntax)

new_binder_definition : string * term -> thm

Synopsis
Defines a new constant, giving it the syntactic status of a binder.

Description
The function new_binder_definition provides a facility for making definitional exten-
sions to the current theory by introducing a constant definition. It takes a pair of argu-
ments, consisting of the name under which the resulting theorem will be saved in the
current theory segment and a term giving the desired definition. The value returned by
new_binder_definition is a theorem which states the definition requested by the user.

new binder definition 465

Let v1, ..., vn be syntactically distinct tuples constructed from the variables x1,...,xm.
A binder is defined by evaluating

new_binder_definition (name, ‘b v1 ... vn = t‘)

where b does not occur in t, all the free variables that occur in t are a subset of
x1,...,xn, and the type of b has the form (ty1->ty2)->ty3. This declares b to be a
new constant with the syntactic status of a binder in the current theory, and with the
definitional theorem

|- !x1...xn. b v1 ... vn = t

as its specification. This constant specification for b is saved in the current theory under
the name name and is returned as a theorem.

The equation supplied to new_binder_definition may optionally have any of its free
variables universally quantified at the outermost level. The constant b has binder status
only after the definition has been made.

Failure
new_binder_definition fails if t contains free variables that are not in any one of the
variable structures v1, ..., vn or if any variable occurs more than once in v1, ..., v2.
Failure also occurs if the type of b is not of the form appropriate for a binder, namely a
type of the form (ty1->ty2)->ty3. Finally, failure occurs if there is a type variable in v1,
..., vn or t that does not occur in the type of b.

Example
The unique-existence quantifier ?! is defined as follows.

- new_binder_definition
(‘EXISTS_UNIQUE_DEF‘,
Term‘$?! = \P:(*->bool). ($? P) /\ (!x y. ((P x) /\ (P y)) ==> (x=y))‘);

> val it = |- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y))) : thm

Comments
It is a common practice among HOL users to write a $ before the constant being defined
as a binder to indicate that it will have a special syntactic status after the definition is
made:

new_binder_definition(name, Term ‘$b = ... ‘);

This use of $ is not necessary; but after the definition has been made $ must, of course,
be used if the syntactic status of b needs to be suppressed.

466 Chapter 1. Pre-defined ML Identifiers

See also
Definition.new definition, boolSyntax.new infixl definition,
boolSyntax.new infixr definition, Prim rec.new recursive definition,
TotalDefn.Define.

new_constant (Theory)

new_constant : string * hol_type -> unit

Synopsis
Declares a new constant in the current theory.

Description
A call new_constant(n,ty) installs a new constant named n in the current theory. Note
that new_constant does not specify a value for the constant, just a name and type. The
constant may have a polymorphic type, which can be used in arbitrary instantiations.

Failure
Never fails, but issues a warning if the name is not a valid constant name. It will
overwrite an existing constant with the same name in the current theory.

See also
Theory.constants, boolSyntax.new infix, boolSyntax.new binder,
Definition.new definition, Definition.new type definition,
Definition.new specification, Theory.new axiom,
boolSyntax.new infixl definition, boolSyntax.new infixr definition,
boolSyntax.new binder definition.

new_definition (Definition)

new_definition : string * term -> thm

Synopsis
Declare a new constant and install a definitional axiom in the current theory.

Description
The function new_definition provides a facility for definitional extensions to the cur-
rent theory. It takes a pair argument consisting of the name under which the resulting

new infix 467

definition will be saved in the current theory segment, and a term giving the desired def-
inition. The value returned by new_definition is a theorem which states the definition
requested by the user.

Let v_1,...,v_n be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_definition (name, c v_1 ... v_n = t), where c is not already a con-
stant, declares the sequent ({},\v_1 ... v_n. t) to be a definition in the current the-
ory, and declares c to be a new constant in the current theory with this definition as its
specification. This constant specification is returned as a theorem with the form

|- !x_1 ... x_m. c v_1 ... v_n = t

and is saved in the current theory under name. Optionally, the definitional term argu-
ment may have any of its variables universally quantified.

Failure
new_definition fails if t contains free variables that are not in x_1, ..., x_m (this is equiva-
lent to requiring \v_1 ... v_n. t to be a closed term). Failure also occurs if any variable
occurs more than once in v_1, ..., v_n. Finally, failure occurs if there is a type variable
in v_1, ..., v_n or t that does not occur in the type of c.

Example
A NAND relation can be defined as follows.

- new_definition (
"NAND2",
Term‘NAND2 (in_1,in_2) out = !t:num. out t = ~(in_1 t /\ in_2 t)‘);

> val it =
|- !in_1 in_2 out.

NAND2 (in_1,in_2) out = !t. out t = ~(in_1 t /\ in_2 t)
: thm

See also
Definition.new specification, boolSyntax.new binder definition,
boolSyntax.new infixl definition, boolSyntax.new infixr definition,
Prim rec.new recursive definition, TotalDefn.Define.

new_infix (boolSyntax)

new_infix : string * hol_type * int -> unit

468 Chapter 1. Pre-defined ML Identifiers

Synopsis
Declares a new infix constant in the current theory.

Description
A call new_infix ("i", ty, n) makes i a right associative infix constant in the current
theory. It has binding strength of n, the larger this number, the more tightly the infix
will attempt to “grab” arguments to its left and right. Note that the call to new_infix

does not specify the value of the constant. The constant may have a polymorphic type,
which may be arbitrarily instantiated. Like any other infix or binder, its special parse
status may be suppressed by preceding it with a dollar sign.

Comments
Infixes defined with new_infix associate to the right, i.e., A <op> B <op> C is equivalent
to A op (B <op> C). Some standard infixes, with their precedences and associativities in
the system are:

$, ---> 50 RIGHT
$= ---> 100 NONASSOC

$==> ---> 200 RIGHT
$\/ ---> 300 RIGHT
$/\ ---> 400 RIGHT

$>, $< ---> 450 RIGHT
$>=, $<= ---> 450 RIGHT
$+, $- ---> 500 LEFT

$*, $DIV ---> 600 LEFT
$MOD ---> 650 LEFT
$EXP ---> 700 RIGHT
$o ---> 800 RIGHT

Note that the arithmetic operators +, -, *, DIV and MOD are left associative in hol98
releases from Taupo onwards. Non-associative infixes (= above, for example) will cause
parse errors if an attempt is made to group them (e.g., x = y = z).

Failure
Fails if the name is not a valid constant name.

Example
The following shows the use of the infix and the prefix form of an infix constant. It also

new infixl definition 469

shows binding resolution between infixes of different precedence.

- new_infix("orelse", Type‘:bool->bool->bool‘, 50);
val it = () : unit

- Term‘T \/ T orelse F‘;
val it = ‘T \/ T orelse F‘ : term

- --‘$orelse T F‘--;
val it = ‘T orelse F‘ : term

- dest_comb (--‘T \/ T orelse F‘--);
> val it = (‘$orelse (T \/ T)‘, ‘F‘) : term * term

See also
Parse.add infix, precedence, Theory.constants, infixes, binders, is constant,
Theory.new constant, boolSyntax.new binder, Definition.new definition,
new infix definition, boolSyntax.new binder definition.

new_infixl_definition (boolSyntax)

new_infixl_definition : string * term * int -> thm

Synopsis
Declares a new left associative infix constant and installs a definition in the current
theory.

Description
The function new_infix_definition provides a facility for definitional extensions to
the current theory. It takes a triple consisting of the name under which the result-
ing definition will be saved in the current theory segment, a term giving the desired
definition and an integer giving the precedence of the infix. The value returned by
new_infix_definition is a theorem which states the definition requested by the user.

Let v_1 and v_2 be tuples of distinct variables, containing the variables x_1,...,x_m.
Evaluating new_infix_definition (name, ix v_1 v_2 = t) declares the sequent ({},\v_1 v_2. t)

to be a definition in the current theory, and declares ix to be a new constant in the
current theory with this definition as its specification. This constant specification is
returned as a theorem with the form

|- !x_1 ... x_m. v_1 ix v_2 = t

and is saved in the current theory under (the name) name. Optionally, the definitional

470 Chapter 1. Pre-defined ML Identifiers

term argument may have any of its variables universally quantified. The constant ix has
infix status only after the infix declaration has been processed. It is therefore necessary
to use the constant in normal prefix position when making the definition.

Failure
new_infixl_definition fails if t contains free variables that are not in either of the vari-
able structures v_1 and v_2 (this is equivalent to requiring \v_1 v_2. t to be a closed
term); or if any variable occurs more than once in v_1, v_2. It also fails if the prece-
dence level chosen for the infix is already home to parsing rules of a different form of
fixity (infixes associating in a different way, or suffixes, prefixes etc). Finally, failure
occurs if there is a type variable in v_1, ..., v_n or t that does not occur in the type of ix.

Example
The nand function can be defined as follows.

- new_infix_definition
("nand", --‘$nand in_1 in_2 = ~(in_1 /\ in_2)‘--, 500);;

> val it = |- !in_1 in_2. in_1 nand in_2 = ~(in_1 /\ in_2) : thm

Comments
It is a common practice among HOL users to write a $ before the constant being defined
as an infix to indicate that after the definition is made, it will have a special syntactic
status; ie. to write:

new_infixl_definition("ix_DEF", Term ‘$ix m n = ... ‘)

This use of $ is not necessary; but after the definition has been made $ must, of course,
be used if the syntactic status needs to be suppressed.

In releases of hol98 past Taupo 1, new_infixl_definition and its sister new_infixr_definition
replace the old new_infix_definition, which has been superseded. Its behaviour was
to define a right associative infix, so can be freely replaced by new_infixr_definition.

See also
boolSyntax.new binder definition, Definition.new definition,
Definition.new specification, boolSyntax.new infixr definition,
Prim rec.new recursive definition, TotalDefn.Define.

new_infixr_definition (boolSyntax)

new_infixr_definition : string * term * int -> thm

new recursive definition 471

Synopsis
Declares a new right associative infix constant and installs a definition in the current
theory.

Description
The function new_infixr_definition has exactly the same effect as new_infixl_definition
except that the infix constant defined will associate to the right.

See also
Definition.new definition, Definition.new specification, boolSyntax.new infix,
boolSyntax.new infixl definition.

new_recursive_definition (Prim_rec)

new_recursive_definition :
{name:string,def:term,rec_axiom:thm} -> thm

Synopsis
Defines a primitive recursive function over a concrete recursive type.

Description
new_recursive_definition provides a facility for defining primitive recursive functions
on arbitrary concrete recursive types. name is a name under which the resulting def-
inition will be saved in the current theory segment. def is a term giving the desired
primitive recursive function definition. rec_axiom is the primitive recursion theorem for
the concrete type in question; this must be a theorem obtained from define_type. The
value returned by new_recursive_definition is a theorem which states the primitive re-
cursive definition requested by the user. This theorem is derived by formal proof from
an instance of the general primitive recursion theorem given as the second argument.

A theorem th of the form returned by define_type is a primitive recursion theorem for
an automatically-defined concrete type ty. Let C1, ..., Cn be the constructors of this type,
and let ‘(Ci vs)’ represent a (curried) application of the ith constructor to a sequence
of variables. Then a curried primitive recursive function fn over ty can be specified by
a conjunction of (optionally universally-quantified) clauses of the form:

fn v1 ... (C1 vs1) ... vm = body1 /\
fn v1 ... (C2 vs2) ... vm = body2 /\

.

.
fn v1 ... (Cn vsn) ... vm = bodyn

where the variables v1, ..., vm, vs are distinct in each clause, and where in the ith clause

472 Chapter 1. Pre-defined ML Identifiers

fn appears (free) in bodyi only as part of an application of the form:

fn t1 ... v ... tm

in which the variable v of type ty also occurs among the variables vsi.

If tm is a conjunction of clauses, as described above, then evaluating:

new_recursive_definition{name=name, rec_axiom=th,def=tm}

automatically proves the existence of a function fn that satisfies the defining equations
supplied as the fourth argument, and then declares a new constant in the current the-
ory with this definition as its specification. This constant specification is returned as a
theorem and is saved in the current theory segment under the name name.

new_recursive_definition also allows the supplied definition to omit clauses for any
number of constructors. If a defining equation for the ith constructor is omitted, then
the value of fn at that constructor:

fn v1 ... (Ci vsi) ... vn

is left unspecified (fn, however, is still a total function).

Failure
A call to new_recursive_definition fails if the supplied theorem is not a primitive re-
cursion theorem of the form returned by define_type; if the term argument supplied is
not a well-formed primitive recursive definition; or if any other condition for making a
constant specification is violated (see the failure conditions for new_specification).

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

new_recursive_definition can be used to define primitive recursive functions over
binary trees. Suppose the value of th is this theorem. Then a recursive function Leaves,
which computes the number of leaves in a binary tree, can be defined recursively as

new recursive definition 473

shown below:

- val Leaves = new_recursive_definition
{name = "Leaves",
rec_axiom = th,
def= --‘(Leaves (LEAF (x:’a)) = 1) /\

(Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))‘--};
> val Leaves =

|- (!x. Leaves (LEAF x) = 1) /\
!t1 t2. Leaves (NODE t1 t2) = Leaves t1 + Leaves t2 : thm

The result is a theorem which states that the constant Leaves satisfies the primitive-
recursive defining equations supplied by the user.

The function defined using new_recursive_definition need not, in fact, be recursive.
Here is the definition of a predicate IsLeaf, which is true of binary trees which are
leaves, but is false of the internal nodes in a binary tree:

- val IsLeaf = new_recursive_definition
{name = "IsLeaf",
rec_axiom = th,
def = --‘(IsLeaf (NODE t1 t2) = F) /\

(IsLeaf (LEAF (x:’a)) = T)‘--};
> val IsLeaf = |- (!t1 t2. IsLeaf (NODE t1 t2) = F) /\

!x. IsLeaf (LEAF x) = T : thm

Note that the equations defining a (recursive or non-recursive) function on binary trees
by cases can be given in either order. Here, the NODE case is given first, and the LEAF

case second. The reverse order was used in the above definition of Leaves.
new_recursive_definition also allows the user to partially specify the value of a func-

tion defined on a concrete type, by allowing defining equations for some of the con-
structors to be omitted. Here, for example, is the definition of a function Label which
extracts the label from a leaf node. The value of Label applied to an internal node is
left unspecified:

- val Label = new_recursive_definition
{name = "Label",
rec_axiom = th,
def = --‘Label (LEAF (x:’a)) = x‘--};

> val Label = |- !x. Label (LEAF x) = x : thm

Curried functions can also be defined, and the recursion can be on any argument. The
next definition defines an infix function << which expresses the idea that one tree is a

474 Chapter 1. Pre-defined ML Identifiers

proper subtree of another.

- val _ = set_fixity ("<<", Infixl 231);

- val Subtree = new_recursive_definition
{name = "Subtree",
rec_axiom = th,
def = --‘($<< (t:’a bintree) (LEAF (x:’a)) = F) /\

($<< t (NODE t1 t2) = (t = t1) \/
(t = t2) \/
($<< t t1) \/
($<< t t2))‘--};

> val Subtree =
|- (!t x. t << LEAF x = F) /\

!t t1 t2.
t << NODE t1 t2 = (t = t1) \/ (t = t2) \/

(t << t1) \/ (t << t2) : thm

Note that the fixity of the identifier << is set independently of the definition.

See also
Hol datatype, Prim rec.prove rec fn exists, TotalDefn.Define, Parse.set fixity.

new_specification (Definition)

new_specification :
{name : string,
sat_thm : thm,
consts : {const_name:string, fixity:fixity} list} -> thm

Synopsis
Introduces a constant or constants satisfying a given property.

Description
The ML function new_specification implements the primitive rule of constant specifi-

new specification 475

cation for the HOL logic. Evaluating:

new_specification {name=name, sat_thm = |- ?x1...xn. t,
consts = [{const_name = "c1", fixity = f1}, ...,

{const_name = "cn", fixity = fn}]}

simultaneously introduces new constants named c1,...,cn satisfying the property:

|- t[c1,...,cn/x1,...,xn]

This theorem is stored, with name name, as a definition in the current theory segment. It
is also returned by the call to new_specification The fixities f1, ..., fn are values which
determine the parsing status of the new constants. Typical fixity values are Prefix,
Binder, Infixl n, Infixr n, Suffix n, TruePrefix n or Closefix.

Failure
new_specification fails if the theorem argument has assumptions or free variables. It
also fails if the supplied constant names c1, ..., cn are not distinct. Finally, failure occurs
if some ci does not contain all the type variables that occur in the term ?x1...xn. t.

Uses
new_specification can be used to introduce constants that satisfy a given property with-
out having to make explicit equational constant definitions for them. For example, the
built-in constants MOD and DIV are defined in the system by first proving the theorem:

th |- ?MOD DIV.
!n. (0 < n) ==>

!k. ((k = (((DIV k n) * n) + (MOD k n))) /\ ((MOD k n) < n))

and then making the constant specification:

- val DIVISION =
new_specification

{name = "DIVISION",
consts = [{fixity = Infixl 650, const_name = "MOD"},

{fixity = Infixl 600, const_name = "DIV"}],
sat_thm = th};

This introduces the constants MOD and DIV with the defining property shown above.

See also
Definition.new definition, boolSyntax.new binder definition,
boolSyntax.new infixl definition, boolSyntax.new infixr definition,
TotalDefn.Define.

476 Chapter 1. Pre-defined ML Identifiers

new_theory (Theory)

new_theory : string -> unit

Synopsis
Creates a new theory segment.

Description
A theory consists of a hierarchy of named parts called ‘theory segments’. All theory
segments have a ‘theory’ of the same name associated with them consisting of the theory
segment itself together with the contents of all its ancestors. Each axiom, definition,
specification and theorem belongs to a particular theory segment.

Calling new_theory thy creates a new, and empty, theory segment having name thy.
The theory segment which was current before the call becomes a parent of the new
theory segment. The new theory therefore consists of the current theory extended with
the new theory segment. The new theory segment replaces its parent as the current
theory segment. The parent segment is exported to disk.

In the interests of interactive usability, the behaviour of new_theory has some special
cases. First, if new_theory thy is called in a situation where the current theory segment
is already called thy, then this is interpreted as the user wanting to restart the current
segment. In that case, the current segment is wiped clean (types and constants declared
in it are removed from the signature, and all definitions, theorems and axioms are
deleted) but is otherwise unchanged (it keeps the same parents, for example).

Second, if the current theory segment is empty and named "scratch", then new_theory thy

creates a new theory segment the parents of which are the parents of "scratch". (This
situation is almost never visible to users.)

Failure
A call new_theory thy fails if the name thy is unsuitable for use as a filename. In partic-
ular, it should be an alphanumeric identifier.

Failure also occurs if thy is the name of a currently loaded theory segment. In general,
all theory names, whether loaded or not, should be distinct. Moreover, the names
should be distinct even when case distinctions are ignored.

Example
In the following, we follow a standard progression: start HOL up and declare a new

new theory 477

theory segment.

- current_theory();
> val it = "scratch" : string

- parents "-";
> val it = ["list", "option"] : string list

- new_theory "foo";
<<HOL message: Created theory "foo">>
> val it = () : unit

- parents "-";
> val it = ["list", "option"] : string list

Next we make a definition, prove and store a theorem, and then change our mind about
the name of the defined constant. Restarting the current theory keeps the static theory
context fixed but clears the current segment so that we have a clean slate to work from.

- val def = new_definition("foo", Term ‘foo x = x + x‘);
> val def = |- !x. foo x = x + x : thm

val thm = Q.store_thm("foo_thm", ‘foo x = 2 * x‘,
RW_TAC arith_ss [def]);

> val thm = |- foo x = 2 * x : thm

- new_theory "foo";
<<HOL message: Restarting theory "foo">>
> val it = () : unit

val def = new_definition("twice", Term ‘twice x = x + x‘);
> val def = |- !x. twice x = x + x : thm

- curr_defs();
> val it = [("twice", |- !x. twice x = x + x)]

: (string * thm) list

Comments
The theory file in which the data of the new theory segment is ultimately stored will
have name thyTheory in the directory in which export_theory is called.

Uses
Modularizing large formalizations. By splitting a formalization effort into theory seg-
ments by use of new_theory, the work required if definitions, etc., need to be changed is
minimized. Only the associated segment and its descendants need be redefined.

478 Chapter 1. Pre-defined ML Identifiers

See also
Theory.current theory, Theory.new axiom, Theory.parents, boolSyntax.new binder,
Theory.new constant, Definition.new definition, boolSyntax.new infix,
Definition.new specification, Theory.new type, DB.print theory, Theory.save thm,
Theory.export theory, Theory.after new theory.

new_type (Theory)

new_type : string * int -> unit

Synopsis
Declares a new type or type constructor.

Description
A call new_type(t,n) declares a new n-ary type constructor called t in the current theory
segment. If n is zero, this is just a new base type.

Failure
Never fails, but issues a warning if the name is not a valid type name. It will overwrite
an existing type operator with the same name in the current theory.

Example
A non-definitional version of ZF set theory might declare a new type set and start using
it as follows:

- new_theory"ZF";
<<HOL message: Created theory "ZF">>
> val it = () : unit

- new_type("set", 0);;
> val it = () : unit

- new_constant ("mem", Type‘:set->set->bool‘);
> val it = () : unit

- new_axiom("EXT", Term‘(!z. mem z x = mem z y) ==> (x = y)‘);
> val it = |- (!z. mem z x = mem z y) ==> (x = y) : thm

See also
Theory.types, Theory.new constant, Theory.new axiom.

new type definition 479

new_type_definition (Definition)

new_type_definition : string * thm -> thm

Synopsis
Defines a new type constant or type operator.

Description
The ML function new_type_definition implements the primitive HOL rule of definition
for introducing new type constants or type operators into the logic. If t is a term of type
ty->bool containing n distinct type variables, then evaluating:

new_type_definition (tyop, |- ?x. t x)

results in tyop being declared as a new n-ary type operator in the current theory and
returned by the call to new_type_definition. This new type operator is characterized by
a definitional axiom of the form:

|- ?rep:(’a,...,’n)op->tyop. TYPE_DEFINITION t rep

which is stored as a definition in the current theory segment under the automatically-
generated name op_TY_DEF. The constant TYPE_DEFINITION in this axiomatic characteri-
zation of tyop is defined by:

|- TYPE_DEFINITION (P:’a->bool) (rep:’b->’a) =
(!x’ x’’. (rep x’ = rep x’’) ==> (x’ = x’’)) /\
(!x. P x = (?x’. x = rep x’))

Thus |- ?rep. TYPE_DEFINITION P rep asserts that there is a bijection between the newly
defined type (’a,...,’n)tyop and the set of values of type ty that satisfy P.

Failure
Executing new_type_definition(tyop,th) fails if th is not an assumption-free theorem
of the form |- ?x. t x. Failure also occurs if the type of t is not of the form ty->bool.

Example
In this example, a type containing three elements is defined. The predicate defining the

480 Chapter 1. Pre-defined ML Identifiers

type is over the type bool # bool.

app load ["PairedLambda", "Q"]; open PairedLambda pairTheory;

- val tyax =
new_type_definition ("three",

Q.prove(‘?p. (\(x,y). ~(x /\ y)) p‘,
Q.EXISTS_TAC ‘(F,F)‘ THEN GEN_BETA_TAC THEN REWRITE_TAC []));

> val tyax = |- ?rep. TYPE_DEFINITION (\(x,y). ~(x /\ y)) rep : thm

Comments
Usually, once a type has been defined, maps between the representation type and the
new type need to be proved. This may be accomplished using define_new_type_bijections.
In the example, the two functions are named abs3 and rep3.

- val three_bij = define_new_type_bijections
{name="three_tybij", ABS="abs3", REP="rep3", tyax=tyax};

> val three_bij =
|- (!a. abs3 (rep3 a) = a) /\

(!r. (\(x,y). ~(x /\ y)) r = (rep3 (abs3 r) = r))

Properties of the maps may be conveniently proved with prove_abs_fn_one_one, prove_abs_fn_onto,
prove_rep_fn_one_one, and prove_rep_fn_onto. In this case, we need only prove_abs_fn_one_one.

- val abs_11 = GEN_BETA_RULE (prove_abs_fn_one_one three_bij);

> val abs_11 =
|- !r r’.

~(FST r /\ SND r) ==>
~(FST r’ /\ SND r’) ==>
((abs3 r = abs3 r’) = (r = r’)) : thm

Now we address how to define constants designating the three elements of our example
type. We will use new_specification to create these constants (say e1, e2, and e3) and
their characterizing property, which is

~(e1 = e2) /\ ~(e2 = e3) /\ ~(e3 = e1)

A simple lemma stating that the abstraction function doesn’t confuse any of the repre-

next 481

sentations is required:

- val abs_distinct =
REWRITE_RULE (PAIR_EQ::pair_rws)

(LIST_CONJ (map (C Q.SPECL abs_11)
[[‘(F,F)‘,‘(F,T)‘],
[‘(F,T)‘,‘(T,F)‘],
[‘(T,F)‘,‘(F,F)‘]]));

> val abs_distinct =
|- ~(abs3 (F,F) = abs3 (F,T)) /\

~(abs3 (F,T) = abs3 (T,F)) /\
~(abs3 (T,F) = abs3 (F,F)) : thm

Finally, we can introduce the constants and their property.

- val THREE = new_specification
{name = "THREE",
sat_thm = PROVE [abs_distinct]

(Term‘?x y z:three. ~(x=y) /\ ~(y=z) /\ ~(z=x)‘),
consts = [{const_name="e1", fixity=Prefix},

{const_name="e2", fixity=Prefix},
{const_name="e3", fixity=Prefix}]};

> val THREE = |- ~(e1 = e2) /\ ~(e2 = e3) /\ ~(e3 = e1) : thm

See also
Drule.define new type bijections, Prim rec.prove abs fn one one,
Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto,
Definition.new specification.

next (Lib)

next : (’a,’b) istream -> (’a,’b) istream

Synopsis
Move to the next element in the stream.

Description
An application next istrm moves to the next element in the stream.

482 Chapter 1. Pre-defined ML Identifiers

Failure
If the transition function supplied when building the stream fails on the current state.

Example

- val istrm = mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string);
> val it = <istream> : (int, string) istream

- next istrm;
> val it = <istream> : (int, string) istream

Comments
Perhaps the type of next should be (’a,’b) istream -> unit.

See also
Lib.mk istream, Lib.state, Lib.reset.

NO_CONV (Conv)

NO_CONV : conv

Synopsis
Conversion that always fails.

Failure
NO_CONV always fails.

See also
Conv.ALL CONV.

NO_TAC (Tactical)

NO_TAC : tactic

Synopsis
Tactic which always fails.

NO THEN 483

Description
Whatever goal it is applied to, NO_TAC always fails with string ‘NO_TAC‘.

Failure
Always fails.

See also
Tactical.ALL TAC, Thm cont.ALL THEN, Tactical.FAIL TAC, Thm cont.NO THEN.

NO_THEN (Thm_cont)

NO_THEN : thm_tactical

Synopsis
Theorem-tactical which always fails.

Description
When applied to a theorem-tactic and a theorem, the theorem-tactical NO_THEN always
fails with string ‘NO_THEN‘.

Failure
Always fails when applied to a theorem-tactic and a theorem (note that it never gets as
far as being applied to a goal!)

Uses
Writing compound tactics or tacticals.

See also
Tactical.ALL TAC, Thm cont.ALL THEN, Tactical.FAIL TAC, Tactical.NO TAC.

norm_subst (Term)

norm_subst : (hol_type,hol_type) subst
-> (term,term) subst -> (term,term)subst

Synopsis
Instantiate term substitution by a type substitution.

484 Chapter 1. Pre-defined ML Identifiers

Description
The substitutions coming from raw_match need to be normalized before they can be ap-
plied by inference rules like INST_TY_TERM. An invocation raw_match avoid_tys avoid_tms pat ob A

returns a pair of substitutions (S,(T,Id)). The Id component can be ignored. The S

component is a substitution for term variables, but it has to be instantiated by T in order
to be suitable for use by INST_TY_TERM. In this case, one uses norm_subst T S. Thus a
suitable input for INST_TY_TERM would be (norm_subst T S, T).

Failure
Never fails.

Example

- val (S,(T,_)) = raw_match [] empty_varset
(Term ‘\x:’a. x = f (y:’b)‘)
(Term ‘\a. a = ~p‘) ([],([],[]));

> val S = [{redex = ‘(f :’b -> ’a)‘, residue = ‘$~‘},
{redex = ‘(y :’b)‘, residue = ‘(p :bool)‘}] : ...

val T = [{redex = ‘:’b‘, residue = ‘:bool‘},
{redex = ‘:’a‘, residue = ‘:bool‘}] : ...

- norm_subst T S;
> val it =

[{redex = ‘(y :bool)‘, residue = ‘(p :bool)‘},
{redex = ‘(f :bool -> bool)‘, residue = ‘$~‘}]

: {redex : term, residue : term} list

Comments
Higher level matching routines, like match_term and match_terml already return normal-
ized substitutions.

See also
Term.raw match, Term.match term, Term.match terml.

NOT_ELIM (Thm)

NOT_ELIM : thm -> thm

Synopsis
Transforms |- ~t into |- t ==> F.

NOT EQ SYM 485

Description
When applied to a theorem A |- ~t, the inference rule NOT_ELIM returns the theorem
A |- t ==> F.

A |- ~t
-------------- NOT_ELIM
A |- t ==> F

Failure
Fails unless the theorem has a negated conclusion.

See also
Drule.IMP ELIM, Thm.NOT INTRO.

NOT_EQ_SYM (Drule)

NOT_EQ_SYM : (thm -> thm)

Synopsis
Swaps left-hand and right-hand sides of a negated equation.

Description
When applied to a theorem A |- ~(t1 = t2), the inference rule NOT_EQ_SYM returns the
theorem A |- ~(t2 = t1).

A |- ~(t1 = t2)
----------------- NOT_EQ_SYM
A |- ~(t2 = t1)

Failure
Fails unless the theorem’s conclusion is a negated equation.

See also
Conv.DEPTH CONV, Thm.REFL, Thm.SYM.

NOT_EXISTS_CONV (Conv)

NOT_EXISTS_CONV : conv

486 Chapter 1. Pre-defined ML Identifiers

Synopsis
Moves negation inwards through an existential quantification.

Description
When applied to a term of the form ~(?x.P), the conversion NOT_EXISTS_CONV returns
the theorem:

|- ~(?x.P) = !x.~P

Failure
Fails if applied to a term not of the form ~(?x.P).

See also
Conv.EXISTS NOT CONV, Conv.FORALL NOT CONV, Conv.NOT FORALL CONV.

NOT_FORALL_CONV (Conv)

NOT_FORALL_CONV : conv

Synopsis
Moves negation inwards through a universal quantification.

Description
When applied to a term of the form ~(!x.P), the conversion NOT_FORALL_CONV returns
the theorem:

|- ~(!x.P) = ?x.~P

It is irrelevant whether x occurs free in P.

Failure
Fails if applied to a term not of the form ~(!x.P).

See also
Conv.EXISTS NOT CONV, Conv.FORALL NOT CONV, Conv.NOT EXISTS CONV.

NOT_INTRO (Thm)

NOT_INTRO : (thm -> thm)

NOT PEXISTS CONV 487

Synopsis
Transforms |- t ==> F into |- ~t.

Description
When applied to a theorem A |- t ==> F, the inference rule NOT_INTRO returns the the-
orem A |- ~t.

A |- t ==> F
-------------- NOT_INTRO

A |- ~t

Failure
Fails unless the theorem has an implicative conclusion with F as the consequent.

See also
Drule.IMP ELIM, Thm.NOT ELIM.

NOT_PEXISTS_CONV (PairRules)

NOT_PEXISTS_CONV : conv

Synopsis
Moves negation inwards through a paired existential quantification.

Description
When applied to a term of the form ~(?p. t), the conversion NOT_PEXISTS_CONV returns
the theorem:

|- ~(?p. t) = (!p. ~t)

Failure
Fails if applied to a term not of the form ~(?p. t).

See also
Conv.NOT EXISTS CONV, PairRules.PEXISTS NOT CONV, PairRules.PFORALL NOT CONV,
PairRules.NOT PFORALL CONV.

488 Chapter 1. Pre-defined ML Identifiers

NOT_PFORALL_CONV (PairRules)

NOT_PFORALL_CONV : conv

Synopsis
Moves negation inwards through a paired universal quantification.

Description
When applied to a term of the form ~(!p. t), the conversion NOT_PFORALL_CONV returns
the theorem:

|- ~(!p. t) = (?p. ~t)

It is irrelevant whether any variables in p occur free in t.

Failure
Fails if applied to a term not of the form ~(!p. t).

See also
Conv.NOT FORALL CONV, PairRules.PEXISTS NOT CONV, PairRules.PFORALL NOT CONV,
PairRules.NOT PEXISTS CONV.

null_intersection (Lib)

null_intersection : ’’a list -> ’’a list -> bool

Synopsis
Tells if two lists have no common elements.

Description
An invocation null_intersection l1 l2 is equivalent to null(intersect l1 l2), but is
more efficient in the case where the intersection is not empty.

Failure
Never fails.

occs in 489

Example

- null_intersection [1,2,3,4] [5,6,7,8];
> val it = true : bool

- null_intersection [1,2,3,4] [8,5,3];
> val it = false : bool

Comments
High performance finite set operations may be found in the ML Standard Basis Library.

See also
Lib.intersect, Lib.union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq,
Lib.set diff.

occs_in (pairSyntax)

occs_in : (term -> term -> bool)

Synopsis
Occurrence check for bound variables.

Description
When applied to two terms p and t, where p is a paired structure of variables, the
function occs_in returns true if and of the constituent variables of p occurs free in t,
and false otherwise.

Failure
Fails of p is not a paired structure of variables.

See also
Term.free in, hol88Lib.frees, hol88Lib.freesl, thm frees.

ONCE_ASM_REWRITE_RULE (Rewrite)

ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

490 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a theorem once including built-in rewrites and the theorem’s assumptions.

Description
ONCE_ASM_REWRITE_RULE applies all possible rewrites in one step over the subterms in
the conclusion of the theorem, but stops after rewriting at most once at each subterm.
This strategy is specified as for ONCE_DEPTH_CONV. For more details see ASM_REWRITE_RULE,
which does search recursively (to any depth) for matching subterms. The general strat-
egy for rewriting theorems is described under GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This tactic is used when rewriting with the hypotheses of a theorem (as well as a given
list of theorems and basic_rewrites), when more than one pass is not required or would
result in divergence.

See also
Rewrite.ASM REWRITE RULE, Rewrite.FILTER ASM REWRITE RULE,
Rewrite.FILTER ONCE ASM REWRITE RULE, Rewrite.GEN REWRITE RULE,
Conv.ONCE DEPTH CONV, Rewrite.ONCE REWRITE RULE, Rewrite.PURE ASM REWRITE RULE,
Rewrite.PURE ONCE ASM REWRITE RULE, Rewrite.PURE REWRITE RULE,
Rewrite.REWRITE RULE.

ONCE_ASM_REWRITE_TAC (Rewrite)

ONCE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal once including built-in rewrites and the goal’s assumptions.

Description
ONCE_ASM_REWRITE_TAC behaves in the same way as ASM_REWRITE_TAC, but makes one pass
only through the term of the goal. The order in which the given theorems are applied
is an implementation matter and the user should not depend on any ordering. See
GEN_REWRITE_TAC for more information on rewriting a goal in HOL.

ONCE DEPTH CONV 491

Failure
ONCE_ASM_REWRITE_TAC does not fail and, unlike ASM_REWRITE_TAC, does not diverge. The
resulting tactic may not be valid, if the rewrites performed add new assumptions to the
theorem eventually proved.

Example
The use of ONCE_ASM_REWRITE_TAC to control the amount of rewriting performed is illus-
trated below:

- ONCE_ASM_REWRITE_TAC []
([Term‘ (a:’a) = b‘, Term ‘(b:’a) = c‘], Term ‘P (a:’a): bool‘);

> val it = ([([‘a = b‘, ‘b = c‘], ‘P b‘)], fn)
: (term list * term) list * (thm list -> thm)

- (ONCE_ASM_REWRITE_TAC [] THEN ONCE_ASM_REWRITE_TAC [])
([Term‘(a:’a) = b‘, Term‘(b:’a) = c‘], Term ‘P (a:’a): bool‘);

> val it = ([([‘a = b‘, ‘b = c‘], ‘P c‘)], fn)
: (term list * term) list * (thm list -> thm)

Uses
ONCE_ASM_REWRITE_TAC can be applied once or iterated as required to give the effect of
ASM_REWRITE_TAC, either to avoid divergence or to save inference steps.

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.GEN REWRITE TAC,
Rewrite.ONCE ASM REWRITE TAC, Rewrite.ONCE REWRITE TAC,
Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,
Rewrite.PURE ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST TAC.

ONCE_DEPTH_CONV (Conv)

ONCE_DEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion once to the first suitable sub-term(s) encountered in top-down
order.

492 Chapter 1. Pre-defined ML Identifiers

Description
ONCE_DEPTH_CONV c tm applies the conversion c once to the first subterm or subterms
encountered in a top-down ‘parallel’ search of the term tm for which c succeeds. If the
conversion c fails on all subterms of tm, the theorem returned is |- tm = tm.

Failure
Never fails.

Example
The following example shows how ONCE_DEPTH_CONV applies a conversion to only the
first suitable subterm(s) found in a top-down search:

- ONCE_DEPTH_CONV BETA_CONV (Term ‘(\x. (\y. y + x) 1) 2‘);
> val it = |- (\x. (\y. y + x)1)2 = (\y. y + 2) 1 : thm

Here, there are two beta-redexes in the input term. One of these occurs within the
other, so BETA_CONV is applied only to the outermost one.

Note that the supplied conversion is applied by ONCE_DEPTH_CONV to all independent
subterms at which it succeeds. That is, the conversion is applied to every suitable sub-
term not contained in some other subterm for which the conversions also succeeds, as
illustrated by the following example:

- ONCE_DEPTH_CONV numLib.num_CONV (Term ‘(\x. (\y. y + x) 1) 2‘);
> val it = |- (\x. (\y. y + x)1)2 = (\x. (\y. y + x)(SUC 0))(SUC 1) : thm

Here num_CONV is applied to both 1 and 2, since neither term occurs within a larger
subterm for which the conversion num_CONV succeeds.

Uses
ONCE_DEPTH_CONV is frequently used when there is only one subterm to which the desired
conversion applies. This can be much faster than using other functions that attempt to
apply a conversion to all subterms of a term (e.g. DEPTH_CONV). If, for example, the
current goal in a goal-directed proof contains only one beta-redex, and one wishes to
apply BETA_CONV to it, then the tactic

CONV_TAC (ONCE_DEPTH_CONV BETA_CONV)

may, depending on where the beta-redex occurs, be much faster than

CONV_TAC (TOP_DEPTH_CONV BETA_CONV)

ONCE_DEPTH_CONV c may also be used when the supplied conversion c never fails, in
which case using a conversion such as DEPTH_CONV c, which applies c repeatedly would
never terminate.

ONCE REWRITE CONV 493

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of ONCE_DEPTH_CONV will be unpredictable.

See also
Conv.DEPTH CONV, Conv.REDEPTH CONV, Conv.TOP DEPTH CONV.

ONCE_REWRITE_CONV (Rewrite)

ONCE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_CONV searches for matching subterms and applies rewrites once at each
subterm, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used are
obtained from the given list of theorems and the set of tautologies stored in basic_rewrites.
See GEN_REWRITE_CONV for the general method of using theorems to rewrite a term.

Failure
ONCE_REWRITE_CONV does not fail; it does not diverge.

Uses
ONCE_REWRITE_CONV can be used to rewrite a term when recursive rewriting is not de-
sired.

See also
Rewrite.GEN REWRITE CONV, Rewrite.PURE ONCE REWRITE CONV,
Rewrite.PURE REWRITE CONV, Rewrite.REWRITE CONV.

ONCE_REWRITE_RULE (Rewrite)

ONCE_REWRITE_RULE : (thm list -> thm -> thm)

494 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a theorem, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_RULE searches for matching subterms and applies rewrites once at each
subterm, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used are
obtained from the given list of theorems and the set of tautologies stored in basic_rewrites.
See GEN_REWRITE_RULE for the general method of using theorems to rewrite an object
theorem.

Failure
ONCE_REWRITE_RULE does not fail; it does not diverge.

Uses
ONCE_REWRITE_RULE can be used to rewrite a theorem when recursive rewriting is not
desired.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE,
Rewrite.ONCE ASM REWRITE RULE, Rewrite.PURE ONCE REWRITE RULE,
Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

ONCE_REWRITE_TAC (Rewrite)

ONCE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal only once with basic_rewrites and the supplied list of theorems.

Description
A set of equational rewrites is generated from the theorems supplied by the user and
the set of basic tautologies, and these are used to rewrite the goal at all subterms at
which a match is found in one pass over the term part of the goal. The result is returned
without recursively applying the rewrite theorems to it. The order in which the given
theorems are applied is an implementation matter and the user should not depend on
any ordering. More details about rewriting can be found under GEN_REWRITE_TAC.

Failure
ONCE_REWRITE_TAC does not fail and does not diverge. It results in an invalid tactic if any
of the applied rewrites introduces new assumptions to the theorem eventually proved.

op arity 495

Example
Given a theorem list:

thl = [|- a = b, |- b = c, |- c = a]

the tactic ONCE_REWRITE_TAC thl can be iterated as required without diverging:

- ONCE_REWRITE_TAC thl ([], Term ‘P (a:’a) :bool‘);
> val it = ([([], ‘P b‘)], fn)

: (term list * term) list * (thm list -> thm)

- (ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl)
([], Term ‘P a‘);

> val it = ([([], ‘P c‘)], fn)
: (term list * term) list * (thm list -> thm)

- (NTAC 3 (ONCE_REWRITE_TAC thl)) ([], Term ‘P a‘);
> val it = ([([], ‘P a‘)], fn)

: (term list * term) list * (thm list -> thm)

Uses
ONCE_REWRITE_TAC can be used iteratively to rewrite when recursive rewriting would
diverge. It can also be used to save inference steps.

See also
Rewrite.ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,
Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE REWRITE TAC,
Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC, Tactic.SUBST TAC.

op_arity (Type)

op_arity : {Thy:string, Tyop:string} -> int option

Synopsis
Return the arity of a type operator.

Description
An invocation op_arity{Tyop,Thy} returns NONE if the given record does not identify
a type operator in the current type signature. Otherwise, it returns SOME n, where n

identifies the number of arguments the specified type operator takes.

496 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

- op_arity{Tyop="fun", Thy="min"};
> val it = SOME 2 : int option

- op_arity{Tyop="foo", Thy="min"};
> val it = NONE : int option

See also
Type.decls.

op_insert (Lib)

op_insert (’a -> ’a -> bool) -> ’a -> ’a list -> ’a list

Synopsis
Add an element to a list if it is not already there.

Description
If there exists an element y in list, such that eq x y, then insert eq x list equals
list. Otherwise, x is added to list.

Failure
Never fails.

Example

- op_insert (fn x => fn y => x = y mod 2) 1 [3,2];
> val it = [3, 2] : int list

- op_insert aconv (Term ‘\x. x /\ y‘)
[T, Term ‘\z. z /\ y‘, F];

> val it = [‘T‘, ‘\z. z /\ y‘, ‘F‘] : term list

- op_insert aconv (Term ‘\x. x /\ y‘)
[T, Term ‘\z. z /\ a‘, F];

> val it = [‘\x. x /\ y‘, ‘T‘, ‘\z. z /\ a‘, ‘F‘] : term list

Comments
There is no requirement that eq be recognizable as a kind of equality (it could be imple-

op intersect 497

mented by an order relation, for example).
One should not write code that depends on the arrangement of elements in the result.
High performance finite set operations may be found in the ML Standard Basis Library.

See also
Lib.insert, Lib.op mem, Lib.op union, Lib.op mk set, Lib.op U, Lib.op intersect,
Lib.op set diff.

op_intersect (Lib)

op_intersect : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Computes the intersection of two ‘sets’.

Description
op_intersect eq l1 l2 returns a list consisting of those elements of l1 that are eq to
some element in l2.

Failure
Fails if an application of eq fails.

Example

- op_intersect aconv [Term ‘\x:bool.x‘, Term ‘\x y. x /\ y‘]
[Term ‘\y:bool.y‘, Term ‘\x y. x /\ z‘];

> val it = [‘\x. x‘] : term list

Comments
The order of items in the list returned by op_intersect is not dependable.

High performance finite set operations may be found in the ML Standard Basis Library.
There is no requirement that eq be recognizable as a kind of equality (it could be

implemented by an order relation, for example).

See also
Lib.intersect, Lib.op mem, Lib.op insert, Lib.op mk set, Lib.op union, Lib.op U,
Lib.op set diff.

498 Chapter 1. Pre-defined ML Identifiers

op_mem (Lib)

op_mem : (’a -> ’a -> bool) -> ’a -> ’a list -> bool

Synopsis
Tests whether a list contains a certain element.

Description
An invocation op_mem eq x [x1,...,xn] returns true if, for some xi in the list, eq xi x

evaluates to true. Otherwise it returns false.

Failure
Only fails if an application of eq fails.

Example

- op_mem aconv (Term ‘\x. x /\ y‘) [T, Term ‘\z. z /\ y‘, F];
> val it = true : bool

Comments
High performance finite set operations may be found in the ML Standard Basis Library.

See also
Lib.mem, Lib.op insert, Lib.find, Lib.tryfind, Lib.exists, Lib.all, Lib.assoc,
Lib.rev assoc, Lib.assoc1, Lib.assoc2, Lib.op union, Lib.op mk set, Lib.op U,
Lib.op intersect, Lib.op set diff.

op_mk_set (Lib)

op_mk_set : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Transforms a list into one with elements that are distinct modulo the supplied relation.

Description
An invocation op_mk_set eq list returns a list consisting of the eq-distinct members of
list. In particular, the result list will not contain elements x and y at different positions
such that eq x y evaluates to true.

op set diff 499

Failure
If an application of eq fails when applied to two elements of list.

Example

- op_mk_set aconv [Term ‘\x y. x /\ y‘,
Term ‘\y x. y /\ x‘,
Term ‘\z a. z /\ a‘];

> val it = [‘\z a. z /\ a‘] : term list

Comments
The order of items in the list returned by op_mk_set is not dependable.

Serious implementations of sets may be found in the Standard ML Basis Library.
There is no requirement that eq be recognizable as a kind of equality (it could be

implemented by an order relation, for example).

See also
Lib.mk set, Lib.op mem, Lib.op insert, Lib.op union, Lib.op U, Lib.op intersect,
Lib.op set diff.

op_set_diff (Lib)

op_set_diff : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Computes the set-theoretic difference of two ‘sets’, modulo a supplied relation.

Description
op_set_diff eq l1 l2 returns a list consisting of those elements of l1 that are not eq to
some element of l2.

Failure
Fails if an application of eq fails.

500 Chapter 1. Pre-defined ML Identifiers

Example

- op_set_diff (fn x => fn y => x mod 2 = y mod 2) [1,2,3] [4,5,6];
> val it = [] : int list

- op_set_diff (fn x => fn y => x mod 2 = y mod 2) [1,2,3] [2,4,6,8];
> val it = [1, 3] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

High performance set operations may be found in the ML Standard Basis Library.

See also
Lib.set diff, Lib.op mem, Lib.op insert, Lib.op union, Lib.op U, Lib.op mk set,
Lib.op intersect.

op_U (Lib)

op_U : (’a -> ’a -> bool) -> ’a list list -> ’a list

Synopsis
Takes the union of a list of sets, modulo the supplied relation.

Description
An application op_U eq [l1, ..., ln] is equivalent to op_union eq l1 (... (op_union eq ln-1, ln)...)

Thus, every element that occurs in one of the lists will appear in the result. However, if
there are two elements x and y from different lists such that eq x y, then only one of x
and y will appear in the result.

Failure
If an application of eq fails when applied to two elements from the lists.

Example

- op_U (fn x => fn y => x mod 2 = y mod 2)
[[1,2,3], [4,5,6], [2,4,6,8,10]];

> val it = [5, 2, 4, 6, 8, 10] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

union 501

High performance set operations may be found in the ML Standard Basis Library.
There is no requirement that eq be recognizable as a kind of equality (it could be

implemented by an order relation, for example).

See also
Lib.U, Lib.op mem, Lib.op insert, Lib.op union, Lib.op mk set, Lib.op intersect,
Lib.op set diff.

union (Lib)

union : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Computes the union of two ‘sets’.

Description
If l1 and l2 are both ‘sets’ (lists with no repeated members), union eq l1 l2 returns the
set union of l1 and l2, using eq as the implementation of element equality. If one or
both of l1 and l2 have repeated elements, there may be repeated elements in the result.

Failure
If some application of eq fails.

Example

- op_union (fn x => fn y => x mod 2 = y mod 2) [1,2,3] [5,4,7];
> val it = [5, 4, 7] : int list

Comments
Do not make the assumption that the order of items in the list returned by op_union

is fixed. Later implementations may use different algorithms, and return a different
concrete result while still meeting the specification.

There is no requirement that eq be recognizable as a kind of equality (it could be
implemented by an order relation, for example).

High performance set operations may be found in the ML Standard Basis Library.

See also
Lib.union, Lib.op mem, Lib.op insert, Lib.op mk set, Lib.op U, Lib.op intersect,
Lib.op set diff.

502 Chapter 1. Pre-defined ML Identifiers

OR_EXISTS_CONV (Conv)

OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification outwards through a disjunction.

Description
When applied to a term of the form (?x.P) \/ (?x.Q), the conversion OR_EXISTS_CONV

returns the theorem:

|- (?x.P) \/ (?x.Q) = (?x. P \/ Q)

Failure
Fails if applied to a term not of the form (?x.P) \/ (?x.Q).

See also
Conv.EXISTS OR CONV, Conv.LEFT OR EXISTS CONV, Conv.RIGHT OR EXISTS CONV.

OR_FORALL_CONV (Conv)

OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification outwards through a disjunction.

Description
When applied to a term of the form (!x.P) \/ (!x.Q), where x is free in neither P nor
Q, OR_FORALL_CONV returns the theorem:

|- (!x. P) \/ (!x. Q) = (!x. P \/ Q)

Failure
OR_FORALL_CONV fails if it is applied to a term not of the form (!x.P) \/ (!x.Q), or if it
is applied to a term (!x.P) \/ (!x.Q) in which the variable x is free in either P or Q.

OR PEXISTS CONV 503

See also
Conv.FORALL OR CONV, Conv.LEFT OR FORALL CONV, Conv.RIGHT OR FORALL CONV.

OR_PEXISTS_CONV (PairRules)

OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification outwards through a disjunction.

Description
When applied to a term of the form (?p. t) \/ (?p. u), the conversion OR_PEXISTS_CONV

returns the theorem:

|- (?p. t) \/ (?p. u) = (?p. t \/ u)

Failure
Fails if applied to a term not of the form (?p. t) \/ (?p. u).

See also
Conv.OR EXISTS CONV, PairRules.PEXISTS OR CONV, PairRules.LEFT OR PEXISTS CONV,
PairRules.RIGHT OR PEXISTS CONV.

OR_PFORALL_CONV (PairRules)

OR_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification outwards through a disjunction.

Description
When applied to a term of the form (!p. t) \/ (!p. u), where no variables from p are
free in either t nor u, OR_PFORALL_CONV returns the theorem:

|- (!p. t) \/ (!p. u) = (!p. t \/ u)

Failure
OR_PFORALL_CONV fails if it is applied to a term not of the form (!p. t) \/ (!p. u), or
if it is applied to a term (!p. t) \/ (!p. u) in which the variables from p are free in
either t or u.

504 Chapter 1. Pre-defined ML Identifiers

See also
Conv.OR FORALL CONV, PairRules.PFORALL OR CONV, PairRules.LEFT OR PFORALL CONV,
PairRules.RIGHT OR PFORALL CONV.

ORELSE (Tactical)

op ORELSE : tactic * tactic -> tactic

Synopsis
Applies first tactic, and if it fails, applies the second instead.

Description
If T1 and T2 are tactics, T1 ORELSE T2 is a tactic which applies T1 to a goal, and if it fails,
applies T2 to the goal instead.

Failure
The application of ORELSE to a pair of tactics never fails. The resulting tactic fails if both
T1 and T2 fail when applied to the relevant goal.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.THEN.

ORELSE_TCL (Thm_cont)

$ORELSE_TCL : (thm_tactical -> thm_tactical -> thm_tactical)

Synopsis
Applies a theorem-tactical, and if it fails, tries a second.

Description
When applied to two theorem-tacticals, ttl1 and ttl2, a theorem-tactic ttac, and a
theorem th, if ttl1 ttac th succeeds, that gives the result. If it fails, the result is
ttl2 ttac th, which may itself fail.

Failure
ORELSE_TCL fails if both the theorem-tacticals fail when applied to the given theorem-
tactic and theorem.

ORELSEC 505

See also
Thm cont.EVERY TCL, Thm cont.FIRST TCL, Thm cont.THEN TCL.

ORELSEC (Conv)

$ORELSEC : (conv -> conv -> conv)

Synopsis
Applies the first of two conversions that succeeds.

Description
(c1 ORELSEC c2) "t" returns the result of applying the conversion c1 to the term "t" if
this succeeds. Otherwise (c1 ORELSEC c2) "t" returns the result of applying the con-
version c2 to the term "t".

Failure
(c1 ORELSEC c2) "t" fails both c1 and c2 fail when applied to "t".

See also
Conv.FIRST CONV.

overload_on (Parse)

Parse.overload_on : string * term -> unit

Synopsis
Establishes a constant as one of the overloading possibilities for a string.

Description
Calling overload_on(name,tm) establishes tm as a possible resolution of the overloaded
name. The term tm must be a constant. The call to overload_on also ensures that tm is the
first in the list of possible resolutions chosen when a string might be parsed into a term
in more than one way, and this is the only effect if this combination is already recorded
as a possible overloading.

Finally, when printing, this call causes tm to be seen as the operator name. The string
name may prompt further pretty-printing if it is involved in any of the relevant grammar’s
rules for concrete syntax.

506 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if the term argument is not a constant.

Example
We define the equivalent of intersection over predicates:

- val inter = new_definition("inter", Term‘inter p q x = p x /\ q x‘);
<<HOL message: inventing new type variable names: ’a.>>
> val inter = |- !p q x. inter p q x = p x /\ q x : thm

We overload on our new intersection constant, and can be sure that in ambiguous situ-
ations, it will be preferred:

- overload_on ("/\\", Term‘inter‘);
<<HOL message: inventing new type variable names: ’a.>>
> val it = () : unit
- Term‘p /\ q‘;
<<HOL message: more than one resolution of overloading was possible.>>
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘p /\ q‘ : term
- type_of it;
> val it = ‘:’a -> bool‘ : hol_type

Note that the original constant is considered overloaded to itself, so that our one call
to overload_on now allows for two possibilities whenever the identifier /\ is seen. In
order to make normal conjunction the preferred choice, we can call overload_on with
the original constant:

- overload_on ("/\\", Term‘bool$/\‘);
> val it = () : unit
- Term‘p /\ q‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘p /\ q‘ : term
- type_of it;
> val it = ‘:bool‘ : hol_type

Note that in order to specify the original conjunction constant, we used the qualified
identifier syntax, with the $. If we’d used just /\, the overloading would have ensured
that this was parsed as inter. Instead of the qualified identifier syntax, we could have
also constrained the type of conjunction explicitly so that the original constant would

p 507

be the only possibility. Thus:

- overload_on ("/\\", Term‘/\ :bool->bool->bool‘);
> val it = () : unit

Comments
Overloading with abandon can lead to input that is very hard to make sense of, and so
should be used with caution.

See also
Parse.clear overloads on.

p (goalstackLib)

p : unit -> goalstack

Synopsis
Prints the top levels of the subgoal package goal stack.

Description
The function p is part of the subgoal package. It is an abbreviation for the function
print_state. For a description of the subgoal package, see set_goal.

Failure
Never fails.

Uses
Examining the proof state during an interactive proof session.

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.e,
goalstackLib.expand, goalstackLib.expandf, goalstackLib.g, get state,
print state, goalstackLib.r, rotate, save top thm, goalstackLib.set goal,
set state, goalstackLib.top goal, goalstackLib.top thm.

P_FUN_EQ_CONV (PairRules)

P_FUN_EQ_CONV : (term -> conv)

508 Chapter 1. Pre-defined ML Identifiers

Synopsis
Performs extensionality conversion for functions (function equality).

Description
The conversion P_FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. For any
paired variable structure "p" and equation "f = g", where p is of type ty1 and f and
g are functions of type ty1->ty2, a call to P_FUN_EQ_CONV "p" "f = g" returns the theo-
rem:

|- (f = g) = (!p. f p = g p)

Failure
P_FUN_EQ_CONV p tm fails if p is not a paired structure of variables or if tm is not an
equation f = g where f and g are functions. Furthermore, if f and g are functions
of type ty1->ty2, then the pair x must have type ty1; otherwise the conversion fails.
Finally, failure also occurs if any of the variables in p is free in either f or g.

See also
Conv.FUN EQ CONV, PairRules.PEXT.

P_PCHOOSE_TAC (PairRules)

P_PCHOOSE_TAC : (term -> thm_tactic)

Synopsis
Assumes a theorem, with existentially quantified pair replaced by a given witness.

Description
P_PCHOOSE_TAC expects a pair q and theorem with a paired existentially quantified con-
clusion. When applied to a goal, it adds a new assumption obtained by introducing the
pair q as a witness for the pair p whose existence is asserted in the theorem.

A ?- t
=================== P_CHOOSE_TAC "q" (A1 |- ?p. u)
A u {u[q/p]} ?- t ("y" not free anywhere)

Failure
Fails if the theorem’s conclusion is not a paired existential quantification, or if the
first argument is not a paired structure of variables. Failures may arise in the tactic-
generating function. An invalid tactic is produced if the introduced variable is free in u

P PCHOOSE THEN 509

or t, or if the theorem has any hypothesis which is not alpha-convertible to an assump-
tion of the goal.

See also
Tactic.X CHOOSE TAC, PairRules.PCHOOSE, PairRules.PCHOOSE THEN,
PairRules.P PCHOOSE THEN.

P_PCHOOSE_THEN (PairRules)

P_PCHOOSE_THEN : (term -> thm_tactical)

Synopsis
Replaces existentially quantified pair with given witness, and passes it to a theorem-
tactic.

Description
P_PCHOOSE_THEN expects a pair q, a tactic-generating function f:thm->tactic, and a theo-
rem of the form (A1 |- ?p. u) as arguments. A new theorem is created by introducing
the given pair q as a witness for the pair p whose existence is asserted in the original the-
orem, (u[q/p] |- u[q/p]). If the tactic-generating function f applied to this theorem
produces results as follows when applied to a goal (A ?- u):

A ?- t
========= f ({u[q/p]} |- u[q/p])
A ?- t1

then applying (P_PCHOOSE_THEN "q" f (A1 |- ?p. u)) to the goal (A ?- t) produces
the subgoal:

A ?- t
========= P_PCHOOSE_THEN "q" f (A1 |- ?p. u)
A ?- t1 ("q" not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a paired structure of variables. Failures may arise in the tactic-generating function.
An invalid tactic is produced if the introduced variable is free in u or t, or if the theorem
has any hypothesis which is not alpha-convertible to an assumption of the goal.

510 Chapter 1. Pre-defined ML Identifiers

See also
Thm cont.X CHOOSE THEN, PairRules.PCHOOSE, PairRules.PCHOOSE THEN,
PairRules.P PCHOOSE TAC.

P_PGEN_TAC (PairRules)

P_PGEN_TAC : (term -> tactic)

Synopsis
Specializes a goal with the given paired structure of variables.

Description
When applied to a paired structure of variables p’, and a goal A ?- !p. t, the tactic
P_PGEN_TAC returns the goal A ?- t[p’/p].

A ?- !p. t
============== P_PGEN_TAC "p’"
A ?- t[p’/x]

Failure
Fails unless the goal’s conclusion is a paired universal quantification and the term a
paired structure of variables of the appropriate type. It also fails if any of the variables
of the supplied structure occurs free in either the assumptions or (initial) conclusion of
the goal.

See also
Tactic.X GEN TAC, PairRules.FILTER PGEN TAC, PairRules.PGEN, PairRules.PGENL,
PGEN ALL, PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL,
PairRules.PSPEC TAC.

P_PSKOLEM_CONV (PairRules)

P_PSKOLEM_CONV : (term -> conv)

Synopsis
Introduces a user-supplied Skolem function.

PABS 511

Description
P_PSKOLEM_CONV takes two arguments. The first is a variable f, which must range over
functions of the appropriate type, and the second is a term of the form !p1...pn. ?q. t

(where pi and q may be pairs). Given these arguments, P_PSKOLEM_CONV returns the
theorem:

|- (!p1...pn. ?q. t) = (?f. !p1...pn. tm[f p1 ... pn/q])

which expresses the fact that a skolem function f of the universally quantified variables
p1...pn may be introduced in place of the the existentially quantified pair p.

Failure
P_PSKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of
the form !p1...pn. ?q. t, or if the variable f is free in tm, or if the type of f does not
match its intended use as an n-place curried function from the pairs p1...pn to a value
having the same type as p.

See also
Conv.X SKOLEM CONV, PairRules.PSKOLEM CONV.

PABS (PairRules)

PABS : (term -> thm -> thm)

Synopsis
Paired abstraction of both sides of an equation.

Description

A |- t1 = t2
------------------------ ABS "p" [Where p is not free in A]
A |- (\p.t1) = (\p.t2)

Failure
If the theorem is not an equation, or if any variable in the paired structure of variables
p occurs free in the assumptions A.

512 Chapter 1. Pre-defined ML Identifiers

EXAMPLE

- PABS (Term ‘(x:’a,y:’b)‘) (REFL (Term ‘(x:’a,y:’b)‘));
> val it = |- (\(x,y). (x,y)) = (\(x,y). (x,y)) : thm

See also
Thm.ABS, PairRules.PABS CONV, PairRules.PETA CONV, PairRules.PEXT,
PairRules.MK PABS.

PABS_CONV (PairRules)

PABS_CONV : conv -> conv

Synopsis
Applies a conversion to the body of a paired abstraction.

Description
If c is a conversion that maps a term t to the theorem |- t = t’, then the conversion
PABS_CONV c maps abstractions of the form \p.t to theorems of the form:

|- (\p.t) = (\p.t’)

That is, ABS_CONV c "\p.t" applies p to the body of the paired abstraction "\p.t".

Failure
PABS_CONV c tm fails if tm is not a paired abstraction or if tm has the form "\p.t" but the
conversion c fails when applied to the term t. The function returned by ABS_CONV p may
also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that
maps a term t to a theorem |- t = t’).

Example

- PABS_CONV SYM_CONV (Term ‘\(x,y). (1,2) = (x,y)‘);
> val it = |- (\(x,y). (1,2) = (x,y)) = (\(x,y). (x,y) = (1,2)) : thm

See also
Conv.ABS CONV, PairRules.PSUB CONV.

paconv 513

paconv (pairSyntax)

paconv : (term -> term -> bool)

Synopsis
Tests for alpha-equivalence of terms.

Description
When applied to a pair of terms t1 and t2, paconv returns true if the terms are alpha-
equivalent.

Failure
Never fails.

Comments
paconv is implemented as curry (can (uncurry PALPHA)).

See also
PairRules.PALPHA, Term.aconv.

pair (Lib)

pair : ’a -> ’b -> ’a * ’b

Synopsis
Makes two values into a pair.

Description
pair x y returns (x,y).

Failure
Never fails.

See also
Lib.fst, Lib.snd, Lib.curry, Lib.uncurry.

514 Chapter 1. Pre-defined ML Identifiers

PAIR_CONV (PairRules)

PAIR_CONV : (conv -> conv)

Synopsis
Applies a conversion to all the components of a pair structure.

Description
For any conversion c, the function returned by PAIR_CONV c is a conversion that applies
c to all the components of a pair. If the term t is not a pair, them PAIR_CONV c t applies
c to t. If the term t is the pair (t1,t2) then PAIR c t recursively applies PAIR_CONV c to
t1 and t2.

Failure
The conversion returned by PAIR_CONV c will fail for the pair structure t if the conversion
c would fail for any of the components of t.

See also
Conv.RAND CONV, Conv.RATOR CONV.

PAIRED_BETA_CONV (PairedLambda)

PAIRED_BETA_CONV : conv

Synopsis
Performs generalized beta conversion for tupled beta-redexes.

Description
The conversion PAIRED_BETA_CONV implements beta-reduction for certain applications of
tupled lambda abstractions called ‘tupled beta-redexes’. Tupled lambda abstractions
have the form \<vs>.tm, where <vs> is an arbitrarily-nested tuple of variables called a
‘varstruct’. For the purposes of PAIRED_BETA_CONV, the syntax of varstructs is given by:

<vs> ::= (v1,v2) | (<vs>,v) | (v,<vs>) | (<vs>,<vs>)

where v, v1, and v2 range over variables. A tupled beta-redex is an application of
the form (\<vs>.tm) t, where the term t is a nested tuple of values having the same

PAIRED BETA CONV 515

structure as the varstruct <vs>. For example, the term:

(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))

is a tupled beta-redex, but the term:

(\((a,b),(c,d)). a + b + c + d) ((1,2),p)

is not, since p is not a pair of terms.
Given a tupled beta-redex (\<vs>.tm) t, the conversion PAIRED_BETA_CONV performs

generalized beta-reduction and returns the theorem

|- (\<vs>.tm) t = t[t1,...,tn/v1,...,vn]

where ti is the subterm of the tuple t that corresponds to the variable vi in the varstruct
<vs>. In the simplest case, the varstruct <vs> is flat, as in the term:

(\(v1,...,vn).t) (t1,...,tn)

When applied to a term of this form, PAIRED_BETA_CONV returns:

|- (\(v1, ... ,vn).t) (t1, ... ,tn) = t[t1,...,tn/v1,...,vn]

As with ordinary beta-conversion, bound variables may be renamed to prevent free
variable capture. That is, the term t[t1,...,tn/v1,...,vn] in this theorem is the result
of substituting ti for vi in parallel in t, with suitable renaming of variables to prevent
free variables in t1, ..., tn becoming bound in the result.

Failure
PAIRED_BETA_CONV tm fails if tm is not a tupled beta-redex, as described above. Note that
ordinary beta-redexes are specifically excluded: PAIRED_BETA_CONV fails when applied to
(\v.t)u. For these beta-redexes, use BETA_CONV, or GEN_BETA_CONV.

Example
The following is a typical use of the conversion:

- PairedLambda.PAIRED_BETA_CONV
(Term ‘(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))‘);

> val it = |- (\((a,b),c,d). a+b+c+d) ((1,2),3,4) = 1+2+3+4 : thm

Note that the term to which the tupled lambda abstraction is applied must have the

516 Chapter 1. Pre-defined ML Identifiers

same structure as the varstruct. For example, the following succeeds:

- PairedLambda.PAIRED_BETA_CONV
(Term ‘(\((a,b),p). a + b) ((1,2),(3+5,4))‘);

> val it = |- (\((a,b),p). a + b)((1,2),3 + 5,4) = 1 + 2 : thm

but the following call fails:

- PairedLambda.PAIRED_BETA_CONV
(Term ‘(\((a,b),(c,d)). a + b + c + d) ((1,2),p)‘);

! Uncaught exception:
! HOL_ERR

because p is not a pair.

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, PairedLambda.GEN BETA CONV,
Drule.LIST BETA CONV, Drule.RIGHT BETA, Drule.RIGHT LIST BETA.

PAIRED_ETA_CONV (PairedLambda)

PAIRED_ETA_CONV : conv

Synopsis
Performs generalized eta conversion for tupled eta-redexes.

Description
The conversion PAIRED_ETA_CONV generalizes ETA_CONV to eta-redexes with tupled ab-
stractions.

PAIRED_ETA_CONV \(v1..(..)..vn). f (v1..(..)..vn)
= |- \(v1..(..)..vn). f (v1..(..)..vn) = f

Failure
Fails unless the given term is a paired eta-redex as illustrated above.

Comments
Note that this result cannot be achieved by ordinary eta-reduction because the tupled
abstraction is a surface syntax for a term which does not correspond to a normal pattern

PALPHA 517

for eta reduction. Taking the term apart reveals the true form of a paired eta redex:

- dest_comb (Term ‘\(x:num,y:num). FST (x,y)‘)
> val it = (‘UNCURRY‘, ‘\x y. FST (x,y)‘) : term * term

Example
The following is a typical use of the conversion:

val SELECT_PAIR_EQ = Q.prove
(‘(@(x:’a,y:’b). (a,b) = (x,y)) = (a,b)‘,
CONV_TAC (ONCE_DEPTH_CONV PairedLambda.PAIRED_ETA_CONV) THEN
ACCEPT_TAC (SYM (MATCH_MP SELECT_AX (REFL (Term ‘(a:’a,b:’b)‘)))));

See also
Thm.ETA CONV.

PALPHA (PairRules)

PALPHA : term -> term -> thm

Synopsis
Proves equality of paired alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns
the theorem |- t1 = t1’.

------------- PALPHA "t1" "t1’"
|- t1 = t1’

The difference between PALPHA and ALPHA is that PALPHA is prepared to consider pair
structures of different structure to be alpha-equivalent. In its most trivial case this
means that PALPHA can consider a variable and a pair to alpha-equivalent.

Failure
Fails unless the terms provided are alpha-equivalent.

518 Chapter 1. Pre-defined ML Identifiers

Example

- PALPHA (Term ‘\(x:’a,y:’a). (x,y)‘) (Term‘\xy:’a#’a. xy‘);
> val it = |- (\(x,y). (x,y)) = (\xy. xy) : thm

Comments
Alpha-converting a paired abstraction to a nonpaired abstraction can introduce in-
stances of the terms FST and SND. A paired abstraction and a nonpaired abstraction
will be considered equivalent by PALPHA if the nonpaired abstraction contains all those
instances of FST and SND present in the paired abstraction, plus the minimum additional
instances of FST and SND. For example:

- PALPHA
(Term ‘\(x:’a,y:’b). (f x y (x,y)):’c‘)
(Term ‘\xy:’a#’b. (f (FST xy) (SND xy) xy):’c‘);

> val it = |- (\(x,y). f x y (x,y)) = (\xy. f (FST xy) (SND xy) xy) : thm

- PALPHA
(Term ‘\(x:’a,y:’b). (f x y (x,y)):’c‘)
(Term ‘\xy:’a#’b. (f (FST xy) (SND xy) (FST xy, SND xy)):’c‘)
handle e => Raise e;

Exception raised at ??.failwith:
PALPHA
! Uncaught exception:
! HOL_ERR

See also
Thm.ALPHA, Term.aconv, PairRules.PALPHA CONV, PairRules.GEN PALPHA CONV.

PALPHA_CONV (PairRules)

PALPHA_CONV : term -> conv

Synopsis
Renames the bound variables of a paired lambda-abstraction.

PALPHA CONV 519

Description
If q is a variable of type ty and \p.t is a paired abstraction in which the bound pair p

also has type ty, then ALPHA_CONV q "\p.t" returns the theorem:

|- (\p.t) = (\q’. t[q’/p])

where the pair q’:ty is a primed variant of q chosen so that none of its components are
free in \p.t. The pairs p and q need not have the same structure, but they must be of
the same type.

Example
PALPHA_CONV renames the variables in a bound pair:

- PALPHA_CONV
(Term ‘((w:’a,x:’a),(y:’a,z:’a))‘)
(Term ‘\((a:’a,b:’a),(c:’a,d:’a)). (f a b c d):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) = (\((w,x),y,z). f w x y z) : thm

The new bound pair and the old bound pair need not have the same structure.

- PALPHA_CONV
(Term ‘((wx:’a#’a),(y:’a,z:’a))‘)
(Term ‘\((a:’a,b:’a),(c:’a,d:’a)). (f a b c d):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) =
(\(wx,y,z). f (FST wx) (SND wx) y z) : thm

PALPHA_CONV recognises subpairs of a pair as variables and preserves structure accord-
ingly.

- PALPHA_CONV
(Term ‘((wx:’a#’a),(y:’a,z:’a))‘)
(Term ‘\((a:’a,b:’a),(c:’a,d:’a)). (f (a,b) c d):’a‘);

> val it = |- (\((a,b),c,d). f (a,b) c d) = (\(wx,y,z). f wx y z) : thm

Comments
PALPHA_CONV will only ever add the terms FST and SND, i.e., it will never remove them.
This means that while \(x,y). x + y can be converted to \xy. (FST xy) + (SND xy), it
can not be converted back again.

Failure
PALPHA_CONV q tm fails if q is not a variable, if tm is not an abstraction, or if q is a variable
and tm is the lambda abstraction \p.t but the types of p and q differ.

See also
Drule.ALPHA CONV, PairRules.PALPHA, PairRules.GEN PALPHA CONV.

520 Chapter 1. Pre-defined ML Identifiers

parents (Theory)

parents : string -> string list

Synopsis
Lists the parent theories of a named theory.

Description
If s is the name of the current theory or an ancestor of the current theory, the call
parents s returns a list of strings that identify the parent theories of s. The shorthand
"-" may be used to denote the name of the current theory segment.

Failure
Fails if the named theory is not an ancestor of the current theory.

Example

- parents "bool";
> val it = ["min"] : string list

- parents "min";
> val it = [] : string list

- current_theory();
> val it = "scratch" : string

- parents "-";
> val it = ["list", "option"] : string list

See also
Theory.ancestry, Theory.current theory.

parse_from_grammars (Parse)

parse_from_grammars :
(parse_type.grammar * term_grammar.grammar) ->
((hol_type frag list -> hol_type) * (term frag list -> term))

Synopsis
Returns parsing functions based on the supplied grammars.

parse from grammars 521

Description
When given a pair consisting of a type and a term grammar, this function returns parsing
functions that use those grammars to turn strings (strictly, quotations) into types and
terms respectively.

Failure
Can’t fail immediately. However, when the precedence matrix for the term parser is
built on first application of the term parser, this may generate precedence conflict errors
depending on the rules in the grammar.

Example
First the user loads arithmeticTheory to augment the built-in grammar with the ability
to lex numerals and deal with symbols such as + and -:

- load "arithmeticTheory";
> val it = () : unit
- val t = Term‘2 + 3‘;
> val t = ‘2 + 3‘ : term

Then the parse_from_grammars function is used to make the values Type and Term use
the grammar present in the simpler theory of booleans. Using this function fails to parse
numerals or even the + infix:

- val (Type,Term) = parse_from_grammars boolTheory.bool_grammars;
> val Type = fn : hol_type frag list -> hol_type

val Term = fn : term frag list -> term
- Term‘2 + 3‘;
<<HOL message: No numerals currently allowed.>>
! Uncaught exception:
! HOL_ERR <poly>
- Term‘x + y‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘x $+ y‘ : term

But, as the last example above also demonstrates, the pretty-printer is still dependent
on the global grammar, and the global value of Term can still be accessed through the

522 Chapter 1. Pre-defined ML Identifiers

Parse structure:

- t;
> val it = ‘2 + 3‘ : term

- Parse.Term‘2 + 3‘;
> val it = ‘2 + 3‘ : term

Uses
This function is used to ensure that library code has access to a term parser that is a
known quantity. In particular, it is not good form to have library code that depends on
the default parsers Term and Type. When the library is loaded, which may happen at any
stage, these global values may be such that the parsing causes quite unexpected results
or failures.

See also
Parse.add rule, Parse.Term, Type.

parse_in_context (Parse)

Parse.parse_in_context : term list -> term quotation -> term

Synopsis
Parses a quotation into a term, using the terms as typing context.

Description
Where the Term function parses a quotation in isolation of all possible contexts (except
inasmuch as the global grammar provides a form of context), this function uses the
additional parameter, a list of terms, to help in giving variables in the quotation types.

Thus, Term‘x‘ will either guess the type ‘‘:’a‘‘ for this quotation, or refuse to parse
it at all, depending on the value of the guessing_tyvars flag. The parse_in_context

function, in contrast, will attempt to find a type for x from the list of free variables.
If the quotation already provides enough context in itself to determine a type for

a variable, then the context is not consulted, and a conflicting type there for a given
variable is ignored.

Failure
Fails if the quotation doesn’t make syntactic sense, or if the assignment of context types
to otherwise unconstrained variables in the quotation causes overloading resolution to

PART MATCH 523

fail. The latter would happen if the variable x was given boolean type in the context, if
+ was overloaded to be over either :num or :int, and if the quotation was x + y.

Example

<< There should be an example here >>

Uses
Used in many of the Q module’s variants of the standard tactics in order to have a goal
provide contextual information to the parsing of arguments to tactics.

See also
Parse.Term.

PART_MATCH (Drule)

PART_MATCH : (term -> term) -> thm -> term -> thm

Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !x1...xn. t) tm

the function PART_MATCH applies fn to t’ (the result of specializing universally quantified
variables in the conclusion of the theorem), and attempts to match the resulting term
to the argument term tm. If it succeeds, the appropriately instantiated version of the
theorem is returned.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

524 Chapter 1. Pre-defined ML Identifiers

Example
Suppose that we have the following theorem:

th = |- !x. x==>x

then the following:

PART_MATCH (fst o dest_imp) th "T"

results in the theorem:

|- T ==> T

because the selector function picks the antecedent of the implication (the inbuilt spe-
cialization gets rid of the universal quantifier), and matches it to T.

See also
Thm.INST TYPE, Drule.INST TY TERM, Drule.HO PART MATCH, Term.match term.

PART_PMATCH (PairRules)

PART_PMATCH : ((term -> term) -> thm -> term -> thm)

Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !p1...pn. t) tm

the function PART_PMATCH applies fn to t’ (the result of specializing universally quanti-
fied pairs in the conclusion of the theorem), and attempts to match the resulting term
to the argument term tm. If it succeeds, the appropriately instantiated version of the
theorem is returned.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

See also
Drule.PART MATCH.

partial 525

partial (Lib)

partial : exn -> (’a -> ’b option) -> ’a -> ’b

Synopsis
Converts a total function to a partial function.

Description
In ML, there are two main ways for a function to signal that it has been called on an
element outside of its intended domain of application: exceptions and options. The
function partial maps a function returning an element in an option type to one that
may raise an exception. Thus, if f x returns NONE, then partial e f x results in the
exception e being raised. If f x returns SOME y, then partial e f x returns y.

The function partial has an inverse total. Generally speaking, (partial err o total) f

equals f, provided that err is the only exception that f raises. Similarly, (total o partial err) f

is equal to f.

Failure
When application of the second argument to the third argument returns NONE.

Example

- Int.fromString "foo";
> val it = NONE : int option

- partial (Fail "not convertable") Int.fromString "foo";
! Uncaught exception:
! Fail "not convertable"

- (total o partial (Fail "not convertable")) Int.fromString "foo";
> val it = NONE : int option

See also
Lib.total.

partition (Lib)

partition : (’a -> bool) -> ’a list -> ’a list * ’a list

526 Chapter 1. Pre-defined ML Identifiers

Synopsis
Split a list by a predicate

Description
An invocation partition P l divides l into a pair of lists (l1,l2). P holds of each
element of l1, and P does not hold of any element of l2.

Failure
If applying P to any element of l results in failure.

Example

- partition (fn i => i mod 2 = 0) [1,2,3,4,5,6,7,8,9];
> val it = ([2, 4, 6, 8], [1, 3, 5, 7, 9]) : int list * int list

- partition (fn _ => true) [1,2,3];
> val it = ([1, 2, 3], []) : int list * int list

- partition (fn _ => raise Fail "") ([]:int list);
> val it = ([], []) : int list * int list

- partition (fn _ => raise Fail "") [1];
! Uncaught exception:
! Fail ""

See also
Lib.split after, Lib.pluck.

PAT_ASSUM (Tactical)

PAT_ASSUM : term -> thm_tactic -> tactic

Synopsis
Finds the first assumption that matches the term argument, applies the theorem tactic
to it, and removes this assumption.

Description
The tactic

PAT_ASSUM tm ttac ([A1, ..., An], g)

finds the first Ai which matches tm using higher-order pattern matching in the sense of
ho_match_term. Unless there is just one match otherwise, free variables in the pattern

PBETA CONV 527

that are also free in the assumptions or the goal must not be bound by the match. In
effect, these variables are being treated as local constants.

Failure
Fails if the term doesn’t match any of the assumptions, or if the theorem-tactic fails
when applied to the first assumption that does match the term.

Example
The tactic

PAT_ASSUM (Term‘x:num = y‘) SUBST_ALL_TAC

searches the assumptions for an equality over numbers and causes its right hand side
to be substituted for its left hand side throughout the goal and assumptions. It also
removes the equality from the assumption list. Trying to use FIRST_ASSUM above (i.e.,
replacing PAT_ASSUM with FIRST_ASSUM and dropping the term argument entirely) would
require that the desired equality was the first such on the list of assumptions, and would
leave an equality on the assumption list of the form x = x.

If one is trying to solve the goal

{ !x. f x = g (x + 1), !x. g x = f0 (f x)} ?- f x = g y

rewriting with the assumptions directly will cause a loop. Instead, one might want to
rewrite with the formula for f. This can be done in an assumption-order-indepedent
way with

PAT_ASSUM (Term‘!x. f x = f’ x‘) (fn th => REWRITE_TAC [th])

This use of the tactic exploits higher order matching to match the RHS of the assump-
tion, and the fact that f is effectively a local constant in the goal to find the correct
assumption.

See also
Tactical.ASSUM LIST, Tactical.EVERY, Tactical.PAT ASSUM, Tactical.EVERY ASSUM,
Tactical.FIRST, Tactical.MAP EVERY, Tactical.MAP FIRST, Thm cont.UNDISCH THEN,
Term.match term, ho match term.

PBETA_CONV (PairRules)

PBETA_CONV : conv

528 Chapter 1. Pre-defined ML Identifiers

Synopsis
Performs a general beta-conversion.

Description
The conversion PBETA_CONV maps a paired beta-redex "(\p.t)q" to the theorem

|- (\p.t)q = t[q/p]

where u[q/p] denotes the result of substituting q for all free occurrences of p in t, after
renaming sufficient bound variables to avoid variable capture. Unlike PAIRED_BETA_CONV,
PBETA_CONV does not require that the structure of the argument match the structure of
the pair bound by the abstraction. However, if the structure of the argument does match
the structure of the pair bound by the abstraction, then PAIRED_BETA_CONV will do the
job much faster.

Failure
PBETA_CONV tm fails if tm is not a paired beta-redex.

Example
PBETA_CONV will reduce applications with arbitrary structure.

- PBETA_CONV
(Term ‘((\((a:’a,b:’a),(c:’a,d:’a)). f a b c d) ((w,x),(y,z))):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) ((w,x),y,z) = f w x y z : thm

PBETA_CONV does not require the structure of the argument and the bound pair to
match.

- PBETA_CONV
(Term ‘((\((a:’a,b:’a),(c:’a,d:’a)). f a b c d) ((w,x),yz)):’a‘);

> val it = |- (\((a,b),c,d). f a b c d) ((w,x),yz) =
f w x (FST yz) (SND yz) : thm

PBETA_CONV regards component pairs of the bound pair as variables in their own right
and preserves structure accordingly:

- PBETA_CONV
(Term ‘((\((a:’a,b:’a),(c:’a,d:’a)). f (a,b) (c,d)) (wx,(y,z))):’a‘);

> val it = |- (\((a,b),c,d). f (a,b) (c,d)) (wx,y,z) = f wx (y,z) : thm

See also
Thm.BETA CONV, PairedLambda.PAIRED BETA CONV, PairRules.PBETA RULE,
PairRules.PBETA TAC, PairRules.LIST PBETA CONV, PairRules.RIGHT PBETA,
PairRules.RIGHT LIST PBETA, PairRules.LEFT PBETA, PairRules.LEFT LIST PBETA.

PBETA RULE 529

PBETA_RULE (PairRules)

PBETA_RULE : (thm -> thm)

Synopsis
Beta-reduces all the paired beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule PBETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

A |-((\p. s1) s2)....
---------------------------- BETA_RULE

A |-(s1[s2/p])....

Failure
Never fails, but will have no effect if there are no paired beta-redexes.

See also
Conv.BETA RULE, PairRules.PBETA CONV, PairRules.PBETA TAC,
PairRules.RIGHT PBETA, PairRules.LEFT PBETA.

PBETA_TAC (PairRules)

PBETA_TAC : tactic

Synopsis
Beta-reduces all the paired beta-redexes in the conclusion of a goal.

Description
When applied to a goal A ?- t, the tactic PBETA_TAC produces a new goal which results
from beta-reducing all paired beta-redexes, at any depth, in t. Variables are renamed

530 Chapter 1. Pre-defined ML Identifiers

where necessary to avoid free variable capture.

A ?- ...((\p. s1) s2)...
========================== PBETA_TAC

A ?- ...(s1[s2/p])...

Failure
Never fails, but will have no effect if there are no paired beta-redexes.

See also
Tactic.BETA TAC, PairRules.PBETA CONV, PairRules.PBETA RULE.

pbody (pairSyntax)

pbody : (term -> term)

Synopsis
Returns the body of a paired abstraction.

Description
pbody "\pair. t" returns "t".

Failure
Fails unless the term is a paired abstraction.

See also
Term.body, pairSyntax.bndpair, pairSyntax.dest pabs.

PCHOOSE (PairRules)

PCHOOSE : term * thm -> thm -> thm

Synopsis
Eliminates paired existential quantification using deduction from a particular witness.

PCHOOSE TAC 531

Description
When applied to a term-theorem pair (q,A1 |- ?p. s) and a second theorem of the
form A2 u {s[q/p]} |- t, the inference rule PCHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?p. s A2 u {s[q/p]} |- t
------------------------------------ PCHOOSE ("q",(A1 |- ?q. s))

A1 u A2 |- t

Where no variable in the paired variable structure q is free in A1, A2 or t.

Failure
Fails unless the terms and theorems correspond as indicated above; in particular q must
have the same type as the pair existentially quantified over, and must not contain any
variable free in A1, A2 or t.

See also
Thm.CHOOSE, PairRules.PCHOOSE TAC, PairRules.PEXISTS, PairRules.PEXISTS TAC,
PairRules.PSELECT ELIM.

PCHOOSE_TAC (PairRules)

PCHOOSE_TAC : thm_tactic

Synopsis
Adds the body of a paired existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?p. t and a goal, CHOOSE_TAC adds t[p’/p] to the
assumptions of the goal, where p’ is a variant of the pair p which has no components
free in the assumption list; normally p’ is just p.

A ?- u
==================== CHOOSE_TAC (A’ |- ?q. t)
A u {t[p’/p]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is a paired existential quantification.

See also
Tactic.CHOOSE TAC, PairRules.PCHOOSE THEN, PairRules.P PCHOOSE TAC.

532 Chapter 1. Pre-defined ML Identifiers

PCHOOSE_THEN (PairRules)

PCHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of paired existentially quantified theorem.

Description
When applied to a theorem-tactic ttac, a paired existentially quantified theorem:

A’ |- ?p. t

and a goal, CHOOSE_THEN applies the tactic ttac (t[p’/p] |- t[p’/p]) to the goal,
where p’ is a variant of the pair p chosen to have no components free in the assumption
list of the goal. Thus if:

A ?- s1
========= ttac (t[q’/q] |- t[q’/q])
B ?- s2

then

A ?- s1
========== CHOOSE_THEN ttac (A’ |- ?q. t)
B ?- s2

This is invalid unless A’ is a subset of A.

Failure
Fails unless the given theorem is a paired existential quantification, or if the resulting
tactic fails when applied to the goal.

See also
Thm cont.CHOOSE THEN, PairRules.PCHOOSE TAC, PairRules.P PCHOOSE THEN.

PETA_CONV (PairRules)

PETA_CONV : conv

PEXISTENCE 533

Synopsis
Performs a top-level paired eta-conversion.

Description
PETA_CONV maps an eta-redex \p. t p, where none of variables in the paired structure
of variables p occurs free in t, to the theorem |- (\p. t p) = t.

Failure
Fails if the input term is not a paired eta-redex.

PEXISTENCE (PairRules)

PEXISTENCE : (thm -> thm)

Synopsis
Deduces paired existence from paired unique existence.

Description
When applied to a theorem with a paired unique-existentially quantified conclusion,
EXISTENCE returns the same theorem with normal paired existential quantification over
the same pair.

A |- ?!p. t
------------- PEXISTENCE
A |- ?p. t

Failure
Fails unless the conclusion of the theorem is a paired unique-existential quantification.

See also
Conv.EXISTENCE, PairRules.PEXISTS UNIQUE CONV.

PEXISTS (PairRules)

PEXISTS : term * term -> thm -> thm)

534 Chapter 1. Pre-defined ML Identifiers

Synopsis
Introduces paired existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, where the first term a paired exis-
tentially quantified pattern indicating the desired form of the result, and the second a
witness whose substitution for the quantified pair gives a term which is the same as the
conclusion of the theorem, PEXISTS gives the desired theorem.

A |- t[q/p]
------------- EXISTS ("?p. t","q")
A |- ?p. t

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate the various uses of PEXISTS:

- PEXISTS (Term‘?x. x + 2 = x + 2‘, Term‘1‘) (REFL (Term‘1 + 2‘));
> val it = |- ?x. x + 2 = x + 2 : thm

- PEXISTS (Term‘?y. 1 + y = 1 + y‘, Term‘2‘) (REFL (Term‘1 + 2‘));
> val it = |- ?y. 1 + y = 1 + y : thm

- PEXISTS (Term‘?(x,y). x + y = x + y‘, Term‘(1,2)‘) (REFL (Term‘1 + 2‘));
> val it = |- ?(x,y). x + y = x + y : thm

- PEXISTS (Term‘?(a:’a,b:’a). (a,b) = (a,b)‘, Term‘ab:’a#’a‘)
(REFL (Term ‘ab:’a#’a‘));

> val it = |- ?(a,b). (a,b) = (a,b) : thm

See also
Thm.EXISTS, PairRules.PCHOOSE, PairRules.PEXISTS TAC.

PEXISTS_AND_CONV (PairRules)

PEXISTS_AND_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a conjunction.

PEXISTS CONV 535

Description
When applied to a term of the form ?p. t /\ u, where variables in p are not free in
both t and u, PEXISTS_AND_CONV returns a theorem of one of three forms, depending on
occurrences of variables from p in t and u. If p contains variables free in t but none in
u, then the theorem:

|- (?p. t /\ u) = (?p. t) /\ u

is returned. If p contains variables free in u but none in t, then the result is:

|- (?p. t /\ u) = t /\ (?x. u)

And if p does not contain any variable free in either t nor u, then the result is:

|- (?p. t /\ u) = (?x. t) /\ (?x. u)

Failure
PEXISTS_AND_CONV fails if it is applied to a term not of the form ?p. t /\ u, or if it is
applied to a term ?p. t /\ u in which variables in p are free in both t and u.

See also
Conv.EXISTS AND CONV, PairRules.AND PEXISTS CONV,
PairRules.LEFT AND PEXISTS CONV, PairRules.RIGHT AND PEXISTS CONV.

PEXISTS_CONV (PairRules)

PEXISTS_CONV : conv

Synopsis
Eliminates paired existential quantifier by introducing a paired choice-term.

Description
The conversion PEXISTS_CONV expects a boolean term of the form (?p. t[p]), where p

may be a paired structure or variables, and converts it to the form (t [@p. t[p]]).

--------------------------------- PEXISTS_CONV "(?p. t[p])"
(|- (?p. t[p]) = (t [@p. t[p]])

Failure
Fails if applied to a term that is not a paired existential quantification.

536 Chapter 1. Pre-defined ML Identifiers

See also
PairRules.PSELECT RULE, PairRules.PSELECT CONV, PairRules.PEXISTS RULE,
PairRules.PSELECT INTRO, PairRules.PSELECT ELIM.

PEXISTS_EQ (PairRules)

PEXISTS_EQ : (term -> thm -> thm)

Synopsis
Existentially quantifies both sides of an equational theorem.

Description
When applied to a paired structure of variables p and a theorem whose conclusion is
equational:

A |- t1 = t2

the inference rule PEXISTS_EQ returns the theorem:

A |- (?p. t1) = (?p. t2)

provided the none of the variables in p is not free in any of the assumptions.

A |- t1 = t2
-------------------------- PEXISTS_EQ "p" [where p is not free in A]
A |- (?p. t1) = (?p. t2)

Failure
Fails unless the theorem is equational with both sides having type bool, or if the term is
not a paired structure of variables, or if any variable in the pair to be quantified over is
free in any of the assumptions.

See also
Drule.EXISTS EQ, PairRules.PEXISTS IMP, PairRules.PFORALL EQ,
PairRules.MK PEXISTS, PairRules.PSELECT EQ.

PEXISTS_IMP (PairRules)

PEXISTS_IMP : (term -> thm -> thm)

PEXISTS IMP CONV 537

Synopsis
Existentially quantifies both the antecedent and consequent of an implication.

Description
When applied to a paired structure of variables p and a theorem A |- t1 ==> t2, the
inference rule PEXISTS_IMP returns the theorem A |- (?p. t1) ==> (?p. t2), provided
no variable in p is free in the assumptions.

A |- t1 ==> t2
-------------------------- EXISTS_IMP "x" [where x is not free in A]
A |- (?x.t1) ==> (?x.t2)

Failure
Fails if the theorem is not implicative, or if the term is not a paired structure of variables,
of if any variable in the pair is free in the assumption list.

See also
Drule.EXISTS IMP, PairRules.PEXISTS EQ.

PEXISTS_IMP_CONV (PairRules)

PEXISTS_IMP_CONV : conv

Synopsis
Moves a paired existential quantification inwards through an implication.

Description
When applied to a term of the form ?p. t ==> u, where variables from p are not free in
both t and u, PEXISTS_IMP_CONV returns a theorem of one of three forms, depending on
occurrences of variable from p in t and u. If variables from p are free in t but none are

538 Chapter 1. Pre-defined ML Identifiers

in u, then the theorem:

|- (?p. t ==> u) = (!p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (?p. t ==> u) = t ==> (?p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (?p. t ==> u) = (!p. t) ==> (?p. u)

Failure
PEXISTS_IMP_CONV fails if it is applied to a term not of the form ?p. t ==> u, or if it is
applied to a term ?p. t ==> u in which the variables from p are free in both t and u.

See also
Conv.EXISTS IMP CONV, PairRules.LEFT IMP PFORALL CONV,
PairRules.RIGHT IMP PEXISTS CONV.

PEXISTS_NOT_CONV (PairRules)

PEXISTS_NOT_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a negation.

Description
When applied to a term of the form ?p. ~t, the conversion PEXISTS_NOT_CONV returns
the theorem:

|- (?p. ~t) = ~(!p. t)

Failure
Fails if applied to a term not of the form ?p. ~t.

See also
Conv.EXISTS NOT CONV, PairRules.PFORALL NOT CONV, PairRules.NOT PEXISTS CONV,
PairRules.NOT PFORALL CONV.

PEXISTS OR CONV 539

PEXISTS_OR_CONV (PairRules)

PEXISTS_OR_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a disjunction.

Description
When applied to a term of the form ?p. t \/ u, the conversion PEXISTS_OR_CONV returns
the theorem:

|- (?p. t \/ u) = (?p. t) \/ (?p. u)

Failure
Fails if applied to a term not of the form ?p. t \/ u.

See also
Conv.EXISTS OR CONV, PairRules.OR PEXISTS CONV, PairRules.LEFT OR PEXISTS CONV,
PairRules.RIGHT OR PEXISTS CONV.

PEXISTS_RULE (PairRules)

PEXISTS_RULE : (thm -> thm)

Synopsis
Introduces a paired existential quantification in place of a paired choice.

Description
The inference rule PEXISTS_RULE expects a theorem asserting that (@p. t) denotes a
pair for which t holds. The equivalent assertion that there exists a p for which t holds
is returned.

A |- t[(@p. t)/p]
------------------ PEXISTS_RULE

A |- ?p. t

Failure
Fails if applied to a theorem the conclusion of which is not of the form (t[(@p.t)/p]).

540 Chapter 1. Pre-defined ML Identifiers

See also
PairRules.PEXISTS CONV, PairRules.PSELECT RULE, PairRules.PSELECT CONV,
PairRules.PSELECT INTRO, PairRules.PSELECT ELIM.

PEXISTS_TAC (PairRules)

PEXISTS_TAC : (term -> tactic)

Synopsis
Reduces paired existentially quantified goal to one involving a specific witness.

Description
When applied to a term q and a goal ?p. t, the tactic PEXISTS_TAC reduces the goal to
t[q/p].

A ?- ?p. t
============= EXISTS_TAC "q"
A ?- t[q/p]

Failure
Fails unless the goal’s conclusion is a paired existential quantification and the term
supplied has the same type as the quantified pair in the goal.

Example
The goal:

?- ?(x,y). (x,y)=(1,2)

can be solved by:

PEXISTS_TAC "(1,2)" THEN REFL_TAC

See also
Tactic.EXISTS TAC, PairRules.PEXISTS.

PEXISTS_UNIQUE_CONV (PairRules)

PEXISTS_UNIQUE_CONV : conv

PEXT 541

Synopsis
Expands with the definition of paired unique existence.

Description
Given a term of the form "?!p. t[p]", the conversion PEXISTS_UNIQUE_CONV proves that
this assertion is equivalent to the conjunction of two statements, namely that there
exists at least one pair p such that t[p], and that there is at most one value p for which
t[p] holds. The theorem returned is:

|- (?!p. t[p]) = (?p. t[p]) /\ (!p p’. t[p] /\ t[p’] ==> (p = p’))

where p’ is a primed variant of the pair p none of the components of which appear free
in the input term. Note that the quantified pair p need not in fact appear free in the
body of the input term. For example, PEXISTS_UNIQUE_CONV "?!(x,y). T" returns the
theorem:

|- (?!(x,y). T) =
(?(x,y). T) /\ (!(x,y) (x’,y’). T /\ T ==> ((x,y) = (x’,y’)))

Failure
PEXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!p.t".

See also
Conv.EXISTS UNIQUE CONV, PairRules.PEXISTENCE.

PEXT (PairRules)

PEXT : (thm -> thm)

Synopsis
Derives equality of functions from extensional equivalence.

Description
When applied to a theorem A |- !p. t1 p = t2 p, the inference rule PEXT returns the
theorem A |- t1 = t2.

A |- !p. t1 p = t2 p
---------------------- PEXT [where p is not free in t1 or t2]

A |- t1 = t2

Failure
Fails if the theorem does not have the form indicated above, or if any of the component

542 Chapter 1. Pre-defined ML Identifiers

variables in the paired variable structure p is free either of the functions t1 or t2.

Example

- PEXT (ASSUME (Term ‘!(x,y). ((f:(’a#’a)->’a) (x,y)) = (g (x,y))‘));
> val it = [.] |- f = g : thm

See also
Drule.EXT, Thm.AP THM, PairRules.PETA CONV, Conv.FUN EQ CONV,
PairRules.P FUN EQ CONV.

PFORALL_AND_CONV (PairRules)

PFORALL_AND_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a conjunction.

Description
When applied to a term of the form !p. t /\ u, the conversion PFORALL_AND_CONV re-
turns the theorem:

|- (!p. t /\ u) = (!p. t) /\ (!p. u)

Failure
Fails if applied to a term not of the form !p. t /\ u.

See also
Conv.FORALL AND CONV, PairRules.AND PFORALL CONV,
PairRules.LEFT AND PFORALL CONV, PairRules.RIGHT AND PFORALL CONV.

PFORALL_EQ (PairRules)

PFORALL_EQ : (term -> thm -> thm)

Synopsis
Universally quantifies both sides of an equational theorem.

PFORALL IMP CONV 543

Description
When applied to a paired structure of variables p and a theorem

A |- t1 = t2

whose conclusion is an equation between boolean terms:

PFORALL_EQ

returns the theorem:

A |- (!p. t1) = (!p. t2)

unless any of the variables in p is free in any of the assumptions.

A |- t1 = t2
-------------------------- PFORALL_EQ "p" [where p is not free in A]
A |- (!p. t1) = (!p. t2)

Failure
Fails if the theorem is not an equation between boolean terms, or if the supplied term is
not a paired structure of variables, or if any of the variables in the supplied pair is free
in any of the assumptions.

See also
Drule.FORALL EQ, PairRules.PEXISTS EQ, PairRules.PSELECT EQ.

PFORALL_IMP_CONV (PairRules)

PFORALL_IMP_CONV : conv

Synopsis
Moves a paired universal quantification inwards through an implication.

Description
When applied to a term of the form !p. t ==> u, where variables from p are not free in
both t and u, PFORALL_IMP_CONV returns a theorem of one of three forms, depending on

544 Chapter 1. Pre-defined ML Identifiers

occurrences of the variables from p in t and u. If variables from p are free in t but none
are in u, then the theorem:

|- (!p. t ==> u) = (?p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (!p. t ==> u) = t ==> (!p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t ==> u) = (?p. t) ==> (!p. u)

Failure
PFORALL_IMP_CONV fails if it is applied to a term not of the form !p. t ==> u, or if it is
applied to a term !p. t ==> u in which variables from p are free in both t and u.

See also
Conv.FORALL IMP CONV, PairRules.LEFT IMP PEXISTS CONV,
PairRules.RIGHT IMP PFORALL CONV.

PFORALL_NOT_CONV (PairRules)

PFORALL_NOT_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a negation.

Description
When applied to a term of the form !p. ~t, the conversion PFORALL_NOT_CONV returns
the theorem:

|- (!p. ~t) = ~(?p. t)

Failure
Fails if applied to a term not of the form !p. ~t.

See also
Conv.FORALL NOT CONV, PairRules.PEXISTS NOT CONV, PairRules.NOT PEXISTS CONV,
PairRules.NOT PFORALL CONV.

PFORALL OR CONV 545

PFORALL_OR_CONV (PairRules)

PFORALL_OR_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a disjunction.

Description
When applied to a term of the form !p. t \/ u, where no variable in p is free in both
t and u, PFORALL_OR_CONV returns a theorem of one of three forms, depending on occur-
rences of the variables from p in t and u. If variables from p are free in t but not in u,
then the theorem:

|- (!p. t \/ u) = (!p. t) \/ u

is returned. If variables from p are free in u but none are free in t, then the result is:

|- (!p. t \/ u) = t \/ (!t. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t \/ u) = (!p. t) \/ (!p. u)

Failure
PFORALL_OR_CONV fails if it is applied to a term not of the form !p. t \/ u, or if it is
applied to a term !p. t \/ u in which variables from p are free in both t and u.

See also
Conv.FORALL OR CONV, PairRules.OR PFORALL CONV, PairRules.LEFT OR PFORALL CONV,
PairRules.RIGHT OR PFORALL CONV.

PGEN (PairRules)

PGEN : (term -> thm -> thm)

Synopsis
Generalizes the conclusion of a theorem.

546 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a paired structure of variables p and a theorem A |- t, the inference
rule PGEN returns the theorem A |- !p. t, provided that no variable in p occurs free in
the assumptions A. There is no compulsion that the variables of p should be free in t.

A |- t
------------ PGEN "p" [where p does not occur free in A]
A |- !p. t

Failure
Fails if p is not a paired structure of variables, of if any variable in p is free in the
assumptions.

See also
Thm.GEN, PairRules.PGENL, PGEN ALL, PairRules.PGEN TAC, PairRules.PSPEC,
PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

PGEN_TAC (PairRules)

PGEN_TAC : tactic

Synopsis
Strips the outermost paired universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !p. t, the tactic PGEN_TAC reduces it to A ?- t[p’/p] where
p’ is a variant of the paired variable structure p chosen to avoid clashing with any
variables free in the goal’s assumption list. Normally p’ is just p.

A ?- !p. t
============== PGEN_TAC
A ?- t[p’/p]

Failure
Fails unless the goal’s conclusion is a paired universally quantification.

See also
Tactic.GEN TAC, PairRules.FILTER PGEN TAC, PairRules.PGEN, PairRules.PGENL,
PGEN ALL, PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL,
PairRules.PSPEC TAC, PairRules.PSTRIP TAC, PairRules.P PGEN TAC.

PGENL 547

PGENL (PairRules)

PGENL : (term list -> thm -> thm)

Synopsis
Generalizes zero or more pairs in the conclusion of a theorem.

Description
When applied to a list of paired variable structures [p1;...;pn] and a theorem A |- t,
the inference rule PGENL returns the theorem A |- !p1...pn. t, provided none of the
constituent variables from any of the pairs pi occur free in the assumptions.

A |- t
------------------ PGENL "[p1;...;pn]" [where no pi is free in A]
A |- !p1...pn. t

Failure
Fails unless all the terms in the list are paired structures of variables, none of the vari-
ables from which are free in the assumption list.

See also
Drule.GENL, PairRules.PGEN, PGEN ALL, PairRules.PGEN TAC, PairRules.PSPEC,
PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

pluck (Lib)

pluck : (’a -> bool) -> ’a list -> ’a * ’a list

Synopsis
Pull an element out of a list.

Description
An invocation pluck P [x1,...,xk,...,xn] returns a pair (xk,[x1,...,xk-1,xk+1,...xn]),
where xk has been lifted out of the list without disturbing the relative positions of the
other elements. For this to happen, P xk must hold, and P xi must not have held for
1 <= i < k.

548 Chapter 1. Pre-defined ML Identifiers

Failure
If the input list is empty. Also fails if P holds of no member of the list. Also fails if an
application of P fails.

Example

- val (x,rst) = pluck (fn x => x mod 2 = 0) [1,2,3];
> val x = 2 : int

val rst = [1, 3] : int list

See also
Lib.first, Lib.gather, Lib.filter, Lib.mapfilter, Lib.assoc1, Lib.assoc2,
Lib.assoc, Lib.rev assoc.

++ (bossLib)

op ++ : simpset * ssdata -> simpset

Synopsis
Infix operator for augmenting simpsets with ssdata values.

Description
The ++ function combines its two arguments and creates a new simpset. This is a way
of creating simpsets that are tailored to the particular simplification task at hand.

Failure
Never fails.

Example
Here we add the UNWIND_ss ssdata value to the pure_ss simpset to exploit the former’s
point-wise elimination conversions.

- SIMP_CONV (pureSimps.pure_ss ++ boolSimps.UNWIND_ss) []
(Term‘!x. x ==> (?y. P(x,y) /\ (y = 5))‘);

> val it = |- (!x. x ==> (?y. P (x,y) /\ (y = 5))) = P (T,5) : thm

See also
simpLib.mk simpset, simpLib.rewrites, simpLib.SIMP CONV, pureSimps.pure ss,
boolSimps.UNWIND ss.

PMATCH MP 549

PMATCH_MP (PairRules)

PMATCH_MP : (thm -> thm -> thm)

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !p1...pn. t1 ==> t2 and A2 |- t1’, the inference
rule PMATCH_MP matches t1 to t1’ by instantiating free or paired universally quantified
variables in the first theorem (only), and returns a theorem A1 u A2 |- !pa..pk. t2’,
where t2’ is a correspondingly instantiated version of t2. Polymorphic types are also
instantiated if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any pairs which were universally quantified over in the first argument
theorem will be universally quantified over in the result, and in the same order.

A1 |- !p1..pn. t1 ==> t2 A2 |- t1’
-------------------------------------- MATCH_MP

A1 u A2 |- !pa..pk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly paired universally quantified)
implication whose antecedent can be instantiated to match the conclusion of the second
theorem, without instantiating any variables which are free in A1, the first theorem’s
assumption list.

See also
Drule.MATCH MP.

PMATCH_MP_TAC (PairRules)

PMATCH_MP_TAC : thm_tactic

Synopsis
Reduces the goal using a supplied implication, with matching.

550 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a theorem of the form

A’ |- !p1...pn. s ==> !q1...qm. t

PMATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substi-
tution and/or type instance of t to the corresponding instance of s. Any variables free
in s but not in t will be existentially quantified in the resulting subgoal:

A ?- !u1...ui. t’
====================== PMATCH_MP_TAC (A’ |- !p1...pn. s ==> !q1...qm. t)

A ?- ?w1...wp. s’

where w1, ..., wp are (type instances of) those pairs among p1, ..., pn having variables
that do not occur free in t. Note that this is not a valid tactic unless A’ is a subset of A.

Failure
Fails unless the theorem is an (optionally paired universally quantified) implication
whose consequent can be instantiated to match the goal. The generalized pairs u1,
..., ui must occur in s’ in order for the conclusion t of the supplied theorem to match
t’.

See also
Tactic.MATCH MP TAC.

polymorphic (Type)

polymorphic : hol_type -> bool

Synopsis
Checks if there is a type variable in a type

Description
An invocation polymorphic ty checks to see if ty has an occurrence of any type variable.
It is equivalent in functionality to not o null o type_vars, but may be more efficient in
some situations, since it can stop processing once it finds one type variable.

Failure
Never fails.

POP ASSUM 551

Example

- polymorphic (bool --> alpha --> ind);
> val it = true : bool

Comments
polymorphic is also equivalent to exists_tyvar (K true), and no faster.

See also
Type.type vars, Type.type var in, Type.exists tyvar.

POP_ASSUM (Tactical)

POP_ASSUM : thm_tactic -> tactic

Synopsis
Applies tactic generated from the first element of a goal’s assumption list.

Description
When applied to a theorem-tactic and a goal, POP_ASSUM applies the theorem-tactic to
the ASSUMEd first element of the assumption list, and applies the resulting tactic to the
goal without the first assumption in its assumption list:

POP_ASSUM f ({A1,...,An} ?- t) = f (A1 |- A1) ({A2,...,An} ?- t)

Failure
Fails if the assumption list of the goal is empty, or the theorem-tactic fails when applied
to the popped assumption, or if the resulting tactic fails when applied to the goal (with
depleted assumption list).

Comments
It is possible simply to use the theorem ASSUME A1 as required rather than use POP_ASSUM;
this will also maintain A1 in the assumption list, which is generally useful. In addition,
this approach can equally well be applied to assumptions other than the first.

There are admittedly times when POP_ASSUM is convenient, but it is most unwise to
use it if there is more than one assumption in the assumption list, since this introduces
a dependency on the ordering, which is vulnerable to changes in the HOL system.

552 Chapter 1. Pre-defined ML Identifiers

Another point to consider is that if the relevant assumption has been obtained by
DISCH_TAC, it is often cleaner to use DISCH_THEN with a theorem-tactic. For example,
instead of:

DISCH_TAC THEN POP_ASSUM (\th. SUBST1_TAC (SYM th))

one might use

DISCH_THEN (SUBST1_TAC o SYM)

Example
The goal:

{4 = SUC x} ?- x = 3

can be solved by:

POP_ASSUM
(fn th => REWRITE_TAC[REWRITE_RULE[num_CONV (Term‘4‘, INV_SUC_EQ] th]])

Uses
Making more delicate use of an assumption than rewriting or resolution using it.

See also
Tactical.ASSUM LIST, Tactical.EVERY ASSUM, Tactic.IMP RES TAC,
Tactical.POP ASSUM LIST, Rewrite.REWRITE TAC.

POP_ASSUM_LIST (Tactical)

POP_ASSUM_LIST : (thm list -> tactic) -> tactic

Synopsis
Generates a tactic from the assumptions, discards the assumptions and applies the tac-
tic.

Description
When applied to a function and a goal, POP_ASSUM_LIST applies the function to a list
of theorems corresponding to the ASSUMEd assumptions of the goal, then applies the

pp tag 553

resulting tactic to the goal with an empty assumption list.

POP_ASSUM_LIST f ({A1,...,An} ?- t) = f [A1 |- A1, ..., An |- An] (?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the
resulting tactic fails when applied to the goal with no assumptions.

Comments
There is nothing magical about POP_ASSUM_LIST: the same effect can be achieved by
using ASSUME a explicitly wherever the assumption a is used. If POP_ASSUM_LIST is used,
it is unwise to select elements by number from the ASSUMEd-assumption list, since this
introduces a dependency on ordering.

Example
Suppose we have a goal of the following form:

{a /\ b, c, (d /\ e) /\ f} ?- t

Then we can split the conjunctions in the assumption list apart by applying the tactic:

POP_ASSUM_LIST (MAP_EVERY STRIP_ASSUME_TAC)

which results in the new goal:

{a, b, c, d, e, f} ?- t

Uses
Making more delicate use of the assumption list than simply rewriting or using resolu-
tion.

See also
Tactical.ASSUM LIST, Tactical.EVERY ASSUM, Tactic.IMP RES TAC,
Tactical.POP ASSUM, Rewrite.REWRITE TAC.

pp_tag (Tag)

pp_tag : ppstream -> tag -> unit

554 Chapter 1. Pre-defined ML Identifiers

Synopsis
Prettyprinter for tags.

Description
An invocation pp_tag ppstrm t will place a representation of tag t on prettyprinting
stream ppstrm.

Failure
Never fails.

Example

- val ppstrm = PP.mk_ppstream (Portable.defaultConsumer());
> val ppstrm = <ppstream> : ppstream

- Tag.pp_tag ppstrm (Tag.read "fooble");
> val it = () : unit

- (PP.flush_ppstream ppstrm; print "\n");
[oracles: fooble] [axioms:]
> val it = () : unit

Comments
In MoscowML, Meta.installPP won’t install pp_tag in the top-level loop.

See also
Hol pp.pp thm.

prefer_form_with_tok (Parse)

prefer_form_with_tok : {term_name : string, tok : string} -> unit

Synopsis
Sets a grammar rule’s preferred flag, causing it to be preferentially printed.

Description
A call to prefer_form_with_tok causes the parsing/pretty-printing rule specified by the
term_name-tok combination to be the preferred rule for pretty-printing purposes. This
change affects the global grammar.

prefer int 555

Failure
Never fails.

Example
The initially preferred rule for conditional expressions causes them to print using the
if-then-else syntax. If the user prefers the “traditional” syntax with =>-|, this change
can be brought about as follows:

- prefer_form_with_tok {term_name = "COND", tok = "=>"};
> val it = () : unit

- Term‘if p then q else r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘p => q | r‘ : term

Comments
As the example above demonstrates, using this function does not affect the parser at all.

There is a companion temp_prefer_form_with_tok function, which has the same effect
on the global grammar, but which does not cause this effect to persist when the current
theory is exported.

See also
Parse.clear prefs for term.

prefer_int (intLib)

intLib.prefer_int : unit -> unit

Synopsis
Makes the parser favour integer possibilities in ambiguous terms.

Description
Calling prefer_int() causes the global grammar to be altered so that the standard
arithmetic operator symbols (+, *, etc.), as well as numerals, are given integral types
if possible. This effect is brought about through the application of multiple calls to
temp_overload_on, so that the “arithmetic symbols” need not have been previously map-
ping to integral possibilities at all (as would be the situation after a call to deprecate_int).

Failure
Never fails.

556 Chapter 1. Pre-defined ML Identifiers

See also
intLib.deprecate int, numLib.deprecate num, Parse.overload on,
numLib.prefer num.

prim_mk_const (Term)

prim_mk_const : {Thy:string, Name:string} -> term

Synopsis
Build a constant.

Description
If Name is the name of a previously declared constant in theory Thy, then prim_mk_const {Thy,Name}

will return the specified constant.

Failure
If Name is not the name of a constant declared in theory Thy.

Example

- prim_mk_const {Thy="min", Name="="};
> val it = ‘$=‘ : term

- type_of it;
> val it = ‘:’a -> ’a -> bool‘ : hol_type

Comments
The difference between mk_thy_const (and mk_const) and prim_mk_const is that mk_thy_const
and mk_const will create type instances of polymorphic constants, while prim_mk_const

merely returns the originally declared constant.

See also
Term.mk thy const.

prim_variant (Term)

prim_variant : term list -> term -> term

prime 557

Synopsis
Rename a variable to be different from any in a list.

Description
The function prim_variant is exactly the same as variant, except that it doesn’t rename
away from constants.

Failure
prim_variant l t fails if any term in the list l is not a variable or if t is not a variable.

Example

- variant [] (mk_var("T",bool));
> val it = ‘T’‘ : term

- prim_variant [] (mk_var("T",bool));
> val it = ‘T‘ : term

Comments
The extra amount of renaming that variant does is useful when generating new con-
stant names (even though it returns a variable) inside high-level definition mechanisms.
Otherwise, prim_variant seems preferable.

See also
Term.variant, Term.mk var, Term.genvar, Term.mk primed var.

prime (Lib)

prime : string -> string

Synopsis
Attach a prime mark to a string.

Description
A call prime s is equal to s ^ "’".

Failure
Never fails.

See also
Term.variant.

558 Chapter 1. Pre-defined ML Identifiers

priming (Globals)

priming : string option ref

Synopsis
Controls how variables get renamed.

Description
The flag Globals.priming controls how certain system function perform renaming of
variables. When priming has the value NONE, renaming is achieved by concatenation of
primes (’). When priming has the value SOME s, renaming is achieved by incrementing
a counter.

The default value of priming is NONE.

Example

- mk_primed_var ("T",bool);
> val it = ‘T’‘ : term

- with_flag (priming,SOME "_") mk_primed_var ("T",bool);
> val it = ‘T_1‘ : term

Comments
Proofs should be re-run in the same priming regime as they were originally performed
in, since different styles of renaming can break proofs.

See also
Term.variant, Term.subst, Term.inst, Term.mk primed var, Lib.with flag.

print_term (Parse)

Parse.print_term : term -> unit

Synopsis
Prints a term to the screen (standard out).

print theory 559

Description
The function print_term prints a term to the screen. It first converts the term into a
string, and then outputs that string to the standard output stream.

The conversion to the string is done by term_to_string. The term is printed using the
pretty-printing information contained in the global grammar.

Failure
Should never fail.

See also
Parse.term to string.

print_theory (DB)

print_theory : string -> unit

Synopsis
Print a theory on the standard output.

Description
An invocation print_theory s will display the contents of the theory segment s on the
standard output. The string "-" may be used to denote the current theory segment.

Failure
If s is not the name of a loaded theory.

560 Chapter 1. Pre-defined ML Identifiers

Example

- print_theory "combin";
Theory: combin

Parents:
bool

Term constants:
C :(’a -> ’b -> ’c) -> ’b -> ’a -> ’c
I :’a -> ’a
K :’a -> ’b -> ’a
S :(’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c
W :(’a -> ’a -> ’b) -> ’a -> ’b
o :(’c -> ’b) -> (’a -> ’c) -> ’a -> ’b

Definitions:
K_DEF |- K = (\x y. x)
S_DEF |- S = (\f g x. f x (g x))
I_DEF |- I = S K K
C_DEF |- combin$C = (\f x y. f y x)
W_DEF |- W = (\f x. f x x)
o_DEF |- !f g. f o g = (\x. f (g x))

Theorems:
o_THM |- !f g x. (f o g) x = f (g x)
o_ASSOC |- !f g h. f o g o h = (f o g) o h
K_THM |- !x y. K x y = x
S_THM |- !f g x. S f g x = f x (g x)
C_THM |- !f x y. combin$C f x y = f y x
W_THM |- !f x. W f x = f x x
I_THM |- !x. I x = x
I_o_ID |- !f. (I o f = f) /\ (f o I = f)

> val it = () : unit

See also
DB.dest theory, DB.thy.

PROVE (BasicProvers)

PROVE : thm list -> term -> thm

PROVE 561

Synopsis
Prove a theorem with use of supplied lemmas.

Description
bossLib.PROVE is identical to BasicProvers.PROVE.

See also
bossLib.PROVE.

PROVE (bossLib)

PROVE : thm list -> term -> thm

Synopsis
Prove a theorem with use of supplied lemmas.

Description
An invocation PROVE thl M attempts to prove M using an automated reasoner supplied
with the lemmas in thl. The automated reasoner performs a first order proof search.
It currently provides some support for polymorphism and higher-order values (lambda
terms).

Failure
If the proof search fails, or if M does not have type bool.

Example

- PROVE [] (concl SKOLEM_THM);
Meson search level:
> val it = |- !P. (!x. ?y. P x y) = ?f. !x. P x (f x) : thm

- let open arithmeticTheory
in

PROVE [ADD_ASSOC, ADD_SYM, ADD_CLAUSES]
(Term ‘x + 0 + y + z = y + (z + x)‘)

end;
Meson search level:
> val it = |- x + 0 + y + z = y + (z + x) : thm

Comments
Some output (a row of dots) is currently generated as PROVE works. If the frequency of
dot emission becomes slow, that is a sign that the term is not likely to be proved with
the current lemmas.

562 Chapter 1. Pre-defined ML Identifiers

Unlike MESON_TAC, PROVE can handle terms with conditionals.

See also
bossLib.PROVE TAC, mesonLib.MESON TAC, mesonLib.ASM MESON TAC.

PROVE (hol88Lib)

PROVE : term * tactic -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic.

Description
When applied to a term-tactic pair (tm,tac), the function PROVE attempts to prove the
goal ?- tm, that is, the term tm with no assumptions, using the tactic tac. If PROVE

succeeds, it returns the corresponding theorem A |- tm, where the assumption list A

may not be empty if the tactic is invalid; PROVE has no inbuilt validity-checking.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal. Also fails if the hol88 library has not
been loaded.

See also
Tactical.TAC PROOF, Tactical.prove, hol88Lib.prove thm, Tactical.VALID.

prove (Tactical)

prove : term * tactic -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic.

Description
When applied to a term-tactic pair (tm,tac), the function prove attempts to prove the
goal ?- tm, that is, the term tm with no assumptions, using the tactic tac. If prove

prove abs fn one one 563

succeeds, it returns the corresponding theorem A |- tm, where the assumption list A

may not be empty if the tactic is invalid; prove has no inbuilt validity-checking.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal.

Comments
The function PROVE provides almost identical functionality, and will also list unsolved
goals if the tactic fails. It is therefore preferable for most purposes.

See also
BasicProvers.PROVE, hol88Lib.prove thm, Tactical.TAC PROOF, VALID.

prove_abs_fn_one_one (Drule)

prove_abs_fn_one_one : thm -> thm

Synopsis
Proves that a type abstraction function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_one_one th proves from this theorem that the function abs is one-to-
one for values that satisfy P, returning the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,
Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto.

564 Chapter 1. Pre-defined ML Identifiers

prove_abs_fn_one_one (Prim_rec)

prove_abs_fn_one_one : thm -> thm

Synopsis
Proves that a type abstraction function is one-to-one (injective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_one_one th proves from this theorem that the function abs is one-to-
one for values that satisfy P, returning the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,
Prim rec.prove abs fn onto, Drule.prove rep fn one one, Drule.prove rep fn onto.

prove_abs_fn_onto (Drule)

prove_abs_fn_onto : thm -> thm

Synopsis
Proves that a type abstraction function is onto (surjective).

prove abs fn onto 565

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_onto th proves from this theorem that the function abs is onto, re-
turning the theorem:

|- !a. ?r. (a = abs r) /\ P r

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,
Prim rec.prove abs fn one one, Drule.prove rep fn one one,
Drule.prove rep fn onto.

prove_abs_fn_onto (Prim_rec)

prove_abs_fn_onto : thm -> thm

Synopsis
Proves that a type abstraction function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_onto th proves from this theorem that the function abs is onto, re-
turning the theorem:

|- !a. ?r. (a = abs r) /\ P r

Failure
Fails if applied to a theorem not of the form shown above.

566 Chapter 1. Pre-defined ML Identifiers

See also
Definition.new type definition, Drule.define new type bijections,
Prim rec.prove abs fn one one, Drule.prove rep fn one one,
Drule.prove rep fn onto.

prove_cases_thm (Prim_rec)

prove_cases_thm : (thm -> thm)

Synopsis
Proves a structural cases theorem for an automatically-defined concrete type.

Description
prove_cases_thm takes as its argument a structural induction theorem, in the form re-
turned by prove_induction_thm for an automatically-defined concrete type. When ap-
plied to such a theorem, prove_cases_thm automatically proves and returns a theorem
which states that every value the concrete type in question is denoted by the value
returned by some constructor of the type.

Failure
Fails if the argument is not a theorem of the form returned by prove_induction_thm

Example
Given the following structural induction theorem for labelled binary trees:

|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)

prove_cases_thm proves and returns the theorem:

|- !b. (?x. b = LEAF x) \/ (?b1 b2. b = NODE b1 b2)

This states that every labelled binary tree b is either a leaf node with a label x or a tree
with two subtrees b1 and b2.

See also
Datatype.define type, Prim rec.INDUCT THEN, Prim rec.new recursive definition,
Prim rec.prove constructors distinct, Prim rec.prove constructors one one,
Prim rec.prove induction thm, Prim rec.prove rec fn exists.

prove constructors distinct 567

prove_constructors_distinct (Prim_rec)

prove_constructors_distinct : (thm -> thm)

Synopsis
Proves that the constructors of an automatically-defined concrete type yield distinct
values.

Description
prove_constructors_distinct takes as its argument a primitive recursion theorem, in
the form returned by define_type for an automatically-defined concrete type. When
applied to such a theorem, prove_constructors_distinct automatically proves and re-
turns a theorem which states that distinct constructors of the concrete type in question
yield distinct values of this type.

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if the
concrete type in question has only one constructor.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_constructors_distinct proves and returns the theorem:

|- !x b1 b2. ~(LEAF x = NODE b1 b2)

This states that leaf nodes are different from internal nodes. When the concrete type in
question has more than two constructors, the resulting theorem is just conjunction of
inequalities of this kind.

See also
Datatype.define type, Prim rec.INDUCT THEN, Prim rec.new recursive definition,
Prim rec.prove cases thm, Prim rec.prove constructors one one,
Prim rec.prove induction thm, Prim rec.prove rec fn exists.

568 Chapter 1. Pre-defined ML Identifiers

prove_constructors_one_one (Prim_rec)

prove_constructors_one_one : (thm -> thm)

Synopsis
Proves that the constructors of an automatically-defined concrete type are injective.

Description
prove_constructors_one_one takes as its argument a primitive recursion theorem, in
the form returned by define_type for an automatically-defined concrete type. When
applied to such a theorem, prove_constructors_one_one automatically proves and re-
turns a theorem which states that the constructors of the concrete type in question are
injective (one-to-one). The resulting theorem covers only those constructors that take
arguments (i.e. that are not just constant values).

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if all the
constructors of the concrete type in question are simply constants of that type.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_constructors_one_one proves and returns the theorem:

|- (!x x’. (LEAF x = LEAF x’) = (x = x’)) /\
(!b1 b2 b1’ b2’.

(NODE b1 b2 = NODE b1’ b2’) = (b1 = b1’) /\ (b2 = b2’))

This states that the constructors LEAF and NODE are both injective.

See also
Datatype.define type, Prim rec.INDUCT THEN, Prim rec.new recursive definition,
Prim rec.prove cases thm, Prim rec.prove constructors distinct,
Prim rec.prove induction thm, Prim rec.prove rec fn exists.

PROVE HYP 569

PROVE_HYP (Drule)

PROVE_HYP : thm -> thm -> thm

Synopsis
Eliminates a provable assumption from a theorem.

Description
When applied to two theorems, PROVE_HYP returns a theorem having the conclusion of
the second. The new hypotheses are the union of the two hypothesis sets (first deleting,
however, the conclusion of the first theorem from the hypotheses of the second).

A1 |- t1 A2 |- t2
------------------------ PROVE_HYP
A1 u (A2 - {t1}) |- t2

Failure
Never fails.

Comments
This is the Cut rule. It is not necessary for the conclusion of the first theorem to be the
same as an assumption of the second, but PROVE_HYP is otherwise of doubtful value.

See also
Thm.DISCH, Thm.MP, Drule.UNDISCH.

prove_induction_thm (Prim_rec)

prove_induction_thm : (thm -> thm)

Synopsis
Derives structural induction for an automatically-defined concrete type.

Description
prove_induction_thm takes as its argument a primitive recursion theorem, in the form
returned by define_type for an automatically-defined concrete type. When applied to

570 Chapter 1. Pre-defined ML Identifiers

such a theorem, prove_induction_thm automatically proves and returns a theorem that
states a structural induction principle for the concrete type described by the argument
theorem. The theorem returned by prove_induction_thm is in a form suitable for use
with the general structural induction tactic INDUCT_THEN.

Failure
Fails if the argument is not a theorem of the form returned by define_type.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

prove_induction_thm proves and returns the theorem:

|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)

This theorem states the principle of structural induction on labelled binary trees: if a
predicate P is true of all leaf nodes, and if whenever it is true of two subtrees b1 and b2

it is also true of the tree NODE b1 b2, then P is true of all labelled binary trees.

See also
Datatype.define type, Prim rec.INDUCT THEN, Prim rec.new recursive definition,
Prim rec.prove cases thm, Prim rec.prove constructors distinct,
Prim rec.prove constructors one one, Prim rec.prove rec fn exists.

prove_rec_fn_exists (Prim_rec)

prove_rec_fn_exists : thm -> term -> thm

Synopsis
Proves the existence of a primitive recursive function over a concrete recursive type.

Description
prove_rec_fn_exists is a version of new_recursive_definition which proves only that
the required function exists; it does not make a constant specification. The first ar-
gument is a theorem of the form returned by define_type, and the second is a user-
supplied primitive recursive function definition. The theorem which is returned asserts

prove rep fn one one 571

the existence of the recursively-defined function in question (if it is primitive recursive
over the type characterized by the theorem given as the first argument). See the entry
for new_recursive_definition for details.

Failure
As for new_recursive_definition.

Example
Given the following primitive recursion theorem for labelled binary trees:

|- !f0 f1.
?fn.
(!a. fn (LEAF a) = f0 a) /\
!a0 a1. fn (NODE a0 a1) = f1 a0 a1 (fn a0) (fn a1) : thm

prove_rec_fn_exists can be used to prove the existence of primitive recursive func-
tions over binary trees. Suppose the value of th is this theorem. Then the existence of
a recursive function Leaves, which computes the number of leaves in a binary tree, can
be proved as shown below:

- prove_rec_fn_exists th
(Term ‘(Leaves (LEAF (x:’a)) = 1) /\

(Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))‘);
> val it =

|- ?Leaves.
(!x. Leaves (LEAF x) = 1) /\
!t1 t2. Leaves (NODE t1 t2) = Leaves t1 + Leaves t2 : thm

The result should be compared with the example given under new_recursive_definition.

See also
Datatype.define type, Prim rec.new recursive definition.

prove_rep_fn_one_one (Drule)

prove_rep_fn_one_one : thm -> thm

Synopsis
Proves that a type representation function is one-to-one (injective).

572 Chapter 1. Pre-defined ML Identifiers

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_rep_fn_one_one th proves from this theorem that the function rep is one-to-
one, returning the theorem:

|- !a a’. (rep a = rep a’) = (a = a’)

Failure
Fails if applied to a theorem not of the form shown above.

See also
Definition.new type definition, Drule.define new type bijections,
Prim rec.prove abs fn one one, Prim rec.prove abs fn onto,
Drule.prove rep fn onto.

prove_rep_fn_onto (Drule)

prove_rep_fn_onto : thm -> thm

Synopsis
Proves that a type representation function is onto (surjective).

Description
If th is a theorem of the form returned by the function define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_rep_fn_onto th proves from this theorem that the function rep is onto the
set of values that satisfy P, returning the theorem:

|- !r. P r = (?a. r = rep a)

Failure
Fails if applied to a theorem not of the form shown above.

PROVE TAC 573

See also
Definition.new type definition, Drule.define new type bijections,
Prim rec.prove abs fn one one, Prim rec.prove abs fn onto,
Drule.prove rep fn one one.

PROVE_TAC (BasicProvers)

PROVE_TAC : thm list -> tactic

Synopsis
Solve a goal with use of hypotheses and supplied lemmas.

Description
bossLib.PROVE_TAC is identical to BasicProvers.PROVE_TAC.

See also
bossLib.PROVE TAC.

PROVE_TAC (bossLib)

PROVE_TAC : thm list -> tactic

Synopsis
Solve a goal with use of hypotheses and supplied lemmas.

Description
An invocation PROVE_TAC thl attempts to solve the goal it is applied to by executing a
proof procedure that is semi-complete for pure first order logic. The assumptions of the
goal and the theorems in thl are used. The procedure makes special provision for han-
dling polymorphic and higher-order values (lambda terms). It also handles conditional
expressions.

Failure
PROVE_TAC fails if it searches to a depth equal to the contents of the reference variable
mesonLib.max_depth (set to 30 by default, but changeable by the user) without finding
a proof.

574 Chapter 1. Pre-defined ML Identifiers

Comments
PROVE_TAC can only progress the goal to a successful proof of the goal or not at all. In
this respect it differs from tactics such as simplification and rewriting. Its ability to solve
existential goals and to make effective use of transitivity theorems make it a particularly
powerful tactic.

See also
bossLib.PROVE, mesonLib.MESON TAC, mesonLib.ASM MESON TAC,
mesonLib.GEN MESON TAC.

prove_thm (hol88Lib)

Compat.prove_thm : (string * term * tactic) -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic, then save the theorem.

Description
Found in the hol88 library. When applied to a triple (s,tm,tac), giving the name to save
the theorem under, the term to prove (with no assumptions) and the tactic to perform
the proof, the function prove_thm attempts to prove the goal ?- tm, that is, the term tm

with no assumptions, using the tactic tac. If prove_thm succeeds, it attempts to save
the resulting theorem in the current theory segment, and if this succeeds, the saved
theorem is returned.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a
theorem), or if the tactic cannot solve the goal. In addition, prove_thm will fail if the
theorem cannot be saved, e.g. because there is already a theorem of that name in the
current theory segment, or if the resulting theorem has assumptions; clearly this can
only happen if the tactic was invalid, so this gives some measure of validity checking.
The function is not available unless the hol88 library has been loaded.

Comments
In hol90, use store_thm instead; the cognitive dissonance between prove, PROVE, and
prove_thm proved to be too much for the author, so in hol90 PROVE doesn’t exist: there
is only prove; and prove_thm doesn’t exist: it has been replaced by store_thm.

See also
Tactical.prove, BasicProvers.PROVE, Tactical.TAC PROOF, VALID.

PSELECT CONV 575

PSELECT_CONV (PairRules)

PSELECT_CONV : conv

Synopsis
Eliminates a paired epsilon term by introducing a existential quantifier.

Description
The conversion PSELECT_CONV expects a boolean term of the form "t[@p.t[p]/p]", which
asserts that the epsilon term @p.t[p] denotes a pair, p say, for which t[p] holds. This
assertion is equivalent to saying that there exists such a pair, and PSELECT_CONV applied
to a term of this form returns the theorem |- t[@p.t[p]/p] = ?p. t[p].

Failure
Fails if applied to a term that is not of the form "p[@p.t[p]/p]".

See also
Conv.SELECT CONV, PairRules.PSELECT ELIM, PairRules.PSELECT INTRO,
PairRules.PSELECT RULE.

PSELECT_ELIM (PairRules)

PSELECT_ELIM : thm -> term * thm -> thm

Synopsis
Eliminates a paired epsilon term, using deduction from a particular instance.

Description
PSELECT_ELIM expects two arguments, a theorem th1, and a pair (p,th2): term * thm.
The conclusion of th1 must have the form P($@ P), which asserts that the epsilon term
$@ P denotes some value at which P holds. The paired variable structure p appears only
in the assumption P p of the theorem th2. The conclusion of the resulting theorem

576 Chapter 1. Pre-defined ML Identifiers

matches that of th2, and the hypotheses include the union of all hypotheses of the
premises excepting P p.

A1 |- P($@ P) A2 u {P p} |- t
------------------------------------- PSELECT_ELIM th1 (p ,th2)

A1 u A2 |- t

where p is not free in A2. If p appears in the conclusion of th2, the epsilon term will
NOT be eliminated, and the conclusion will be t[$@ P/p].

Failure
Fails if the first theorem is not of the form A1 |- P($@ P), or if any of the variables from
the variable structure p occur free in any other assumption of th2.

See also
Drule.SELECT ELIM, PairRules.PCHOOSE, SELECT AX, PairRules.PSELECT CONV,
PairRules.PSELECT INTRO, PairRules.PSELECT RULE.

PSELECT_EQ (PairRules)

PSELECT_EQ : (term -> thm -> thm)

Synopsis
Applies epsilon abstraction to both terms of an equation.

Description
When applied to a paired structure of variables p and a theorem whose conclusion is
equational:

A |- t1 = t2

the inference rule PSELECT_EQ returns the theorem:

A |- (@p. t1) = (@p. t2)

provided no variable in p is free in the assumptions.

A |- t1 = t2
-------------------------- SELECT_EQ "p" [where p is not free in A]
A |- (@p. t1) = (@p. t2)

Failure
Fails if the conclusion of the theorem is not an equation, of if p is not a paired structure
of variables, or if any variable in p is free in A.

PSELECT INTRO 577

See also
Drule.SELECT EQ, PairRules.PFORALL EQ, PairRules.PEXISTS EQ.

PSELECT_INTRO (PairRules)

PSELECT_INTRO : (thm -> thm)

Synopsis
Introduces an epsilon term.

Description
PSELECT_INTRO takes a theorem with an applicative conclusion, say P x, and returns a
theorem with the epsilon term $@ P in place of the original operand x.

A |- P x
-------------- PSELECT_INTRO
A |- P($@ P)

The returned theorem asserts that $@ P denotes some value at which P holds.

Failure
Fails if the conclusion of the theorem is not an application.

Comments
This function is exactly the same as SELECT_INTRO, it is duplicated in the pair library for
completeness.

See also
Drule.SELECT INTRO, PairRules.PEXISTS, SELECT AX, PairRules.PSELECT CONV,
PairRules.PSELECT ELIM, PairRules.PSELECT RULE.

PSELECT_RULE (PairRules)

PSELECT_RULE : (thm -> thm)

Synopsis
Introduces a paired epsilon term in place of a paired existential quantifier.

578 Chapter 1. Pre-defined ML Identifiers

Description
The inference rule PSELECT_RULE expects a theorem asserting the existence of a pair p

such that t holds. The equivalent assertion that the epsilon term @p.t denotes a pair p

for which t holds is returned as a theorem.

A |- ?p. t
------------------ PSELECT_RULE
A |- t[(@p.t)/p]

Failure
Fails if applied to a theorem the conclusion of which is not a paired existential quantifier.

See also
Drule.SELECT RULE, PairRules.PCHOOSE, SELECT AX, PairRules.PSELECT CONV,
PairRules.PEXISTS CONV, PairRules.PSELECT ELIM, PairRules.PSELECT INTRO.

PSKOLEM_CONV (PairRules)

PSKOLEM_CONV : conv

Synopsis
Proves the existence of a pair of Skolem functions.

Description
When applied to an argument of the form !p1...pn. ?q. tm, the conversion PSKOLEM_CONV

returns the theorem:

|- (!p1...pn. ?q. tm) = (?q’. !p1...pn. tm[q’ p1 ... pn/yq)

where q’ is a primed variant of the pair q not free in the input term.

Failure
PSKOLEM_CONV tm fails if tm is not a term of the form !p1...pn. ?q. tm.

PSPEC 579

Example
Both q and any pi may be a paired structure of variables:

- PSKOLEM_CONV
(Term ‘!(x11:’a,x12:’a) (x21:’a,x22:’a).

?(y1:’a,y2:’a). tm x11 x12 x21 x21 y1 y2‘);

> val it =
|- (!(x11,x12) (x21,x22). ?(y1,y2). tm x11 x12 x21 x21 y1 y2) =

?(y1,y2).
!(x11,x12) (x21,x22).

tm x11 x12 x21 x21 (y1 (x11,x12) (x21,x22)) (y2 (x11,x12) (x21,x22))
: thm

See also
Conv.SKOLEM CONV, PairRules.P PSKOLEM CONV.

PSPEC (PairRules)

PSPEC : (term -> thm -> thm)

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term q and a theorem A |- !p. t, then PSPEC returns the theorem
A |- t[q/p]. If necessary, variables will be renamed prior to the specialization to ensure
that q is free for p in t, that is, no variables free in q become bound after substitution.

A |- !p. t
-------------- PSPEC "q"
A |- t[q/p]

Failure
Fails if the theorem’s conclusion is not a paired universal quantification, or if p and q

have different types.

580 Chapter 1. Pre-defined ML Identifiers

Example
PSPEC specialised paired quantifications.

- PSPEC (Term ‘(1,2)‘) (ASSUME (Term‘!(x,y). (x + y) = (y + x)‘));
> val it = [.] |- 1 + 2 = 2 + 1 : thm

PSPEC treats paired structures of variables as variables and preserves structure accord-
ingly.

- PSPEC (Term ‘x:’a#’a‘) (ASSUME (Term ‘!(x:’a,y:’a). (x,y) = (x,y)‘));
> val it = [.] |- x = x : thm

See also
Thm.SPEC, PairRules.IPSPEC, PairRules.PSPECL, PairRules.PSPEC ALL, PSPEC VAR,
PairRules.PGEN, PairRules.PGENL.

PSPEC_ALL (PairRules)

PSPEC_ALL : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with its own quantified pairs.

Description
When applied to a theorem A |- !p1...pn. t, the inference rule PSPEC_ALL returns the
theorem A |- t[p1’/p1]...[pn’/pn] where the pi’ are distinct variants of the corre-
sponding pi, chosen to avoid clashes with any variables free in the assumption list and
with the names of constants. Normally pi’ is just pi, in which case PSPEC_ALL simply
removes all universal quantifiers.

A |- !p1...pn. t
--------------------------- PSPEC_ALL
A |- t[p1’/x1]...[pn’/xn]

Failure
Never fails.

See also
Drule.SPEC ALL, PairRules.PGEN, PairRules.PGENL, PGEN ALL, PairRules.PGEN TAC,
PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC TAC.

PSPEC PAIR 581

PSPEC_PAIR (PairRules)

PSPEC_PAIR : thm -> term * thm

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !p. t, the inference rule PSPEC_PAIR returns the term
q’ and the theorem A |- t[q’/p], where q’ is a variant of p chosen to avoid free variable
capture.

A |- !p. t
-------------- PSPEC_PAIR
A |- t[q’/q]

Failure
Fails unless the theorem’s conclusion is a paired universal quantification.

Comments
This rule is very similar to plain PSPEC, except that it returns the variant chosen, which
may be useful information under some circumstances.

See also
Drule.SPEC VAR, PairRules.PGEN, PairRules.PGENL, PairRules.PGEN TAC,
PairRules.PSPEC, PairRules.PSPECL, PairRules.PSPEC ALL.

PSPEC_TAC (PairRules)

PSPEC_TAC : term * term -> tactic

Synopsis
Generalizes a goal.

582 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a pair of terms (q,p), where p is a paired structure of variables and
a goal A ?- t, the tactic PSPEC_TAC generalizes the goal to A ?- !p. t[p/q], that is, all
components of q are turned into the corresponding components of p.

A ?- t
================= PSPEC_TAC (q,p)
A ?- !x. t[p/q]

Failure
Fails unless p is a paired structure of variables with the same type as q.

Example

- g ‘1 + 2 = 2 + 1‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
1 + 2 = 2 + 1

- e (PSPEC_TAC (Term‘(1,2)‘, Term‘(x:num,y:num)‘));
OK..
1 subgoal:
> val it =

!(x,y). x + y = y + x

: goalstack

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive
proof.

See also
PairRules.PGEN, PairRules.PGENL, PGEN ALL, PairRules.PGEN TAC, PairRules.PSPEC,
PairRules.PSPECL, PairRules.PSPEC ALL, PairRules.PSTRIP TAC.

PSPECL (PairRules)

PSPECL : (term list -> thm -> thm)

PSTRIP ASSUME TAC 583

Synopsis
Specializes zero or more pairs in the conclusion of a theorem.

Description
When applied to a term list [q1;...;qn] and a theorem A |- !p1...pn. t, the inference
rule SPECL returns the theorem A |- t[q1/p1]...[qn/pn], where the substitutions are
made sequentially left-to-right in the same way as for PSPEC.

A |- !p1...pn. t
-------------------------- SPECL "[q1;...;qn]"

A |- t[q1/p1]...[qn/pn]

It is permissible for the term-list to be empty, in which case the application of PSPECL

has no effect.

Failure
Fails unless each of the terms is of the same type as that of the appropriate quantified
variable in the original theorem. Fails if the list of terms is longer than the number of
quantified pairs in the theorem.

See also
Drule.SPECL, PairRules.PGEN, PairRules.PGENL, PGEN ALL, PairRules.PGEN TAC,
PairRules.PSPEC, PairRules.PSPEC ALL, PairRules.PSPEC TAC.

PSTRIP_ASSUME_TAC (PairRules)

PSTRIP_ASSUME_TAC : thm_tactic

Synopsis
Splits a theorem into a list of theorems and then adds them to the assumptions.

Description
Given a theorem th and a goal (A,t), PSTRIP_ASSUME_TAC th splits th into a list of
theorems. This is done by recursively breaking conjunctions into separate conjuncts,
cases-splitting disjunctions, and eliminating paired existential quantifiers by choosing

584 Chapter 1. Pre-defined ML Identifiers

arbitrary variables. Schematically, the following rules are applied:

A ?- t
====================== PSTRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)
A u {v1,...,vn} ?- t

A ?- t
================================= PSTRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)
A u {v1} ?- t ... A u {vn} ?- t

A ?- t
==================== PSTRIP_ASSUME_TAC (A’ |- ?p. v)
A u {v[p’/p]} ?- t

where p’ is a variant of the pair p.
If the conclusion of th is not a conjunction, a disjunction or a paired existentially

quantified term, the whole theorem th is added to the assumptions.
As assumptions are generated, they are examined to see if they solve the goal (either

by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).
The assumptions of the theorem being split are not added to the assumptions of the

goal(s), but they are recorded in the proof. This means that if A’ is not a subset of the
assumptions A of the goal (up to alpha-conversion), PSTRIP_ASSUME_TAC (A’|-v) results
in an invalid tactic.

Failure
Never fails.

Uses
PSTRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal,
or when enriching its assumptions so that resolution, rewriting with assumptions and
other operations involving assumptions have more to work with.

See also
PairRules.PSTRIP THM THEN, PairRules.PSTRIP ASSUME TAC,
PairRules.PSTRIP GOAL THEN, PairRules.PSTRIP TAC.

PSTRIP_GOAL_THEN (PairRules)

PSTRIP_GOAL_THEN : (thm_tactic -> tactic)

PSTRIP GOAL THEN 585

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic
to the antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), PSTRIP_GOAL_THEN removes one outermost
occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t.
If t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier. Note
that PSTRIP_GOAL_THEN will strip off paired universal quantifications.

A ?- !p. u
============== PSTRIP_GOAL_THEN ttac
A ?- u[p’/p]

where p’ is a primed variant that contains no variables that appear free in the assump-
tions A. If t is a conjunction, then PSTRIP_GOAL_THEN simply splits the conjunction into
two subgoals:

A ?- v /\ w
================= PSTRIP_GOAL_THEN ttac
A ?- v A ?- w

If t is an implication "u ==> v" and if:

A ?- v
=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v
==================== PSTRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
PSTRIP_GOAL_THEN ttac (A,t) fails if t is not a paired universally quantified term, an
implication, a negation or a conjunction. Failure also occurs if the application of ttac
fails, after stripping the goal.

Uses
PSTRIP_GOAL_THEN is used when manipulating intermediate results (obtained by strip-
ping outer connectives from a goal) directly, rather than as assumptions.

586 Chapter 1. Pre-defined ML Identifiers

See also
PairRules.PGEN TAC, Tactic.STRIP GOAL THEN, PairRules.FILTER PSTRIP THEN,
PairRules.PSTRIP TAC, PairRules.FILTER PSTRIP TAC.

PSTRIP_TAC (PairRules)

PSTRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

Description
Given a goal (A,t), PSTRIP_TAC removes one outermost occurrence of one of the con-
nectives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified
term, then STRIP_TAC strips off the quantifier. Note that PSTRIP_TAC will strip off paired
quantifications.

A ?- !p. u
============== PSTRIP_TAC
A ?- u[p’/p]

where p’ is a primed variant of the pair p that does not contain any variables that
appear free in the assumptions A. If t is a conjunction, then PSTRIP_TAC simply splits the
conjunction into two subgoals:

A ?- v /\ w
================= PSTRIP_TAC
A ?- v A ?- w

If t is an implication, PSTRIP_TAC moves the antecedent into the assumptions, stripping
conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- (?p. w) ==> v
=====================
A u {w[p’/p]} ?- v

where p’ is a primed variant of the pair p that does not appear free in A. Finally, a
negation ~t is treated as the implication t ==> F.

PSTRIP THM THEN 587

Failure
PSTRIP_TAC (A,t) fails if t is not a paired universally quantified term, an implication, a
negation or a conjunction.

Uses
When trying to solve a goal, often the best thing to do first is REPEAT PSTRIP_TAC to split
the goal up into manageable pieces.

See also
PairRules.PGEN TAC, PairRules.PSTRIP GOAL THEN, PairRules.FILTER PSTRIP THEN,
Tactic.STRIP TAC, PairRules.FILTER PSTRIP TAC.

PSTRIP_THM_THEN (PairRules)

PSTRIP_THM_THEN : thm_tactical

Synopsis
PSTRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one
outer connective from the given theorem.

Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunc-
tion or a paired existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th

first strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from
the stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’|- u /\ v, the tactic

ttac(u|-u) THEN ttac(v|-v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping
a disjunctive theorem A’|- u \/ v, the tactics resulting from applying ttac to the dis-

588 Chapter 1. Pre-defined ML Identifiers

juncts, are applied to split the goal into two cases. That is, if

A ?- t A ?- t
========= ttac (u|-u) and ========= ttac (v|-v)
A ?- t1 A ?- t2

then:

A ?- t
================== PSTRIP_THM_THEN ttac (A’|- u \/ v)
A ?- t1 A ?- t2

When stripping a paired existentially quantified theorem A’|- ?p. u, the tactic resulting
from applying ttac to the body of the paired existential quantification, ttac(u|-u), is
applied to the goal. That is, if:

A ?- t
========= ttac (u|-u)
A ?- t1

then:

A ?- t
============= PSTRIP_THM_THEN ttac (A’|- ?p. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the
goal(s) but are recorded in the proof. If A’ is not a subset of the assumptions A of the
goal (up to alpha-conversion), PSTRIP_THM_THEN ttac th results in an invalid tactic.

Failure
PSTRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction
or a paired existentially quantification. Failure also occurs if the application of ttac

fails, after stripping the outer connective from the conclusion of th.

Uses
PSTRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a
previously-proved theorem.

See also
Thm cont.STRIP THM THEN, PairRules.PSTRIP ASSUME TAC, PairRules.PSTRIP GOAL THEN,
PairRules.PSTRIP TAC.

PSTRUCT CASES TAC 589

PSTRUCT_CASES_TAC (PairRules)

PSTRUCT_CASES_TAC : thm_tactic

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?p11...p1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/
?pn1...pnp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)

in which there may be no paired existential quantifiers where a ‘vector’ of them is shown
above, PSTRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s
===
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

that is, performs a case split over the possible constructions (the ti) of a term, providing
as assumptions the given constraints, having split conjoined constraints into separate
assumptions. Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply
paired existentially quantified) terms which assert the equality of the same variable x

and the given terms.

Uses
Generating a case split from the axioms specifying a structure.

See also
Tactic.STRUCT CASES TAC.

PSUB_CONV (PairRules)

PSUB_CONV : (conv -> conv)

590 Chapter 1. Pre-defined ML Identifiers

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by PSUB_CONV c is a conversion that applies
c to all the top-level subterms of a term. If the conversion c maps t to |- t = t’, then
SUB_CONV c maps a paired abstraction "\p.t" to the theorem:

|- (\p.t) = (\p.t’)

That is, PSUB_CONV c "\p.t" applies c to the body of the paired abstraction "\p.t". If
c is a conversion that maps "t1" to the theorem |- t1 = t1’ and "t2" to the theorem
|- t2 = t2’, then the conversion PSUB_CONV c maps an application "t1 t2" to the theo-
rem:

|- (t1 t2) = (t1’ t2’)

That is, PSUB_CONV c "t1 t2" applies c to the both the operator t1 and the operand
t2 of the application "t1 t2". Finally, for any conversion c, the function returned by
PSUB_CONV c acts as the identity conversion on variables and constants. That is, if "t" is
a variable or constant, then PSUB_CONV c "t" returns |- t = t.

Failure
PSUB_CONV c tm fails if tm is a paired abstraction "\p.t" and the conversion c fails when
applied to t, or if tm is an application "t1 t2" and the conversion c fails when applied
to either t1 or t2. The function returned by PSUB_CONV c may also fail if the ML function
c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

See also
Conv.SUB CONV, PairRules.PABS CONV, Conv.RAND CONV, Conv.RATOR CONV.

Psyntax

Psyntax : Psyntax_sig

Synopsis
A structure that provides a tuple-style environment for term manipulation.

Psyntax 591

Description

A lot of the familiar term construction and decomposition functions from hol88 have
different types in hol90. For those longing for the good old days, Psyntax provides
hol88-style types. The functions provided by Psyntax return exactly the same results as
their hol90 counterparts.

Each function in the Psyntax structure has a corresponding function in the Rsyntax
structure, and vice versa. One can flip-flop between the two structures by opening one
and then the other. One can also use long identifiers in order to use both syntaxes at
once.

Failure

Never fails.

Example

The following shows how to open the Psyntax structure and the functions that subse-
quently become available in the top level environment. Documentation for each of these

592 Chapter 1. Pre-defined ML Identifiers

functions is available online.

- open Psyntax;
open Psyntax

val mk_var = fn : string * hol_type -> term
val mk_const = fn : string * hol_type -> term
val mk_comb = fn : term * term -> term
val mk_abs = fn : term * term -> term
val mk_primed_var = fn : string * hol_type -> term
val mk_eq = fn : term * term -> term
val mk_imp = fn : term * term -> term
val mk_select = fn : term * term -> term
val mk_forall = fn : term * term -> term
val mk_exists = fn : term * term -> term
val mk_conj = fn : term * term -> term
val mk_disj = fn : term * term -> term
val mk_cond = fn : term * term * term -> term
val mk_pair = fn : term * term -> term
val mk_let = fn : term * term -> term
val mk_cons = fn : term * term -> term
val mk_list = fn : term list * hol_type -> term
val mk_pabs = fn : term * term -> term
val dest_var = fn : term -> string * hol_type
val dest_const = fn : term -> string * hol_type
val dest_comb = fn : term -> term * term
val dest_abs = fn : term -> term * term
val dest_eq = fn : term -> term * term
val dest_imp = fn : term -> term * term
val dest_select = fn : term -> term * term
val dest_forall = fn : term -> term * term
val dest_exists = fn : term -> term * term
val dest_conj = fn : term -> term * term
val dest_disj = fn : term -> term * term
val dest_cond = fn : term -> term * term * term
val dest_pair = fn : term -> term * term
val dest_let = fn : term -> term * term
val dest_cons = fn : term -> term * term
val dest_list = fn : term -> term list * term
val dest_pabs = fn : term -> term * term
val mk_type = fn : string * hol_type list -> hol_type
val dest_type = fn : hol_type -> string * hol_type list
val subst = fn : (term * term) list -> term -> term
val subst_occs = fn : int list list -> (term * term) list -> term -> term
val inst = fn : term list -> (hol_type * hol_type) list -> term -> term
val INST = fn : (term * term) list -> thm -> thm
val match_type = fn : hol_type -> hol_type -> (hol_type * hol_type) list
val match_term = fn

: term -> term -> (term * term) list * (hol_type * hol_type) list
val SUBST = fn : (thm * term) list -> term -> thm -> thm
val SUBST_CONV = fn : (thm * term) list -> term -> term -> thm
val INST_TYPE = fn : (hol_type * hol_type) list -> thm -> thm
val INST_TY_TERM = fn

: (term * term) list * (hol_type * hol_type) list -> thm -> thm
val new_type = fn : int -> string -> unit

PURE ASM REWRITE RULE 593

PURE_ASM_REWRITE_RULE (Rewrite)

PURE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem including the theorem’s assumptions as rewrites.

Description
The list of theorems supplied by the user and the assumptions of the object theorem
are used to generate a set of rewrites, without adding implicitly the basic tautologies
stored under basic_rewrites. The rule searches for matching subterms in a top-down
recursive fashion, stopping only when no more rewrites apply. For a general description
of rewriting strategies see GEN_REWRITE_RULE.

Failure
Rewriting with PURE_ASM_REWRITE_RULE does not result in failure. It may diverge, in
which case PURE_ONCE_ASM_REWRITE_RULE may be used.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE,
Rewrite.PURE REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE.

PURE_ASM_REWRITE_TAC (Rewrite)

PURE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including the goal’s assumptions as rewrites.

Description
PURE_ASM_REWRITE_TAC generates a set of rewrites from the supplied theorems and the
assumptions of the goal, and applies these in a top-down recursive manner until no
match is found. See GEN_REWRITE_TAC for more information on the group of rewriting
tactics.

Failure
PURE_ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For limited
depth rewriting, see PURE_ONCE_ASM_REWRITE_TAC. It can also result in an invalid tactic.

594 Chapter 1. Pre-defined ML Identifiers

Uses
To advance or solve a goal when the current assumptions are expected to be useful in
reducing the goal.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,
Rewrite.ONCE REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,
Rewrite.PURE ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST TAC.

PURE_ONCE_ASM_REWRITE_RULE (Rewrite)

PURE_ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once, including the theorem’s assumptions as rewrites.

Description
PURE_ONCE_ASM_REWRITE_RULE excludes the basic tautologies in basic_rewrites from the
theorems used for rewriting. It searches for matching subterms once only, without
recursing over already rewritten subterms. For a general introduction to rewriting tools
see GEN_REWRITE_RULE.

Failure
PURE_ONCE_ASM_REWRITE_RULE does not fail and does not diverge.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE,
Rewrite.ONCE ASM REWRITE RULE, Rewrite.ONCE REWRITE RULE,
Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

PURE_ONCE_ASM_REWRITE_TAC (Rewrite)

PURE_ONCE_ASM_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal once, including the goal’s assumptions as rewrites.

PURE ONCE REWRITE CONV 595

Description
A set of rewrites generated from the assumptions of the goal and the supplied theorems
is used to rewrite the term part of the goal, making only one pass over the goal. The
basic tautologies are not included as rewrite theorems. The order in which the given
theorems are applied is an implementation matter and the user should not depend on
any ordering. See GEN_REWRITE_TAC for more information on rewriting tactics in general.

Failure
PURE_ONCE_ASM_REWRITE_TAC does not fail and does not diverge.

Uses
Manipulation of the goal by rewriting with its assumptions, in instances where rewriting
with tautologies and recursive rewriting is undesirable.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,
Rewrite.ONCE REWRITE TAC, Rewrite.PURE ASM REWRITE TAC,
Rewrite.PURE ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST TAC.

PURE_ONCE_REWRITE_CONV (Rewrite)

PURE_ONCE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_CONV generates rewrites from the list of theorems supplied by the
user, without including the tautologies given in basic_rewrites. The applicable rewrites
are employeded once, without entailing in a recursive search for matches over the term.
See GEN_REWRITE_CONV for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
Rewrite.GEN REWRITE CONV, Conv.ONCE DEPTH CONV, Rewrite.ONCE REWRITE CONV,
Rewrite.PURE REWRITE CONV, Rewrite.REWRITE CONV.

596 Chapter 1. Pre-defined ML Identifiers

PURE_ONCE_REWRITE_RULE (Rewrite)

PURE_ONCE_REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_RULE generates rewrites from the list of theorems supplied by the
user, without including the tautologies given in basic_rewrites. The applicable rewrites
are employeded once, without entailing in a recursive search for matches over the the-
orem. See GEN_REWRITE_RULE for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Conv.ONCE DEPTH CONV,
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE.

PURE_ONCE_REWRITE_TAC (Rewrite)

PURE_ONCE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal using a supplied list of theorems, making one rewriting pass over the
goal.

Description
PURE_ONCE_REWRITE_TAC generates a set of rewrites from the given list of theorems, and
applies them at every match found through searching once over the term part of the
goal, without recursing. It does not include the basic tautologies as rewrite theorems.
The order in which the rewrites are applied is unspecified. For more information on
rewriting tactics see GEN_REWRITE_TAC.

Failure
PURE_ONCE_REWRITE_TAC does not fail and does not diverge.

PURE REWRITE CONV 597

Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations
and recursive rewriting is not desired.

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,
Rewrite.ONCE REWRITE TAC, Rewrite.PURE ASM REWRITE TAC,
Rewrite.PURE ONCE ASM REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST TAC.

PURE_REWRITE_CONV (Rewrite)

PURE_REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term with only the given list of rewrites.

Description
This conversion provides a method for rewriting a term with the theorems given, and
excluding simplification with tautologies in basic_rewrites. Matching subterms are
found recursively, until no more matches are found. For more details on rewriting see
GEN_REWRITE_CONV.

Uses
PURE_REWRITE_CONV is useful when the simplifications that arise by rewriting a theorem
with basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_CONV can be
used.

See also
Rewrite.GEN REWRITE CONV, Rewrite.ONCE REWRITE CONV,
Rewrite.PURE ONCE REWRITE CONV, Rewrite.REWRITE CONV.

PURE_REWRITE_RULE (Rewrite)

PURE_REWRITE_RULE : (thm list -> thm -> thm)

598 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a theorem with only the given list of rewrites.

Description
This rule provides a method for rewriting a theorem with the theorems given, and
excluding simplification with tautologies in basic_rewrites. Matching subterms are
found recursively starting from the term in the conclusion part of the theorem, until no
more matches are found. For more details on rewriting see GEN_REWRITE_RULE.

Uses
PURE_REWRITE_RULE is useful when the simplifications that arise by rewriting a theorem
with basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_RULE can be
used.

See also
Rewrite.ASM REWRITE RULE, Rewrite.GEN REWRITE RULE, Rewrite.ONCE REWRITE RULE,
Rewrite.PURE ASM REWRITE RULE, Rewrite.PURE ONCE ASM REWRITE RULE,
Rewrite.PURE ONCE REWRITE RULE, Rewrite.REWRITE RULE.

PURE_REWRITE_TAC (Rewrite)

PURE_REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal with only the given list of rewrites.

Description
PURE_REWRITE_TAC behaves in the same way as REWRITE_TAC, but without the effects of the
built-in tautologies. The order in which the given theorems are applied is an implemen-
tation matter and the user should not depend on any ordering. For more information
on rewriting strategies see GEN_REWRITE_TAC.

Failure
PURE_REWRITE_TAC does not fail, but it can diverge in certain situations; in such cases
PURE_ONCE_REWRITE_TAC may be used.

pure ss 599

Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations.
It is sometimes useful in making more time-efficient replacements according to equa-
tions for which it is clear that no extra reduction via tautology will be needed. (The
difference in efficiency is only apparent, however, in quite large examples.)
PURE_REWRITE_TAC advances goals but solves them less frequently than REWRITE_TAC;

to be precise, PURE_REWRITE_TAC only solves goals which are rewritten to "T" (i.e. TRUTH)
without recourse to any other tautologies.

Example
It might be necessary, say for subsequent application of an induction hypothesis, to
resist reducing a term b = T to b.

- PURE_REWRITE_TAC [] ([], Term ‘b = T‘);
> val it = ([([], ‘b = T‘)], fn)

: (term list * term) list * (thm list -> thm)

- REWRITE_TAC [] ([], Term ‘b = T‘);
> val it = ([([], ‘b‘)], fn)

: (term list * term) list * (thm list -> thm)

See also
Rewrite.ASM REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.GEN REWRITE TAC,
Rewrite.ONCE ASM REWRITE TAC, Rewrite.ONCE REWRITE TAC,
Rewrite.PURE ASM REWRITE TAC, Rewrite.PURE ONCE ASM REWRITE TAC,
Rewrite.PURE ONCE REWRITE TAC, Rewrite.REWRITE TAC, Tactic.SUBST TAC.

pure_ss (pureSimps)

pureSimps.pure_ss : simpset

Synopsis
A simpset containing only the conditional rewrite generator and no additional rewrites.

Description
This simpset sits at the root of the simpset hierarchy. It contains no rewrites, con-
gruences, conversions or decision procedures. Instead it contains just the code which
converts theorems passed to it as context into (possibly conditional) rewrites.

600 Chapter 1. Pre-defined ML Identifiers

Simplification with pure_ss is analogous to rewriting with PURE_REWRITE_TAC and oth-
ers. The only difference is that the theorems passed to SIMP_TAC pure_ss are interpreted
as conditional rewrite rules. Though the pure_ss can’t take advantage of extra contex-
tual information garnered through congruences, it can still discharge side conditions.
(This is demonstrated in the examples below.)

Failure
Can’t fail, as it is not a functional value.

Example
The theorem ADD_EQ_SUB from arithmeticTheory states that

|- !m n p. n <= p ==> ((m + n = p) = m = p - n)

We can use this result to make progress with the following goal in conjunction with
pure_ss in a way that no form of REWRITE_TAC could:

- ASM_SIMP_TAC pure_ss [ADD_EQ_SUB] ([--‘x <= y‘--], --‘z + x = y‘--);
> val it = ([([‘x <= y‘], ‘z = y - x‘)], fn) : tactic_result

This example illustrates the way in which the simplifier can do conditional rewriting.
However, the lack of the congruence for implications, means that using pure_ss will not
be able to discharge the side condition in the goal below:

- SIMP_TAC pure_ss [ADD_EQ_SUB] ([], --‘x <= y ==> (z + x = y)‘--);
> val it = ([([], ‘x <= y ==> (z + x = y)‘)], fn) : tactic_result

As bool_ss has the relevant congruence included, it does make progress in the same
situation:

- SIMP_TAC bool_ss [ADD_EQ_SUB] ([], --‘x <= y ==> (z + x = y)‘--);
> val it = ([([], ‘x <= y ==> (z = y - x)‘)], fn) : tactic_result

Uses
The pure_ss simpset might be used in the most delicate simplification situations, or,
mimicking the way it is used within the distribution itself, as a basis for the construction
of other simpsets.

Comments
There is also a pureSimps.PURE_ss ssdata value. Its usefulness is questionable.

See also
boolSimps.bool ss, Rewrite.PURE REWRITE TAC, simpLib.SIMP CONV,
simpLib.SIMP TAC.

pvariant 601

pvariant (pairSyntax)

pvariant : (term list -> term -> term)

Synopsis
Modifies variable and constant names in a paired structure to avoid clashes.

Description
When applied to a list of (possibly paired structures of) variables to avoid clashing
with, and a pair to modify, pvariant returns a variant of the pair. That is, it changes
the names of variables and constants in the pair as intuitively as possible to make them
distinct from any variables in the list, or any (non-hidden) constants. This is normally
done by adding primes to the names.

The exact form of the altered names should not be relied on, except that the original
variables will be unmodified unless they are in the list to avoid clashing with. Also note
that if the same variable occurs more that one in the pair, then each instance of the
variable will be modified in the same way.

Failure
pvariant l p fails if any term in the list l is not a paired structure of variables, or if p is
not a paired structure of variables and constants.

Example
The following shows a case that exhibits most possible behaviours:

- pvariant [Term ‘b:’a‘, Term ‘(c:’a,c’:’a)‘]
(Term ‘((a:’a,b:’a),(c:’a,b’:’a,T,b:’a))‘);

val it = ‘(a,b’’),c’’,b’,T’,b’’‘ : term

Uses
The function pvariant is extremely useful for complicated derived rules which need to
rename pairs variable to avoid free variable capture while still making the role of the
pair obvious to the user.

See also
Term.variant, Term.genvar.

602 Chapter 1. Pre-defined ML Identifiers

Q_TAC (Tactical)

Q_TAC : (term -> tactic) -> term quotation -> tactic

Synopsis
A tactical that parses in the context of a goal, a la the Q library.

Description
When applied to a term tactic T and a quotation q, the tactic Q_TAC T q first parses the
quotation q in the context of the goal to yield the term tm, and then applies the tactic
T tm to the goal.

Failure
The application of Q_TAC to a term tactic T and a quotation q never fails. The resulting
composite tactic Q_TAC T q fails when applied to a goal if either q cannot be parsed, or
T tm fails when applied to the goal.

Comments
Useful for avoiding decorating terms with type abbreviations.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.ORELSE, Tactical.THEN, Tactical.THEN1,
Tactical.THENL.

QUANT_CONV (Conv)

QUANT_CONV : conv -> conv

Synopsis
Applies a conversion underneath a quantifier.

Description
If conv N returns A |- N = P, then QUANT_CONV conv (M (\v.N)) returns A |- M (\v.N) = M (\v.P).

Failure
If conv N fails, or if v is free in A.

quote 603

Example

- QUANT_CONV SYM_CONV (Term ‘!x. x + 0 = x‘);
> val it = |- (!x. x + 0 = x) = !x. x = x + 0 : thm

Comments
For deeply nested quantifiers, STRIP_QUANT_CONV and STRIP_BINDER_CONV are more effi-
cient than iterated application of QUANT_CONV, BINDER_CONV, or ABS_CONV.

See also
Conv.BINDER CONV, Conv.STRIP QUANT CONV, Conv.STRIP BINDER CONV, Conv.ABS CONV.

quote (Lib)

quote : string -> string

Synopsis
Put quotation marks around a string.

Description
An application quote s is equal to "\"" ^ s ^ "\"". This is often useful when printing
messages.

Failure
Never fails

Example

- print "foo\n";
foo
> val it = () : unit

- print (quote "foo" ^ "\n");
"foo"
> val it = () : unit

See also
Lib.mlquote.

604 Chapter 1. Pre-defined ML Identifiers

r (goalstackLib)

r : int -> unit

Synopsis
Reorders the subgoals on top of the subgoal package goal stack.

Description
The function r is part of the subgoal package. It is an abbreviation for rotate. For a
description of the subgoal package, see set_goal.

Failure
As for rotate.

Uses
Proving subgoals in a different order to that generated by the subgoal package.

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.e,
goalstackLib.expand, goalstackLib.expandf, goalstackLib.g, get state,
goalstackLib.p, print state, rotate, save top thm, goalstackLib.set goal,
set state, goalstackLib.top goal, goalstackLib.top thm.

Raise (Feedback)

Raise : exn -> ’a

Synopsis
Print an exception before re-raising it

Description
The Raise function prints out information about its argument exception before re-
raising it. It uses the value of ERR_to_string to format the message, and prints the
information on the outstream held in ERR_outstream.

Failure
Never fails, since it always succeeds in raising the supplied exception.

rand 605

Example

- Raise (mk_HOL_ERR "Foo" "bar" "incomprehensible input");

Exception raised at Foo.bar:
incomprehensible input
! Uncaught exception:
! HOL_ERR

See also
Feedback, Feedback.ERR to string, Feedback.ERR outstream, Lib.try, Lib.trye.

rand (Term)

rand : term -> term

Synopsis
Returns the operand from a combination (function application).

Description
If M is a combination, i.e., has the form (t1 t2), then rand M returns t2.

Failure
Fails if M is not a combination.

See also
Term.rator, Term.dest comb.

RAND_CONV (Conv)

RAND_CONV : (conv -> conv)

Synopsis
Applies a conversion to the operand of an application.

606 Chapter 1. Pre-defined ML Identifiers

Description
If c is a conversion that maps a term "t2" to the theorem |- t2 = t2’, then the conver-
sion RAND_CONV c maps applications of the form "t1 t2" to theorems of the form:

|- (t1 t2) = (t1 t2’)

That is, RAND_CONV c "t1 t2" applies c to the operand of the application "t1 t2".

Failure
RAND_CONV c tm fails if tm is not an application or if tm has the form "t1 t2" but the
conversion c fails when applied to the term t2. The function returned by RAND_CONV c

may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function
that maps a term t to a theorem |- t = t’).

Example

- RAND_CONV numLib.num_CONV (Term ‘SUC 2‘);
> val it = |- SUC 2 = SUC(SUC 1) : thm

See also
Conv.ABS CONV, Conv.BINOP CONV, Conv.LAND CONV, Conv.RATOR CONV, Conv.SUB CONV.

rator (Term)

rator : term -> term

Synopsis
Returns the operator from a combination (function application).

Description
If M is a combination, i.e., has the form (t1 t2), then rator M returns t1.

Failure
Fails if M is not a combination.

See also
Term.rand, Term.dest comb.

RATOR CONV 607

RATOR_CONV (Conv)

RATOR_CONV : (conv -> conv)

Synopsis
Applies a conversion to the operator of an application.

Description
If c is a conversion that maps a term "t1" to the theorem |- t1 = t1’, then the conver-
sion RATOR_CONV c maps applications of the form "t1 t2" to theorems of the form:

|- (t1 t2) = (t1’ t2)

That is, RATOR_CONV c "t1 t2" applies c to the operand of the application "t1 t2".

Failure
RATOR_CONV c tm fails if tm is not an application or if tm has the form "t1 t2" but the
conversion c fails when applied to the term t1. The function returned by RATOR_CONV c

may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function
that maps a term t to a theorem |- t = t’).

Example

- RATOR_CONV BETA_CONV (Term ‘(\x y. x + y) 1 2‘);
> val it = |- (\x y. x + y)1 2 = (\y. 1 + y) 2 : thm

See also
Conv.ABS CONV, Conv.RAND CONV, Conv.SUB CONV.

raw_match (Term)

raw_match : hol_type list -> term set
-> term -> term
-> (term,term) subst *

((hol_type,hol_type) subst * hol_type list)
-> (term,term) subst *

((hol_type,hol_type) subst * hol_type list)

Synopsis
Primitive term matcher.

608 Chapter 1. Pre-defined ML Identifiers

Description
The most primitive matching algorithm for HOL terms is raw_match. An invocation
raw_match avoid_tys avoid_tms pat ob (tmS,tyS), if it succeeds, returns a substitution
pair (S,T) such that

aconv (subst S’ (inst T pat)) ob.

where S’ is S instantiated by T. The arguments avoid_tys and avoid_tms specify type
and term variables in pat that are not allowed to become redexes in S and T.

The pair (tmS,tyS) is an accumulator argument. This allows raw_match to be folded
through lists of terms to be matched. (S,T) must agree with (tmS,tyS). This means that
if there is a {redex,residue} in S and also a {redex,residue} in tmS so that both redex

fields are equal, then the residue fields must be alpha-convertible. Similarly for types:
if there is a {redex,residue} in T and also a {redex,residue} in tyS so that both redex

fields are equal, then the residue fields must also be equal. If these conditions hold,
then the result (S,T) includes (tmS,tyS).

Failure
raw_match will fail if no S and T meeting the above requirements can be found. If a
match (S,T) between pat and ob can be found, but elements of avoid_tys would appear
as redexes in T or elements of avoid_tms would appear as redexes in S, then raw_match

will also fail.

Example
We first perform a match that requires type instantitations, and also alpha-convertibility.

- val (S,T) = raw_match [] empty_varset
(Term ‘\x:’a. x = f (y:’b)‘)
(Term ‘\a. a = ~p‘) ([],([],[]));

> val S =
[{redex = ‘(f :’b -> ’a)‘, residue = ‘$~‘},
{redex = ‘(y :’b)‘, residue = ‘(p :bool)‘}] : ...

val T =
([{redex = ‘:’b‘, residue = ‘:bool‘},

{redex = ‘:’a‘, residue = ‘:bool‘}], []) : ...

One of the main differences between raw_match and more refined derivatives of it, is
that the returned substitutions are un-normalized by raw_match. If one naively applied
(S,T) to \x:’a. x = f (y:’b), type instantiation with T would be applied first, yielding
\x:bool. x = f (y:bool). Then substitution with S would be applied, unsuccessfully,
since both f and y in the pattern term have been type instantiated, but the correspond-
ing elements of the substitution haven’t. Thus, higher level operations building on

raw match type 609

raw_match typically instantiate S by T to get S’ before applying (S’,T) to the pattern
term. This can be achieved by using norm_subst. However, raw_match exposes this level
of detail to the programmer.

The returned type substitution T has two components (T1,T2). T1 is a substitution,
and T2 is a list of type variables, encountered in the matching process, which have
matched to themselves. These identity matches are held in the separate list T2 for
obscure reasons. Once matching is finished, they can be ignored (which is why they are
held on a separate list).

Comments
Higher level matchers are generally preferable, but raw_match is occasionally useful
when programming inference rules.

See also
Term.match term, Term.match terml, Term.norm subst, Term.subst, Term.inst,
Type.raw match type, Type.match type, Type.match typel, Type.type subst.

raw_match_type (Type)

raw_match_type
: hol_type list

-> hol_type -> hol_type
-> (hol_type,hol_type) subst * hol_type list
-> (hol_type,hol_type) subst * hol_type list

Synopsis
Primitive type matching algorithm.

Description
An invocation raw_match_type away pat ty (S,Id) performs matching, just as match_tyl,
except that it takes an extra accumulating parameter (S,Id), which represents a ’raw’
substitution that the match (theta,id) of pat and ty must be compatible with. If match-
ing is successful, (theta,id) is merged with (S,Id) to yield the result.

Failure
A call to raw_match_type away pat ty (S,Id) will fail when match_typel away pat ty

would. It will also fail when a {redex,residue} calculated in the course of matching pat

and ty is such that there is a {redex_i,residue_i} in S and redex equals redex_i but
residue does not equal residue_i.

610 Chapter 1. Pre-defined ML Identifiers

Example

- val res1 = raw_match_type [] alpha (alpha --> bool) ([],[]);
> val it = ([{redex = ‘:’a‘, residue = ‘:’a -> bool‘}], []) : ...

- raw_match_type [] (alpha --> beta --> gamma)
((alpha --> bool) --> beta --> ind) res1;

> val it =([{redex = ‘:’c‘, residue = ‘:ind‘},
{redex = ‘:’a‘, residue = ‘:’a -> bool‘}], [‘:’b‘]) :

Comments
Probably exposes too much internal state of the matching algorithm.

See also
Type.match type, Type.match typel.

read (Tag)

read : string -> tag

Synopsis
Make a tag suitable for use by mk_oracle_thm.

Description
In order to construct a tag usable by mk_oracle_thm, one uses read, which takes a string
and makes it into a tag.

Failure
The string must be an alphanumeric, i.e., start with an alphabetic character and there-
after consist only of alphabetic or numeric characters.

Example

- Tag.read "Shamboozled";
> val it = Kerneltypes.TAG(["Shamboozled"], []) : tag

See also
Thm.mk oracle thm, Thm.tag.

recInduct 611

recInduct (bossLib)

recInduct : thm -> tactic

Synopsis
Performs recursion induction.

Description
An invocation recInduct thm on a goal g, where thm is typically an induction scheme
returned from an invocation of Define or Hol_defn, attempts to match the consequent
of thm to g and, if successful, then replaces g by the instantiated antecedents of thm. The
order of quantification of the goal should correspond with the order of quantification in
the conclusion of thm.

Failure
recInduct fails if the goal is not universally quantified in a way corresponding with the
quantification of the conclusion of thm.

Example
Suppose we had introduced a function for incrementing a number until it no longer can
be found in a given list:

variant x L = if MEM x L then variant (x + 1) L else x

Typically Hol_defn would be used to make such a definition, and some subsequent proof
would be required to establish termination. Once that work was done, the specified re-
cursion equations would be available as a theorem and, as well, a corresponding induc-
tion theorem would also be generated. In the case of variant, the induction theorem
variant_ind is

|- !P. (!x L. (MEM x L ==> P (x + 1) L) ==> P x L) ==> !v v1. P v v1

Suppose now that we wish to prove that the variant with respect to a list is not in the
list:

?- !x L. ~MEM (variant x L) L‘,

One could try mathematical induction, but that won’t work well, since x gets incre-
mented in recursive calls. Instead, induction with ‘variant-induction’ works much bet-

612 Chapter 1. Pre-defined ML Identifiers

ter. recInduct can be used to apply such theorems in tactic proof. For our example,
recInduct variant_ind yields the goal

?- !x L. (MEM x L ==> ~MEM (variant (x + 1) L) L) ==> ~MEM (variant x L) L

A few simple tactic applications then prove this goal.

See also
bossLib.Induct, bossLib.Induct on, bossLib.completeInduct on,
bossLib.measureInduct on, Prim rec.INDUCT THEN, bossLib.Cases,
bossLib.Hol datatype, goalstackLib.g, goalstackLib.e.

recInduct (SingleStep)

recInduct : thm -> tactic

Synopsis
Induct with supplied recursion induction scheme.

Description
bossLib.recInduct is identical to SingleStep.recInduct.

See also
bossLib.recInduct.

REDEPTH_CONV (Conv)

REDEPTH_CONV : (conv -> conv)

Synopsis
Applies a conversion bottom-up to all subterms, retraversing changed ones.

Description
REDEPTH_CONV c tm applies the conversion c repeatedly to all subterms of the term tm

and recursively applies REDEPTH_CONV c to each subterm at which c succeeds, until there
is no subterm remaining for which application of c succeeds.

REFINE EXISTS TAC 613

More precisely, REDEPTH_CONV c tm repeatedly applies the conversion c to all the sub-
terms of the term tm, including the term tm itself. The supplied conversion c is applied
to the subterms of tm in bottom-up order and is applied repeatedly (zero or more times,
as is done by REPEATC) to each subterm until it fails. If c is successfully applied at least
once to a subterm, t say, then the term into which t is transformed is retraversed by
applying REDEPTH_CONV c to it.

Failure
REDEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeat-
edly to some subterm of tm without failing.

Example
The following example shows how REDEPTH_CONV retraverses subterms:

- REDEPTH_CONV BETA_CONV (Term ‘(\f x. (f x) + 1) (\y.y) 2‘);
val it = |- (\f x. (f x) + 1)(\y. y)2 = 2 + 1 : thm

Here, BETA_CONV is first applied successfully to the (beta-redex) subterm:

(\f x. (f x) + 1) (\y.y)

This application reduces this subterm to:

(\x. ((\y.y) x) + 1)

REDEPTH_CONV BETA_CONV is then recursively applied to this transformed subterm, even-
tually reducing it to (\x. x + 1). Finally, a beta-reduction of the top-level term, now
the simplified beta-redex (\x. x + 1) 2, produces 2 + 1.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of REDEPTH_CONV will be unpredictable.

See also
Conv.DEPTH CONV, Conv.ONCE DEPTH CONV, Conv.TOP DEPTH CONV.

REFINE_EXISTS_TAC (Q)

Q.REFINE_EXISTS_TAC : term quotation -> tactic

614 Chapter 1. Pre-defined ML Identifiers

Synopsis
Attacks existential goals, making the existential variable more concrete.

Description
The tactic Q.REFINE_EXISTS_TAC q parses the quotation q in the context of the (necessar-
ily existential) goal to which it is applied, and uses the resulting term as the witness for
the goal. However, if the witness has any variables not already present in the goal, then
these are treated as new existentially quantified variables. If there are no such “free”
variables, then the behaviour is the same as EXISTS_TAC.

Failure
Fails if the goal is not existential, or if the quotation can not parse to a term of the same
type as the existentially quantified variable.

Example
If the quotation doesn’t mention any new variables:

- Q.REFINE_EXISTS_TAC ‘n‘ ([‘‘n > x‘‘], ‘‘?m. m > x‘‘);
> val it =

([([‘‘n > x‘‘], ‘‘n > x‘‘)], fn)
: (term list * term) list * (thm list -> thm)

If the quotation does mention any new variables, they are existentially quantified in the
new goal:

- Q.REFINE_EXISTS_TAC ‘n + 2‘ ([‘‘~P 0‘‘], ‘‘?p. P (p - 1)‘‘);
> val it =

([([‘‘~P 0‘‘], ‘‘?n. P (n + 2 - 1)‘‘)], fn)
: (term list * term) list * (thm list -> thm)

Uses
Q.REFINE_EXISTS_TAC is useful if it is clear that a existential goal will be solved by a term
of particular form, while it is not yet clear precisely what term this will be. Further
proof activity should be able to exploit the additional structure that has appeared in the
place of the existential variable.

See also
Tactic.EXISTS TAC.

REFL (Thm)

REFL : conv

REFL TAC 615

Synopsis
Returns theorem expressing reflexivity of equality.

Description
REFL maps any term t to the corresponding theorem |- t = t.

Failure
Never fails.

See also
Conv.ALL CONV, Tactic.REFL TAC.

REFL_TAC (Tactic)

REFL_TAC : tactic

Synopsis
Solves a goal which is an equation between alpha-equivalent terms.

Description
When applied to a goal A ?- t = t’, where t and t’ are alpha-equivalent, REFL_TAC

completely solves it.

A ?- t = t’
============= REFL_TAC

Failure
Fails unless the goal is an equation between alpha-equivalent terms.

See also
Tactic.ACCEPT TAC, Tactic.MATCH ACCEPT TAC, Rewrite.REWRITE TAC.

register_btrace (Feedback)

Feedback.register_btrace : string * bool ref -> unit

616 Chapter 1. Pre-defined ML Identifiers

Synopsis
Registers a trace variable for a boolean reference.

Description
A call to register_btrace(nm, bref) registers a trace variable called nm that can take on
two different values (0 and 1), which correspond to the state of the boolean variable
bref.

Failure
Fails if the given name is already in use as a trace variable.

Comments
This function uses register_ftrace to make a boolean variable appear as an integer
value.

See also
Feedback, Feedback.current trace, Feedback.register trace,
Feedback.register ftrace, Feedback.set trace, Feedback.trace, Feedback.traces.

register_ftrace (Feedback)

register_ftrace :
(string * ((unit -> int) * (int -> unit)) * int) -> unit

Synopsis
Registers a trace that is accessed by a set/get pair of functions.

Description
A call to register_ftrace(nm, (g,s), m) registers an integer-valued trace variable that
is updated with the s function and whose value is read with the g function. The variable
is given the name nm and the variable’s maximum allowed value is m. The trace’s default
is the value of g(), which is called just once as part of the registration procedure.

Failure
Fails if the given name is already in use as a trace variable, or if the maximum or the
default value (returned by g()) is less than zero.

register trace 617

Comments
The two functions provide a more general way of accessing something that may not be
actually be an integer reference, even though this is the interface that the various trace
functions present.

See also
Feedback, Feedback.current trace, Feedback.register trace,
Feedback.register btrace, Feedback.set trace, Feedback.trace, Feedback.traces.

register_trace (Feedback)

register_trace : (string * int ref * int) -> unit

Synopsis
Registers a new tracing variable.

Description
A call to register_trace(n, r, m) registers the integer reference variable r as a tracing
variable associated with name n. The integer m is its maximum value. Its value at the
time of registration is considered its default value, which will be restored by a call to
reset_trace n or reset_traces.

Failure
Fails if there is already a tracing variable registered under the name given, or if either
the maximum value or the value in the reference is less than zero.

See also
Feedback, Feedback.register btrace, Feedback.register ftrace,
Feedback.reset trace, Feedback.reset traces, Feedback.trace, Feedback.traces.

remove_ovl_mapping (Parse)

remove_ovl_mapping: string -> {Name:string,Thy:string} -> unit

Synopsis
Removes an overloading mapping between the string and constant specified.

618 Chapter 1. Pre-defined ML Identifiers

Description
Each grammar maintains two maps internally. One is from strings to non-empty sets
of Thy-Name pairs, and the other is from Thy-Name pairs to strings. (Each Thy-Name pair
serves to specify a constant without needing to worry about different type instantiations
of that constant.) The first map is used to resolve overloading when parsing. A string
will eventually be turned into one of the constants in the set that it maps to. When
printing a constant, the map in the opposite direction is used to turn a constant into a
string.

A call to remove_ovl_mapping s {Name,Thy} removes the given pair from both maps.

Failure
Never fails. If the given pair is not in either map, the function silently does nothing.

Uses
To prune the overloading maps of unwanted possibilities.

Comments
Note that removing a print-mapping for a constant will result in that constant always
printing fully qualified as thy$name. This situation will persist until that constant is given
a name to map to (either with overload_on or update_overload_maps).

As with other parsing functions, there is a sister function, temp_remove_ovl_mapping
that does the same thing, but whose effect is not saved to a theory file.

See also
Parse.clear overloads on, Parse.overload on, Parse.update overload maps.

remove_rules_for_term (Parse)

Parse.remove_rules_for_term : string -> unit

Synopsis
Removes parsing/pretty-printing rules from the global grammar.

Description
Calling remove_rules_for_term s removes all those rules (if any) in the global grammar
that are for the term s. The string specifies the name of the term that the rule is for, not
a token that may happen to be used in concrete syntax for the term.

Failure
Never fails.

remove termtok 619

Example
The universal quantifier can have its special binder status removed using this function:

- val t = Term‘!x. P x /\ ~Q x‘;
<<HOL message: inventing new type variable names: ’a.>>
> val t = ‘!x. P x /\ ~Q x‘ : term
- remove_rules_for_term "!";
> val it = () : unit
- t;
> val it = ‘! (\x. P x /\ ~Q x)‘ : term

Similarly, one can remove the two rules for conditional expressions and see the raw
syntax as follows:

- val t = Term‘if p then q else r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val t = ‘if p then q else r‘ : term
- remove_rules_for_term "COND";
> val it = () : unit
- t;
> val it = ‘COND p q r‘ : term

Comments
There is a companion temp_remove_rules_for_term function, which has the same effect
on the global grammar, but which does not cause this effect to persist when the current
theory is exported.

See also
Parse.remove termtok.

remove_termtok (Parse)

remove_termtok : {term_name : string, tok : string} -> unit

Synopsis
Removes a rule from the global grammar.

Description
The remove_termtok removes parsing/printing rules from the global grammar. Rules to
be removed are those that are for the term with the given name (term_name) and which

620 Chapter 1. Pre-defined ML Identifiers

include the string tok as part of their concrete representation. If multiple rules satisfy
this criterion, they are all removed. If none match, the grammar is not changed.

Failure
Never fails.

Example
If one wished to revert to the traditional HOL syntax for conditional expressions, this
would be achievable as follows:

- remove_termtok {term_name = "COND", tok = "if"};
> val it = () : unit

- Term‘if p then q else r‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c, ’d, ’e, ’f.>>
> val it = ‘if p then q else r‘ : term

- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘COND p q r‘ : term

The second invocation of the parser above demonstrates that once the rule for the
if-then-else syntax has been removed, a string that used to parse as a conditional
expression then parses as a big function application (the function if applied to five
arguments).

The fact that the pretty-printer does not print the term using the old-style syntax, even
after the if-then-else rule has been removed, is due to the fact that the corresponding
rule in the grammar does not have its preferred flag set. This can be accomplished with
prefer_form_with_tok as follows:

- prefer_form_with_tok {term_name = "COND", tok = "=>"};
> val it = () : unit

- Term‘p => q | r‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘p => q | r‘ : term

Uses
Used to modify the global parsing/pretty-printing grammar by removing a rule, possibly
as a prelude to adding another rule which would otherwise clash.

Comments
As with other functions in the Parse structure, there is a companion temp_remove_termtok

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

remove user printer 621

The specification of a rule by term_name and one of its tokens is not perfect, but seems
adequate in practice.

See also
Parse.remove rules for term, Parse.prefer form with tok.

remove_user_printer (Parse)

remove_user_printer :
{Thy:string, Tyop:string} -> term_pp_types.userprinter option

Synopsis
Removes a user-defined pretty-printing function for a given type.

Description
This removes a user-defined pretty-printing function for a given type (or family of types,
generated by a type operator). If there is such a printer in the global grammar for the
specified type, this is returned in the option type. If there is no printer, then NONE is
returned.

Failure
Never fails.

Comments
As always, there is an accompanying function temp_remove_user_printer, which does
not affect the grammar exported to disk.

See also
Parse.add user printer.

rename_bvar (Term)

rename_bvar : string -> term -> term

Synopsis
Performs one step of alpha conversion.

622 Chapter 1. Pre-defined ML Identifiers

Description
If M is a lambda abstraction, i.e., has the form \v.N, an invocation rename_bvar s M

performs one step of alpha conversion to obtain \s. N[s/v].

Failure
If M is not a lambda abstraction.

Example

- rename_bvar "x" (Term ‘\v. v ==> w‘);
> val it = ‘\x. x ==> w‘ : term

- rename_bvar "x" (Term ‘\y. y /\ x‘);
> val it = ‘\x’. x’ /\ x‘ : term

Comments
rename_bvar takes constant time in the current implementation.

See also
Term.aconv, Drule.ALPHA CONV.

RENAME_VARS_CONV (Conv)

Conv.RENAME_VARS_CONV : string list -> term -> thm

Synopsis
Renames variables underneath a binder.

Description
RENAME_VARS_CONV takes a list of strings specifying new names for variables under a
binder. More precisely, it will rename variables in abstractions, or bound by universal,
existential, unique existence or the select (or Hilbert-choice) “quantifier”.

More than one variable can be renamed at once. If variables occur past the first, then
the renaming continues on the appropriate sub-term of the first. (That is, if the term is
an abstraction, then renaming will continue on the body of the abstraction. If it is one
of the supported quantifiers, then renaming will continue on the body of the abstraction
that is the argument of the “binder constant”.)

If RENAME_VARS_CONV is passed the empty list, it is equivalent to ALL_CONV. The binders
do not need to be of the same type all the way into the term.

repeat 623

Failure
Fails if an attempt is made to rename a variable in a term that is not an abstraction, or
is not one of the accepted quantifiers. Also fails if all of the names in the list are not
distinct.

Example

- RENAME_VARS_CONV ["a", "b"] ‘‘\x y. x /\ y‘‘;
> val it = |- (\x y. x /\ y) = (\a b. a /\ b) : thm
- RENAME_VARS_CONV ["a", "b"] ‘‘!x:’a y. P x /\ P y‘‘;
> val it = |- (!x y. P x /\ P y) = !a b. P a /\ P b : thm
- RENAME_VARS_CONV ["a", "b"] ‘‘!x:’a. ?y. P x /\ P y‘‘;
> val it = |- (!x. ?y. P x /\ P y) = !a. ?b. P a /\ P b : thm

Uses
Post-processing mangling of names in code implementing derived logical procedures to
make names look more appropriate. Changing names can only affect the presentation
of terms, not their semantics.

See also
Term.aconv, Thm.ALPHA, SWAP VARS CONV.

repeat (Lib)

repeat : (’a -> ’a) -> ’a -> ’a

Synopsis
Iteratively apply a function until it fails.

Description
An invocation repeat f x expands to repeat f (f x). Thus it unrolls to f(...(f x)...),
returning the most recent argument to f before application fails.

Failure
The evaluation of repeat f x fails only if interrupted, or machine resources are ex-
hausted.

624 Chapter 1. Pre-defined ML Identifiers

Example
The following gives a simple-minded way of calculating the largest integer on the ma-
chine.

- fun incr x = x+1;
> val incr = fn : int -> int

val maxint = repeat incr 0; (* takes some time *)
> val maxint = 1073741823 : int

(Caution: in some ML implementations, the type int is not implemented by machine
words, but by ‘bignum’ techniques that allow numbers of arbitrary size, in which case
the example above will not return for a very long time.)

See also
Lib.funpow.

REPEAT (Tactical)

REPEAT : (tactic -> tactic)

Synopsis
Repeatedly applies a tactic until it fails.

Description
The tactic REPEAT T is a tactic which applies T to a goal, and while it succeeds, continues
applying it to all subgoals generated.

Failure
The application of REPEAT to a tactic never fails, and neither does the composite tactic,
even if the basic tactic fails immediately.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.ORELSE, Tactical.THEN, Tactical.THENL.

REPEAT_GTCL (Thm_cont)

REPEAT_GTCL : (thm_tactical -> thm_tactical)

REPEAT TCL 625

Synopsis
Applies a theorem-tactical until it fails when applied to a goal.

Description
When applied to a theorem-tactical, a theorem-tactic, a theorem and a goal:

REPEAT_GTCL ttl ttac th goal

REPEAT_GTCL repeatedly modifies the theorem according to ttl till the result of hand-
ing it to ttac and applying it to the goal fails (this may be no times at all).

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem and the goal.

Example
The following tactic matches th’s antecedents against the assumptions of the goal until
it can do so no longer, then puts the resolvents onto the assumption list:

REPEAT_GTCL (IMP_RES_THEN ASSUME_TAC) th

See also
Thm cont.REPEAT TCL, Thm cont.THEN TCL.

REPEAT_TCL (Thm_cont)

REPEAT_TCL : (thm_tactical -> thm_tactical)

Synopsis
Repeatedly applies a theorem-tactical until it fails when applied to the theorem.

Description
When applied to a theorem-tactical, a theorem-tactic and a theorem:

REPEAT_TCL ttl ttac th

REPEAT_TCL repeatedly modifies the theorem according to ttl until it fails when given
to the theorem-tactic ttac.

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem.

626 Chapter 1. Pre-defined ML Identifiers

Example
It is often desirable to repeat the action of basic theorem-tactics. For example CHOOSE_THEN

strips off a single existential quantification, so one might use REPEAT_TCL CHOOSE_THEN

to get rid of them all.
Alternatively, one might want to repeatedly break apart a theorem which is a nested

conjunction and apply the same theorem-tactic to each conjunct. For example the fol-
lowing goal:

?- ((0 = w) /\ (0 = x)) /\ (0 = y) /\ (0 = z) ==> (w + x + y + z = 0)

might be solved by

DISCH_THEN (REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
REWRITE_TAC[ADD_CLAUSES]

See also
Thm cont.REPEAT GTCL, Thm cont.THEN TCL.

REPEATC (Conv)

REPEATC : (conv -> conv)

Synopsis
Repeatedly apply a conversion (zero or more times) until it fails.

Description
If c is a conversion effects a transformation of a term t to a term t’, that is if c maps
t to the theorem |- t = t‘, then REPEATC c is the conversion that repeats this transfor-
mation as often as possible. More exactly, if c maps the term "ti" to |- ti=t(i+1) for
i from 1 to n, but fails when applied to the n+1th term "t(n+1)", then REPEATC c "t1"

returns |- t1 = t(n+1). And if c "t" fails, them REPEATC c "t" returns |- t = t.

Failure
Never fails, but can diverge if the supplied conversion never fails.

RES_CANON (Drule)

RES_CANON : (thm -> thm list)

RES CANON 627

Synopsis

Put an implication into canonical form for resolution.

Description

All the HOL resolution tactics (e.g. IMP_RES_TAC) work by using modus ponens to draw
consequences from an implicative theorem and the assumptions of the goal. Some
of these tactics derive this implication from a theorem supplied explicitly the user (or
otherwise from ‘outside’ the goal) and some obtain it from the assumptions of the goal
itself. But in either case, the supplied theorem or assumption is first transformed into a
list of implications in ‘canonical’ form by the function RES_CANON.

The theorem argument to RES_CANON should be either be an implication (which can
be universally quantified) or a theorem from which an implication can be derived using
the transformation rules discussed below. Given such a theorem, RES_CANON returns a
list of implications in canonical form. It is the implications in this resulting list that are
used by the various resolution tactics to infer consequences from the assumptions of a
goal.

The transformations done by RES_CANON th to the theorem th are as follows. First, if th
is a negation A |- ~t, this is converted to the implication A |- t ==> F. The following
inference rules are then applied repeatedly, until no further rule applies. Conjunctions
are split into their components and equivalence (boolean equality) is split into implica-

628 Chapter 1. Pre-defined ML Identifiers

tion in both directions:

A |- t1 /\ t2 A |- t1 = t2
-------------------- ----------------------------------
A |- t1 A |- t2 A |- t1 ==> t2 A |- t2 ==> t1

Conjunctive antecedents are transformed by:

A |- (t1 /\ t2) ==> t

A |- t1 ==> (t2 ==> t) A |- t2 ==> (t1 ==> t)

and disjunctive antecedents by:

A |- (t1 \/ t2) ==> t

A |- t1 ==> t A |- t2 ==> t

The scope of universal quantifiers is restricted, if possible:

A |- !x. t1 ==> t2
-------------------- [if x is not free in t1]
A |- t1 ==> !x. t2

and existentially-quantified antecedents are eliminated by:

A |- (?x. t1) ==> t2
--------------------------- [x’ chosen so as not to be free in t2]
A |- !x’. t1[x’/x] ==> t2

Finally, when no further applications of the above rules are possible, and the theorem is
an implication:

A |- !x1...xn. t1 ==> t2

then the theorem A u {t1} |- t2 is transformed by a recursive application of RES_CANON
to get a list of theorems:

[A u {t1} |- t21 , ... , A u {t1} |- t2n]

and the result of discharging t1 from these theorems:

[A |- !x1...xn. t1 ==> t21 , ... , A |- !x1...xn. t1 ==> t2n]

is returned. That is, the transformation rules are recursively applied to the conclusions
of all implications.

RES EXISTS CONV 629

Failure
RES_CANON th fails if no implication(s) can be derived from th using the transformation
rules shown above.

Example
The uniqueness of the remainder k MOD n is expressed in HOL by the built-in theorem
MOD_UNIQUE:

|- !n k r. (?q. (k = (q * n) + r) /\ r < n) ==> (k MOD n = r)

For this theorem, the canonical list of implications returned by RES_CANON is as follows:

- RES_CANON MOD_UNIQUE;
> val it =

[|- !r n q k. (k = q * n + r) ==> r < n ==> (k MOD n = r),
|- !n r. r < n ==> !q k. (k = q * n + r) ==> (k MOD n = r)] : thm list

The existentially-quantified, conjunctive, antecedent has given rise to two implications,
and the scope of universal quantifiers has been restricted to the conclusions of the re-
sulting implications wherever possible.

Uses
The primary use of RES_CANON is for the (internal) pre-processing phase of the built-in
resolution tactics IMP_RES_TAC, IMP_RES_THEN, RES_TAC, and RES_THEN. But the function
RES_CANON is also made available at top-level so that users can call it to see the actual
form of the implications used for resolution in any particular case.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Tactic.RES TAC, Thm cont.RES THEN.

RES_EXISTS_CONV (res_quanLib)

RES_EXISTS_CONV : conv

Synopsis
Converts a restricted existential quantification to a conjunction.

630 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term of the form ?x::P. Q[x], the conversion RES_EXISTS_CONV re-
turns the theorem:

|- ?x::P. Q[x] = (?x. x IN P /\ Q[x])

which is the underlying semantic representation of the restricted existential quantifica-
tion.

Failure
Fails if applied to a term not of the form ?x::P. Q.

See also
res quanLib.RES FORALL CONV, res quanLib.RESQ EXISTS TAC.

RES_EXISTS_UNIQUE_CONV (res_quanLib)

RES_EXISTS_UNIQUE_CONV : conv

Synopsis
Converts a restricted unique existential quantification to a conjunction.

Description
When applied to a term of the form ?!x::P. Q[x], the conversion RES_EXISTS_UNIQUE_CONV

returns the theorem:

|- ?!x::P. Q[x] = (?x::P. Q[x]) /\ (!x y::P. Q[x] /\ Q[y] ==> (x = y))

which is the underlying semantic representation of the restricted unique existential
quantification.

Failure
Fails if applied to a term not of the form ?x!::P. Q.

See also
res quanLib.RES FORALL CONV, res quanLib.RES EXISTS CONV.

RES_FORALL_AND_CONV (res_quanLib)

RES_FORALL_AND_CONV : conv

RES FORALL CONV 631

Synopsis
Splits a restricted universal quantification across a conjunction.

Description
When applied to a term of the form !x::P. Q /\ R, the conversion RES_FORALL_AND_CONV

returns the theorem:

|- (!x::P. Q /\ R) = ((!x::P. Q) /\ (!x::P. R))

Failure
Fails if applied to a term not of the form !x::P. Q /\ R.

RES_FORALL_CONV (res_quanLib)

RES_FORALL_CONV : conv

Synopsis
Converts a restricted universal quantification to an implication.

Description
When applied to a term of the form !x::P. Q, the conversion RES_FORALL_CONV returns
the theorem:

|- !x::P. Q = (!x. x IN P ==> Q)

which is the underlying semantic representation of the restricted universal quantifica-
tion.

Failure
Fails if applied to a term not of the form !x::P. Q.

See also
res quanLib.IMP RES FORALL CONV.

RES_FORALL_SWAP_CONV (res_quanLib)

RES_FORALL_SWAP_CONV : conv

632 Chapter 1. Pre-defined ML Identifiers

Synopsis
Changes the order of two restricted universal quantifications.

Description
When applied to a term of the form !x::P. !y::Q. R, the conversion RES_FORALL_SWAP_CONV

returns the theorem:

|- (!x::P. !y::Q. R) = !y::Q. !x::P. R

providing that x does not occur free in Q and y does not occur free in P.

Failure
Fails if applied to a term not of the correct form.

See also
res quanLib.RES FORALL CONV.

RES_SELECT_CONV (res_quanLib)

RES_SELECT_CONV : conv

Synopsis
Converts a restricted choice quantification to a conjunction.

Description
When applied to a term of the form @x::P. Q[x], the conversion RES_SELECT_CONV re-
turns the theorem:

|- @x::P. Q[x] = (@x. x IN P /\ Q[x])

which is the underlying semantic representation of the restricted choice quantification.

Failure
Fails if applied to a term not of the form @x::P. Q.

See also
res quanLib.RES FORALL CONV, res quanLib.RES EXISTS CONV.

RES TAC 633

RES_TAC (Tactic)

RES_TAC : tactic

Synopsis
Enriches assumptions by repeatedly resolving them against each other.

Description
RES_TAC searches for pairs of assumed assumptions of a goal (that is, for a candidate im-
plication and a candidate antecedent, respectively) which can be ‘resolved’ to yield new
results. The conclusions of all the new results are returned as additional assumptions
of the subgoal(s). The effect of RES_TAC on a goal is to enrich the assumptions set with
some of its collective consequences.

When applied to a goal A ?- g, the tactic RES_TAC uses RES_CANON to obtain a set of
implicative theorems in canonical form from the assumptions A of the goal. Each of the
resulting theorems (if there are any) will have the form:

A |- u1 ==> u2 ==> ... ==> un ==> v

RES_TAC then tries to repeatedly ‘resolve’ these theorems against the assumptions of
a goal by attempting to match the antecedents u1, u2, ..., un (in that order) to some
assumption of the goal (i.e. to some candidate antecedents among the assumptions). If
all the antecedents can be matched to assumptions of the goal, then an instance of the
theorem

A u {a1,...,an} |- v

called a ‘final resolvent’ is obtained by repeated specialization of the variables in the im-
plicative theorem, type instantiation, and applications of modus ponens. If only the first
i antecedents u1, ..., ui can be matched to assumptions and then no further matching is
possible, then the final resolvent is an instance of the theorem:

A u {a1,...,ai} |- u(i+1) ==> ... ==> v

All the final resolvents obtained in this way (there may be several, since an antecedent
ui may match several assumptions) are added to the assumptions of the goal, in the
stripped form produced by using STRIP_ASSUME_TAC. If the conclusion of any final re-
solvent is a contradiction ‘F’ or is alpha-equivalent to the conclusion of the goal, then
RES_TAC solves the goal.

634 Chapter 1. Pre-defined ML Identifiers

Failure
RES_TAC cannot fail and so should not be unconditionally REPEATed. However, since
the final resolvents added to the original assumptions are never used as ‘candidate
antecedents’ it is sometimes necessary to apply RES_TAC more than once to derive the
desired result.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Drule.RES CANON, Thm cont.RES THEN.

RES_THEN (Thm_cont)

RES_THEN : (thm_tactic -> tactic)

Synopsis
Resolves all implicative assumptions against the rest.

Description
Like the basic resolution function IMP_RES_THEN, the resolution tactic RES_THEN performs
a single-step resolution of an implication and the assumptions of a goal. RES_THEN differs
from IMP_RES_THEN only in that the implications used for resolution are taken from the
assumptions of the goal itself, rather than supplied as an argument.

When applied to a goal A ?- g, the tactic RES_THEN ttac uses RES_CANON to obtain a
set of implicative theorems in canonical form from the assumptions A of the goal. Each
of the resulting theorems (if there are any) will have the form:

ai |- !x1...xn. ui ==> vi

where ai is one of the assumptions of the goal. Having obtained these implications,
RES_THEN then attempts to match each antecedent ui to each assumption aj |- aj in
the assumptions A. If the antecedent ui of any implication matches the conclusion aj of
any assumption, then an instance of the theorem ai, aj |- vi, called a ‘resolvent’, is
obtained by specialization of the variables x1, ..., xn and type instantiation, followed by
an application of modus ponens. There may be more than one canonical implication
derivable from the assumptions of the goal and each such implication is tried against
every assumption, so there may be several resolvents (or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures
of ttac at this stage are filtered out) and these tactics are then applied in an unspecified

reset 635

sequence to the goal. That is,

RES_THEN ttac (A ?- g)

has the effect of:

MAP_EVERY (mapfilter ttac [... ; (ai,aj |- vi) ; ...]) (A ?- g)

where the theorems ai,aj |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the assumptions A and the implications
derived using RES_CANON from the assumptions. The sequence in which the theorems
ai,aj |- vi are generated and the corresponding tactics applied is unspecified.

Failure
Evaluating RES_THEN ttac th fails with ‘no implication’ if no implication(s) can be de-
rived from the assumptions of the goal by the transformation process described under
the entry for RES_CANON. Evaluating RES_THEN ttac (A ?- g) fails with ‘no resolvents’ if
no assumption of the goal A ?- g can be resolved with the derived implication or im-
plications. Evaluation also fails, with ‘no tactics’, if there are resolvents, but for every
resolvent ai,aj |- vi evaluating the application ttac (ai,aj |- vi) fails—that is, if
for every resolvent ttac fails to produce a tactic. Finally, failure is propagated if any of
the tactics that are produced from the resolvents by ttac fails when applied in sequence
to the goal.

See also
Tactic.IMP RES TAC, Thm cont.IMP RES THEN, Drule.MATCH MP, Drule.RES CANON,
Tactic.RES TAC.

reset (Lib)

reset : (’a,’b) istream -> (’a,’b) istream

Synopsis
Restart an istream.

Description
An application reset istrm replaces the current state of istrm with the value supplied
when istrm was constructed.

Failure
Never fails.

636 Chapter 1. Pre-defined ML Identifiers

Example

- reset(next(next
(mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string))));

> val it = <istream> : (int, string) istream

- state it;
> val it = "gsym0" : string

Comments
Perhaps the type of reset should be (’a,’b) istream -> unit.

See also
Lib.mk istream, Lib.next, Lib.state.

reset_trace (Feedback)

reset_trace : string -> unit

Synopsis
Resets a tracing variable to its default value.

Description
A call to reset_trace n resets the tracing variable associated with the name n to its de-
fault value, i.e., the value of the expression !r when n was registered with register_trace n r.

Failure
Fails if the name given is not associated with a registered tracing variable, or if a set

function associated with a ”functional” trace (see register_ftrace) fails.

See also
Feedback, Feedback.register trace, Feedback.set trace, Feedback.reset traces,
Feedback.trace, Feedback.traces.

reset_traces (Feedback)

reset_traces : unit -> unit

RESQ HALF SPEC 637

Synopsis
Resets all registered tracing variables to their default values.

Failure
Fails if a set function associated with a ”functional” trace (see register_ftrace) fails.

See also
Feedback, Feedback.set trace, Feedback.register trace, Feedback.reset trace,
Feedback.trace, Feedback.traces.

RESQ_HALF_SPEC (res_quanLib)

RESQ_HALF_SPEC : thm -> thm

Synopsis
Strip a restricted universal quantification in the conclusion of a theorem.

Description
When applied to a theorem A |- !x::P. t, the derived inference rule RESQ_HALF_SPEC

returns the theorem A |- !x. x IN P ==> t, i.e., it transforms the restricted universal
quantification to its underlying semantic representation.

A |- !x::P. t
-------------------- RESQ_HALF_SPEC
A |- !x. x IN P ==> t

Failure
Fails if the theorem’s conclusion is not a restricted universal quantification.

See also
res quanLib.RESQ SPEC.

RESQ_REWR_CANON (res_quanLib)

RESQ_REWR_CANON : thm -> thm

638 Chapter 1. Pre-defined ML Identifiers

Synopsis
Transform a theorem into a form accepted for rewriting.

Description
RESQ_REWR_CANON transforms a theorem into a form accepted by COND_REWR_TAC. The in-
put theorem should be headed by a series of restricted universal quantifications in the
following form

!x1::P1. ... !xn::Pn. u[xi] = v[xi])

Other variables occurring in u and v may be universally quantified. The output theo-
rem will have all ordinary universal quantifications moved to the outer most level with
possible renaming to prevent variable capture, and have all restricted universal quan-
tifications converted to implications. The output theorem will be in the form accepted
by COND_REWR_TAC.

Failure
This function fails is the input theorem is not in the correct form.

See also
res quanLib.RESQ REWRITE1 TAC, res quanLib.RESQ REWRITE1 CONV.

RESQ_REWRITE1_CONV (res_quanLib)

RESQ_REWRITE1_CONV : thm list -> thm -> conv

Synopsis
Rewriting conversion using a restricted universally quantified theorem.

Description
RESQ_REWRITE1_CONV is a rewriting conversion similar to COND_REWRITE1_CONV. The only
difference is the rewriting theorem it takes. This should be an equation with restricted
universal quantification at the outer level. It is converted to a theorem in the form
accepted by the conditional rewriting conversion.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

evaluating RESQ_REWRITE1_CONV thms th "t[x’]" will return a theorem

A, P x’ |- t[x’] = t’[x’]

where t’ is the result of substituting instances of R[x’/x] for corresponding instances

RESQ REWRITE1 TAC 639

of Q[x’/x] in the original term t[x]. All instances of P x’ which do not appear in the
original assumption asml are added to the assumption. The theorems in the list thms are
used to eliminate the instances P x’ if it is possible.

Failure
RESQ_REWRITE1_CONV fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
res quanLib.RESQ REWRITE1 TAC, res quanLib.RESQ REWR CONV.

RESQ_REWRITE1_TAC (res_quanLib)

RESQ_REWRITE1_TAC : thm_tactic

Synopsis
Rewriting with a restricted universally quantified theorem.

Description
RESQ_REWRITE1_TAC takes an equational theorem which is restricted universally quan-
tified at the outer level. It calls RESQ_REWR_CANON to convert the theorem to the form
accepted by COND_REWR_TAC and passes the resulting theorem to this tactic which carries
out conditional rewriting.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

Applying the tactic RESQ_REWRITE1_TAC th to a goal (asml,gl) will return a main subgoal
(asml’,gl’) where gl’ is obtained by substituting instances of R[x’/x] for correspond-
ing instances of Q[x’/x] in the original goal gl. All instances of P x’ which do not
appear in the original assumption asml are added to it to form asml’, and they also
become new subgoals (asml,P x’).

Failure
RESQ_REWRITE1_TAC th fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

640 Chapter 1. Pre-defined ML Identifiers

See also
res quanLib.RESQ REWRITE1 CONV, res quanLib.RESQ REWR CONV.

RESQ_SPEC (res_quanLib)

RESQ_SPEC : term -> thm -> thm

Synopsis
Specializes the conclusion of a possibly-restricted universally quantified theorem.

Description
When applied to a term u and a theorem A |- !x::P. t, RESQ_SPEC returns the theorem
A, u IN P |- t[u/x]. If necessary, variables will be renamed prior to the specialization
to ensure that u is free for x in t, that is, no variables free in u become bound after
substitution.

A |- !x::P. t
--------------------- RESQ_SPEC "u"
A, u IN P |- t[u/x]

Additionally, if the input theorem is a standard universal quantification, then RESQ SPEC
behaves like SPEC.

Failure
Fails if the theorem’s conclusion is not restricted universally quantified, or if type in-
stantiation fails.

See also
res quanLib.RESQ HALF SPECL.

RESTR_EVAL_CONV (computeLib)

RESTR_EVAL_CONV : term list -> conv

Synopsis
Symbolically evaluate a term, except for specified constants.

RESTR EVAL RULE 641

Description
An application RESTR_EVAL_CONV [c1, ..., cn] M evaluates the term M in the call-by-
value style of EVAL. When a type instance c of any element in c1,...,cn is encountered,
c is not expanded by RESTR_EVAL_CONV. The effect is that evaluation stops at c (even
though any arguments to c may be evaluated). This facility can be used to control
EVAL_CONV to some extent.

Failure
Never fails, but may diverge.

Example
In the following, we first attempt to map the factorial function FACT over a list of vari-
ables. This attempt goes into a loop, because the conditional statement in the evaluation
rule for FACT is never determine when the argument is equal to zero. However, if we
suppress the evaluation of FACT, then we can return a useful answer.

- EVAL (Term ‘MAP FACT [x; y; z]‘); (* loops! *)
> Interrupted.

- val [FACT] = decls "FACT"; (* find FACT constant *)
> val FACT = ‘FACT‘ : term

- RESTR_EVAL_CONV [FACT] (Term ‘MAP FACT [x; y; z]‘);

> val it = |- MAP FACT [x; y; z] = [FACT x; FACT y; FACT z] : thm

Uses
Controlling symbolic evaluation when it loops or becomes exponential.

See also
bossLib.EVAL, computeLib.RESTR EVAL TAC, computeLib.RESTR EVAL RULE, Term.decls.

RESTR_EVAL_RULE (computeLib)

RESTR_EVAL_RULE : term list -> thm -> thm

Synopsis
Symbolically evaluate a theorem, except for specified constants.

642 Chapter 1. Pre-defined ML Identifiers

Description
This is a version of RESTR_EVAL_CONV that works on theorems.

Failure
As for RESTR_EVAL_CONV.

Uses
Controlling symbolic evaluation when it loops or becomes exponential.

See also
bossLib.EVAL, bossLib.EVAL RULE, computeLib.RESTR EVAL CONV,
computeLib.RESTR EVAL TAC.

RESTR_EVAL_TAC (computeLib)

RESTR_EVAL_TAC : term list -> tactic

Synopsis
Symbolically evaluate a theorem, except for specified constants.

Description
This is a tactic version of RESTR_EVAL_CONV.

Failure
As for RESTR_EVAL_CONV.

Uses
Controlling symbolic evaluation when it loops or becomes exponential.

See also
bossLib.EVAL, bossLib.EVAL RULE, bossLib.EVAL TAC, computeLib.RESTR EVAL CONV,
computeLib.RESTR EVAL RULE.

rev_assoc (Lib)

rev_assoc : ’’a -> (’b * ’’a) list -> (’b * ’’a)

rev itlist 643

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.

Description
An invocation rev_assoc y [(x1,y1),...,(xn,yn)] returns the first (xi,yi) in the list
such that yi equals y. The lookup is done on an eqtype, i.e., the SML implementation
must be able to decide equality for the type of y.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

- rev_assoc 2 [(1,4),(3,2),(2,5),(2,6)];
> val it = (3, 2) : (int * int)

See also
Lib.assoc, Lib.assoc1, Lib.assoc2, Lib.find, Lib.mem, Lib.tryfind, Lib.exists,
Lib.all.

rev_itlist (Lib)

rev_itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Synopsis
Applies a binary function between adjacent elements of the reverse of a list.

Description
rev_itlist f [x1,...,xn] b returns f xn (... (f x2 (f x1 y))...). It returns b if
the second argument is an empty list.

Failure
Fails if some application of f fails.

Example

- rev_itlist (curry op *) [1,2,3,4] 1;
> val it = 24 : int

See also
Lib.itlist, Lib.itlist2, Lib.rev itlist2, Lib.end itlist.

644 Chapter 1. Pre-defined ML Identifiers

rev_itlist2 (Lib)

rev_itlist2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Synopsis
Applies a function to corresponding elements of 2 lists.

Description
rev_itlist2 f [x1,...,xn] [y1,...,yn] z returns

f xn yn (f xn-1 yn-1 ... (f x1 y1 z)...)

It returns z if both lists are empty.

Failure
Fails if the two lists are of different lengths, or if an application of f raises an exception.

Example

- rev_itlist2 (fn x => fn y => cons (x,y)) [1,2] [3,4] [];
> val it = [(2, 4), (1, 3)] : (int * int) list

See also
Lib.itlist, Lib.rev itlist, Lib.itlist2, Lib.end itlist.

reveal (Parse)

reveal : string -> unit

Synopsis
Restores recognition of a constant by the quotation parser.

Description
A call reveal c, where c the name of a (perhaps) hidden constant, will ‘unhide‘ the
constant, that is, will make the quotation parser map the identifier c to all current
constants with the same name (there may be more than one such as different theories
may re-use the same name).

REVERSE 645

Failure
Never fails, but prints a warning message if the string does not correspond to an actual
constant.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in a
theory. If the parameter c is already overloaded so as to map to other constants, these
overloadings are not altered.

See also
Parse.hide, Parse.hidden, Parse.remove ovl mapping, Parse.update overload maps.

REVERSE (Tactical)

REVERSE : (tactic -> tactic)

Synopsis
Reverses the order of the generated subgoals.

Description
The tactic REVERSE T is a tactic which applies T to a goal, and reverses the order of the
subgoals generated by T.

Failure
The application of REVERSE to a tactic T never fails. The resulting composite tactic
REVERSE T fails when applied to a goal if and only if T fails.

Comments
Intended for use with THEN1 to pick the ‘easy’ subgoal.

646 Chapter 1. Pre-defined ML Identifiers

Example
Given a goal

G1 /\ G2

use

CONJ_TAC THEN1 T0
THEN ...

if the first conjunct is easily dispatched with T0, and

REVERSE CONJ_TAC THEN1 T0
THEN ...

if it is the second conjunct that yields.

See also
Tactical.EVERY, Tactical.FIRST, Tactical.ORELSE, Tactical.THEN, Tactical.THEN1,
Tactical.THENL.

REWR_CONV (Conv)

REWR_CONV : (thm -> conv)

Synopsis
Uses an instance of a given equation to rewrite a term.

Description
REWR_CONV is one of the basic building blocks for the implementation of rewriting in the
HOL system. In particular, the term replacement or rewriting done by all the built-in
rewriting rules and tactics is ultimately done by applications of REWR_CONV to appropri-
ate subterms. The description given here for REWR_CONV may therefore be taken as a
specification of the atomic action of replacing equals by equals that is used in all these
higher level rewriting tools.

The first argument to REWR_CONV is expected to be an equational theorem which is to
be used as a left-to-right rewrite rule. The general form of this theorem is:

A |- t[x1,...,xn] = u[x1,...,xn]

where x1, ..., xn are all the variables that occur free in the left-hand side of the conclu-
sion of the theorem but do not occur free in the assumptions. Any of these variables

REWR CONV 647

may also be universally quantified at the outermost level of the equation, as for example
in:

A |- !x1...xn. t[x1,...,xn] = u[x1,...,xn]

Note that REWR_CONV will also work, but will give a generally undesirable result (see
below), if the right-hand side of the equation contains free variables that do not also
occur free on the left-hand side, as for example in:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in t[x1,...,xn].
If th is an equational theorem of the kind shown above, then REWR_CONV th returns a

conversion that maps terms of the form t[e1,...,en/x1,...,xn], in which the terms e1,
..., en are free for x1, ..., xn in t, to theorems of the form:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en/x1,...,xn]

That is, REWR_CONV th tm attempts to match the left-hand side of the rewrite rule th

to the term tm. If such a match is possible, then REWR_CONV returns the corresponding
substitution instance of th.

If REWR_CONV is given a theorem th:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in the left-hand side, then the result of
applying the conversion REWR_CONV th to a term t[e1,...,en/x1,...,xn] will be:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en,v1,...,vm/x1,...,xn,y1,...,ym]

where v1, ..., vm are variables chosen so as to be free nowhere in th or in the input term.
The user has no control over the choice of the variables v1, ..., vm, and the variables
actually chosen may well be inconvenient for other purposes. This situation is, however,
relatively rare; in most equations the free variables on the right-hand side are a subset
of the free variables on the left-hand side.

In addition to doing substitution for free variables in the supplied equational theorem
(or ‘rewrite rule’), REWR_CONV th tm also does type instantiation, if this is necessary in
order to match the left-hand side of the given rewrite rule th to the term argument tm.
If, for example, th is the theorem:

A |- t[x1,...,xn] = u[x1,...,xn]

and the input term tm is (a substitution instance of) an instance of t[x1,...,xn] in
which the types ty1, ..., tyi are substituted for the type variables vty1, ..., vtyi, that is

648 Chapter 1. Pre-defined ML Identifiers

if:

tm = t[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

then REWR_CONV th tm returns:

A |- (t = u)[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

Note that, in this case, the type variables vty1, ..., vtyi must not occur anywhere in the
hypotheses A. Otherwise, the conversion will fail.

Failure
REWR_CONV th fails if th is not an equation or an equation universally quantified at the
outermost level. If th is such an equation:

th = A |- !v1....vi. t[x1,...,xn] = u[x1,...,xn,y1,...,yn]

then REWR_CONV th tm fails unless the term tm is alpha-equivalent to an instance of the
left-hand side t[x1,...,xn] which can be obtained by instantiation of free type variables
(i.e. type variables not occurring in the assumptions A) and substitution for the free
variables x1, ..., xn.

Example
The following example illustrates a straightforward use of REWR_CONV. The supplied
rewrite rule is polymorphic, and both substitution for free variables and type instan-
tiation may take place. EQ_SYM_EQ is the theorem:

|- !x:’a. !y. (x = y) = (y = x)

and REWR_CONV EQ_SYM_EQ behaves as follows:

- REWR_CONV EQ_SYM_EQ (Term ‘1 = 2‘);
> val it = |- (1 = 2) = (2 = 1) : thm

- REWR_CONV EQ_SYM_EQ (Term ‘1 < 2‘);
! Uncaught exception:
! HOL_ERR

The second application fails because the left-hand side x = y of the rewrite rule does
not match the term to be rewritten, namely 1 < 2.

REWRITE CONV 649

In the following example, one might expect the result to be the theorem A |- f 2 = 2,
where A is the assumption of the supplied rewrite rule:

- REWR_CONV (ASSUME (Term ‘!x:’a. f x = x‘)) (Term ‘f 2:num‘);
! Uncaught exception:
! HOL_ERR

The application fails, however, because the type variable ’a appears in the assumption
of the theorem returned by ASSUME (Term ‘!x:’a. f x = x‘).

Failure will also occur in situations like:

- REWR_CONV (ASSUME (Term ‘f (n:num) = n‘)) (Term ‘f 2:num‘);
! Uncaught exception:
! HOL_ERR

where the left-hand side of the supplied equation contains a free variable (in this case n)
which is also free in the assumptions, but which must be instantiated in order to match
the input term.

See also
Rewrite.REWRITE CONV.

REWRITE_CONV (Rewrite)

REWRITE_CONV : (thm list -> conv)

Synopsis
Rewrites a term including built-in tautologies in the list of rewrites.

Description
Rewriting a term using REWRITE_CONV utilizes as rewrites two sets of theorems: the tau-
tologies in the ML list basic_rewrites and the ones supplied by the user. The rule
searches top-down and recursively for subterms which match the left-hand side of any
of the possible rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.

Variants of this conversion allow changes in the set of equations used: PURE_REWRITE_CONV
and others in its family do not rewrite with the theorems in basic_rewrites.

The top-down recursive search for matches may not be desirable, as this may increase
the number of inferences being made or may result in divergence. In this case other

650 Chapter 1. Pre-defined ML Identifiers

rewriting tools such as ONCE_REWRITE_CONV and GEN_REWRITE_CONV can be used, or the set
of theorems given may be reduced.

See GEN_REWRITE_CONV for the general strategy for simplifying theorems in HOL using
equational theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate terms by rewriting them with theorems. While resulting in high
degree of automation, REWRITE_CONV can spawn a large number of inference steps. Thus,
variants such as PURE_REWRITE_CONV, or other rules such as SUBST_CONV, may be used
instead to improve efficiency.

See also
basic rewrites, Rewrite.GEN REWRITE CONV, Rewrite.ONCE REWRITE CONV,
Rewrite.PURE REWRITE CONV, Conv.REWR CONV, Drule.SUBST CONV.

REWRITE_RULE (Rewrite)

REWRITE_RULE : (thm list -> thm -> thm)

Synopsis
Rewrites a theorem including built-in tautologies in the list of rewrites.

Description
Rewriting a theorem using REWRITE_RULE utilizes as rewrites two sets of theorems: the
tautologies in the ML list basic_rewrites and the ones supplied by the user. The rule
searches top-down and recursively for subterms which match the left-hand side of any
of the possible rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.

Variants of this rule allow changes in the set of equations used: PURE_REWRITE_RULE

and others in its family do not rewrite with the theorems in basic_rewrites. Rules such
as ASM_REWRITE_RULE add the assumptions of the object theorem (or a specified subset
of these assumptions) to the set of possible rewrites.

The top-down recursive search for matches may not be desirable, as this may increase
the number of inferences being made or may result in divergence. In this case other
rewriting tools such as ONCE_REWRITE_RULE and GEN_REWRITE_RULE can be used, or the set
of theorems given may be reduced.

REWRITE TAC 651

See GEN_REWRITE_RULE for the general strategy for simplifying theorems in HOL using
equational theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate theorems by rewriting them with other theorems. While resulting in
high degree of automation, REWRITE_RULE can spawn a large number of inference steps.
Thus, variants such as PURE_REWRITE_RULE, or other rules such as SUBST, may be used
instead to improve efficiency.

See also
Rewrite.ASM REWRITE RULE, basic rewrites, Rewrite.GEN REWRITE RULE,
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Conv.REWR CONV,
Rewrite.REWRITE CONV, Thm.SUBST.

REWRITE_TAC (Rewrite)

REWRITE_TAC : (thm list -> tactic)

Synopsis
Rewrites a goal including built-in tautologies in the list of rewrites.

Description
Rewriting tactics in HOL provide a recursive left-to-right matching and rewriting facil-
ity that automatically decomposes subgoals and justifies segments of proof in which
equational theorems are used, singly or collectively. These include the unfolding of def-
initions, and the substitution of equals for equals. Rewriting is used either to advance
or to complete the decomposition of subgoals.
REWRITE_TAC transforms (or solves) a goal by using as rewrite rules (i.e. as left-to-right

replacement rules) the conclusions of the given list of (equational) theorems, as well as
a set of built-in theorems (common tautologies) held in the ML variable basic_rewrites.
Recognition of a tautology often terminates the subgoaling process (i.e. solves the goal).

The equational rewrites generated are applied recursively and to arbitrary depth, with
matching and instantiation of variables and type variables. A list of rewrites can set off
an infinite rewriting process, and it is not, of course, decidable in general whether a
rewrite set has that property. The order in which the rewrite theorems are applied is
unspecified, and the user should not depend on any ordering.

652 Chapter 1. Pre-defined ML Identifiers

See GEN_REWRITE_TAC for more details on the rewriting process. Variants of REWRITE_TAC
allow the use of a different set of rewrites. Some of them, such as PURE_REWRITE_TAC,
exclude the basic tautologies from the possible transformations. ASM_REWRITE_TAC and
others include the assumptions at the goal in the set of possible rewrites.

Still other tactics allow greater control over the search for rewritable subterms. Sev-
eral of them such as ONCE_REWRITE_TAC do not apply rewrites recursively. GEN_REWRITE_TAC
allows a rewrite to be applied at a particular subterm.

Failure
REWRITE_TAC does not fail. Certain sets of rewriting theorems on certain goals may cause
a non-terminating sequence of rewrites. Divergent rewriting behaviour results from a
term t being immediately or eventually rewritten to a term containing t as a sub-term.
The exact behaviour depends on the HOL implementation.

Example
The arithmetic theorem GREATER_DEF, |- !m n. m > n = n < m, is used below to advance
a goal:

- REWRITE_TAC [GREATER_DEF] ([],‘‘5 > 4‘‘);
> ([([], ‘‘4 < 5‘‘)], -) : subgoals

It is used below with the theorem LESS_0, |- !n. 0 < (SUC n), to solve a goal:

- val (gl,p) =
REWRITE_TAC [GREATER_DEF, LESS_0] ([],‘‘(SUC n) > 0‘‘);

> val gl = [] : goal list
> val p = fn : proof

- p[];
> val it = |- (SUC n) > 0 : thm

Uses
Rewriting is a powerful and general mechanism in HOL, and an important part of many
proofs. It relieves the user of the burden of directing and justifying a large number of
minor proof steps. REWRITE_TAC fits a forward proof sequence smoothly into the general
goal-oriented framework. That is, (within one subgoaling step) it produces and justifies
certain forward inferences, none of which are necessarily on a direct path to the desired
goal.
REWRITE_TAC may be more powerful a tactic than is needed in certain situations; if ef-

ficiency is at stake, alternatives might be considered. On the other hand, if more power
is required, the simplification functions (SIMP_TAC and others) may be appropriate.

rewrites 653

See also
Rewrite.ASM REWRITE TAC, Rewrite.GEN REWRITE TAC, Rewrite.FILTER ASM REWRITE TAC,
Rewrite.FILTER ONCE ASM REWRITE TAC, Rewrite.ONCE ASM REWRITE TAC,
Rewrite.ONCE REWRITE TAC, Rewrite.PURE ASM REWRITE TAC,
Rewrite.PURE ONCE ASM REWRITE TAC, Rewrite.PURE ONCE REWRITE TAC,
Rewrite.PURE REWRITE TAC, Conv.REWR CONV, Rewrite.REWRITE CONV,
simpLib.SIMP TAC, Tactic.SUBST TAC.

rewrites (bossLib)

rewrites : thm list -> ssdata

Synopsis
Creates an ssdata value consisting of the given theorems as rewrites.

Failure
Never fails.

Example
Instead of writing the simpler SIMP_CONV std_ss thmlist, one could write

SIMP_CONV (std_ss ++ rewrites thmlist) []

More plausibly, rewrites can be used to create commonly used ssdata values containing
a great number of rewrites. This is how the basic system’s various ssdata values are
constructed where those values consist only of rewrite theorems.

See also
bossLib.++, simpLib.mk simpset, simpLib.SIMPSET, bossLib.SIMP CONV.

rewrites (simpLib)

rewrites : thm list -> ssdata

Synopsis
Create an ssdata value consisting of the given theorems as rewrites.

654 Chapter 1. Pre-defined ML Identifiers

Description
bossLib.rewrites is identical to simpLib.rewrites.

See also
bossLib.rewrites.

rhs (boolSyntax)

rhs : term -> term

Synopsis
Returns the right-hand side of an equation.

Description
If M has the form t1 = t2 then rhs M returns t2.

Failure
Fails if term is not an equality.

See also
boolSyntax.lhs, boolSyntax.dest eq.

RIGHT_AND_EXISTS_CONV (Conv)

RIGHT_AND_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the right conjunct outwards through a conjunc-
tion.

Description
When applied to a term of the form P /\ (?x.Q), the conversion RIGHT_AND_EXISTS_CONV

returns the theorem:

|- P /\ (?x.Q) = (?x’. P /\ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

RIGHT AND FORALL CONV 655

Failure
Fails if applied to a term not of the form P /\ (?x.Q).

See also
Conv.AND EXISTS CONV, Conv.EXISTS AND CONV, Conv.LEFT AND EXISTS CONV.

RIGHT_AND_FORALL_CONV (Conv)

RIGHT_AND_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the right conjunct outwards through a conjunction.

Description
When applied to a term of the form P /\ (!x.Q), the conversion RIGHT_AND_FORALL_CONV

returns the theorem:

|- P /\ (!x.Q) = (!x’. P /\ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P /\ (!x.Q).

See also
Conv.AND FORALL CONV, Conv.FORALL AND CONV, Conv.LEFT AND FORALL CONV.

RIGHT_AND_PEXISTS_CONV (PairRules)

RIGHT_AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the right conjunct outwards through a con-
junction.

656 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term of the form t /\ (?p. t), the conversion RIGHT_AND_PEXISTS_CONV

returns the theorem:

|- t /\ (?p. u) = (?p’. t /\ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t /\ (?p. u).

See also
Conv.RIGHT AND EXISTS CONV, PairRules.AND PEXISTS CONV,
PairRules.PEXISTS AND CONV, PairRules.LEFT AND PEXISTS CONV.

RIGHT_AND_PFORALL_CONV (PairRules)

RIGHT_AND_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the right conjunct outwards through a con-
junction.

Description
When applied to a term of the form t /\ (!p. u), the conversion RIGHT_AND_PFORALL_CONV

returns the theorem:

|- t /\ (!p. u) = (!p’. t /\ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t /\ (!p. u).

See also
Conv.RIGHT AND FORALL CONV, PairRules.AND PFORALL CONV,
PairRules.PFORALL AND CONV, PairRules.LEFT AND PFORALL CONV.

RIGHT BETA 657

RIGHT_BETA (Drule)

RIGHT_BETA : (thm -> thm)

Synopsis
Beta-reduces a top-level beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_BETA applies beta-reduction at top level
to the right-hand side (only). Variables are renamed if necessary to avoid free variable
capture.

A |- s = (\x. t1) t2
---------------------- RIGHT_BETA

A |- s = t1[t2/x]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level beta-
redex.

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.RIGHT LIST BETA.

RIGHT_CONV_RULE (Conv)

RIGHT_CONV_RULE : (conv -> thm -> thm)

Synopsis
Applies a conversion to the right-hand side of an equational theorem.

Description
If c is a conversion that maps a term "t2" to the theorem |- t2 = t2’, then the rule
RIGHT_CONV_RULE c infers |- t1 = t2’ from the theorem |- t1 = t2. That is, if c "t2"

658 Chapter 1. Pre-defined ML Identifiers

returns A’ |- t2 = t2’, then:

A |- t1 = t2
--------------------- RIGHT_CONV_RULE c
A u A’ |- t1 = t2’

Note that if the conversion c returns a theorem with assumptions, then the resulting
inference rule adds these to the assumptions of the theorem it returns.

Failure
RIGHT_CONV_RULE c th fails if the conclusion of the theorem th is not an equation, or if
th is an equation but c fails when applied its right-hand side. The function returned
by RIGHT_CONV_RULE c will also fail if the ML function c:term->thm is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
Conv.CONV RULE.

RIGHT_IMP_EXISTS_CONV (Conv)

RIGHT_IMP_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the consequent outwards through an implication.

Description
When applied to a term of the form P ==> (?x.Q), the conversion RIGHT_IMP_EXISTS_CONV

returns the theorem:

|- P ==> (?x.Q) = (?x’. P ==> (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P ==> (?x.Q).

See also
Conv.EXISTS IMP CONV, Conv.LEFT IMP FORALL CONV.

RIGHT IMP FORALL CONV 659

RIGHT_IMP_FORALL_CONV (Conv)

RIGHT_IMP_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the consequent outwards through an implication.

Description
When applied to a term of the form P ==> (!x.Q), the conversion RIGHT_IMP_FORALL_CONV

returns the theorem:

|- P ==> (!x.Q) = (!x’. P ==> (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P ==> (!x.Q).

See also
Conv.FORALL IMP CONV, Conv.LEFT IMP EXISTS CONV.

RIGHT_IMP_PEXISTS_CONV (PairRules)

RIGHT_IMP_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the consequent outwards through an impli-
cation.

Description
When applied to a term of the form t ==> (?p. u), RIGHT_IMP_PEXISTS_CONV returns the
theorem:

|- t ==> (?p. u) = (?p’. t ==> (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

660 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if applied to a term not of the form t ==> (?p. u).

See also
Conv.RIGHT IMP EXISTS CONV, PairRules.PEXISTS IMP CONV,
PairRules.LEFT IMP PFORALL CONV.

RIGHT_IMP_PFORALL_CONV (PairRules)

RIGHT_IMP_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the consequent outwards through an impli-
cation.

Description
When applied to a term of the form t ==> (!p. u), the conversion RIGHT_IMP_FORALL_CONV

returns the theorem:

|- t ==> (!p. u) = (!p’. t ==> (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t ==> (!p. u).

See also
Conv.RIGHT IMP FORALL CONV, PairRules.PFORALL IMP CONV,
PairRules.LEFT IMP PEXISTS CONV.

RIGHT_LIST_BETA (Drule)

RIGHT_LIST_BETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level beta-redex on the right-hand side of an equation.

RIGHT LIST PBETA 661

Description
When applied to an equational theorem, RIGHT_LIST_BETA applies beta-reduction over a
top-level chain of beta-redexes to the right hand side (only). Variables are renamed if
necessary to avoid free variable capture.

A |- s = (\x1...xn. t) t1 ... tn
---------------------------------- RIGHT_LIST_BETA

A |- s = t[t1/x1]...[tn/xn]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level beta-
redex.

See also
Thm.BETA CONV, Conv.BETA RULE, Tactic.BETA TAC, Drule.LIST BETA CONV,
Drule.RIGHT BETA.

RIGHT_LIST_PBETA (PairRules)

RIGHT_LIST_PBETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level paired beta-redex on the right-hand side of an equa-
tion.

Description
When applied to an equational theorem, RIGHT_LIST_PBETA applies paired beta-reduction
over a top-level chain of beta-redexes to the right-hand side (only). Variables are re-
named if necessary to avoid free variable capture.

A |- s = (\p1...pn. t) q1 ... qn
---------------------------------- RIGHT_LIST_BETA

A |- s = t[q1/p1]...[qn/pn]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level paired
beta-redex.

662 Chapter 1. Pre-defined ML Identifiers

See also
Drule.RIGHT LIST BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,
PairRules.PBETA TAC, PairRules.LIST PBETA CONV, PairRules.RIGHT PBETA,
PairRules.LEFT PBETA, PairRules.LEFT LIST PBETA.

RIGHT_OR_EXISTS_CONV (Conv)

RIGHT_OR_EXISTS_CONV : conv

Synopsis
Moves an existential quantification of the right disjunct outwards through a disjunction.

Description
When applied to a term of the form P \/ (?x.Q), the conversion RIGHT_OR_EXISTS_CONV

returns the theorem:

|- P \/ (?x.Q) = (?x’. P \/ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

Failure
Fails if applied to a term not of the form P \/ (?x.Q).

See also
Conv.OR EXISTS CONV, Conv.EXISTS OR CONV, Conv.LEFT OR EXISTS CONV.

RIGHT_OR_FORALL_CONV (Conv)

RIGHT_OR_FORALL_CONV : conv

Synopsis
Moves a universal quantification of the right disjunct outwards through a disjunction.

Description
When applied to a term of the form P \/ (!x.Q), the conversion RIGHT_OR_FORALL_CONV

returns the theorem:

|- P \/ (!x.Q) = (!x’. P \/ (Q[x’/x]))

where x’ is a primed variant of x that does not appear free in the input term.

RIGHT OR PEXISTS CONV 663

Failure
Fails if applied to a term not of the form P \/ (!x.Q).

See also
Conv.OR FORALL CONV, Conv.FORALL OR CONV, Conv.LEFT OR FORALL CONV.

RIGHT_OR_PEXISTS_CONV (PairRules)

RIGHT_OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the right disjunct outwards through a dis-
junction.

Description
When applied to a term of the form t \/ (?p. u), the conversion RIGHT_OR_PEXISTS_CONV

returns the theorem:

|- t \/ (?p. u) = (?p’. t \/ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t \/ (?p. u).

See also
Conv.RIGHT OR EXISTS CONV, PairRules.OR PEXISTS CONV, PairRules.PEXISTS OR CONV,
PairRules.LEFT OR PEXISTS CONV.

RIGHT_OR_PFORALL_CONV (PairRules)

RIGHT_OR_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the right disjunct outwards through a dis-
junction.

664 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term of the form t \/ (!p. u), the conversion RIGHT_OR_FORALL_CONV

returns the theorem:

|- t \/ (!p. u) = (!p’. t \/ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t \/ (!p. u).

See also
Conv.RIGHT OR FORALL CONV, PairRules.OR PFORALL CONV, PairRules.PFORALL OR CONV,
PairRules.LEFT OR PFORALL CONV.

RIGHT_PBETA (PairRules)

RIGHT_PBETA : (thm -> thm)

Synopsis
Beta-reduces a top-level paired beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_PBETA applies paired beta-reduction at
top level to the right-hand side (only). Variables are renamed if necessary to avoid free
variable capture.

A |- s = (\p. t1) t2
---------------------- RIGHT_PBETA

A |- s = t1[t2/p]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level paired
beta-redex.

See also
Drule.RIGHT BETA, PairRules.PBETA CONV, PairRules.PBETA RULE,
PairRules.PBETA TAC, PairRules.RIGHT LIST PBETA, PairRules.LEFT PBETA,
PairRules.LEFT LIST PBETA.

Rsyntax 665

Rsyntax

Rsyntax

Synopsis

A structure that restores a record-style environment for term manipulation.

Description

If one has opened the Psyntax structure, one can open the Rsyntax structure to get
record-style functions back.

Each function in the Rsyntax structure has a corresponding function in the Psyntax
structure, and vice versa. One can flip-flop between the two structures by opening one
and then the other. One can also use long identifiers in order to use both syntaxes at
once.

Failure

Never fails.

Example

The following shows how to open the Rsyntax structure and the functions that sub-
sequently become available in the top level environment. Documentation for each of

666 Chapter 1. Pre-defined ML Identifiers

these functions is available online.

- open Rsyntax;
open Rsyntax
val INST = fn : term subst -> thm -> thm
val INST_TYPE = fn : hol_type subst -> thm -> thm
val INST_TY_TERM = fn : term subst * hol_type subst -> thm -> thm
val SUBST = fn : {thm:thm, var:term} list -> term -> thm -> thm
val SUBST_CONV = fn : {thm:thm, var:term} list -> term -> term -> thm
val define_new_type_bijections = fn

: {ABS:string, REP:string, name:string, tyax:thm} -> thm
val dest_abs = fn : term -> {Body:term, Bvar:term}
val dest_comb = fn : term -> {Rand:term, Rator:term}
val dest_cond = fn : term -> {cond:term, larm:term, rarm:term}
val dest_conj = fn : term -> {conj1:term, conj2:term}
val dest_cons = fn : term -> {hd:term, tl:term}
val dest_const = fn : term -> {Name:string, Ty:hol_type}
val dest_disj = fn : term -> {disj1:term, disj2:term}
val dest_eq = fn : term -> {lhs:term, rhs:term}
val dest_exists = fn : term -> {Body:term, Bvar:term}
val dest_forall = fn : term -> {Body:term, Bvar:term}
val dest_imp = fn : term -> {ant:term, conseq:term}
val dest_let = fn : term -> {arg:term, func:term}
val dest_list = fn : term -> {els:term list, ty:hol_type}
val dest_pabs = fn : term -> {body:term, varstruct:term}
val dest_pair = fn : term -> {fst:term, snd:term}
val dest_select = fn : term -> {Body:term, Bvar:term}
val dest_type = fn : hol_type -> {Args:hol_type list, Tyop:string}
val dest_var = fn : term -> {Name:string, Ty:hol_type}
val inst = fn : hol_type subst -> term -> term
val match_term = fn : term -> term -> term subst * hol_type subst
val match_type = fn : hol_type -> hol_type -> hol_type subst
val mk_abs = fn : {Body:term, Bvar:term} -> term
val mk_comb = fn : {Rand:term, Rator:term} -> term
val mk_cond = fn : {cond:term, larm:term, rarm:term} -> term
val mk_conj = fn : {conj1:term, conj2:term} -> term
val mk_cons = fn : {hd:term, tl:term} -> term
val mk_const = fn : {Name:string, Ty:hol_type} -> term
val mk_disj = fn : {disj1:term, disj2:term} -> term
val mk_eq = fn : {lhs:term, rhs:term} -> term
val mk_exists = fn : {Body:term, Bvar:term} -> term
val mk_forall = fn : {Body:term, Bvar:term} -> term
val mk_imp = fn : {ant:term, conseq:term} -> term
val mk_let = fn : {arg:term, func:term} -> term
val mk_list = fn : {els:term list, ty:hol_type} -> term
val mk_pabs = fn : {body:term, varstruct:term} -> term
val mk_pair = fn : {fst:term, snd:term} -> term
val mk_primed_var = fn : {Name:string, Ty:hol_type} -> term
val mk_select = fn : {Body:term, Bvar:term} -> term
val mk_type = fn : {Args:hol_type list, Tyop:string} -> hol_type
val mk_var = fn : {Name:string, Ty:hol_type} -> term
val new_binder = fn : {Name:string, Ty:hol_type} -> unit
val new_constant = fn : {Name:string, Ty:hol_type} -> unit
val new_infix = fn : {Name:string, Prec:int, Ty:hol_type} -> unit

RULE ASSUM TAC 667

RULE_ASSUM_TAC (Tactic)

RULE_ASSUM_TAC : ((thm -> thm) -> tactic)

Synopsis
Maps an inference rule over the assumptions of a goal.

Description
When applied to an inference rule f and a goal ({A1,...,An} ?- t), the RULE_ASSUM_TAC

tactical applies the inference rule to each of the ASSUMEd assumptions to give a new goal.

{A1,...,An} ?- t
==================================== RULE_ASSUM_TAC f
{f(A1 |- A1),...,f(An |- An)} ?- t

Failure
The application of RULE_ASSUM_TAC f to a goal fails iff f fails when applied to any of the
assumptions of the goal.

Comments
It does not matter if the goal has no assumptions, but in this case RULE_ASSUM_TAC has
no effect.

See also
Tactical.ASSUM LIST, Tactical.MAP EVERY, Tactical.MAP FIRST,
Tactical.POP ASSUM LIST.

RW_TAC (BasicProvers)

RW_TAC : simpset -> thm list -> tactic

Synopsis
Simplification with case-splitting and built-in knowledge of declared datatypes.

Description
bossLib.RW_TAC is identical to BasicProvers.RW_TAC.

668 Chapter 1. Pre-defined ML Identifiers

See also
bossLib.RW TAC.

RW_TAC (bossLib)

RW_TAC : simpset -> thm list -> tactic

Synopsis
Simplification with case-splitting and built-in knowledge of declared datatypes.

Description
RW_TAC is a simplification tactic that provides conditional and contextual rewriting, and
automatic invocation of conversions and decision procedures in the course of simplifi-
cation. An application RW_TAC ss thl adds the theorems in thl to the simpset ss and
proceeds to simplify the goal.

The process is based upon the simplification procedures in simpLib, but is more persis-
tent in attempting to apply rewrite rules. It automatically incorporates relevant results
from datatype declarations (the most important of these are injectivity and distinctness
of constructors). It uses the current hypotheses when rewriting the goal. It automat-
ically performs case-splitting on conditional expressions in the goal. It simplifies any
equation between constructors occurring in the goal or the hypotheses. It automatically
substitutes through the goal any assumption that is an equality v = M or M = v, if v is a
variable not occurring in M. It eliminates any boolean variable or negated boolean vari-
able occurring as a hypothesis. It breaks down any conjunctions, disjunctions, double
negations, or existentials occurring as hypotheses. It keeps the goal in ”stripped” format
so that the resulting goal will not be an implication or universally quantified.

Failure
Never fails, but may diverge.

Comments
The case splits arising from conditionals and disjunctions can result in many unforeseen
subgoals. In that case, SIMP_TAC or even REWRITE_TAC should be used.

The automatic incorporation of datatype facts can be slow when operating in a con-
text with many datatypes (or a few large datatypes). In such cases, SRW_TAC is preferable
to RW_TAC.

See also
bossLib.SRW TAC, bossLib.SIMP TAC, Rewrite.REWRITE TAC, Ho Rewrite.REWRITE TAC,
bossLib.Hol datatype.

S 669

S (Lib)

S : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c

Synopsis
Generalized function composition: S f g x equals f x (g x).

Failure
S f never fails and S f g never fails, but S f g x fails if g x fails or f x (g x) fails.

See also
Lib, Lib.##, Lib.A, Lib.B, Lib.C, Lib.I, Lib.K, Lib.W.

same_const (Term)

same_const : term -> term -> bool

Synopsis
Constant time equality check for constants.

Description
In many cases, one needs to check that a constant is an instance of the generic constant
originally introduced into the signature, or that two constants are both type instantia-
tions of another. This can be achieved by taking the constants apart with dest_thy_const

and comparing their name and theory. However, this is relatively inefficient. Instead,
one can invoke same_const, which takes constant time.

Failure
Never fails.

Example

- same_const boolSyntax.universal (rator (concl BOOL_CASES_AX));

> val it = true : bool

See also
Term.aconv, Term.dest thy const, Term.match term.

670 Chapter 1. Pre-defined ML Identifiers

save_thm (Theory)

save_thm : string * thm -> thm

Synopsis
Stores a theorem in the current theory segment.

Description
The call save_thm(name, th) adds the theorem th to the current theory segment under
the name name. The theorem is also the return value of the call. When the current
segment thy is exported, things are arranged in such a way that, if thyTheory is loaded
into a later session, the ML variable thyTheory.name will have th as its value.

Failure
If th is out-of-date, then save_thm will fail. If name is not a valid ML alphanumeric
identifier, save_thm will not fail, but export_theory will (printing an informative error
message first).

Example

- val foo = save_thm("foo", REFL (Term ‘x:bool‘));
> val foo = |- x = x : thm

- current_theorems();
> val it = [("foo", |- x = x)] : (string * thm) list

Comments
If a theorem is already saved under name in the current theory segment, it will be over-
written.

The results of new_axiom, and definition principle (such as new_definition, new_type_definition,
and new_specification) are automatically stored in the current theory: one does not
have to call save_thm on them.

Uses
Saving important theorems for eventual export. Binding the result of save_thm to an ML
variable makes it easy to access the theorem in the remainder of the current session.

See also
Theory.new theory, Tactical.store thm, DB.fetch, DB.thy,
Theory.current definitions, Theory.current theorems, Theory.uptodate thm,

say 671

Theory.new axiom, Definition.new type definition, Definition.new definition,
Definition.new specification.

say (Lib)

say : string -> unit

Synopsis
Print a string.

Description
An application say s prints the string s on the standard output.

Failure
Never fails.

Comments
The ML Standard Basis Library structure TextIO offers related functions.

scrub (Theory)

scrub : unit -> unit

Synopsis
Remove all out-of-date elements from the current theory segment.

Description
An invocation scrub() goes through the current theory segment and removes all out-of-
date elements.

Failure
Never fails.

Example
In the following, we define a concrete type and examine the current theory segment to
see what consequences of this definition have been stored there. Then we delete the

672 Chapter 1. Pre-defined ML Identifiers

type, which turns all those consequences into garbage. An query, like current_theorems,
shows that this garbage is not collected automatically. A manual invocation of scrub is
necessary to show the true state of play.

- Hol_datatype ‘foo = A | B of ’a‘;
<<HOL message: Defined type: "foo">>
> val it = () : unit

- current_theorems();
> val it =

[("foo_induction", |- !P. P A /\ (!a. P (B a)) ==> !f. P f),
("foo_Axiom", |- !f0 f1. ?fn. (fn A = f0) /\ !a. fn (B a) = f1 a),
("foo_nchotomy", |- !f. (f = A) \/ ?a. f = B a),
("foo_case_cong",
|- !M M’ v f.

(M = M’) /\ ((M’ = A) ==> (v = v’)) /\
(!a. (M’ = B a) ==> (f a = f’ a)) ==>
(case v f M = case v’ f’ M’)),

("foo_distinct", |- !a. ~(A = B a)),
("foo_11", |- !a a’. (B a = B a’) = (a = a’))] : (string * thm) list

- delete_type "foo";
> val it = () : unit

- current_theorems();
> val it =

[("foo_induction", |- !P. P A /\ (!a. P (B a)) ==> !f. P f),
("foo_Axiom", |- !f0 f1. ?fn. (fn A = f0) /\ !a. fn (B a) = f1 a),
("foo_nchotomy", |- !f. (f = A) \/ ?a. f = B a),
("foo_case_cong",
|- !M M’ v f.

(M = M’) /\ ((M’ = A) ==> (v = v’)) /\
(!a. (M’ = B a) ==> (f a = f’ a)) ==>
(case v f M = case v’ f’ M’)),

("foo_distinct", |- !a. ~(A = B a)),
("foo_11", |- !a a’. (B a = B a’) = (a = a’))] : (string * thm) list

- scrub();
> val it = () : unit

- current_theorems();
> val it = [] : (string * thm) list

Uses
When export_theory is called, it uses scrub to prepare the current segment for export.
Users can also call scrub to find out what setting they are really working in.

select 673

See also
Theory.uptodate type, Theory.uptodate term, Theory.uptodate thm,
Theory.delete type, Theory.delete const, Theory.delete axiom,
Theory.delete definition, Theory.delete theorem.

select (boolSyntax)

select : term

Synopsis
Constant denoting Hilbert’s choice operator.

Description
The ML variable boolSyntax.select is bound to the term min$@.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.T, boolSyntax.F,
boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

SELECT_CONV (Conv)

SELECT_CONV : conv

Synopsis
Eliminates an epsilon term by introducing an existential quantifier.

Description
The conversion SELECT_CONV expects a boolean term of the form P[@x.P[x]/x], which
asserts that the epsilon term @x.P[x] denotes a value, x say, for which P[x] holds. This
assertion is equivalent to saying that there exists such a value, and SELECT_CONV applied
to a term of this form returns the theorem |- P[@x.P[x]/x] = ?x. P[x].

Failure
Fails if applied to a term that is not of the form P[@x.P[x]/x].

674 Chapter 1. Pre-defined ML Identifiers

Example

SELECT_CONV (Term ‘(@n. n < m) < m‘);
val it = |- (@n. n < m) < m = (?n. n < m) : thm

Uses
Particularly useful in conjunction with CONV_TAC for proving properties of values denoted
by epsilon terms. For example, suppose that one wishes to prove the goal

([0 < m], (@n. n < m) < SUC m)

Using the built-in arithmetic theorem

LESS_SUC |- !m n. m < n ==> m < (SUC n)

this goal may be reduced by the tactic MATCH_MP_TAC LESS_SUC to the subgoal

([0 < m], (@n. n < m) < m)

This is now in the correct form for using CONV_TAC SELECT_CONV to eliminate the epsilon
term, resulting in the existentially quantified goal

([0 < m], ?n. n < m)

which is then straightforward to prove.

See also
Drule.SELECT ELIM, Drule.SELECT INTRO, Drule.SELECT RULE.

SELECT_ELIM (Drule)

SELECT_ELIM : thm -> term * thm -> thm

Synopsis
Eliminates an epsilon term, using deduction from a particular instance.

Description
SELECT_ELIM expects two arguments, a theorem th1, and a pair (v,th2): term * thm.
The conclusion of th1 must have the form P($@ P), which asserts that the epsilon term
$@ P denotes some value at which P holds. The variable v appears only in the assumption

SELECT EQ 675

P v of the theorem th2. The conclusion of the resulting theorem matches that of th2,
and the hypotheses include the union of all hypotheses of the premises excepting P v.

A1 |- P($@ P) A2 u {P v} |- t
----------------------------------- SELECT_ELIM th1 (v,th2)

A1 u A2 |- t

where v is not free in A2. If v appears in the conclusion of th2, the epsilon term will
NOT be eliminated, and the conclusion will be t[$@ P/v].

Failure
Fails if the first theorem is not of the form A1 |- P($@ P), or if the variable v occurs free
in any other assumption of th2.

Example
If a property of functions is defined by:

INCR = |- !f. INCR f = (!t1 t2. t1 < t2 ==> (f t1) < (f t2))

The following theorem can be proved.

th1 = |- INCR(@f. INCR f)

Additionally, if such a function is assumed to exist, then one can prove that there also
exists a function which is injective (one-to-one) but not surjective (onto).

th2 = [INCR g] |- ?h. ONE_ONE h /\ ~ONTO h

These two results may be combined using SELECT_ELIM to give a new theorem:

- SELECT_ELIM th1 (Term‘g:num->num‘, th2);
val it = |- ?h. ONE_ONE h /\ ~ONTO h : thm

Uses
This rule is rarely used. The equivalence of P($@ P) and $? P makes this rule funda-
mentally similar to the ?-elimination rule CHOOSE.

See also
Thm.CHOOSE, SELECT AX, Conv.SELECT CONV, Drule.SELECT INTRO, Drule.SELECT RULE.

SELECT_EQ (Drule)

SELECT_EQ : (term -> thm -> thm)

676 Chapter 1. Pre-defined ML Identifiers

Synopsis
Applies epsilon abstraction to both terms of an equation.

Description
Effects the extensionality of the epsilon operator @.

A |- t1 = t2
------------------------ SELECT_EQ "x" [where x is not free in A]
A |- (@x.t1) = (@x.t2)

Failure
Fails if the conclusion of the theorem is not an equation, or if the variable x is free in A.

Example
Given a theorem which shows the equivalence of two distinct forms of defining the
property of being an even number:

th = |- (x MOD 2 = 0) = (?y. x = 2 * y)

A theorem giving the equivalence of the epsilon abstraction of each form is obtained:

- SELECT_EQ (Term ‘x:num‘) th;
> val it = |- (@x. x MOD 2 = 0) = (@x. ?y. x = 2 * y) : thm

See also
Thm.ABS, Thm.AP TERM, Drule.EXISTS EQ, Drule.FORALL EQ, Conv.SELECT CONV,
Drule.SELECT ELIM, Drule.SELECT INTRO.

SELECT_INTRO (Drule)

SELECT_INTRO : (thm -> thm)

Synopsis
Introduces an epsilon term.

SELECT RULE 677

Description
SELECT_INTRO takes a theorem with an applicative conclusion, say P x, and returns a
theorem with the epsilon term $@ P in place of the original operand x.

A |- P x
-------------- SELECT_INTRO
A |- P($@ P)

The returned theorem asserts that $@ P denotes some value at which P holds.

Failure
Fails if the conclusion of the theorem is not an application.

Example
Given the theorem

th1 = |- (\n. m = n)m

applying SELECT_INTRO replaces the second occurrence of m with the epsilon abstraction
of the operator:

- val th2 = SELECT_INTRO th1;
val th2 = |- (\n. m = n)(@n. m = n) : thm

This theorem could now be used to derive a further result:

- EQ_MP (BETA_CONV(concl th2)) th2;
val it = |- m = (@n. m = n) : thm

See also
Thm.EXISTS, SELECT AX, Conv.SELECT CONV, Drule.SELECT ELIM, Drule.SELECT RULE.

SELECT_RULE (Drule)

SELECT_RULE : thm -> thm

Synopsis
Introduces an epsilon term in place of an existential quantifier.

678 Chapter 1. Pre-defined ML Identifiers

Description
The inference rule SELECT_RULE expects a theorem asserting the existence of a value x

such that P holds. The equivalent assertion that the epsilon term @x.P denotes a value
of x for which P holds is returned as a theorem.

A |- ?x. P
------------------ SELECT_RULE
A |- P[(@x.P)/x]

Failure
Fails if applied to a theorem the conclusion of which is not existentially quantified.

Example
The axiom INFINITY_AX in the theory ind is of the form:

|- ?f. ONE_ONE f /\ ~ONTO f

Applying SELECT_RULE to this theorem returns the following.

- SELECT_RULE INFINITY_AX;
> val it =

|- ONE_ONE (@f. ONE_ONE f /\ ~ONTO f) /\ ~ONTO @f. ONE_ONE f /\ ~ONTO f
: thm

Uses
May be used to introduce an epsilon term to permit rewriting with a constant defined
using the epsilon operator.

See also
Thm.CHOOSE, SELECT AX, Conv.SELECT CONV, Drule.SELECT ELIM, Drule.SELECT INTRO.

set_backup (goalstackLib)

goalstackLib.set_backup : int -> unit

Synopsis
Limits the number of proof states saved on the subgoal package backup list.

set backup 679

Description

The assignable variable set_backup is initially set to 12. Its value is one less than the
maximum number of proof states that may be saved on the backup list. Adding a new
proof state (by, for example, a call to expand) after the maximum is reached causes the
earliest proof state on the list to be discarded. For a description of the subgoal package,
see set_goal.

680 Chapter 1. Pre-defined ML Identifiers

Example

- set_backup 0;
() unit

- g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

- e CONJ_TAC;
OK..
2 subgoals:
> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

: goalstack

- e (REWRITE_TAC[listTheory.HD]);
OK..

Goal proved.
|- HD [1; 2; 3] = 1

Remaining subgoals:
> val it =

TL [1; 2; 3] = [2; 3]

: goalstack

- b();
> val it =

TL [1; 2; 3] = [2; 3]

HD [1; 2; 3] = 1

: goalstack

- b();
! Uncaught exception:
! CANT_BACKUP_ANYMORE

See also
goalstackLib.b, goalstackLib.backup, goalstackLib.e, goalstackLib.expand,

set diff 681

goalstackLib.expandf, goalstackLib.g, goalstackLib.p, goalstackLib.r,
goalstackLib.rotate, goalstackLib.set goal, goalstackLib.top goal,
goalstackLib.top thm.

set_diff (Lib)

set_diff : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the set-theoretic difference of two ‘sets’.

Description
set_diff l1 l2 returns a list consisting of those elements of l1 that do not appear in
l2. It is identical to Lib.subtract.

Failure
Never fails.

Example

- set_diff [] [1,2];
> val it = [] : int list

- set_diff [1,2,3] [2,1];
> val it = [3] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

High performance set operations may be found in the ML Standard Basis Library.
ML equality types are used in the implementation of union and its kin. This limits its

applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op set diff, Lib.subtract, Lib.mk set, Lib.set eq, Lib.union, Lib.intersect.

set_eq (Lib)

set_eq : ’’a list -> ’’a list -> bool

682 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tells whether two lists have the same elements.

Description
An application set_eq l1 l2 returns true just in case l1 and l2 are permutations of each
other when duplicate elements within each list are ignored.

Failure
Never fails.

Example

- set_eq [1,2,1] [1,2,2,1];
> val it = true : bool

- set_eq [1,2,1] [2,1];
> val it = true : bool

Comments
High performance finite set operations may be found in the ML Standard Basis Library.

ML equality types are used in the implementation of set_eq and its kin. This limits
its applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op set eq, Lib.intersect, Lib.union, Lib.U, Lib.mk set, Lib.mem, Lib.insert,
Lib.set diff.

set_fixity (Parse)

Parse.set_fixity : string -> fixity -> unit

Synopsis
Allows the fixity of tokens to be updated.

Description
The set_fixity function is used to change the fixity of single tokens. It implements this
functionality rather crudely. When called on to set the fixity of t to f, it removes all
rules mentioning t from the global (term) grammar, and then adds a new rule to the

set fixity 683

grammar. The new rule maps occurrences of t with the given fixity to terms of the same
name.

Failure
This function fails if the new fixity causes a clash with existing rules, as happens if
the precedence level of the specified fixity is already taken by rules using a fixity of a
different type. Even if the application of set_fixity succeeds, it may cause the next sub-
sequent application of the Term parsing function to complain about precedence conflicts
in the operator precedence matrix. These problems may cause the parser to behave
oddly on terms involving the token whose fixity was set. Excessive parentheses will
usually cure even these problems.

Example
After a new constant is defined, set_fixity can be used to give them appropriate fixities:

- val thm = Psyntax.new_recursive_definition
prim_recTheory.num_Axiom "f"
(Term‘(f 0 n = n) /\ (f (SUC n) m = SUC (SUC (f n m)))‘);

> val thm =
|- (!n. f 0 n = n) /\ !n m. f (SUC n) m = SUC (SUC (f n m))
: thm

- set_fixity "f" (Infixl 500);
> val it = () : unit
- thm;
> val it =

|- (!n. 0 f n = n) /\ !n m. SUC n f m = SUC (SUC (n f m)) : thm

The same function can be used to alter the fixities of existing constants:

- val t = Term‘2 + 3 + 4 - 6‘;
> val t = ‘2 + 3 + 4 - 6‘ : term
- set_fixity "+" (Infixr 501);
> val it = () : unit
- t;
> val it = ‘(2 + 3) + 4 - 6‘ : term
- dest_comb (Term‘3 - 1 + 2‘);
> val it = (‘$- 3‘, ‘1 + 2‘) : term * term

Comments
This function is of no use if multiple-token rules (such as those for conditional expres-
sions) are desired, or if the token does not correspond to the name of the constant or
variable that is to be produced.

As with other functions in the Parse structure, there is a companion temp_set_fixity

function, which has the same effect on the global grammar, but which does not cause
this effect to persist when the current theory is exported.

684 Chapter 1. Pre-defined ML Identifiers

See also
Parse.add rule, Parse.add infix, Parse.remove rules for term,
Parse.remove termtok.

set_goal (goalstackLib)

set_goal : term list * term -> unit

Synopsis
Initializes the subgoal package with a new goal.

Description
The function set_goal initializes the subgoal management package. A proof state of the
package consists of either a goal stack and a justification stack if a proof is in progress, or
a theorem if a proof has just been completed. set_goal sets a new proof state consisting
of an empty justification stack and a goal stack with the given goal as its sole goal. The
goal is printed.

Failure
Fails unless all terms in the goal are of type bool.

Example

- set_goal([], Term ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘);
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
(HD [1; 2; 3] = 1) /\ (TL [1; 2; 3] = [2; 3])

: proofs

Uses
Starting an interactive proof session with the subgoal package.

The subgoal package implements a simple framework for interactive goal-directed
proof. When conducting a proof that involves many subgoals and tactics, the user must
keep track of all the justifications and compose them in the correct order. While this
is feasible even in large proofs, it is tedious. The subgoal package provides a way of
building and traversing the tree of subgoals top-down, stacking the justifications and
applying them properly.

set base rewrites 685

The package maintains a proof state consisting of either a goal stack of outstanding
goals and a justification stack, or a theorem. Tactics are used to expand the current
goal (the one on the top of the goal stack) into subgoals and justifications. These are
pushed onto the goal stack and justification stack, respectively, to form a new proof
state. Several preceding proof states are saved and can be returned to if a mistake is
made in the proof. The goal stack is divided into levels, a new level being created each
time a tactic is successfully applied to give new subgoals. The subgoals of the current
level may be considered in any order.

If a tactic solves the current goal (returns an empty subgoal list), then its justification
is used to prove a corresponding theorem. This theorem is then incorporated into the
justification of the parent goal. If the subgoal was the last subgoal of the level, the level
is removed and the parent goal is proved using its (new) justification. This process is
repeated until a level with unproven subgoals is reached. The next goal on the goal
stack then becomes the current goal. If all the subgoals are proved, the resulting proof
state consists of the theorem proved by the justifications. This theorem may be accessed
and saved.

See also
goalstackLib.b, goalstackLib.backup, goalstackLib.set backup, goalstackLib.e,
goalstackLib.expand, goalstackLib.expandf, goalstackLib.g, goalstackLib.p,
goalstackLib.r, goalstackLib.rotate, goalstackLib.top goal,
goalstackLib.top thm.

set_base_rewrites (Rewrite)

set_base_rewrites: rewrites -> unit

Synopsis
Allows the user to control the built-in database of simplifications used in rewriting.

Description

Uses

See also
base rewrites, add base rewrites, Rewrite.empty rewrites, Rewrite.add rewrites.

686 Chapter 1. Pre-defined ML Identifiers

set_known_constants (Parse)

Parse.set_known_constants : string list -> unit

Synopsis
Specifies the list of names that should be parsed as constants.

Description
One of the final phases of parsing is the resolution of free names in putative terms as ei-
ther variables, constants or overloaded constants. If such a free name is not overloaded,
then the list of known constants is consulted to determine whether or not to treat it as a
constant. If the name is not present in the list, then it will be treated as a free variable.

Failure
Never fails. If a name is specified in the list of constants that is not in fact a constant, a
warning message is printed, and that name is ignored.

Example

- known_constants();
> val it =

["bool_case", "ARB", "TYPE_DEFINITION", "ONTO", "ONE_ONE", "COND",
"LET", "?!", "~", "F", "\\/", "/\\", "!", "T", "?", "@",
"==>", "="]
: string list

- Term‘p /\ q‘;
> val it = ‘p /\ q‘ : term
- set_known_constants (Lib.subtract (known_constants()) ["/\\"]);
> val it = () : unit
- Term‘p /\ q‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c.>>
> val it = ‘p /\ q‘ : term
- strip_comb it;
> val it = (‘$/\‘, [‘p‘, ‘q‘]) : term * term list
- dest_var (#1 it);
> val it = ("/\\", ‘:’a -> ’b -> ’c‘) : string * hol_type

Uses
When writing library code that calls the parser, it can be useful to know exactly what
constants the parser will ”recognise”.

set MLname 687

Comments
This function does not affect the contents of a theory. A constant made invisible using
this call is still really present in the theory; it is just harder to find.

See also
Parse.hidden, Parse.hide, Parse.known constants, Parse.reveal.

set_MLname (Theory)

set_MLname : string -> string -> unit

Synopsis
Change the name attached to an element of the current theory.

Description
It can happen that an axiom, definition, or theorem gets stored in the current theory
segment under a name that wouldn’t be a suitable ML identifier. For example, some
advanced definition mechanisms in HOL automatically construct names to bind the re-
sults of making a definition. In some cases, particularly when symbolic identifiers are
involved, a binding name can be generated that is not a valid ML identifier.

In such cases, we don’t want to fail and lose the work done by the definition mech-
anism. Instead, when export_theory is invoked, all names binding axioms, definitions,
and theorems are examined to see if they are valid ML identifiers. If not, an informative
error message is generated, and it is up to the user to change the names in the offending
bindings. The function set_MLname s1 s2 will replace a binding with name s1 by one
with name s2.

Failure
Never fails, although will give a warning if s1 is not the name of a binding in the current
theory segment.

Example
We inductively define a predicate telling if a number is odd in the following. The name

688 Chapter 1. Pre-defined ML Identifiers

is admittedly obscure, however it illustrates our point.

- Hol_reln ‘(%% 1) /\ (!n. %% n ==> %% (n+2))‘;
> val it =

(|- %% 1 /\ !n. %% n ==> %% (n + 2),
|- !%%’. %%’ 1 /\ (!n. %%’ n ==> %%’ (n + 2)) ==> !a0. %% a0 ==> %%’ a0,
|- !a0. %% a0 = (a0 = 1) \/ ?n. (a0 = n + 2) /\ %% n) : thm * thm * thm

- export_theory();
<<HOL message: The following ML binding names in the theory to be exported:
"%%_rules", "%%_ind", "%%_cases"
are not acceptable ML identifiers.
Use ‘set_MLname <bad> <good>’ to change each name.>>

! Uncaught exception:
! HOL_ERR

- (set_MLname "%%_rules" "odd_rules"; (* OK, do what it says *)
set_MLname "%%_ind" "odd_ind";
set_MLname "%%_cases" "odd_cases");

> val it = () : unit

- export_theory();
Exporting theory "scratch" ... done.
> val it = () : unit

Comments
The definition principles that currently have the potential to make problematic bindings
are Hol_datatype and Hol_reln.

It is slightly awkward to have to repair the names in a post-hoc fashion. It is probably
simpler to proceed by using alphanumeric names when defining constants, and to use
overloading to get the desired name.

See also
bossLib.Hol reln, bossLib.Hol datatype, Theory.export theory,
Theory.current definitions, Theory.current theorems, Theory.current axioms,
DB.thy, DB.dest theory.

set_trace (Feedback)

set_trace : string -> int -> unit

setify 689

Synopsis
Set a tracing level for a registered trace.

Description
Invoking set_trace n i sets the level of the tracing mechanism registered under n to be
i. These settings control the verboseness of various tools within the system. This can
be useful both when debugging proofs (with the simplifier for example), and also as a
guide to how an automatic proof is proceeding (with mesonLib for example).

There is no single interpretation of what activity a tracing level should evoke: each
tool registered for tracing can treat its trace level in its own way.

Failure
A call to set_trace n i fails if n has not previously been registered via register_trace.
It also fails if i is less than zero, or if it is greater than the trace’s specified maximum
value.

Example

- set_trace "Rewrite" 1;

- PURE_REWRITE_CONV [AND_CLAUSES] (Term ‘x /\ T /\ y‘);

<<HOL message: Rewrite:
|- T /\ y = y.>>

> val it = |- x /\ T /\ y = x /\ y : thm

See also
Feedback, Feedback.register trace, Feedback.reset trace, Feedback.reset traces,
Feedback.trace, Feedback.traces.

setify (hol88Lib)

Compat.setify : ’’a list -> ’’a list

Synopsis
setify makes a set out of an ”eqtype” list.

Description
Found in the hol88 library. setify l removes repeated elements from l, leaving the last
occurrence of each duplicate in the list.

690 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails. The function is not available unless the hol88 library has been loaded.

Example

- setify [1,2,3,1,4,3];
[2,1,4,3] : int list

Comments
Perhaps the first occurrence of each duplicate should be left in the list, not the last?
However, other functions may rely on the ordering currently used. Included in Compat

because setify is not found in hol90 (mk_set is used instead.)

See also
distinct.

show_numeral_types (Parse)

Globals.show_numeral_types : bool ref

Synopsis
A flag which causes numerals to be printed with suffix annotation when true.

Description
This flag controls the pretty-printing of numeral forms that have been added to the
global grammar with the function add_numeral_form. If the flag is true, then all numeric
values are printed with the single-letter suffixes that identify which type the value is.

Failure
Never fails, as it is just an SML value.

show tags 691

Example

- load "integerTheory";
> val it = () : unit

- Term‘~3‘;
> val it = ‘~3‘ : term

- show_numeral_types := true;
> val it = () : unit

- Term‘~3‘;
> val it = ‘~3i‘ : term

Uses
Can help to disambiguate terms involving numerals.

See also
Parse.add numeral form, Globals.show types.

show_tags (Globals)

show_tags : bool ref

Synopsis
Flag for controlling display of tags in theorem prettyprinter.

Description
The flag show_tags controls the display of values of type thm. When set to true, the tag
attached to a theorem will be printed when the theorem is printed. When set to false,
no indication of the presence or absence of a tag will be displayed.

692 Chapter 1. Pre-defined ML Identifiers

Example

- show_tags := false;
> val it = () : unit

- pairTheory.PAIR_MAP_THM;
> val it = |- !f g x y. (f ## g) (x,y) = (f x,g y) : thm

- mk_thm ([],F);
> val it = |- F : thm

- show_tags := true;
> val it = () : unit

- pairTheory.PAIR_MAP_THM;
> val it = [oracles:] [axioms:] [] |- !f g x y. (f ## g) (x,y) = (f x,g y)

: thm

- mk_thm ([],F);
> val it = [oracles: MK_THM] [axioms:] [] |- F : thm

Comments
The initial value of show_tags is false.

See also
Thm.tag, Thm.mk oracle thm, Thm.mk thm, Globals.show axioms.

show_types (Globals)

Globals.show_types : bool ref

Synopsis
Flag controlling printing of HOL types (in terms).

Description
Normally HOL types in terms are not printed, since this makes terms hard to read.
Type printing is enabled by show_types := true, and disabled by show_types := false.
When printing of types is enabled, not all variables and constants are annotated with a
type. The intention is to provide sufficient type information to remove any ambiguities
without swamping the term with type information.

SIMP CONV 693

Failure
Never fails.

Example

- BOOL_CASES_AX;;
> val it = |- !t. (t = T) \/ (t = F) : thm

- show_types := true;
> val it = () : unit

- BOOL_CASES_AX;;
> val it = |- !(t :bool). (t = T) \/ (t = F) : thm

Comments
It is possible to construct an abstraction in which the bound variable has the same name
but a different type to a variable in the body. In such a case the two variables are
considered to be distinct. Without type information such a term can be very misleading,
so it might be a good idea to provide type information for the free variable whether or
not printing of types is enabled.

See also
Parse.print term.

SIMP_CONV (bossLib)

SIMP_CONV : simpset -> thm list -> conv

Synopsis
Applies a simpset and a list of rewrite rules to simplify a term.

Description
SIMP_CONV is the fundamental engine of the HOL simplification library. It repeatedly
applies the transformations included in the provided simpset (which is augmented with
the given rewrite rules) to a term, ultimately yielding a theorem equating the original
term to another.

Values of the simpset type embody a suite of different transformations that might be
applicable to given terms. These “transformational components” are rewrites, conver-
sions, AC-rules, congruences, decision procedures and a filter, which is used to modify

694 Chapter 1. Pre-defined ML Identifiers

the way in which rewrite rules are added to the simpset. The exact types for these com-
ponents, and the way they can be combined to create simpsets is given in the reference
entry for SIMPSET.

Rewrite rules are used similarly to the way in they are used in the rewriting system
(REWRITE_TAC et al.). These are equational theorems oriented to rewrite from left-hand-
side to right-hand-side. Further, SIMP_CONV handles obvious problems. If a rewrite rule is
of the general form [...] |- x = f x, then it will be discarded, and a message is printed
to this effect. On the other hand, if the right-hand-side is a permutation of the pattern on
the left, as in |- x + y = y + x and |- x INSERT (y INSERT s) = y INSERT (x INSERT s),
then such rules will only be applied if the term to which they are being applied is strictly
reduced according to some term ordering.

Rewriting is done using a form of higher-order matching, and also uses conditional
rewriting. This latter means that theorems of the form |- P ==> (x = y) can be used
as rewrites. If a term matching x is found, the simplifier will attempt to satisfy the
side-condition P. If it is able to do so, then the rewriting will be performed. In the
process of attempting to rewrite P to true, further side conditions may be generated.
The simplifier limits the size of the stack of side conditions to be solved (the reference
variable Cond_rewr.stack_limit holds this limit), so this will not introduce an infinite
loop.

Rewrite rules can always be added “on the fly” as all of the simplification functions
take a thm list argument where these rules can be specified. If a set of rewrite rules
is frequently used, then these should probably be made into a ssdata value with the
rewrites function and then added to an existing simpset with ++.

The conversions which are part of simpsets are useful for situations where simple
rewriting is not enough to transform certain terms. For example, the BETA_CONV conver-
sion is not expressible as a standard first order rewrite, but is part of the bool_ss simpset
and the application of this simpset will thus simplify all occurrences of (\x. e1) e2.

In fact, conversions in simpsets are not typically applied indiscriminately to all sub-
terms. (If a conversion is applied to an inappropriate sub-term and fails, this failure
is caught by the simplifier and ignored.) Instead, conversions in simpsets are accom-
panied by a term-pattern which specifies the sort of situations in which they should be
applied. This facility is used in the definition of bool_ss to include ETA_CONV, but stop
it from transforming !x. P x into $! P. Similarly, if one had a conversion for deciding
equalities over a certain type foo, one would add the relevant conversion keyed on
terms ‘‘x:foo = y‘‘.

AC-rules allow simpsets to be constructed that automatically normalise terms involv-
ing associative and commutative operators, again according to some arbitrary term or-
dering metric.

Congruence rules allow SIMP_CONV to assume additional context as a term is rewritten.
In a term such as P ==> Q /\ f x the truth of term P may be assumed as an additional

SIMP CONV 695

piece of context in the rewriting of Q /\ f x. The congruence theorem that states this
is valid is (IMP_CONG):

|- (P = P’) ==> (P’ ==> (Q = Q’)) ==> ((P ==> Q) = (P’ ==> Q’))

Other congruence theorems can be part of simpsets. The system provides IMP_CONG

above and COND_CONG as part of the CONG_ss ssdata value. (These ssdata values can
be incorporated into simpsets with the ++ function.) Other congruence theorems are
already proved for operators such as conjunction and disjunction, but use of these in
standard simpsets is not recommended as the computation of all the additional contexts
for a simple chain of conjuncts or disjuncts can be very computationally intensive.

Decision procedures in simpsets are similar to conversions. They are arbitrary pieces
of code that are applied to sub-terms at low priority. They are given access to the wider
context through a list of relevant theorems. The arith_ss simpset includes an arithmetic
decision procedure implemented in this way.

Failure
SIMP_CONV never fails, but may diverge.

Example

- SIMP_CONV arith_ss [] ‘‘(\x. x + 3) 4‘‘;
> val it = |- (\x. x + 3) 4 = 7 : thm

Uses
SIMP_CONV is a powerful way of manipulating terms. Other functions in the simplification
library provide the same facilities when in the contexts of goals and tactics (SIMP_TAC,
ASM_SIMP_TAC etc.), and theorems (SIMP_RULE), but SIMP_CONV provides the underlying
functionality, and is useful in its own right, just as conversions are generally.

See also
bossLib.++, bossLib.ASM SIMP TAC, bossLib.FULL SIMP TAC, simpLib.mk simpset,
bossLib.rewrites, bossLib.SIMP RULE, bossLib.SIMP TAC, simpLib.SIMPSET,
bossLib.EVAL.

SIMP_CONV (simpLib)

SIMP_CONV : simpset -> thm list -> conv

696 Chapter 1. Pre-defined ML Identifiers

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.SIMP_CONV is identical to simpLib.SIMP_CONV.

See also
bossLib.SIMP CONV.

SIMP_PROVE (simpLib)

simpLib.SIMP_PROVE : simpset -> thm list -> term -> thm

Synopsis
Like SIMP_CONV, but converts boolean terms to theorem with same conclusion.

Description
SIMP_PROVE ss thml is equivalent to EQT_ELIM o SIMP_CONV ss thml.

Failure
Fails if the term can not be shown to be equivalent to true. May diverge.

Example
Applying the tactic

ASSUME_TAC (SIMP_PROVE arith_ss [] ‘‘x < y ==> x < y + 6‘‘)

to the goal ?- x + y = 10 yields the new goal

x < y ==> x < y + 6 ?- x + y = 10

Using SIMP_PROVE here allows ASSUME_TAC to add a new fact, where the equality with
truth that SIMP_CONV would produce would be less useful.

Uses
SIMP_PROVE is useful when constructing theorems to be passed to other tools, where
those other tools would prefer not to have theorems of the form |- P = T.

See also
simpLib.SIMP CONV, simpLib.SIMP RULE, simpLib.SIMP TAC.

SIMP RULE 697

SIMP_RULE (bossLib)

SIMP_RULE : simpset -> thm list -> thm -> thm

Synopsis
Simplifies the conclusion of a theorem according to the given simpset and theorem
rewrites.

Description
SIMP_RULE simplifies the conclusion of a theorem, adding the given theorems to the
simpset parameter as rewrites. The way in which terms are transformed as a part of
simplification is described in the entry for SIMP_CONV.

Failure
Never fails, but may diverge.

Example
The following also demonstrates the higher order rewriting possible with simplification
(FORALL_AND_THM states |- (!x. P x /\ Q x) = (!x. P x) /\ (!x. Q x)):

- SIMP_RULE bool_ss [boolTheory.FORALL_AND_THM]
(ASSUME (Term‘!x. P (x + 1) /\ R x /\ x < y‘));

> val it = [.] |- (!x. P (x + 1)) /\ (!x. R x) /\ (!x. x < y) : thm

Comments
SIMP_RULE ss thmlist is equivalent to CONV_RULE (SIMP_CONV ss thmlist).

See also
simpLib.ASM SIMP RULE, bossLib.SIMP CONV, bossLib.SIMP TAC, bossLib.bool ss.

SIMP_RULE (simpLib)

SIMP_RULE : simpset -> thm list -> thm -> thm

Synopsis
Simplify a term with the given simpset and theorems.

698 Chapter 1. Pre-defined ML Identifiers

Description
bossLib.SIMP_RULE is identical to simpLib.SIMP_RULE.

See also
bossLib.SIMP RULE.

SIMP_TAC (bossLib)

SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplifies the goal, using the given simpset and the additional theorems listed.

Description
SIMP_TAC adds the theorems of the second argument to the simpset argument as rewrites
and then applies the resulting simpset to the conclusion of the goal. The exact behaviour
of a simpset when applied to a term is described further in the entry for SIMP_CONV.

With simple simpsets, SIMP_TAC is similar in effect to REWRITE_TAC; it transforms the
conclusion of a goal by using the (equational) theorems given and those already in the
simpset as rewrite rules over the structure of the conclusion of the goal.

Just as ASM_REWRITE_TAC includes the assumptions of a goal in the rewrite rules that
REWRITE_TAC uses, ASM_SIMP_TAC adds the assumptions of a goal to the rewrites and then
performs simplification.

Failure
SIMP_TAC never fails, though it may diverge.

Example
SIMP_TAC and the arith_ss simpset combine to prove quite difficult seeming goals:

- val (_, p) = SIMP_TAC arith_ss []
([], Term‘P x /\ (x = y + 3) ==> P x /\ y < x‘);

> val p = fn : thm list -> thm

- p [];
> val it = |- P x /\ (x = y + 3) ==> P x /\ y < x : thm

SIMP_TAC is similar to REWRITE_TAC if used with just the bool_ss simpset. Here it is
used in conjunction with the arithmetic theorem GREATER_DEF, |- !m n. m > n = n < m,

SIMP TAC 699

to advance a goal:

- SIMP_TAC bool_ss [GREATER_DEF] ([], Term‘T /\ 5 > 4 \/ F‘);
> val it = ([([], ‘4 < 5‘)], fn) : subgoals

Comments
The simplification library is described further in other documentation, but its full capa-
bilities are still rather opaque.

Uses
Simplification is one of the most powerful tactics available to the HOL user. It can be
used both to solve goals entirely or to make progress with them. However, poor simpsets
or a poor choice of rewrites can still result in divergence, or poor performance.

See also
bossLib.++, bossLib.ASM SIMP TAC, bossLib.std ss, bossLib.bool ss,
bossLib.arith ss, bossLib.list ss, bossLib.FULL SIMP TAC, simpLib.mk simpset,
Rewrite.REWRITE TAC, bossLib.SIMP CONV, simpLib.SIMP PROVE, bossLib.SIMP RULE.

SIMP_TAC (simpLib)

SIMP_TAC : simpset -> thm list -> tactic

Synopsis
Simplify a term with the given simpset and theorems.

Description
bossLib.SIMP_TAC is identical to simpLib.SIMP_TAC.

See also
bossLib.SIMP TAC.

700 Chapter 1. Pre-defined ML Identifiers

SIMPSET (simpLib)

SIMPSET : { ac : (thm * thm) list,
congs : thm list,
convs : {conv : (term list -> conv) -> term list -> conv,

key : (term list * term) option,
name : string,
trace : int} list,

dprocs : Traverse.reducer list,
filter : (thm -> thm list) option,
rewrs : thm list } -> ssdata

Synopsis
Constructs ssdata values.

Description
The ssdata type is the way in which simplification components are packaged up and
made available to the simplifier (though ssdata values must first be turned into simpsets,
either by addition to an existing simpset, or with the mk_simpset function).

The big record type passed to SIMPSET as an argument has six fields. Here we describe
each in turn.

The ac field is a list of “AC theorem” pairs. Each such pair is the pair of theorems
stating that a given binary function is associative and commutative. The form of the
associative theorem must be

|- x op (y op z) = (x op y) op z

and the commutative theorem (the second element of the pair) must be of the form

|- x op y = y op x

Note that neither theorem can have any universal quantification.
The congs field is a list of congruence theorems justifying the addition of theorems to

simplification contexts. For example, the congruence theorem for implication is

|- (P = P’) ==> (P’ ==> (Q = Q’)) ==> (P ==> Q = P’ ==> Q’)

This theorem encodes a rewriting strategy. The consequent of the chain of implications
is the form of term in question, where the appropriate components have been rewritten.
Then, in left-to-right order, the various antecedents of the implication specify the rewrit-
ing strategy which gives rise to the consequent. In this example, P is first simplified to

SIMPSET 701

P’ without any additional context, then, using P’ as additional context, simplification
of Q proceeds, producing Q’. Another example is a rule for conjunction:

|- (P ==> (Q = Q’)) ==> (Q’ ==> (P = P’)) ==> ((P /\ Q) = (P’ /\ Q’))

Here P is assumed while Q is simplified to Q’. Then, Q’ is assumed while P is simplified
to P’. If a antecedent doesn’t involve the relation in question (here, equality) then it
is treated as a side-condition, and the simplifier will be recursively invoked to try and
solve it.

The convs field is a list of conversions that the simplifier will apply. Each conversion
added to an ssdata value is done so in a record consisting of four fields.

The conv field of this subsidiary record type includes the value of the conversion itself.
When the simplifier applies the conversion it is actually passed two extra arguments
(as the type indicates). The first is a solver function that can be used to recursively
do side-condition solving, and the second is a stack of side-conditions that have been
accumulated to date. Many conversions will typically ignore these arguments (as in the
example below).

The key field of the subsidiary record type is an optional pattern, specifying the places
where the conversion should be applied. If the value is NONE, then the conversion will
be applied to all sub-terms. If the value is SOME(lcs, t), then the term t is used as a
pattern specifying those terms to which the conversion should be applied. Further, the
list lcs (which must be a list of variables), specifies those variables in t which shouldn’t
be generalised against; they are effectively local constants. The name and trace fields
are only relevant to the debugging facilities of the simplifier.

The dprocs field of the record passed to SIMPSET is where decision procedures can be
specified. The construction of values of type reducer will be described in other reference
entries (some of which may not have been written yet).

The filter field of the record is an optional function, which, if present, is composed
with the standard simplifier’s function for generating rewrites from theorems, and re-
places that function. The version of this present in bool_ss and its descendents will, for
example, turn |- P /\ Q into |- P and |- Q, and |- ~(t1 = t2) into |- (t1 = t2) = F

and |- (t2 = t1) = F.
The rewrs field of the record is a list of rewrite theorems that are to be applied.

Failure
Never fails. Failure to provide theorems of just the right form may cause later applica-
tion of simplification functions to fail, documentation to the contrary notwithstanding.

Example
Given a conversion MUL_CONV to calculate multiplications, the following illustrates how

702 Chapter 1. Pre-defined ML Identifiers

this can be added to a simpset:

- val ssd = SIMPSET {ac = [], congs = [],
convs = [{conv = K (K MUL_CONV),

key= SOME ([], Term‘x * y‘),
name = "MUL_CONV",
trace = 2}],

dprocs = [], filter = NONE, rewrs = []};
> val ssd =

SIMPSET{ac = [], congs = [],
convs =
[{conv = fn, key = SOME([], ‘x * y‘), name = "MUL_CONV",

trace = 2}], dprocs = [], filter = NONE, rewrs = []}
: ssdata

- SIMP_CONV bool_ss [] (Term‘3 * 4‘);
> val it = |- 3 * 4 = 3 * 4 : thm
- SIMP_CONV (bool_ss ++ ssd) [] (Term‘3 * 4‘);
> val it = |- 3 * 4 = 12 : thm

Given the theorems ADD_SYM and ADD_ASSOC from arithmeticTheory, we can construct a
normaliser for additive terms.

- val ssd2 = SIMPSET {ac = [(SPEC_ALL ADD_ASSOC, SPEC_ALL ADD_SYM)],
congs = [], convs = [], dprocs = [],
filter = NONE, rewrs = []};

> val ssd2 =
SIMPSET{ac = [(|- m + n + p = (m + n) + p, |- m + n = n + m)],

congs = [], convs = [], dprocs = [], filter = NONE,
rewrs = []}

: ssdata
- SIMP_CONV (bool_ss ++ ssd2) [] (Term‘(y + 3) + x + 4‘);

(* note that the printing of + in this example is that of a
right associative operator.*)

> val it = |- (y + 3) + x + 4 = 3 + 4 + x + y : thm

Comments
SIMPSET is not the right name for something that creates an ssdata value.

See also
simpLib.++, boolSimps.bool ss, simpLib.mk simpset, simpLib.rewrites,
simpLib.SIMP CONV.

SKOLEM CONV 703

SKOLEM_CONV (Conv)

SKOLEM_CONV : conv

Synopsis
Proves the existence of a Skolem function.

Description
When applied to an argument of the form !x1...xn. ?y. P, the conversion SKOLEM_CONV

returns the theorem:

|- (!x1...xn. ?y. P) = (?y’. !x1...xn. P[y’ x1 ... xn/y])

where y’ is a primed variant of y not free in the input term.

Failure
SKOLEM_CONV tm fails if tm is not a term of the form !x1...xn. ?y. P.

See also
Conv.X SKOLEM CONV.

snd (Lib)

snd : (’a * ’b) -> ’b

Synopsis
Extracts the second component of a pair.

Description
snd (x,y) returns y.

Failure
Never fails. However, notice that snd (x,y,z) fails to typecheck, since (x,y,z) is not a
pair.

704 Chapter 1. Pre-defined ML Identifiers

Example

- snd (1, "foo");
> val it = "foo" : string

- snd (1, "foo", []);
! Toplevel input:
! snd (1, "foo", []);
! ^^^^^^^^^^^^^^
! Type clash: expression of type
! ’g * ’h * ’i
! cannot have type
! ’j * ’k
! because the tuple has the wrong number of components

- snd (1, ("foo", ()));
> val it = ("foo", ()) : string * unit

See also
Lib, Lib.fst.

sort (Lib)

sort : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Sorts a list using a given transitive ‘ordering’ relation.

Description
The call sort opr list where opr is a curried transitive relation on the elements of list,
will topologically sort the list, i.e., will permute it such that if x opr y but not y opr x

then x will occur to the left of y in the sorted list. In particular if opr is a total order, the
list will be sorted in the usual sense of the word.

Failure
Never fails.

SPEC 705

Example
A simple example is:

- sort (curry (op<)) [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9];
> val it = [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 9] : int list

The following example is a little more complicated. Note that the ‘ordering’ is not
antisymmetric.

- sort (curry (op< o (fst ## fst)))
[(1,3), (7,11), (3,2), (3,4), (7,2), (5,1)];

> val it = [(1,3), (3,4), (3,2), (5,1), (7,2), (7,11)] : (int * int) list

Comments
The Standard ML Basis Library also provides implementations of sorting.

See also
Lib.int sort.

SPEC (Thm)

SPEC : term -> thm -> thm

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term u and a theorem A |- !x. t, then SPEC returns the theorem
A |- t[u/x]. If necessary, variables will be renamed prior to the specialization to ensure
that u is free for x in t, that is, no variables free in u become bound after substitution.

A |- !x. t
-------------- SPEC u
A |- t[u/x]

Failure
Fails if the theorem’s conclusion is not universally quantified, or if x and u have different
types.

706 Chapter 1. Pre-defined ML Identifiers

Example
The following example shows how SPEC renames bound variables if necessary, prior to
substitution: a straightforward substitution would result in the clearly invalid theorem
|- ~y ==> (!y. y ==> ~y).

- let val xv = Term ‘x:bool‘
and yv = Term ‘y:bool‘

in
(GEN xv o DISCH xv o GEN yv o DISCH yv) (ASSUME xv)

end;
> val it = |- !x. x ==> !y. y ==> x : thm

- SPEC (Term ‘~y‘) it;
> val it = |- ~y ==> !y’. y’ ==> ~y : thm

See also
Drule.ISPEC, Drule.SPECL, Drule.SPEC ALL, Drule.SPEC VAR, Thm.GEN, Drule.GENL,
Drule.GEN ALL.

SPEC_ALL (Drule)

SPEC_ALL : thm -> thm

Synopsis
Specializes the conclusion of a theorem with its own quantified variables.

Description
When applied to a theorem A |- !x1...xn. t, the inference rule SPEC_ALL returns the
theorem A |- t[x1’/x1]...[xn’/xn] where the xi’ are distinct variants of the corre-
sponding xi, chosen to avoid clashes with any variables free in the assumption list and
with the names of constants. Normally xi’ is just xi, in which case SPEC_ALL simply
removes all universal quantifiers.

A |- !x1...xn. t
--------------------------- SPEC_ALL
A |- t[x1’/x1]...[xn’/xn]

Failure
Never fails.

SPEC TAC 707

Example

- SPEC_ALL CONJ_ASSOC;
> val it = |- t1 /\ t2 /\ t3 = (t1 /\ t2) /\ t3 : thm

See also
Thm.GEN, Drule.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,
Tactic.SPEC TAC.

SPEC_TAC (Tactic)

SPEC_TAC : term * term -> tactic

Synopsis
Generalizes a goal.

Description
When applied to a pair of terms (u,x), where x is just a variable, and a goal A ?- t, the
tactic SPEC_TAC generalizes the goal to A ?- !x. t[x/u], that is, all instances of u are
turned into x.

A ?- t
================= SPEC_TAC (u,x)
A ?- !x. t[x/u]

Failure
Fails unless x is a variable with the same type as u.

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive
proof.

See also
Thm.GEN, Drule.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,
Drule.SPEC ALL, Tactic.STRIP TAC.

SPEC_VAR (Drule)

SPEC_VAR : thm -> term * thm

708 Chapter 1. Pre-defined ML Identifiers

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !x. t, the inference rule SPEC_VAR returns the term x’

and the theorem A |- t[x’/x], where x’ is a variant of x chosen to avoid free variable
capture.

A |- !x. t
-------------- SPEC_VAR
A |- t[x’/x]

Failure
Fails unless the theorem’s conclusion is universally quantified.

Comments
This rule is very similar to plain SPEC, except that it returns the variant chosen, which
may be useful information under some circumstances.

See also
Thm.GEN, Drule.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPECL,
Drule.SPEC ALL.

Specialize (Thm)

Specialize : term -> thm -> thm

Synopsis
Specializes the conclusion of a universal theorem.

Description
When applied to a term u and a theorem A |- !x. t, Specialize returns the theorem
A |- t[u/x]. Care is taken to ensure that no variables free in u become bound after this
operation.

A |- !x. t
-------------- Specialize u
A |- t[u/x]

Failure
Fails if the theorem’s conclusion is not universally quantified, or if x and u have different
types.

SPECL 709

Comments
Specialize behaves identically to SPEC, but is faster.

See also
Thm.SPEC, Drule.ISPEC, Drule.SPECL, Drule.SPEC ALL, Drule.SPEC VAR, Thm.GEN,
Drule.GENL, Drule.GEN ALL.

SPECL (Drule)

SPECL : term list -> thm -> thm

Synopsis
Specializes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [u1;...;un] and a theorem A |- !x1...xn. t, the inference
rule SPECL returns the theorem A |- t[u1/x1]...[un/xn], where the substitutions are
made sequentially left-to-right in the same way as for SPEC, with the same sort of alpha-
conversions applied to t if necessary to ensure that no variables which are free in ui

become bound after substitution.

A |- !x1...xn. t
-------------------------- SPECL [u1,...,un]

A |- t[u1/x1]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of SPECL has
no effect.

Failure
Fails unless each of the terms is of the same type as that of the appropriate quantified
variable in the original theorem.

Example
The following is a specialization of a theorem from theory arithmetic.

- arithmeticTheory.LESS_EQ_LESS_EQ_MONO;
> val it = |- !m n p q. m <= p /\ n <= q ==> m + n <= p + q : thm

- SPECL (map Term [‘1‘, ‘2‘, ‘3‘, ‘4‘]) it;
> val it = |- 1 <= 3 /\ 2 <= 4 ==> 1 + 2 <= 3 + 4 : thm

See also
Thm.GEN, Drule.GENL, Drule.GEN ALL, Tactic.GEN TAC, Thm.SPEC, Drule.SPEC ALL,

710 Chapter 1. Pre-defined ML Identifiers

Tactic.SPEC TAC.

spine_pair (pairSyntax)

spine_pair : term -> term list

Synopsis
Breaks a paired structure into its constituent pieces.

Example

- spine_pair (Term ‘((1,2),(3,4))‘);
> val it = [‘(1,2)‘, ‘3‘, ‘4‘] : term list

Comments
Note that spine_pair is similar, but not identical, to strip_pair which works recursively.

Failure
Never fails.

See also
pairSyntax.strip pair.

split (Lib)

split : (’a * ’b) list -> (’a list * ’b list)

Synopsis
Converts a list of pairs into a pair of lists.

Description
split [(x1,y1),...,(xn,yn)] returns ([x1,...,xn],[y1,...,yn]).

Failure
Never fails.

split after 711

Comments
Identical to the Basis function ListPair.unzip and the function Lib.unzip.

See also
Lib.unzip, Lib.zip, Lib.combine.

split_after (Lib)

split_after : int -> ’a list -> ’a list * ’a list

Synopsis
Breaks a list in two at a specified index.

Description
An invocation split_after k [x1,...,xk,...xn] returns the pair ([x1,...,xk], [xk+1,...,xn]).
If k is 0, then split_after k l returns ([],l). Similarly, split_after (length l) l re-
turns (l,[]).

Failure
If k is negative, or longer than the length of the list.

Example

- split_after 2 [1,2,3,4,5]
> val it = ([1, 2], [3, 4, 5]) : int list * int list

- split_after 0 [1,2,3,4,5];
> val it = ([], [1, 2, 3, 4, 5]) : int list * int list

- split_after 5 [1,2,3,4,5];
> val it = ([1, 2, 3, 4, 5], []) : int list * int list

- split_after 6 [1,2,3,4,5];
! Uncaught exception:
! HOL_ERR

- split_after 0 ([]:int list);
> val it = ([], []) : int list * int list

See also
Lib.partition, Lib.pluck.

712 Chapter 1. Pre-defined ML Identifiers

SPOSE_NOT_THEN (bossLib)

SPOSE_NOT_THEN : (thm -> tactic) -> tactic

Synopsis
Initiate proof by contradiction.

Description
SPOSE_NOT_THEN provides a flexible way to start a proof by contradiction. Simple tactics
for contradiction proofs often simply negate the goal and place it on the assumption list.
However, if the goal is quantified, as is often the case, then more processing is required
in order to get it into a suitable form for subsequent work. SPOSE_NOT_THEN ttac negates
the current goal, pushes the negation inwards, and applies ttac to it.

Failure
Never fails, unless ttac fails.

Example
Suppose we want to prove Euclid’s theorem.

!m. ?n. prime n /\ m < n

The classic proof is by contradiction. However, if we start such a proof with CCONTR_TAC,
we get the goal

{ ~!m. ?n. prime n /\ m < n } ?- F

and one would immediately want to simplify the assumption, which is a bit awkward.
Instead, an invocation SPOSE_NOT_THEN ASSUME_TAC yields

{ ?m. !n. ~prime n \/ ~(m < n) } ?- F

and SPOSE_NOT_THEN STRIP_ASSUME_TAC results in

{ !n. ~prime n \/ ~(m < n) } ?- F

See also
Tactic.CCONTR TAC, Tactic.CONTR TAC, Tactic.ASSUME TAC, Tactic.STRIP ASSUME TAC.

srw ss 713

srw_ss (BasicProvers)

srw_ss : unit -> simpset

Synopsis
Implicit simpset.

Description
bossLib.srw_ss is identical to BasicProvers.srw_ss.

See also
bossLib.srw ss.

srw_ss (bossLib)

srw_ss : unit -> simpset

Synopsis
Returns the ”stateful rewriting” system’s underlying simpset.

Description
A call to srw_ss() returns a simpset value that is internally maintained and updated
by the system. Its value changes as new types enter the TypeBase, and as theories are
loaded. For this reason, it can’t be accessed as a simple value, but is instead hidden
behind a function.

The value behind srw_ss() can change in three ways. First, whenever a type enters
the TypeBase, the type’s associated simplification theorems (accessible directly using
the function TypeBase.simpls_of) are all added to the simpset. This ensures that the
”obvious” rewrite theorems for a type (such as the disjointness of constructors) need
never be explicitly specified.

Secondly, users can interactively add simpset fragments to the srw_ss() value by using
the function augment_srw_ss. This function might be used after a definition is made to
ensure that a particular constant always has its definition expanded. (Whether or not
a constant warrants this is something that needs to be determined on a case-by-case
basis.)

714 Chapter 1. Pre-defined ML Identifiers

Thirdly, theories can augment the srw_ss() value as they load. This is set up in a
theory’s script file with the function export_rewrites. This causes a list of appropriate
theorems to be added when the theory loads. It is up to the author of the theory to
ensure that the theorems added to the simpset are sensible.

Failure
Never fails.

See also
bossLib.augment srw ss, BasicProvers.export rewrites, bossLib.SRW TAC.

SRW_TAC (BasicProvers)

SRW_TAC : simpset -> thm list -> tactic

Synopsis
A version of RW_TAC with an implicit simpset.

Description
bossLib.SRW_TAC is identical to BasicProvers.SRW_TAC.

See also
bossLib.SRW TAC.

SRW_TAC (bossLib)

SRW_TAC : ssdata list -> thm list -> tactic

Synopsis
A version of RW_TAC with an implicit simpset.

Description
A call to SRW_TAC [d1,...,dn] thlist produces the same result as

RW_TAC (srw_ss() ++ d1 ++ ... ++ dn) thlist

Failure
When applied to a goal, the tactic resulting from an application of SRW_TAC may diverge.

start time 715

Comments
There are two reasons why one might prefer SRW_TAC to RW_TAC. Firstly, when a large
number of datatypes are present in the TypeBase, the implementation of RW_TAC has
to merge the attendant simplifications for each type onto its simpset argument each
time it is called. This can be rather time-consuming. Secondly, the simpset returned
by srw_ss() can be augmented with fragments from other sources than the TypeBase,
using the functions augment_srw_ss and export_rewrites. This can make for a tool that
is simple to use, and powerful because of all its accumulated simpset fragments.

Naturally, the latter advantage can also be a disadvantage: if SRW_TAC does too much
because there is too much in the simpset underneath srw_ss(), then there is no way to
get around this using SRW_TAC.

Typical invocations of SRW_TAC will be of the form

SRW_TAC [][th1, th2,..]

The first argument, for lists of simpset fragments is for the inclusion of fragments that
are not always appropriate. An example of such a fragment is numSimps.ARITH_ss, which
embodies an arithmetic decision procedure for the natural numbers.

See also
bossLib.srw ss, bossLib.augment srw ss, BasicProvers.export rewrites,
simpLib.SIMPSET, simpLib.ssdata.

start_time (Lib)

start_time : unit -> Timer.cpu_timer

Synopsis
Set a timer running.

Description
An application start_time () creates a timer and starts it. A later invocation end_time t,
where t is a timer, will need to be called to get the elapsed time between the two func-
tion calls.

Failure
Never fails.

716 Chapter 1. Pre-defined ML Identifiers

Example

- val clock = start_time ();
> val clock = <cpu_timer> : cpu_timer

Comments
Multiple timers may be started without any interfering with the others.

Further operations associated with the type cpu_timer may be found in the ML Stan-
dard Basis Library structures Timer and Time.

See also
Lib.end time, Lib.time.

state (Lib)

state : (’a,’b) istream -> ’b

Synopsis
Project the state of an istream.

Description
An application state istrm yields the value of the current state of istrm.

Failure
If the projection function supplied when building the stream fails on the current element
of the state.

Example

- val istrm = mk_istream (fn x => x+1) 0 (concat "gsym" o int_to_string);
> val it = <istream> : (int, string) istream

- state istrm;
> val it = "gsym0" : string

- next (next istrm);
> val it = <istream> : (int, string) istream

- state istrm;
> val it = "gsym2" : string

See also
Lib.mk istream, Lib.next, Lib.reset.

std ss 717

std_ss (bossLib)

std_ss : simpset

Synopsis

Basic simplification set.

Description

The simplification set std_ss extends bool_ss with a useful set of rewrite rules for terms
involving options, pairs, and sums. It also performs beta and eta reduction. It applies
some standard rewrites to evaluate expressions involving only numerals.

718 Chapter 1. Pre-defined ML Identifiers

The following rewrites from pairTheory are included in std_ss:

|- !x. (FST x,SND x) = x
|- !x y. FST (x,y) = x
|- !x y. SND (x,y) = y
|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b)
|- !f. CURRY (UNCURRY f) = f
|- !f. UNCURRY (CURRY f) = f
|- (CURRY f = CURRY g) = (f = g)
|- (UNCURRY f = UNCURRY g) = (f = g)
|- !f x y. CURRY f x y = f (x,y)
|- !f x y. UNCURRY f (x,y) = f x y
|- !f g x y. (f ## g) (x,y) = (f x,g y)

The following rewrites from sumTheory are included in std_ss:

|- !x. ISL x ==> (INL (OUTL x) = x)
|- !x. ISR x ==> (INR (OUTR x) = x)
|- (!x. ISL (INL x)) /\ !y. ~ISL (INR y)
|- (!x. ISR (INR x)) /\ !y. ~ISR (INL y)
|- !x. OUTL (INL x) = x
|- !x. OUTR (INR x) = x
|- !x y. ~(INL x = INR y)
|- !x y. ~(INR y = INL x)
|- (!y x. (INL x = INL y) = (x = y)) /\

(!y x. (INR x = INR y) = (x = y))
|- (!f g x. case f g (INL x) = f x) /\

(!f g y. case f g (INR y) = g y)

The following rewrites from optionTheory are included in std_ss:

|- (!x y. (SOME x = SOME y) = (x = y))
|- (!x. ~(NONE = SOME x))
|- (!x. ~(SOME x = NONE))
|- (!x. THE (SOME x) = x)
|- (!x. IS_SOME (SOME x) = T)
|- (IS_SOME NONE = F)
|- (!x. IS_NONE x = (x = NONE))
|- (!x. ~IS_SOME x = (x = NONE))
|- (!x. IS_SOME x ==> (SOME (THE x) = x))
|- (!x. case NONE SOME x = x)
|- (!x. case x SOME x = x)
|- (!x. IS_NONE x ==> (case e f x = e))
|- (!x. IS_SOME x ==> (case e f x = f (THE x)))
|- (!x. IS_SOME x ==> (case e SOME x = x))
|- (!u f. case u f NONE = u)
|- (!u f x. case u f (SOME x) = f x)
|- (!f x. OPTION_MAP f (SOME x) = SOME (f x))
|- (!f. OPTION_MAP f NONE = NONE)
|- (OPTION_JOIN NONE = NONE)
|- (!x. OPTION_JOIN (SOME x) = x)
|- !f x y. (OPTION_MAP f x = SOME y) = ?z. (x = SOME z) /\ (y = f z)
|- !f x. (OPTION_MAP f x = NONE) = (x = NONE)

Uses

store thm 719

times simplification with more powerful simpsets, like arith_ss, becomes too slow, in
which case one can use std_ss supplemented with whatever theorems are needed.

Comments
The simplification sets provided in BasicProvers and bossLib (currently bool_ss, std_ss,
arith_ss, and list_ss) do not include useful rewrites stemming from HOL datatype
declarations, such as injectivity and distinctness of constructors. However, the simplifi-
cation routines RW_TAC and SRW_TAC automatically load these rewrites.

See also
BasicProvers.RW TAC, BasicProvers.SRW TAC, simpLib.SIMP TAC, simpLib.SIMP CONV,
simpLib.SIMP RULE, BasicProvers.bool ss, bossLib.arith ss, bossLib.list ss.

store_thm (Tactical)

store_thm : string * term * tactic -> thm

Synopsis
Proves and then stores a theorem in the current theory segment.

Description
The call store_thm(name, t, tac) is equivalent to save_thm(name, prove(t, tac)).

Failure
Whenever prove fails to prove the given term.

Uses
Saving theorems for retrieval in later sessions. Binding the result of store_thm to an ML
variable makes it easy to access the theorem in the current terminal session.

See also
Tactical.prove, Theory.save thm.

string_of_int (hol88Lib)

Compat.string_of_int : int -> string

720 Chapter 1. Pre-defined ML Identifiers

Synopsis
Maps an integer to the corresponding decimal string.

Description
Found in the hol88 library. When given an integer, string_of_int returns a string rep-
resenting the number in standard decimal notation, with a leading minus sign if the
number is negative, and no leading zeros.

Failure
Never fails. The function is not available unless the hol88 library has been loaded.

Comments
Not found in hol90, since the author always got it backwards; use int_to_string in-
stead. Likewise, int_of_string is not found in hol90; use string_to_int.

See also
ascii, ascii code, hol88Lib.int of string, int to string, string to int.

string_to_int (Lib)

string_to_int : string -> int

Synopsis
Translates from a string to an integer.

Description
An application string_to_int s returns the integer denoted by s, if such exists.

Failure
If the string cannot be translated to an integer.

strip abs 721

Example

- string_to_int "123";
> val it = 123 : int

- string_to_int "~123";
> val it = ~123 : int

- string_to_int "foo";
! Uncaught exception:
! HOL_ERR

Comments
Similar functionality can be obtained from the Standard Basis Library function Int.fromString.

See also
Lib.int to string.

strip_abs (boolSyntax)

strip_abs : term -> term list * term

Synopsis
Iteratively breaks apart abstractions.

Description
If M has the form \x1 ... xn.t then strip_abs M returns ([x1,...,xn],t). Note that

strip_abs(list_mk_abs([x1,...,xn],t))

will not return ([x1,...,xn],t) if t is an abstraction.

Failure
Never fails.

See also
boolSyntax.list mk abs, Term.dest abs.

722 Chapter 1. Pre-defined ML Identifiers

strip_abs (Term)

strip_abs : term -> term list * term

Synopsis
Break apart consecutive lambda abstractions.

Description
If M is a term of the form \v1...vn.N, where N is not a lambda abstraction, then
strip_abs M equals ([v1,...,vn],N). Otherwise, the result is ([],M).

Failure
Never fails.

Example

- strip_abs (Term ‘\x y z. x ==> y ==> z‘);
> val it = ([‘x‘, ‘y‘, ‘z‘], ‘x ==> y ==> z‘) : term list * term

- strip_abs T;
> val it = ([], ‘T‘) : term list * term

Comments
In the current implementation of HOL, strip_abs is far faster than iterating dest_abs

for terms with many consecutive binders.

See also
Term.strip binder, Term.dest abs, boolSyntax.strip forall,
boolSyntax.strip exists.

STRIP_ASSUME_TAC (Tactic)

STRIP_ASSUME_TAC : thm_tactic

Synopsis
Splits a theorem into a list of theorems and then adds them to the assumptions.

STRIP ASSUME TAC 723

Description

Given a theorem th and a goal (A,t), STRIP_ASSUME_TAC th splits th into a list of theo-
rems. This is done by recursively breaking conjunctions into separate conjuncts, cases-
splitting disjunctions, and eliminating existential quantifiers by choosing arbitrary vari-
ables. Schematically, the following rules are applied:

A ?- t
====================== STRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)
A u {v1,...,vn} ?- t

A ?- t
================================= STRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)
A u {v1} ?- t ... A u {vn} ?- t

A ?- t
==================== STRIP_ASSUME_TAC (A’ |- ?x.v)
A u {v[x’/x]} ?- t

where x’ is a variant of x.

If the conclusion of th is not a conjunction, a disjunction or an existentially quantified
term, the whole theorem th is added to the assumptions.

As assumptions are generated, they are examined to see if they solve the goal (either
by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).

The assumptions of the theorem being split are not added to the assumptions of the
goal(s), but they are recorded in the proof. This means that if A’ is not a subset of the
assumptions A of the goal (up to alpha-conversion), STRIP_ASSUME_TAC (A’|-v) results
in an invalid tactic.

Failure

Never fails.

724 Chapter 1. Pre-defined ML Identifiers

Example
When solving the goal

?- m = 0 + m

assuming the clauses for addition with STRIP_ASSUME_TAC ADD_CLAUSES results in the goal

{m + (SUC n) = SUC(m + n), (SUC m) + n = SUC(m + n),
m + 0 = m, 0 + m = m, m = 0 + m} ?- m = 0 + m

while the same tactic directly solves the goal

?- 0 + m = m

Uses
STRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal,
or when enriching its assumptions so that resolution, rewriting with assumptions and
other operations involving assumptions have more to work with.

See also
Tactic.ASSUME TAC, Tactic.CHOOSE TAC, Thm cont.CHOOSE THEN,
Thm cont.CONJUNCTS THEN, Tactic.DISJ CASES TAC, Thm cont.DISJ CASES THEN.

strip_binder (Term)

strip_binder : term option -> term -> term list * term

Synopsis
Break apart consecutive binders.

Description
An application strip_binder (SOME c) (c(\v1. ... (c(\vn.M))...)) returns ([v1,...,vn],M).
The constant c should represent a term binding operation.

An application strip_binder NONE (\v1...vn. M) returns ([v1,...,vn],M).

Failure
Never fails.

STRIP BINDER CONV 725

Example
strip_abs could be defined as follows.

- val strip_abs = strip_binder NONE;
> val strip_abs = fn : term -> term list * term

- strip_abs (Term ‘\x y z. x /\ y ==> z‘);
> val it = ([‘x‘, ‘y‘, ‘z‘], ‘x /\ y ==> z‘) : term list * term

Defining strip_forall is similar.

strip_binder (SOME boolSyntax.universal)

Comments
Terms with many consecutive binders should be taken apart using strip_binder and its
instantiations strip_abs, strip_forall, and strip_exists. In the current implementa-
tion of HOL, iterating dest_abs, dest_forall, or dest_exists is far slower for terms with
many consecutive binders.

See also
Term.list mk binder, Term.strip abs, boolSyntax.strip forall,
boolSyntax.strip exists.

STRIP_BINDER_CONV (Conv)

STRIP_BINDER_CONV : term option -> conv -> conv

Synopsis
Applies a conversion underneath a binder prefix.

Description
If the application of conv to M yields |- M = N, then STRIP_BINDER_CONV (SOME c) conv (c(\v1. ...

returns |- c(\v1. ... (c(\vn.M))...) = c(\v1. ... (c(\vn.N))...) and STRIP_BINDER_CONV NON

returns |- (\v1 ... vn.M) = (\v1 ... vn.N).

Failure
If conv M fails. Also fails if some of [v1,...,vn] are free in the hypotheses of conv M.

726 Chapter 1. Pre-defined ML Identifiers

Example

- STRIP_BINDER_CONV NONE BETA_CONV (Term ‘\u v w. (\a. a + v * w) u‘);
> val it = |- (\u v w. (\a. a + v * w) u) = (\u v w. u + v * w) : thm

- STRIP_BINDER_CONV (SOME existential) SYM_CONV
(Term ‘?u v w x y. u + v = w + x + y‘);

> val it = |- (?u v w x y. u + v = w + x + y) =
?u v w x y. w + x + y = u + v : thm

Comments
STRIP_BINDER_CONV is more efficient than iterated application of BINDER_CONV or ABS_CONV
or QUANT_CONV.

See also
Conv.BINDER CONV, Conv.ABS CONV, Conv.QUANT CONV, Conv.STRIP BINDER CONV,
Conv.STRIP QUANT CONV.

strip_comb (boolSyntax)

strip_comb : term -> term * term list

Synopsis
Iteratively breaks apart combinations (function applications).

Description
If M has the form t t1 ... tn then strip_comb M returns (t,[t1,...,tn]). Note that

strip_comb(list_mk_comb(t,[t1,...,tn]))

will not be (t,[t1,...,tn]) if t is a combination.

Failure
Never fails.

strip conj 727

Example

- strip_comb (Term ‘x /\ y‘);
> val it = (‘$/\‘, [‘x‘, ‘y‘]) : term * term list

- strip_comb T;
> val it = (‘T‘, []) : term * term list

See also
Term.list mk comb, Term.dest comb.

strip_conj (boolSyntax)

strip_conj : term -> term list

Synopsis
Recursively breaks apart conjunctions.

Description
If M is of the form t1 /\ ... /\ tn, where no ti is a conjunction, then strip_conj M

returns [t1,...,tn]. Any ti that is a conjunction is broken down by strip_conj, hence

strip_conj(list_mk_conj [t1,...,tn])

will not return [t1,...,tn] if any ti is a conjunction.

Failure
Never fails.

Example

- strip_conj (Term ‘(a /\ b) /\ c /\ d‘);
> val it = [‘a‘, ‘b‘, ‘c‘, ‘d‘] : term list

See also
boolSyntax.dest conj, boolSyntax.mk conj, boolSyntax.list mk conj.

strip_disj (boolSyntax)

strip_disj : term -> term list

728 Chapter 1. Pre-defined ML Identifiers

Synopsis
Recursively breaks apart disjunctions.

Description
If M is of the form t1 \/ ... \/ tn, where no ti is a disjunction, then strip_disj M

returns [t1,...,tn]. Any ti that is a disjunction is broken down by strip_disj, hence

strip_disj(list_mk_disj [t1,...,tn])

will not return [t1,...,tn] if any ti is a disjunction.

Failure
Never fails.

Example

- strip_disj (Term ‘(a \/ b) \/ c \/ d‘);
> val it = [‘a‘, ‘b‘, ‘c‘, ‘d‘] : term list

See also
boolSyntax.dest disj, boolSyntax.mk disj, boolSyntax.list mk disj.

strip_exists (boolSyntax)

strip_exists : term -> term list * term

Synopsis
Iteratively breaks apart existential quantifications.

Description
If M has the structure ?x1 ... xn. t then strip_exists M returns ([x1,...,xn],t). Note
that

strip_exists(list_mk_exists(["x1";...;"xn"],"t"))

will not return ([x1,...,xn],t) if t is an existential quantification.

Failure
Never fails.

strip forall 729

See also
boolSyntax.list mk exists, boolSyntax.dest exists.

strip_forall (boolSyntax)

strip_forall : term -> term list * term

Synopsis
Iteratively breaks apart universal quantifications.

Description
If M has the form !x1 ... xn. t then strip_forall M returns ([x1,...,xn],t). Note
that

strip_forall(list_mk_forall([x1,...,xn],t,))

will not return ([x1,...,xn],t) if t is a universal quantification.

Failure
Never fails.

See also
boolSyntax.list mk forall, boolSyntax.dest forall.

strip_fun (boolSyntax)

strip_fun : hol_type -> hol_type list * hol_type

Synopsis
Iteratively breaks apart function types.

Description
If fty is of the form ty1 -> (... (tyn -> ty) ...), then strip_fun fty returns ([ty1,...,tyn],ty
Note that

strip_fun(list_mk_fun([ty1,...,tyn],ty))

will not return ([ty1,...,tyn],ty) if ty is a function type.

730 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

- strip_fun (Type ‘:(a -> ’bool) -> (’b -> ’c)‘);
> val it = ([‘:a -> ’bool‘, ‘:’b‘], ‘:’c‘) : hol_type list * hol_type

See also
boolSyntax.list mk fun, Type.dom rng, Type.dest type.

STRIP_GOAL_THEN (Tactic)

STRIP_GOAL_THEN : thm_tactic -> tactic

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic
to the antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), STRIP_GOAL_THEN removes one outermost
occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t. If
t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier:

A ?- !x.u
============== STRIP_GOAL_THEN ttac

A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a

STRIP GOAL THEN 731

conjunction, then STRIP_GOAL_THEN simply splits the conjunction into two subgoals:

A ?- v /\ w
================= STRIP_GOAL_THEN ttac
A ?- v A ?- w

If t is an implication u ==> v and if:

A ?- v
=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v
==================== STRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
STRIP_GOAL_THEN ttac (A,t) fails if t is not a universally quantified term, an implica-
tion, a negation or a conjunction. Failure also occurs if the application of ttac fails,
after stripping the goal.

Example
When solving the goal

?- (n = 1) ==> (n * n = n)

a possible initial step is to apply

STRIP_GOAL_THEN SUBST1_TAC

thus obtaining the goal

?- 1 * 1 = 1

Uses
STRIP_GOAL_THEN is used when manipulating intermediate results (obtained by stripping
outer connectives from a goal) directly, rather than as assumptions.

See also
Tactic.CONJ TAC, Thm cont.DISCH THEN, Thm cont.FILTER STRIP THEN, Tactic.GEN TAC,
Tactic.STRIP ASSUME TAC, Tactic.STRIP TAC.

732 Chapter 1. Pre-defined ML Identifiers

strip_imp (boolSyntax)

strip_imp : term -> term list * term

Synopsis
Iteratively breaks apart implications.

Description
If M is of the form t1 ==> (... (tn ==> t) ...), then strip_imp M returns ([t1,...,tn],t).
Note that

strip_imp(list_mk_imp([t1,...,tn],t))

will not return ([t1,...,tn],t) if t is an implication.

Failure
Never fails.

Example

- strip_imp "(T ==> F) ==> (T ==> F)";;
> val it = (["T ==> F"; "T"], "F") : term list * term

- strip_imp (Term ‘t1 ==> t2 ==> t3 ==> ~t‘);
> val it = ([‘t1‘, ‘t2‘, ‘t3‘, ‘t‘], ‘F‘) : term list * term

See also
boolSyntax.list mk imp, boolSyntax.dest imp.

strip_imp_only (boolSyntax)

strip_imp_only : term -> term list * term

Synopsis
Iteratively breaks apart implications.

strip neg 733

Description
If M is of the form t1 ==> (... (tn ==> t) ...), then strip_imp_only M returns ([t1,...,tn],t).
Note that

strip_imp_only(list_mk_imp([t1,...,tn],t))

will not return ([t1,...,tn],t) if t is an implication.

Failure
Never fails.

Example

- strip_imp_only (Term ‘(T ==> F) ==> (T ==> F)‘);
> val it = ([‘T ==> F‘, ‘T‘], ‘F‘) : term list * term

- strip_imp_only (Term ‘t1 ==> t2 ==> t3 ==> ~t‘);
> val it = ([‘t1‘, ‘t2‘, ‘t3‘], ‘~t‘) : term list * term

See also
boolSyntax.list mk imp, boolSyntax.dest imp.

strip_neg (boolSyntax)

strip_neg : term -> term * int

Synopsis
Breaks iterated negations down to an unnegated core.

Description
If M is of the form ~...~t, then strip_neg M returns (t,n), where n is the number of
consecutive negations being applied to t.

Failure
Never fails.

734 Chapter 1. Pre-defined ML Identifiers

Example

- strip_neg (Term ‘~~~~t‘);
> val it = (‘t‘, 4) : term * int

- strip_neg (Term ‘x‘);
<<HOL message: inventing new type variable names: ’a>>
> val it = (‘x‘, 0) : term * int

Comments
There is no corresponding entrypoint for building iterated negations. If such function-
ality is desired, funpow may be used:

- funpow 3 mk_neg T;
> val it = ‘~~~T‘ : term

See also
boolSyntax.dest neg, boolSyntax.mk neg, Lib.funpow.

strip_pabs (pairSyntax)

strip_pabs : term -> term list * term

Synopsis
Iteratively breaks apart paired abstractions.

Description
strip_pabs "\p1 ... pn. t" returns ([p1,...,pn],t). Note that

strip_pabs(list_mk_abs([p1,...,pn],t))

will not return ([p1,...,pn],t) if t is a paired abstraction.

Failure
Never fails.

See also
boolSyntax.strip abs, pairSyntax.list mk pabs, pairSyntax.dest pabs.

strip pair 735

strip_pair (pairSyntax)

strip_pair : term -> term list

Synopsis
Recursively breaks a paired structure into its constituent pieces.

Example

- strip_pair (Term ‘((1,2),(3,4))‘);
> val it = [‘1‘, ‘2‘, ‘3‘, ‘4‘] : term list

Comments
Note that strip_pair is similar, but not identical, to spine_pair which does not work
recursively.

Failure
Never fails.

See also
pairSyntax.spine pair.

strip_pexists (pairSyntax)

strip_pexists : term -> term list * term

Synopsis
Iteratively breaks apart paired existential quantifications.

Description
strip_pexists "?p1 ... pn. t" returns ([p1,...,pn],t). Note that

strip_pexists(list_mk_pexists([[p1,...,pn],t))

will not return ([p1,...,pn],t) if t is a paired existential quantification.

Failure
Never fails.

736 Chapter 1. Pre-defined ML Identifiers

See also
boolSyntax.strip exists, pairSyntax.list mk pexists, pairSyntax.dest pexists.

strip_pforall (pairSyntax)

strip_pforall : term -> term list * term

Synopsis
Iteratively breaks apart paired universal quantifications.

Description
strip_pforall "!p1 ... pn. t" returns ([p1,...,pn],t). Note that

strip_pforall(list_mk_pforall([p1,...,pn],t))

will not return ([p1,...,pn],t) if t is a paired universal quantification.

Failure
Never fails.

See also
boolSyntax.strip forall, pairSyntax.list mk pforall, pairSyntax.dest pforall.

STRIP_QUANT_CONV (Conv)

STRIP_QUANT_CONV : conv -> conv

Synopsis
Applies a conversion underneath a quantifier prefix.

Description
If tm has the form Q(\v1. ... (Q(\vn.M))...) and the application of conv to M yields
|- M = N, then STRIP_QUANT_CONV conv tm returns |- Q(\v1. ... (Q(\vn.M))...) = Q(\v1. ... (Q(\vn.N

provided Q is Hilbert’s choice operator or a universal, existential, or unique-existence
quantifer.

Otherwise, STRIP_QUANT_CONV conv tm returns conv tm.

strip res exists 737

Failure
If conv M fails. Or if conv tm fails when tm is not a quantified term. Also fails if some of
[v1,...,vn] are free in the hypotheses of conv M.

Example

- STRIP_QUANT_CONV (STRIP_QUANT_CONV SYM_CONV)
(Term ‘!x y z. ?!p q r. x + y*z = p*q + r‘);

> val it =
|- (!x y z. ?!p q r. x + y * z = p * q + r) =

!x y z. ?!p q r. p * q + r = x + y * z : thm

Comments
To deal with binders not in the above list, e.g., newly introduced ones, use STRIP_BINDER_CONV.

For deeply nested quantifiers, STRIP_QUANT_CONV and STRIP_BINDER_CONV are more ef-
ficient than iterated application of QUANT_CONV, BINDER_CONV, or ABS_CONV.

See also
Conv.STRIP BINDER CONV, Conv.QUANT CONV, Conv.BINDER CONV, Conv.ABS CONV.

strip_res_exists (res_quanLib)

strip_res_exists : (term -> ((term # term) list # term))

Synopsis
Iteratively breaks apart a restricted existentially quantified term.

Description
strip_res_exists is an iterative term destructor for restricted existential quantifica-
tions. It iteratively breaks apart a restricted existentially quantified term into a list of
pairs which are the restricted quantified variables and predicates and the body.

strip_res_exists "?x1::P1. ... ?xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

738 Chapter 1. Pre-defined ML Identifiers

See also
res quanLib.list mk res exists, res quanLib.is res exists,
res quanLib.dest res exists.

strip_res_forall (res_quanLib)

strip_res_forall : term -> ((term # term) list # term)

Synopsis
Iteratively breaks apart a restricted universally quantified term.

Description
strip_res_forall is an iterative term destructor for restricted universal quantifications.
It iteratively breaks apart a restricted universally quantified term into a list of pairs
which are the restricted quantified variables and predicates and the body.

strip_res_forall "!x1::P1. ... !xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

See also
res quanLib.list mk res forall, res quanLib.is res forall,
res quanLib.dest res forall.

STRIP_TAC (Tactic)

STRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

STRIP TAC 739

Description
Given a goal (A,t), STRIP_TAC removes one outermost occurrence of one of the connec-
tives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified
term, then STRIP_TAC strips off the quantifier:

A ?- !x.u
============== STRIP_TAC

A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a
conjunction, then STRIP_TAC simply splits the conjunction into two subgoals:

A ?- v /\ w
================= STRIP_TAC
A ?- v A ?- w

If t is an implication, STRIP_TAC moves the antecedent into the assumptions, stripping
conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v
====================
A u {w[x’/x]} ?- v

where x’ is a primed variant of x that does not appear free in A. Finally, a negation ~t is
treated as the implication t ==> F.

Failure
STRIP_TAC (A,t) fails if t is not a universally quantified term, an implication, a negation
or a conjunction.

Example
Applying STRIP_TAC twice to the goal:

?- !n. m <= n /\ n <= m ==> (m = n)

results in the subgoal:

{n <= m, m <= n} ?- m = n

Uses
When trying to solve a goal, often the best thing to do first is REPEAT STRIP_TAC to split
the goal up into manageable pieces.

740 Chapter 1. Pre-defined ML Identifiers

See also
Tactic.CONJ TAC, Tactic.DISCH TAC, Thm cont.DISCH THEN, Tactic.GEN TAC,
Tactic.STRIP ASSUME TAC, Tactic.STRIP GOAL THEN.

STRIP_THM_THEN (Thm_cont)

STRIP_THM_THEN : thm_tactical

Synopsis
STRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one
outer connective from the given theorem.

Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunc-
tion or an existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th first
strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from the
stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’|- u /\ v, the tactic

ttac(u|-u) THEN ttac(v|-v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping
a disjunctive theorem A’|- u \/ v, the tactics resulting from applying ttac to the dis-
juncts, are applied to split the goal into two cases. That is, if

A ?- t A ?- t
========= ttac (u|-u) and ========= ttac (v|-v)
A ?- t1 A ?- t2

then:

A ?- t
================== STRIP_THM_THEN ttac (A’|- u \/ v)
A ?- t1 A ?- t2

When stripping an existentially quantified theorem A’|- ?x.u, the tactic ttac(u|-u),
resulting from applying ttac to the body of the existential quantification, is applied to

STRUCT CASES TAC 741

the goal. That is, if:

A ?- t
========= ttac (u|-u)
A ?- t1

then:

A ?- t
============= STRIP_THM_THEN ttac (A’|- ?x. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the
goal(s) but are recorded in the proof. If A’ is not a subset of the assumptions A of the
goal (up to alpha-conversion), STRIP_THM_THEN ttac th results in an invalid tactic.

Failure
STRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction
or an existentially quantified term. Failure also occurs if the application of ttac fails,
after stripping the outer connective from the conclusion of th.

Uses
STRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a
previously-proved theorem.

See also
Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN, Thm cont.DISJ CASES THEN,
Tactic.STRIP ASSUME TAC.

STRUCT_CASES_TAC (Tactic)

STRUCT_CASES_TAC : thm_tactic

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?y11...y1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/
?yn1...ynp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)

in which there may be no existential quantifiers where a ‘vector’ of them is shown above,

742 Chapter 1. Pre-defined ML Identifiers

STRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s
===
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

that is, performs a case split over the possible constructions (the ti) of a term, providing
as assumptions the given constraints, having split conjoined constraints into separate
assumptions. Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply
existentially quantified) terms which assert the equality of the same variable x and the
given terms.

Example
Suppose we have the goal:

?- ~(l:(*)list = []) ==> (LENGTH l) > 0

then we can get rid of the universal quantifier from the inbuilt list theorem list_CASES:

list_CASES = !l. (l = []) \/ (?t h. l = CONS h t)

and then use STRUCT_CASES_TAC. This amounts to applying the following tactic:

STRUCT_CASES_TAC (SPEC_ALL list_CASES)

which results in the following two subgoals:

?- ~(CONS h t = []) ==> (LENGTH(CONS h t)) > 0

?- ~([] = []) ==> (LENGTH[]) > 0

Note that this is a rather simple case, since there are no constraints, and therefore the
resulting subgoals have no assumptions.

Uses
Generating a case split from the axioms specifying a structure.

See also
Tactic.ASM CASES TAC, Tactic.BOOL CASES TAC, Tactic.COND CASES TAC,
Tactic.DISJ CASES TAC.

SUB CONV 743

SUB_CONV (Conv)

SUB_CONV : (conv -> conv)

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by SUB_CONV c is a conversion that applies
c to all the top-level subterms of a term. If the conversion c maps t to |- t = t’, then
SUB_CONV c maps an abstraction "\x.t" to the theorem:

|- (\x.t) = (\x.t’)

That is, SUB_CONV c "\x.t" applies c to the body of the abstraction "\x.t". If c is
a conversion that maps "t1" to the theorem |- t1 = t1’ and "t2" to the theorem
|- t2 = t2’, then the conversion SUB_CONV c maps an application "t1 t2" to the the-
orem:

|- (t1 t2) = (t1’ t2’)

That is, SUB_CONV c "t1 t2" applies c to the both the operator t1 and the operand
t2 of the application "t1 t2". Finally, for any conversion c, the function returned by
SUB_CONV c acts as the identity conversion on variables and constants. That is, if "t" is
a variable or constant, then SUB_CONV c "t" returns |- t = t.

Failure
SUB_CONV c tm fails if tm is an abstraction "\x.t" and the conversion c fails when applied
to t, or if tm is an application "t1 t2" and the conversion c fails when applied to either t1
or t2. The function returned by SUB_CONV c may also fail if the ML function c:term->thm

is not, in fact, a conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
Conv.ABS CONV, Conv.RAND CONV, Conv.RATOR CONV.

SUBGOAL_THEN (Tactical)

SUBGOAL_THEN : term -> thm_tactic -> tactic

744 Chapter 1. Pre-defined ML Identifiers

Synopsis
Allows the user to introduce a lemma.

Description
The user proposes a lemma and is then invited to prove it under the current assump-
tions. The lemma is then used with the thm_tactic to simplify the goal. That is, if

A1 ?- t1
========== f (u |- u)
A2 ?- t2

then

A1 ?- t1
==================== SUBGOAL_THEN u f
A1 ?- u A2 ?- t2

Failure
SUBGOAL_THEN will fail if an attempt is made to use a nonboolean term as a lemma.

Uses
When combined with rotate, SUBGOAL_THEN allows the user to defer some part of a
proof and to continue with another part. SUBGOAL_THEN is most convenient when the
tactic solves the original goal, leaving only the subgoal. For example, suppose the user
wishes to prove the goal

{n = SUC m} ?- (0 = n) ==> t

Using SUBGOAL_THEN to focus on the case in which ~(n = 0), rewriting establishes it
truth, leaving only the proof that ~(n = 0). That is,

SUBGOAL_THEN (Term ‘~(0 = n)‘) (fn th => REWRITE_TAC [th])

generates the following subgoals:

{n = SUC m} ?- ~(0 = n)
?- T

Comments
Some users may expect the generated tactic to be f (A1 |- u), rather than f (u |- u).

SUBS 745

SUBS (Drule)

SUBS : (thm list -> thm -> thm)

Synopsis

Makes simple term substitutions in a theorem using a given list of theorems.

Description

Term substitution in HOL is performed by replacing free subterms according to the
transformations specified by a list of equational theorems. Given a list of theorems
A1|-t1=v1,...,An|-tn=vn and a theorem A|-t, SUBS simultaneously replaces each free
occurrence of ti in t with vi:

A1|-t1=v1 ... An|-tn=vn A|-t
--- SUBS[A1|-t1=v1;...;An|-tn=vn]
A1 u ... u An u A |- t[v1,...,vn/t1,...,tn] (A|-t)

No matching is involved; the occurrence of each ti being substituted for must be a free
in t (see SUBST_MATCH). An occurrence which is not free can be substituted by using
rewriting rules such as REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure

SUBS [th1,...,thn] (A|-t) fails if the conclusion of each theorem in the list is not an
equation. No change is made to the theorem A |- t if no occurrence of any left-hand
side of the supplied equations appears in t.

746 Chapter 1. Pre-defined ML Identifiers

Example
Substitutions are made with the theorems

- val thm1 = SPECL [Term‘m:num‘, Term‘n:num‘] arithmeticTheory.ADD_SYM
val thm2 = CONJUNCT1 arithmeticTheory.ADD_CLAUSES;

> val thm1 = |- m + n = n + m : thm
val thm2 = |- 0 + m = m : thm

depending on the occurrence of free subterms

- SUBS [thm1, thm2] (ASSUME (Term ‘(n + 0) + (0 + m) = m + n‘));
> val it = [.] |- n + 0 + m = n + m : thm

- SUBS [thm1, thm2] (ASSUME (Term ‘!n. (n + 0) + (0 + m) = m + n‘));
> val it = [.] |- !n. n + 0 + m = m + n : thm

Uses
SUBS can sometimes be used when rewriting (for example, with REWRITE_RULE) would
diverge and term instantiation is not needed. Moreover, applying the substitution rules
is often much faster than using the rewriting rules.

See also
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE,
Thm.SUBST, Rewrite.SUBST MATCH, Drule.SUBS OCCS.

SUBS_OCCS (Drule)

SUBS_OCCS : (int list * thm) list -> thm -> thm

Synopsis
Makes substitutions in a theorem at specific occurrences of a term, using a list of equa-
tional theorems.

Description
Given a list (l1,A1|-t1=v1),...,(ln,An|-tn=vn) and a theorem (A|-t), SUBS_OCCS si-
multaneously replaces each ti in t with vi, at the occurrences specified by the integers

subst 747

in the list li = [o1,...,ok] for each theorem Ai|-ti=vi.

(l1,A1|-t1=v1) ... (ln,An|-tn=vn) A|-t
--- SUBS_OCCS[(l1,A1|-t1=v1),...,
A1 u ... An u A |- t[v1,...,vn/t1,...,tn] (ln,An|-tn=vn)] (A|-t)

Failure
SUBS_OCCS [(l1,th1),...,(ln,thn)] (A|-t) fails if the conclusion of any theorem in the
list is not an equation. No change is made to the theorem if the supplied occurrences li
of the left-hand side of the conclusion of thi do not appear in t.

Example
The commutative law for addition

- val thm = SPECL [Term ‘m:num‘, Term‘n:num‘] arithmeticTheory.ADD_SYM;
> val thm = |- m + n = n + m : thm

can be used for substituting only the second occurrence of the subterm m + n

- SUBS_OCCS [([2],thm)]
(ASSUME (Term ‘(n + m) + (m + n) = (m + n) + (m + n)‘));

> val it = [.] |- n + m + (m + n) = n + m + (m + n) : thm

Uses
SUBS_OCCS is used when rewriting at specific occurrences of a term, and rules such
as REWRITE_RULE, PURE_REWRITE_RULE, ONCE_REWRITE_RULE, and SUBS are too extensive or
would diverge.

See also
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE,
Drule.SUBS, Thm.SUBST, Rewrite.SUBST MATCH.

subst (Lib)

type (’a,’b) subst

Synopsis
Type abbreviation for substitutions.

748 Chapter 1. Pre-defined ML Identifiers

Description
The type (’a,’b) subst abbreviates the type {redex,residue} list, in which redex has
type ’a and residue has type ’b. Usually, a {redex,residue} pair in a substition is
interpreted as ‘replace occurrences of redex by residue’.

Comments
The different types of redex and residue components allows flexibility, as in the rule of
inference SUBST, which takes a (term,thm) subst argument.

See also
Lib.|->, Term.subst, Term.inst, Thm.SUBST.

subst (Term)

subst : (term,term) subst -> term -> term

Synopsis
Substitutes terms in a term.

Description
Given a ”(term,term) subst” (a list of {redex, residue} records) and a term tm, subst
attempts to replace each free occurrence of a redex in tm by its associated residue. The
substitution is done in parallel, i.e., once a redex has been replaced by its residue, at
some place in the term, that residue at that place will not itself be replaced in the current
call. When necessary, renaming of bound variables in tm is done to avoid capturing the
free variables of an incoming residue.

Failure
Failure occurs if there exists a {redex, residue} record in the substitution such that the
types of the redex and residue are not equal.

SUBST 749

Example

- load "arithmeticTheory";

- subst [Term‘SUC 0‘ |-> Term‘1‘]
(Term‘SUC(SUC 0)‘);

> val it = ‘SUC 1‘ : term

- subst [Term‘SUC 0‘ |-> Term‘1‘,
Term‘SUC 1‘ |-> Term‘2‘]
(Term‘SUC(SUC 0)‘);

> val it = ‘SUC 1‘ : term

- subst [Term‘SUC 0‘ |-> Term‘1‘,
Term‘SUC 1‘ |-> Term‘2‘]
(Term‘SUC(SUC 0) = SUC 1‘);

> val it = ‘SUC 1 = 2‘ : term

- subst [Term‘b:num‘ |-> Term‘a:num‘]
(Term‘\a:num. b:num‘);

> val it = ‘\a’. a‘ : term

- subst [Term‘flip:’a‘ |-> Term‘foo:’a‘]
(Term‘waddle:’a‘);

> val it = ‘waddle‘ : term

See also
Term.inst, Thm.SUBST, Drule.SUBS, Lib.|->.

SUBST (Thm)

SUBST : (term,thm) subst -> term -> thm -> thm

Synopsis
Makes a set of parallel substitutions in a theorem.

750 Chapter 1. Pre-defined ML Identifiers

Description

Implements the following rule of simultaneous substitution

A1 |- t1 = u1 , ... , An |- tn = un , A |- t[t1,...,tn]

A u A1 u ... u An |- t[u1,...,un]

Evaluating

SUBST [x1 |-> (A1 |- t1=u1) ,..., xn |-> (An |- tn=un)]
t[x1,...,xn]
(A |- t[t1,...,tn])

returns the theorem A1 u ... An |- t[u1,...,un]. The term argument t[x1,...,xn] is
a template which should match the conclusion of the theorem being substituted into,
with the variables x1, ... , xn marking those places where occurrences of t1, ... , tn

are to be replaced by the terms u1, ... , un, respectively. The occurrence of ti at the
places marked by xi must be free (i.e. ti must not contain any bound variables). SUBST
automatically renames bound variables to prevent free variables in ui becoming bound
after substitution.

Failure

If the template does not match the conclusion of the hypothesis, or the terms in the
conclusion marked by the variables x1, ... , xn in the template are not identical to the
left hand sides of the supplied equations (i.e. the terms t1, ... , tn).

SUBST 751

Example

- val x = --‘x:num‘--
and y = --‘y:num‘--
and th0 = SPEC (--‘0‘--) arithmeticTheory.ADD1
and th1 = SPEC (--‘1‘--) arithmeticTheory.ADD1;

(* x = ‘x‘
y = ‘y‘

th0 = |- SUC 0 = 0 + 1
th1 = |- SUC 1 = 1 + 1 *)

- SUBST [x |-> th0, y |-> th1]
(--‘(x+y) > SUC 0‘--)
(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

> val it = [.] |- (0 + 1) + 1 + 1 > SUC 0 : thm

- SUBST [x |-> th0, y |-> th1]
(--‘(SUC 0 + y) > SUC 0‘--)
(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

> val it = [.] |- SUC 0 + 1 + 1 > SUC 0 : thm

- SUBST [x |-> th0, y |-> th1]
(--‘(x+y) > x‘--)
(ASSUME (--‘(SUC 0 + SUC 1) > SUC 0‘--));

> val it = [.] |- (0 + 1) + 1 + 1 > 0 + 1 : thm

Comments
SUBST is perhaps overly complex for a primitive rule of inference.

Uses
For substituting at selected occurrences. Often useful for writing special purpose derived
inference rules.

See also
Drule.SUBS, Drule.SUBST CONV, Lib.|->.

752 Chapter 1. Pre-defined ML Identifiers

SUBST1_TAC (Tactic)

SUBST1_TAC : thm_tactic

Synopsis
Makes a simple term substitution in a goal using a single equational theorem.

Description
Given a theorem A’|-u=v and a goal (A,t), the tactic SUBST1_TAC (A’|-u=v) rewrites the
term t into t[v/u], by substituting v for each free occurrence of u in t:

A ?- t
============= SUBST1_TAC (A’|-u=v)
A ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assump-
tions of the goal but are recorded in the proof. If A’ is not a subset of the assumptions
A of the goal (up to alpha-conversion), then SUBST1_TAC (A’|-u=v) results in an invalid
tactic.
SUBST1_TAC automatically renames bound variables to prevent free variables in v be-

coming bound after substitution.

Failure
SUBST1_TAC th (A,t) fails if the conclusion of th is not an equation. No change is made
to the goal if no free occurrence of the left-hand side of th appears in t.

Example
When trying to solve the goal

?- m * n = (n * (m - 1)) + n

substituting with the commutative law for multiplication

SUBST1_TAC (SPECL ["m:num"; "n:num"] MULT_SYM)

results in the goal

?- n * m = (n * (m - 1)) + n

Uses
SUBST1_TAC is used when rewriting with a single theorem using tactics such as REWRITE_TAC
is too expensive or would diverge. Applying SUBST1_TAC is also much faster than using
rewriting tactics.

SUBST ALL TAC 753

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST ALL TAC, Tactic.SUBST TAC.

SUBST_ALL_TAC (Tactic)

SUBST_ALL_TAC : thm_tactic

Synopsis
Substitutes using a single equation in both the assumptions and conclusion of a goal.

Description
SUBST_ALL_TAC breaches the style of natural deduction, where the assumptions are kept
fixed. Given a theorem A|-u=v and a goal ([t1;...;tn], t), SUBST_ALL_TAC (A|-u=v)

transforms the assumptions t1,...,tn and the term t into t1[v/u],...,tn[v/u] and t[v/u]

respectively, by substituting v for each free occurrence of u in both the assumptions and
the conclusion of the goal.

{t1,...,tn} ?- t
================================= SUBST_ALL_TAC (A|-u=v)
{t1[v/u],...,tn[v/u]} ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assump-
tions of the goal, but they are recorded in the proof. If A is not a subset of the assump-
tions of the goal (up to alpha-conversion), then SUBST_ALL_TAC (A|-u=v) results in an
invalid tactic.

SUBST_ALL_TAC automatically renames bound variables to prevent free variables in v

becoming bound after substitution.

Failure
SUBST_ALL_TAC th (A,t) fails if the conclusion of th is not an equation. No change is
made to the goal if no occurrence of the left-hand side of th appears free in (A,t).

754 Chapter 1. Pre-defined ML Identifiers

Example
Simplifying both the assumption and the term in the goal

{0 + m = n} ?- 0 + (0 + m) = n

by substituting with the theorem |- 0 + m = m for addition

SUBST_ALL_TAC (CONJUNCT1 ADD_CLAUSES)

results in the goal

{m = n} ?- 0 + m = n

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST1 TAC, Tactic.SUBST TAC.

subst_assoc (Lib)

subst_assoc : (’a -> bool) -> (’a,’b)subst -> ’b option

Synopsis
Treats a substitution as an association list.

Description
An application subst_assoc P [{redex_1,residue_1},...,{redex_n,residue_n}] returns
SOME residue_i if P holds of redex_i, and did not hold (or fail) for {redex_j | 1 <= j < i}.
If P holds for none of the redexes in the substitution, NONE is returned.

Failure
If P redex_i fails for some redex encountered in the left-to-right traversal of the substi-
tution.

Example

- subst_assoc is_abs [T |-> F, Term ‘\x.x‘ |-> Term ‘combin$I‘];
> val it = SOME‘I‘ : term option

See also
Lib.assoc, Lib.rev assoc, Lib.assoc1, Lib.assoc2, Lib.|->.

SUBST CONV 755

SUBST_CONV (Drule)

SUBST_CONV : {redex :term, residue :thm} list -> term -> conv

Synopsis
Makes substitutions in a term at selected occurrences of subterms, using a list of theo-
rems.

Description
SUBST_CONV implements the following rule of simultaneous substitution

A1 |- t1 = v1 ... An |- tn = vn
--
A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]

The first argument to SUBST_CONV is a list [{redex=x1, residue = A1|-t1=v1},...,{redex = xn, re

The second argument is a template term t[x1,...,xn], in which the variables x1,...,xn
are used to mark those places where occurrences of t1,...,tn are to be replaced with
the terms v1,...,vn, respectively. Thus, evaluating

SUBST_CONV [{redex = x1, residue = A1|-t1=v1},...,
{redex = xn, residue = An|-tn=vn}]
t[x1,...,xn]
t[t1,...,tn/x1,...,xn]

returns the theorem

A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]

The occurrence of ti at the places marked by the variable xi must be free (i.e. ti must
not contain any bound variables). SUBST_CONV automatically renames bound variables
to prevent free variables in vi becoming bound after substitution.

Failure
SUBST_CONV [{redex=x1,residue=th1},...,{redex=xn,residue=thn}] t[x1,...,xn] t’ fails
if the conclusion of any theorem thi in the list is not an equation; or if the template
t[x1,...,xn] does not match the term t’; or if and term ti in t’ marked by the vari-
able xi in the template, is not identical to the left-hand side of the conclusion of the
theorem thi.

756 Chapter 1. Pre-defined ML Identifiers

Example
The values

- val thm0 = SPEC (Term‘0‘) ADD1
and thm1 = SPEC (Term‘1‘) ADD1
and x = Term‘x:num‘ and y = Term‘y:num‘;

> val thm0 = |- SUC 0 = 0 + 1 : thm
val thm1 = |- SUC 1 = 1 + 1 : thm
val x = ‘x‘ : term
val y = ‘y‘ : term

can be used to substitute selected occurrences of the terms SUC 0 and SUC 1

- SUBST_CONV [{redex=x, residue=thm0},{redex=y,residue=thm1}]
(Term‘(x + y) > SUC 1‘)
(Term‘(SUC 0 + SUC 1) > SUC 1‘);

> val it = |- SUC 0 + SUC 1 > SUC 1 = (0 + 1) + 1 + 1 > SUC 1 : thm

The |-> syntax can also be used:

- SUBST_CONV [x |-> thm0, y |-> thm1]
(Term‘(x + y) > SUC 1‘)
(Term‘(SUC 0 + SUC 1) > SUC 1‘);

Uses
SUBST_CONV is used when substituting at selected occurrences of terms and using rewrit-
ing rules/conversions is too extensive.

See also
Conv.REWR CONV, Drule.SUBS, Thm.SUBST, Drule.SUBS OCCS, Lib.|->.

SUBST_MATCH (Rewrite)

SUBST_MATCH : (thm -> thm -> thm)

Synopsis
Substitutes in one theorem using another, equational, theorem.

SUBST MATCH 757

Description
Given the theorems A|-u=v and A’|-t, SUBST_MATCH (A|-u=v) (A’|-t) searches for one
free instance of u in t, according to a top-down left-to-right search strategy, and then
substitutes the corresponding instance of v.

A |- u=v A’ |- t
-------------------- SUBST_MATCH (A|-u=v) (A’|-t)

A u A’ |- t[v/u]

SUBST_MATCH allows only a free instance of u to be substituted for in t. An instance
which contain bound variables can be substituted for by using rewriting rules such as
REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure
SUBST_MATCH th1 th2 fails if the conclusion of the theorem th1 is not an equation. More-
over, SUBST_MATCH (A|-u=v) (A’|-t) fails if no instance of u occurs in t, since the match-
ing algorithm fails. No change is made to the theorem (A’|-t) if instances of u occur in
t, but they are not free (see SUBS).

Example
The commutative law for addition

- val thm1 = SPECL [Term ‘m:num‘, Term ‘n:num‘] arithmeticTheory.ADD_SYM;
> val thm1 = |- m + n = n + m : thm

is used to apply substitutions, depending on the occurrence of free instances

- SUBST_MATCH thm1 (ASSUME (Term ‘(n + 1) + (m - 1) = m + n‘));
> val it = [.] |- m - 1 + (n + 1) = m + n : thm

- SUBST_MATCH thm1 (ASSUME (Term ‘!n. (n + 1) + (m - 1) = m + n‘));
> val it = [.] |- !n. n + 1 + (m - 1) = m + n : thm

Uses
SUBST_MATCH is used when rewriting with the rules such as REWRITE_RULE, using a single
theorem is too extensive or would diverge. Moreover, applying SUBST_MATCH can be
much faster than using the rewriting rules.

See also
Rewrite.ONCE REWRITE RULE, Rewrite.PURE REWRITE RULE, Rewrite.REWRITE RULE,
Drule.SUBS, Thm.SUBST.

758 Chapter 1. Pre-defined ML Identifiers

subst_occs (HolKernel)

subst_occs : int list list -> term subst -> term -> term

Synopsis
Substitutes for particular occurrences of subterms of a given term.

Description
For each {redex,residue} in the second argument, there should be a corresponding
integer list l_i in the first argument that specifies which free occurrences of redex_i in
the third argument should be substituted by residue_i.

Failure
Failure occurs if any substitution fails, or if the length of the first argument is not equal
to the length of the substitution. In other words, every substitution pair should be
accompanied by a list specifying when the substitution is applicable.

Example

- subst_occs [[1,3]] [Term ‘SUC 0‘ |-> Term ‘1‘]
(Term ‘SUC 0 + SUC 0 = SUC(SUC 0)‘);

> val it = ‘1 + SUC 0 = SUC 1‘ : term

- subst_occs [[1],[1]] [Term ‘SUC 0‘ |-> Term ‘1‘,
Term ‘SUC 1‘ |-> Term ‘2‘]

(Term ‘SUC(SUC 0) = SUC 1‘);
> val it = ‘SUC 1 = 2‘ : term

- subst_occs [[1],[1]] [Term‘SUC(SUC 0)‘ |-> Term ‘2‘,
Term‘SUC 0‘ |-> Term ‘1‘]

(Term‘SUC(SUC 0) = SUC 0‘);
> val it = ‘2 = 1‘ : term

See also
Term.subst, Lib.|->.

SUBST_OCCS_TAC (Tactic)

SUBST_OCCS_TAC : (int list * thm) list -> tactic

SUBST OCCS TAC 759

Synopsis
Makes substitutions in a goal at specific occurrences of a term, using a list of theorems.

Description
Given a list (l1,A1|-t1=u1),...,(ln,An|-tn=un) and a goal (A,t), SUBST_OCCS_TAC re-
places each ti in t with ui, simultaneously, at the occurrences specified by the integers
in the list li = [o1,...,ok] for each theorem Ai|-ti=ui.

A ?- t
============================= SUBST_OCCS_TAC [(l1,A1|-t1=u1),...,
A ?- t[u1,...,un/t1,...,tn] (ln,An|-tn=un)]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, but they are recorded in the proof. If any Ai is not a subset of A (up
to alpha-conversion), SUBST_OCCS_TAC [(l1,A1|-t1=u1),...,(ln,An|-tn=un)] results in
an invalid tactic.
SUBST_OCCS_TAC automatically renames bound variables to prevent free variables in ui

becoming bound after substitution.

Failure
SUBST_OCCS_TAC [(l1,th1),...,(ln,thn)] (A,t) fails if the conclusion of any theorem
in the list is not an equation. No change is made to the goal if the supplied occurrences
li of the left-hand side of the conclusion of thi do not appear in t.

Example
When trying to solve the goal

?- (m + n) + (n + m) = (m + n) + (m + n)

applying the commutative law for addition on the third occurrence of the subterm m + n

SUBST_OCCS_TAC [([3], SPECL [Term ‘m:num‘, Term ‘n:num‘]
arithmeticTheory.ADD_SYM)]

results in the goal

?- (m + n) + (n + m) = (m + n) + (n + m)

Uses
SUBST_OCCS_TAC is used when rewriting a goal at specific occurrences of a term, and
when rewriting tactics such as REWRITE_TAC, PURE_REWRITE_TAC, ONCE_REWRITE_TAC, SUBST_TAC,
etc. are too extensive or would diverge.

760 Chapter 1. Pre-defined ML Identifiers

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST1 TAC, Tactic.SUBST TAC.

SUBST_TAC (Tactic)

SUBST_TAC : (thm list -> tactic)

Synopsis
Makes term substitutions in a goal using a list of theorems.

Description
Given a list of theorems A1|-u1=v1,...,An|-un=vn and a goal (A,t), SUBST_TAC rewrites
the term t into the term t[v1,...,vn/u1,...,un] by simultaneously substituting vi for
each occurrence of ui in t with vi:

A ?- t
============================= SUBST_TAC [A1|-u1=v1,...,An|-un=vn]
A ?- t[v1,...,vn/u1,...,un]

The assumptions of the theorems used to substitute with are not added to the assump-
tions A of the goal, while they are recorded in the proof. If any Ai is not a subset of A (up
to alpha-conversion), then SUBST_TAC [A1|-u1=v1,...,An|-un=vn] results in an invalid
tactic.

SUBST_TAC automatically renames bound variables to prevent free variables in vi be-
coming bound after substitution.

Failure
SUBST_TAC [th1,...,thn] (A,t) fails if the conclusion of any theorem in the list is not
an equation. No change is made to the goal if no occurrence of the left-hand side of the
conclusion of thi appears in t.

subtract 761

Example
When trying to solve the goal

?- (n + 0) + (0 + m) = m + n

by substituting with the theorems

- val thm1 = SPEC_ALL arithmeticTheory.ADD_SYM
val thm2 = CONJUNCT1 arithmeticTheory.ADD_CLAUSES;

thm1 = |- m + n = n + m
thm2 = |- 0 + m = m

applying SUBST_TAC [thm1, thm2] results in the goal

?- (n + 0) + m = n + m

Uses
SUBST_TAC is used when rewriting (for example, with REWRITE_TAC) is extensive or would
diverge. Substituting is also much faster than rewriting.

See also
Rewrite.ONCE REWRITE TAC, Rewrite.PURE REWRITE TAC, Rewrite.REWRITE TAC,
Tactic.SUBST1 TAC, Tactic.SUBST ALL TAC.

subtract (Lib)

subtract : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the set-theoretic difference of two ‘sets’.

Description
Behaves exactly like set_diff.

See also
Lib.set diff.

SWAP_EXISTS_CONV (Conv)

SWAP_EXISTS_CONV : conv

762 Chapter 1. Pre-defined ML Identifiers

Synopsis
Interchanges the order of two existentially quantified variables.

Description
When applied to a term argument of the form ?x y. P, the conversion SWAP_EXISTS_CONV

returns the theorem:

|- (?x y. P) = (?y x. P)

Failure
SWAP_EXISTS_CONV fails if applied to a term that is not of the form ?x y. P.

SWAP_PEXISTS_CONV (PairRules)

SWAP_PEXISTS_CONV : conv

Synopsis
Interchanges the order of two existentially quantified pairs.

Description
When applied to a term argument of the form ?p q. t, the conversion SWAP_PEXISTS_CONV

returns the theorem:

|- (?p q. t) = (?q t. t)

Failure
SWAP_PEXISTS_CONV fails if applied to a term that is not of the form ?p q. t.

See also
Conv.SWAP EXISTS CONV, PairRules.SWAP PFORALL CONV.

SWAP_PFORALL_CONV (PairRules)

SWAP_PFORALL_CONV : conv

SYM 763

Synopsis
Interchanges the order of two universally quantified pairs.

Description
When applied to a term argument of the form !p q. t, the conversion SWAP_PFORALL_CONV

returns the theorem:

|- (!p q. t) = (!q p. t)

Failure
SWAP_PFORALL_CONV fails if applied to a term that is not of the form !p q. t.

See also
PairRules.SWAP PEXISTS CONV.

SYM (Thm)

SYM : thm -> thm

Synopsis
Swaps left-hand and right-hand sides of an equation.

Description
When applied to a theorem A |- t1 = t2, the inference rule SYM returns A |- t2 = t1.

A |- t1 = t2
-------------- SYM
A |- t2 = t1

Failure
Fails unless the theorem is equational.

See also
Conv.GSYM, Drule.NOT EQ SYM, Thm.REFL.

SYM_CONV (Conv)

SYM_CONV : conv

764 Chapter 1. Pre-defined ML Identifiers

Synopsis
Interchanges the left and right-hand sides of an equation.

Description
When applied to an equational term t1 = t2, the conversion SYM_CONV returns the theo-
rem:

|- (t1 = t2) = (t2 = t1)

Failure
Fails if applied to a term that is not an equation.

See also
Thm.SYM.

T (boolSyntax)

T : term

Synopsis
Constant denoting truth.

Description
The ML variable boolSyntax.T is bound to the term bool$T.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.F,
boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

TAC_PROOF (Tactical)

TAC_PROOF : goal * tactic -> thm

tag 765

Synopsis
Attempts to prove a goal using a given tactic.

Description
When applied to a goal-tactic pair (A ?- t,tac), the TAC_PROOF function attempts to
prove the goal A ?- t, using the tactic tac. If it succeeds, it returns the theorem A’ |- t

corresponding to the goal, where the assumption list A’ may be a proper superset of A
unless the tactic is valid; there is no inbuilt validity checking.

Failure
Fails unless the goal has hypotheses and conclusions all of type bool, and the tactic can
solve the goal.

See also
BasicProvers.PROVE, hol88Lib.prove thm, VALID.

tag (Tag)

type tag

Synopsis
Abstract type of oracle tags.

Description
The type tag is used to track the use of oracles in HOL. An ‘oracle’ is a source of theorems
that are not proved, but just asserted. In HOL, such unproven ‘theorems’ are used to
incorporate the results of external proof tools. Each theorem coming from an oracle has
a tag attached to it. This tag gets copied to any theorems hereditarily generated from
an oracular theorem by inference.

See also
Tag.read, Thm.mk oracle thm.

tag (Thm)

tag : thm -> tag

766 Chapter 1. Pre-defined ML Identifiers

Synopsis
Extract the tag from a theorem.

Description
An invocation tag th, where th has type thm, returns the tag of the theorem. If deriva-
tion of the theorem has appealed at some point to an oracle, the tag of that oracle will
be embedded in the result. Otherwise, an empty tag is returned.

Failure
Never fails.

Example

- Thm.tag (mk_thm([],F));
> val it = Kerneltypes.TAG(["MK_THM"], []) : tag

- Thm.tag NOT_FORALL_THM;
> val it = Kerneltypes.TAG([], []) : tag

See also
Thm.mk oracle thm, Tag.read, Tag.merge, Tag.pp tag.

Term (Parse)

Parse.Term : term quotation -> term

Synopsis
Parses a quotation into a term value

Description
The parsing process for terms divides into four distinct phases.

The first phase converts the quotation argument into abstract syntax, a relatively

Term 767

simple parse tree datatype, with the following datatype definition (from Absyn):

datatype vstruct
= VAQ of term
| VIDENT of string
| VPAIR of vstruct * vstruct
| VTYPED of vstruct * pretype

datatype absyn
= AQ of term
| IDENT of string
| APP of absyn * absyn
| LAM of vstruct * absyn
| TYPED of absyn * pretype

This phase of parsing is concerned with the treatment of the rawest concrete syntax. It
has no notion of whether or not a term corresponds to a constant or a variable, so all
preterm leaves are ultimately either IDENTs or AQs (anti-quotations).

This first phase converts infixes, mixfixes and all the other categories of syntactic
rule from the global grammar into simple structures built up using APP. For example,
‘x op y‘ (where op is an infix) will turn into

APP(APP(IDENT "op", IDENT "x"), IDENT "y")

and ‘tok1 x tok2 y‘ (where tok1 _ tok2 has been declared as a TruePrefix form for
the term f) will turn into

APP(APP(IDENT "f", IDENT "x"), IDENT "y")

The special syntaxes for “let” and record expressions are also handled at this stage. For
more details on how this is done see the reference entry for Absyn, which function can
be used in isolation to see what is done at this phase.

The second phase of parsing consists of the resolution of names, identifying what
were just VARs as constants or genuine variables (whether free or bound). This phase
also annotates all leaves of the data structure (given in the entry for Preterm) with type
information.

The third phase of parsing works over the Preterm datatype and does type-checking,
though ignoring overloaded values. The datatype being operated over uses reference
variables to allow for efficiency, and the type-checking is done “in place”. If type-
checking is successful, the resulting value has consistent type annotations.

The final phase of parsing resolves overloaded constants. The type-checking done to
this point may completely determine which choice of overloaded constant is appropri-
ate, but if not, the choice may still be completely determined by the interaction of the
possible types for the overloaded possibilities.

768 Chapter 1. Pre-defined ML Identifiers

Finally, depending on the value of the global flags guessing_tyvars and guessing_overloads,
the parser will make choices about how to resolve any remaining ambiguities.

The parsing process is entirely driven by the global grammar. This value can be
inspected with the term_grammar function.

Failure
All over place, and for all sorts of reasons.

Uses
Turns strings into terms.

See also
Parse.Absyn, Preterm, Type, Parse.overload on, guessing overloads,
guessing tyvars, Parse.term grammar.

term (Term)

eqtype term

Synopsis
ML datatype of HOL terms.

Description
The ML abstract type term represents the set of HOL terms, which is essentially the
simply typed lambda calculus of Church. A term may be a variable, a constant, an
application of one term to another, or a lambda abstraction.

Comments
Since term is an ML eqtype, any two terms tm1 and tm2 can be tested for equality by
tm1 = tm2. However, the fundamental notion of equality for terms is implemented by
aconv.

Since term is an abstract type, access to its representation is mediated by the interface
presented by the Term structure.

See also
Type.hol type.

term_grammar (Parse)

Parse.term_grammar : unit -> term_grammar.grammar

term to string 769

Synopsis
Returns the current global term grammar.

Failure
Never fails.

Comments
There is a pretty-printer installed in the interactive system so that term grammar values
are presented nicely. The global term grammar is passed as a parameter to the Term

parsing function in the Parse structure, and also drives the installed term and theorem
pretty-printers.

See also
Parse.parse from grammars, Parse.Term.

term_to_string (Parse)

Parse.term_to_string : term -> string

Synopsis
Converts a term to a string.

Description
Uses the global term grammar and pretty-printing flags to turn a term into a string. It
assumes that the string should be broken up as if for display on a screen that is as wide
as the value stored in the Globals.linewidth variable.

Failure
Should never fail.

See also
Parse.print term.

tgoal (Defn)

tgoal : defn -> proofs

770 Chapter 1. Pre-defined ML Identifiers

Synopsis
Set up a termination proof

Description
tgoal defn sets up a termination proof for the function represented by defn. It creates
a new goalstack and makes it the focus of subsequent goalstack operations.

Failure
tgoal defn fails if defn represents a non-recursive or primitive recursive function.

Example

- val qsort_defn =
Hol_defn "qsort"

‘(qsort ___ [] = []) /\
(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))
(x :: qsort ord (FILTER (ord x) rst)))‘;

- tgoal qsort_defn;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
?R. WF R /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)) /\
!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

See also
TotalDefn.WF REL TAC, Defn.tprove, Defn.Hol defn.

THEN (Tactical)

op THEN : tactic * tactic -> tactic

Synopsis
Applies two tactics in sequence.

Description
If T1 and T2 are tactics, T1 THEN T2 is a tactic which applies T1 to a goal, then applies
the tactic T2 to all the subgoals generated. If T1 solves the goal then T2 is never applied.

THEN1 771

Failure
The application of THEN to a pair of tactics never fails. The resulting tactic fails if T1 fails
when applied to the goal, or if T2 does when applied to any of the resulting subgoals.

Comments
Although normally used to sequence tactics which generate a single subgoal, it is worth
remembering that it is sometimes useful to apply the same tactic to multiple subgoals;
sequences like the following:

EQ_TAC THENL [ASM_REWRITE_TAC[], ASM_REWRITE_TAC[]]

can be replaced by the briefer:

EQ_TAC THEN ASM_REWRITE_TAC[]

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.THENL.

THEN1 (Tactical)

op THEN1 : tactic * tactic -> tactic

Synopsis
A tactical like THEN that applies the second tactic only to the first subgoal.

Description
If T1 and T2 are tactics, T1 THEN1 T2 is a tactic which applies T1 to a goal, then applies
the tactic T2 to the first subgoal generated. T1 must produce at least one subgoal, and
T2 must completely solve the first subgoal of T1.

Failure
The application of THEN1 to a pair of tactics never fails. The resulting tactic fails if T1 fails
when applied to the goal, if T1 does not produce at least one subgoal (i.e., T1 completely
solves the goal), or if T2 does not completely solve the first subgoal generated by T1.

Comments
THEN1 can be applied to make the proof more linear, avoiding unnecessary THENLs. It is
especially useful when used with REVERSE.

772 Chapter 1. Pre-defined ML Identifiers

Example
For example, given the goal

simple_goal /\ complicated_goal

the tactic

(CONJ_TAC THEN1 T0)
THEN T1
THEN T2
THEN ...
THEN Tn

avoids the extra indentation of

CONJ_TAC THENL
[T0,
T1
THEN T2
THEN ...
THEN Tn]

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.REVERSE, Tactical.THEN,
Tactical.THENL.

THEN_TCL (Thm_cont)

$THEN_TCL : (thm_tactical -> thm_tactical -> thm_tactical)

Synopsis
Composes two theorem-tacticals.

Description
If ttl1 and ttl2 are two theorem-tacticals, ttl1 THEN_TCL ttl2 is a theorem-tactical

THENC 773

which composes their effect; that is, if:

ttl1 ttac th1 = ttac th2

and

ttl2 ttac th2 = ttac th3

then

(ttl1 THEN_TCL ttl2) ttac th1 = ttac th3

Failure
The application of THEN_TCL to a pair of theorem-tacticals never fails.

See also
Thm cont.EVERY TCL, Thm cont.FIRST TCL, Thm cont.ORELSE TCL.

THENC (Conv)

$THENC : (conv -> conv -> conv)

Synopsis
Applies two conversions in sequence.

Description
If the conversion c1 returns |- t = t’ when applied to a term "t", and c2 returns
|- t’ = t’’ when applied to "t’", then the composite conversion (c1 THENC c2) "t"

returns |- t = t’’. That is, (c1 THENC c2) "t" has the effect of transforming the term
"t" first with the conversion c1 and then with the conversion c2.

Failure
(c1 THENC c2) "t" fails if either the conversion c1 fails when applied to "t", or if c1 "t"

succeeds and returns |- t = t’ but c2 fails when applied to "t’". (c1 THENC c2) "t"

may also fail if either of c1 or c2 is not, in fact, a conversion (i.e. a function that maps
a term t to a theorem |- t = t’).

See also
Conv.EVERY CONV.

774 Chapter 1. Pre-defined ML Identifiers

THENL (Tactical)

$THENL : (tactic -> tactic list -> tactic)

Synopsis
Applies a list of tactics to the corresponding subgoals generated by a tactic.

Description
If T,T1,...,Tn are tactics, T THENL [T1;...;Tn] is a tactic which applies T to a goal, and
if it does not fail, applies the tactics T1,...,Tn to the corresponding subgoals, unless T

completely solves the goal.

Failure
The application of THENL to a tactic and tactic list never fails. The resulting tactic fails
if T fails when applied to the goal, or if the goal list is not empty and its length is not
the same as that of the tactic list, or finally if Ti fails when applied to the i’th subgoal
generated by T.

Uses
Applying different tactics to different subgoals.

See also
Tactical.EVERY, Tactical.ORELSE, Tactical.THEN.

theorems (DB)

theorems : string -> (string * thm) list

Synopsis
All the theorems stored in the named theory.

Description
An invocation theorems thy, where thy is the name of a currently loaded theory seg-
ment, will return a list of the theorems stored in that theory. Axioms and definitions are
excluded. Each theorem is paired with its name in the result. The string "-" may be
used to denote the current theory segment.

thm 775

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

Example

- theorems "combin";
> val it =

[("I_o_ID", |- !f. (I o f = f) /\ (f o I = f)), ("I_THM", |- !x. I x = x),
("W_THM", |- !f x. W f x = f x x),
("C_THM", |- !f x y. combin$C f x y = f y x),
("S_THM", |- !f g x. S f g x = f x (g x)), ("K_THM", |- !x y. K x y = x),
("o_ASSOC", |- !f g h. f o g o h = (f o g) o h),
("o_THM", |- !f g x. (f o g) x = f (g x))] : (string * thm) list

See also
DB.thy, DB.fetch, DB.thms, DB.definitions, DB.axioms, DB.listDB.

thm (Thm)

type thm

Synopsis
Type of theorems of the HOL logic.

Description
The abstract type thm represents the theorems derivable by inference in the HOL logic.
The type of theorems can be viewed as the inductive closure of the axioms of the HOL
logic by the primitive inference rules of HOL. Robin Milner had the brilliant insight to
implement this view by encapsulating the primitive rules of inference for a logic as the
constructors for an abstract type of theorems. This implementation technique is adopted
in HOL.

See also
Thm.dest thm, Thm.hyp, Thm.concl, Thm.tag, Thm.ASSUME, Thm.REFL, Thm.BETA CONV,
Thm.ABS, Thm.DISCH, Thm.MP, Thm.SUBST, Thm.INST TYPE.

thm_count (Count)

thm_count : unit -> int

776 Chapter 1. Pre-defined ML Identifiers

Synopsis
Returns the current value of the theorem counter.

Description
HOL maintains a counter which is incremented every time a primitive inference is per-
formed (or an axiom or definition set up). A call to thm_count() returns the current
value of this counter

Failure
Never fails.

See also
set thm count, timer.

thms (DB)

thms : string -> (string * thm) list

Synopsis
All the theorems, definitions, and axioms stored in the named theory.

Description
An invocation thms thy, where thy is the name of a currently loaded theory segment,
will return a list of the theorems, definitions, and axioms stored in that theory. Each
theorem is paired with its name in the result. The string "-" may be used to denote the
current theory segment.

Failure
Never fails. If thy is not the name of a currently loaded theory segment, the empty list
is returned.

thy 777

Example

- thms "combin";
> val it =

[("C_DEF", |- combin$C = (\f x y. f y x)),
("C_THM", |- !f x y. combin$C f x y = f y x), ("I_DEF", |- I = S K K),
("I_o_ID", |- !f. (I o f = f) /\ (f o I = f)), ("I_THM", |- !x. I x = x),
("K_DEF", |- K = (\x y. x)), ("K_THM", |- !x y. K x y = x),
("o_ASSOC", |- !f g h. f o g o h = (f o g) o h),
("o_DEF", |- !f g. f o g = (\x. f (g x))),
("o_THM", |- !f g x. (f o g) x = f (g x)),
("S_DEF", |- S = (\f g x. f x (g x))),
("S_THM", |- !f g x. S f g x = f x (g x)),
("W_DEF", |- W = (\f x. f x x)), ("W_THM", |- !f x. W f x = f x x)] :

(string * thm) list

See also
DB.thy, DB.theorems, DB.axioms, DB.definitions, DB.fetch, DB.listDB.

thy (DB)

thy : string -> data list

Synopsis
Return the contents of a theory.

Description
An invocation DB.thy s returns the contents of the specified theory segment s in a list
of (thy,name),(thm,class) tuples. In a tuple, (thy,name) designate the theory and the
name given to the object in the theory. The thm element is the named object, and class

its classification (one of Thm (theorem), Axm (axiom), or Def (definition)).
Case distinctions are ignored when determining the segment. The current segment

may be specified, either by the distinguished literal "-", or by the name given when
creating the segment with new_theory.

Failure
Never fails, but will return an empty list when s does not designate a currently loaded
theory segment.

778 Chapter 1. Pre-defined ML Identifiers

Example

- DB.thy "pair";
> val it =

[(("pair", "ABS_PAIR_THM"), (|- !x. ?q r. x = (q,r), Db.Thm)),
(("pair", "ABS_REP_prod"),
(|- (!a. ABS_prod (REP_prod a) = a) /\

!r. IS_PAIR r = (REP_prod (ABS_prod r) = r), Db.Def)),
(("pair", "CLOSED_PAIR_EQ"),
(|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b), Db.Thm)),

.

.

.

See also
DB.class, DB.data, DB.listDB, DB.theorems, DB.match, Theory.new theory.

thy_addon (Theory)

type thy_addon

Synopsis
Type of theory additions.

Description
The type abbreviation thy_addon, declared as

type thy_addon = {sig_ps : (ppstream -> unit) option,
struct_ps : (ppstream -> unit) option}

packages up the arguments to adjoin_to_theory. The sig_ps argument is an optional
prettyprinter, which will be invoked when the theory signature file is written. The
struct_ps argument is an optional prettyprinter invoked when the theory structure file
is written.

See also
Theory.adjoin to theory.

time 779

time (Lib)

time : (’a -> ’b) -> ’a -> ’b

Synopsis
Measure how long a function application takes.

Description
An application time f x starts a clock, applies f to x, and then checks the clock to see
how long that took. It prints out the elapsed runtime, garbage collection time, and
system time before returning the value of f x.

Failure
If f x raises e, then time f x raises e.

Example

- time (int_sort) (for 0 999 I);
runtime: 0.771s, gctime: 0.121s, systime: 0.771s.
> val it =
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, ...] : int list

See also
Lib.start time, Lib.end time.

TOP_DEPTH_CONV (Conv)

TOP_DEPTH_CONV : (conv -> conv)

780 Chapter 1. Pre-defined ML Identifiers

Synopsis
Applies a conversion top-down to all subterms, retraversing changed ones.

Description
TOP_DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term
tm, including the term tm itself. The supplied conversion c is applied to the subterms
of tm in top-down order and is applied repeatedly (zero or more times, as is done
by REPEATC) at each subterm until it fails. If a subterm t is changed (up to alpha-
equivalence) by virtue of the application of c to its own subterms, then then the term
into which t is transformed is retraversed by applying TOP_DEPTH_CONV c to it.

Failure
TOP_DEPTH_CONV c tm never fails but can diverge.

Comments
The implementation of this function uses failure to avoid rebuilding unchanged sub-
terms. That is to say, during execution the exception QConv.UNCHANGED may be generated
and later trapped. The behaviour of the function is dependent on this use of failure. So,
if the conversion given as an argument happens to generate the same exception, the
operation of TOP_DEPTH_CONV will be unpredictable.

See also
Conv.DEPTH CONV, Conv.ONCE DEPTH CONV, Conv.REDEPTH CONV.

top_goal (goalstackLib)

top_goal : unit -> term list * term

Synopsis
Returns the current goal of the subgoal package.

Description
The function top_goal is part of the subgoal package. It returns the top goal of the goal
stack in the current proof state. For a description of the subgoal package, see set_goal.

Failure
A call to top_goal will fail if there are no unproven goals. This could be because no goal
has been set using set_goal or because the last goal set has been completely proved.

top thm 781

Uses
Examining the proof state after a proof fails.

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.e,
goalstackLib.expand, goalstackLib.expandf, goalstackLib.g, get state,
goalstackLib.p, print state, goalstackLib.r, rotate, save top thm,
goalstackLib.set goal, set state, goalstackLib.top thm.

top_thm (goalstackLib)

top_thm : unit -> thm

Synopsis
Returns the theorem just proved using the subgoal package.

Description
The function top_thm is part of the subgoal package. A proof state of the package
consists of either goal and justification stacks if a proof is in progress or a theorem if a
proof has just been completed. If the proof state consists of a theorem, top_thm returns
that theorem. For a description of the subgoal package, see set_goal.

Failure
top_thm will fail if the proof state does not hold a theorem. This will be so either because
no goal has been set or because a proof is in progress with unproven subgoals.

Uses
Accessing the result of an interactive proof session with the subgoal package.

See also
goalstackLib.b, goalstackLib.backup, backup limit, goalstackLib.e,
goalstackLib.expand, goalstackLib.expandf, goalstackLib.g, get state,
goalstackLib.p, print state, goalstackLib.r, rotate, save top thm,
goalstackLib.set goal, set state, goalstackLib.top goal.

total (Lib)

total : (’a -> ’b) -> ’a -> ’b option

782 Chapter 1. Pre-defined ML Identifiers

Synopsis
Converts a partial function to a total function.

Description
In ML, there are two main ways for a function to signal that it has been called on an
element outside of its intended domain of application: exceptions and options. The
function total maps a function that may raise an exception to one that returns an el-
ement in the option type. Thus, if f x results in any exception other than Interrupt

being raised, then total f x returns NONE. If f x raises Interrupt, then total f x like-
wise raises Interrupt. If f x returns y, then total f x returns SOME y.

The function total has an inverse partial. Generally speaking, (partial err o total) f

equals f, provided that err is the only exception that f raises. Similarly, (total o partial err) f

is equal to f.

Failure
When application of the second argument to the third argument raises Interrupt.

Example

- 3 div 0;
! Uncaught exception:
! Div

- total (op div) (3,0);
> val it = NONE : int option

- (partial Div o total) (op div) (3,0);
! Uncaught exception:
! Div

See also
Lib.partial.

tprove (Defn)

tprove : defn * tactic -> thm * thm

Synopsis
Prove termination of a defn.

tprove 783

Description

tprove takes a defn and a tactic, and uses the tactic to prove the termination constraints
of the defn. A pair of theorems (eqns,ind) is returned: eqns is the unconstrained re-
cursion equations of the defn, and ind is the corresponding induction theorem for the
equations, also unconstrained.

tprove and tgoal can be seen as analogues of prove and set_goal in the specialized
domain of proving termination of recursive functions.

It is up to the user to store the results of tprove in the current theory segment.

Failure

tprove (defn,tac) fails if tac fails to prove the termination conditions of defn.

tprove (defn,tac) fails if defn represents a non-recursive or primitive recursive func-
tion.

Example

Suppose that we have defined a version of Quicksort as follows:

- val qsort_defn =
Hol_defn "qsort"

‘(qsort ___ [] = []) /\
(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))
(x :: qsort ord (FILTER (ord x) rst)))‘

Also suppose that a tactic tac proves termination of qsort. (This tactic has probably

784 Chapter 1. Pre-defined ML Identifiers

been built by interactive proof after starting a goalstack with tgoal qsort_defn.) Then

- val (qsort_eqns, qsort_ind) = tprove(qsort_defn, tac);

> val qsort_eqns =
|- (qsort v0 [] = []) /\

(qsort ord (x::rst) =
APPEND (qsort ord (FILTER ($~ o ord x) rst))

(x::qsort ord (FILTER (ord x) rst))) : thm

val qsort_ind =
|- !P.

(!v0. P v0 []) /\
(!ord x rst.

P ord (FILTER ($~ o ord x) rst) /\
P ord (FILTER (ord x) rst) ==> P ord (x::rst))

==>
!v v1. P v v1 : thm

Comments
The recursion equations returned by a successful invocation of tprove are automatically
added to the global compset accessed by EVAL.

See also
Defn.tgoal, Defn.Hol defn, bossLib.EVAL.

trace (Feedback)

trace : string * int -> (’a -> ’b) -> ’a -> ’b

Synopsis
Invoke a function with a specified level of tracing.

Description
The trace function is used to set the value of a tracing variable for the duration of one
top-level function call.

A call to trace (nm,i) f x attempts to set the tracing variable associated with the
string nm to value i. Then it evaluates f x and returns the resulting value after restoring
the trace level of nm.

trace 785

Failure

Fails if the name given is not associated with a registered tracing variable. Also fails if
the function invocation fails.

Example

- load "mesonLib";

- trace ("meson",2) prove
(concl SKOLEM_THM,mesonLib.MESON_TAC []);

0 inferences so far. Searching with maximum size 0.
0 inferences so far. Searching with maximum size 1.
Internal goal solved with 2 MESON inferences.
0 inferences so far. Searching with maximum size 0.
0 inferences so far. Searching with maximum size 1.
Internal goal solved with 2 MESON inferences.
0 inferences so far. Searching with maximum size 0.
0 inferences so far. Searching with maximum size 1.
Internal goal solved with 2 MESON inferences.
0 inferences so far. Searching with maximum size 0.
0 inferences so far. Searching with maximum size 1.
Internal goal solved with 2 MESON inferences.
solved with 2 MESON inferences.

> val it = |- !P. (!x. ?y. P x y) = ?f. !x. P x (f x) : thm

- traces();

> val it =
[{default = 1, name = "meson", trace_level = 1},
{default = 10, name = "Subgoal number", trace_level = 10},
{default = 0, name = "Rewrite", trace_level = 0},
{default = 0, name = "Ho_Rewrite", trace_level = 0}]

See also
Feedback, Feedback.register trace, Feedback.reset trace, Feedback.reset traces,
Feedback.set trace, Feedback.traces, Lib.with flag.

786 Chapter 1. Pre-defined ML Identifiers

traces (Feedback)

traces : unit -> {name : string, current_value : int,
default_value : int, maximum : int} list

Synopsis
Returns a list of registered tracing variables.

Description
The function traces is part of the interface to a collection of variables that control
the verboseness of various tools within the system. Tracing can be useful both when
debugging proofs (with the simplifier for example), and also as a guide to how an
automatic proof is proceeding (with mesonLib for example).

Failure
Never fails.

Example

- traces();
> val it =

[{default = 10, name = "Subgoal number", trace_level = 10},
{default = 0, name = "Rewrite", trace_level = 0},
{default = 0, name = "Ho_Rewrite", trace_level = 0}]

See also
Feedback.register trace, Feedback.set trace, Feedback.reset trace,
Feedback.reset traces, Feedback.trace.

TRANS (Thm)

TRANS : (thm -> thm -> thm)

Synopsis
Uses transitivity of equality on two equational theorems.

try 787

Description
When applied to a theorem A1 |- t1 = t2 and a theorem A2 |- t2 = t3, the inference
rule TRANS returns the theorem A1 u A2 |- t1 = t3.

A1 |- t1 = t2 A2 |- t2 = t3
------------------------------- TRANS

A1 u A2 |- t1 = t3

Failure
Fails unless the theorems are equational, with the right side of the first being the same
as the left side of the second.

Example

- val t1 = ASSUME ‘‘a:bool = b‘‘ and t2 = ASSUME ‘‘b:bool = c‘‘;
val t1 = [.] |- a = b : thm
val t2 = [.] |- b = c : thm

- TRANS t1 t2;
val it = [..] |- a = c : thm

See also
Thm.EQ MP, Drule.IMP TRANS, Thm.REFL, Thm.SYM.

try (Lib)

try : (’a -> ’b) -> ’a -> ’b

Synopsis
Apply a function and print any exceptions

Description
The application try f x evaluates f x; if this evaluation raises an exception e, then e is
examined and some information about it is printed before e is re-raised. If f x evaluates
to y, then y is returned.

Often, a HOL_ERR exception can propagate all the way to the top level. Unfortunately,
the information held in the exception is not then printed. try can often display this
information.

788 Chapter 1. Pre-defined ML Identifiers

Failure
When application of the first argument to the second raises an exception.

Example

- mk_comb (T,F);
! Uncaught exception:
! HOL_ERR

- try mk_comb (T,F);

Exception raised at Term.mk_comb:
incompatible types
! Uncaught exception:
! HOL_ERR

Evaluation order can be significant. ML evaluates try M N by evaluating M (yielding f

say) and N (yielding x say), and then f is applied to x. Any exceptions raised in the
course of evaluating M or N will not be detected by try. In such cases it is better to use
Raise. In the following example, the erroneous construction of an abstraction is not
detected by try and the exception propagates all the way to the top level; however,
Raise does handle the exception.

- try mk_comb (T, mk_abs(T,T));
! Uncaught exception:
! HOL_ERR

- mk_comb (T, mk_abs(T,T)) handle e => Raise e;

Exception raised at Term.mk_abs:
Bvar not a variable
! Uncaught exception:
! HOL_ERR

See also
Feedback.Raise, Lib.trye.

TRY (Tactical)

TRY : (tactic -> tactic)

TRY CONV 789

Synopsis
Makes a tactic have no effect rather than fail.

Description
For any tactic T, the application TRY T gives a new tactic which has the same effect as T

if that succeeds, and otherwise has no effect.

Failure
The application of TRY to a tactic never fails. The resulting tactic never fails.

See also
Tactical.CHANGED TAC, VALID.

TRY_CONV (Conv)

TRY_CONV : (conv -> conv)

Synopsis
Attempts to apply a conversion; applies identity conversion in case of failure.

Description
TRY_CONV c "t" attempts to apply the conversion c to the term "t"; if this fails, then the
identity conversion applied instead. That is, if c is a conversion that maps a term "t"

to the theorem |- t = t’, then the conversion TRY_CONV c also maps "t" to |- t = t’.
But if c fails when applied to "t", then TRY_CONV c "t" returns |- t = t.

Failure
Never fails.

See also
Conv.ALL CONV.

trye (Lib)

trye : (’a -> ’b) -> ’a -> ’b

790 Chapter 1. Pre-defined ML Identifiers

Synopsis
Maps exceptions into HOL_ERR

Description
The standard exception for HOL applications to raise is HOL_ERR. The use of a single
exception simplifies the writing of exception handlers and facilities for decoding and
printing error messages. However, ML functions that raise exceptions, such as hd and
many others, are often used to implement HOL programs. In such cases, trye may be
used to coerce exceptions into applications of HOL_ERR. Note however, that the Interrupt

exception is not coerced by trye.
The application trye f x evaluates f x; if this evaluates to y, then y is returned.

However, if evaluation raises an exception e, there are three cases: if e is Interrupt,
then it is raised; if e is HOL_ERR, then it is raised; otherwise, e is mapped to an application
of HOL_ERR and then raised.

Failure
Fails if the function application fails.

Example

- hd [];
! Uncaught exception:
! Empty

- trye hd [];
! Uncaught exception:
! HOL_ERR

- trye (fn _ => raise Interrupt) 1;
> Interrupted

See also
Lib, Feedback.Raise, Lib.try.

tryfind (Lib)

tryfind : (’a -> ’b) -> ’a list -> ’b

Synopsis
Returns the result of the first successful application of a function to the elements of a
list.

type abbrev 791

Description
tryfind f [x1,...,xn] returns (f xi) for the first xi in the list for which application
of f does not raise an exception. However, if Interrupt is raised in the course of some
application of f xi, then tryfind f [x1,...,xn] raises Interrupt.

Failure
Fails if the application of f fails for all elements in the list. This will always be the case
if the list is empty.

See also
Lib.first, Lib.mem, Lib.exists, Lib.all, Lib.assoc, Lib.rev assoc, Lib.assoc1,
Lib.assoc2.

type_abbrev (Parse)

Parse.type_abbrev : string * hol_type -> unit

Synopsis
Establishes a type abbreviation.

Description
A call to type_abbrev(s,ty) sets up a type abbreviation that will cause the parser to
treat the string s to be treated as a synonym for the type ty. Moreover, if ty includes
any type variables, then the abbreviation is treated as a type operator taking as many
parameters as appear in ty. The order of the parameters will be the alphabetic ordering
of the type variables’ names.

Abbreviations work at the level of the names of type operators. It is thus possible to
link a binary infix to an operator that is in turn an abbreviation.

Failure
Never fails.

792 Chapter 1. Pre-defined ML Identifiers

Example
This is a simple abbreviation.

- type_abbrev ("set", ‘‘:’a -> bool‘‘);
> val it = () : unit

- ‘‘:num set‘‘;
> val it = ‘‘:num -> bool‘‘ : hol_type

Here, the abbreviation is set up and provided with its own infix symbol.

- type_abbrev ("rfunc", ‘‘:’b -> ’a‘‘);
> val it = () : unit

- add_infix_type {Assoc = RIGHT, Name = "rfunc",
ParseName = SOME "<-", Prec = 50};

> val it = () : unit

- ‘‘:num <- bool‘‘;
> val it = ‘‘:bool -> num‘‘ : hol_type

Comments
Pretty-printing abbreviations well is complicated, and as yet unimplemented. As is com-
mon with most of the parsing and printing functions, there is a companion temp_type_abbrev

function that does not cause the abbreviation effect to persist when the theory is ex-
ported.

See also
add infix type, add type.

type_of (Term)

type_of : term -> hol_type

Synopsis
Returns the type of a term.

Failure
Never fails.

type rws 793

Example

- type_of boolSyntax.universal;
> val it = ‘:(’a -> bool) -> bool‘ : hol_type

type_rws (bossLib)

type_rws : string -> thm list

Synopsis

List rewrites for a concrete type.

Description

An application type_rws s, where s is the name of a declared datatype, returns a list
of rewrite rules corresponding to the types. The list typically contains theorems about
the distinctness and injectivity of constructors, the definition of the ’case’ constant in-
troduced at the time the type was defined, and any extra rewrites coming from the use
of records.

Failure

If s is not the name of a declared datatype.

794 Chapter 1. Pre-defined ML Identifiers

Example

- type_rws "list";

> val it =
[|- (!v f. case v f [] = v) /\ !v f a0 a1. case v f (a0::a1) = f a0 a1,
|- !a1 a0. ~([] = a0::a1),
|- !a1 a0. ~(a0::a1 = []),
|- !a0 a1 a0’ a1’. (a0::a1 = a0’::a1’) = (a0 = a0’) /\ (a1 = a1’)]

- Hol_datatype ‘point = <| x:num ; y:num |>‘;
<<HOL message: Defined type: "point">>

- type_rws "point";
> val it =

[|- !f a0 a1. case f (point a0 a1) = f a0 a1,
|- !a0 a1 a0’ a1’.

(point a0 a1 = point a0’ a1’) = (a0 = a0’) /\ (a1 = a1’),
|- !z x p. p with <|y := x; x := z|> = p with <|x := z; y := x|>,
|- (!x p. (p with y := x).x = p.x) /\ (!x p. (p with x := x).y = p.y) /\

(!x p. (p with x := x).x = x) /\ !x p. (p with y := x).y = x,
|- (!n n0. (point n n0).x = n) /\ !n n0. (point n n0).y = n0,
|- (!n1 n n0. point n n0 with x := n1 = point n1 n0) /\

!n1 n n0. point n n0 with y := n1 = point n n1,
|- (!p. p with x := p.x = p) /\ !p. p with y := p.y = p,
|- (!x2 x1 p. p with <|x := x1; x := x2|> = p with x := x1) /\

!x2 x1 p. p with <|y := x1; y := x2|> = p with y := x1,
|- (!p f. (p with y updated_by f).x = p.x) /\

(!p f. (p with x updated_by f).y = p.y) /\
(!p f. (p with x updated_by f).x = f p.x) /\
!p f. (p with y updated_by f).y = f p.y,

|- !p n0 n. p with <|x := n0; y := n|> = <|x := n0; y := n|>]

Comments
RW_TAC and SRW_TAC automatically include these rewrites.

See also
bossLib.rewrites, bossLib.RW TAC.

type_subst (Type)

type_subst : hol_type subst -> hol_type -> hol_type

type var in 795

Synopsis
Instantiates types in a type.

Description
If theta = [{redex_1,residue_1},...,{redex_n,residue_n}] is a (hol_type,hol_type) subst,
where the redex_i are the types to be substituted for, and the residue_i the replace-
ments, and ty is a type to instantiate, the call type_subst theta ty will replace each oc-
currence of a redex_i by the corresponding residue_i throughout ty. The replacements
will be performed in parallel. If several of the type instantiations are applicable, the
choice is undefined. Each redex_i ought to be a type variable, but if it isn’t, it will never
be replaced in ty. Also, it is not necessary that any or all of the types redex_1...redex_n
should in fact appear in ty.

Failure
Never fails.

Example

- type_subst [alpha |-> bool] (Type ‘:’a # ’b‘);
> val it = ‘:bool # ’b‘ : hol_type

- type_subst [Type‘:’a # ’b‘ |-> Type ‘:num‘, alpha |-> bool]
(Type‘:’a # ’b‘);

> val it = ‘:bool # ’b‘ : hol_type

See also
Term.inst, Thm.INST TYPE, Lib.|->, Term.subst.

type_var_in (Type)

type_var_in : hol_type -> hol_type -> bool

Synopsis
Checks if a type variable occurs in a type.

Description
An invocation type_var_in tyv ty returns true if tyv occurs in ty. Otherwise, it returns
false.

796 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if tyv is not a type variable.

Example

- type_var_in alpha (bool --> alpha);
> val it = true : bool

- type_var_in alpha bool;
> val it = false : bool

Comments
Can be useful in enforcing side conditions on inference rules.

See also
Type.type vars, Type.type varsl, Type.exists tyvar.

type_vars (Type)

type_vars : hol_type -> hol_type list

Synopsis
Returns the set of type variables in a type.

Description
An invocation type_vars ty returns a list representing the set of type variables occurring
in ty.

Failure
Never fails.

Example

- type_vars ((alpha --> beta) --> bool --> beta);
> val it = [‘:’a‘, ‘:’b‘] : hol_type list

Comments
Code should not depend on how elements are arranged in the result of type_vars.

type vars in term 797

See also
Type.type varsl, Type.type var in, Type.exists tyvars, Type.polymorphic,
Term.free vars.

type_vars_in_term (Term)

type_vars_in_term : term -> hol_type list

Synopsis
Return the type variables occurring in a term.

Description
An invocation type_vars_in_term M returns the set of type variables occurring in M.

Failure
Never fails.

Example

- type_vars_in_term (concl boolTheory.ONE_ONE_DEF);
> val it = [‘:’b‘, ‘:’a‘] : hol_type list

See also
Term.free vars, Type.type vars.

type_varsl (Type)

type_varsl : hol_type list -> hol_type list

Synopsis
Returns the set of type variables in a list of types.

Description
An invocation type_varsl [ty1,...,tyn] returns a list representing the set-theoretic
union of the type variables occurring in ty1,...,tyn.

798 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

- type_varsl [alpha, beta, bool, ((alpha --> beta) --> bool --> beta)];
> val it = [‘:’a‘, ‘:’b‘] : hol_type list

Comments
Code should not depend on how elements are arranged in the result of type_varsl.

See also
Type.type vars, Type.type var in, Type.exists tyvars, Type.polymorphic,
Term.free vars.

TypeBase

structure TypeBase

Synopsis
A database of facts stemming from datatype declarations

Description
The structure TypeBase provides an interface to a database that is updated when a new
datatype is introduced with Hol_datatype. When a new datatype is declared, a collection
of theorems ”about” the type can be automatically derived. These are indeed proved,
and are stored in the current theory segment. They are also automatically stored in
TypeBase.

The interface to TypeBase is intended to provide support for writers of high-level tools
for reasoning about datatypes.

types 799

Example

- Hol_datatype ‘tree = Leaf
| Node of ’a => tree => tree‘;

<<HOL message: Defined type: "tree">>
> val it = () : unit

- TypeBase.read "tree";
> val it =
SOME-----------------------

HOL datatype: "tree"
Primitive recursion:
|- !f0 f1.

?fn.
(!a. fn (Leaf a) = f0 a) /\
!a0 a1. fn (Node a0 a1) = f1 a0 a1 (fn a0) (fn a1)

Case analysis:
|- (!f f1 a. case f f1 (Leaf a) = f a) /\

!f f1 a0 a1. case f f1 (Node a0 a1) = f1 a0 a1
Size:
|- (!a. tree_size (Leaf a) = 1 + a) /\

!a0 a1. tree_size (Node a0 a1) = 1 + (tree_size a0 + tree_size a1)
Induction:
|- !P.

(!n. P (Leaf n)) /\ (!t t0. P t /\ P t0 ==> P (Node t t0)) ==>
!t. P t

Case completeness: |- !t. (?n. t = Leaf n) \/ ?t’ t0. t = Node t’ t0
One-to-one:
|- (!a a’. (Leaf a = Leaf a’) = (a = a’)) /\

!a0 a1 a0’ a1’.
(Node a0 a1 = Node a0’ a1’) = (a0 = a0’) /\ (a1 = a1’)

Distinctness: |- !a1 a0 a. ~(Leaf a = Node a0 a1) : tyinfo option

See also
bossLib.Hol datatype.

types (Theory)

types : string -> (string * int) list

Synopsis
Lists the types in the named theory.

800 Chapter 1. Pre-defined ML Identifiers

Description
The function types should be applied to a string which is the name of an ancestor theory
(including the current theory; the special string "-" is always interpreted as the current
theory). It returns a list of all the type constructors declared in the named theory, in the
form of arity-name pairs.

Failure
Fails unless the named theory is an ancestor, or the current theory.

Example

- load "bossLib";
> val it = () : unit

- itlist union (map types (ancestry "-")) [];
> val it =

[("one", 0), ("option", 1), ("prod", 2), ("sum", 2),
("fun", 2), ("ind", 0), ("bool", 0), ("num", 0),
("recspace", 1), ("list", 1)] : (string * int) list

See also
Theory.constants, Theory.current axioms, Theory.current definitions,
Theory.current theorems, Theory.new type, Definition.new type definition,
Theory.parents, Theory.ancestry.

tyvars (hol88Lib)

Compat.tyvars : term -> type list

Synopsis
Returns a list of the type variables free in a term.

Description
Found in the hol88 library. When applied to a term, tyvars returns a list (possibly
empty) of the type variables which are free in the term.

Failure
Never fails. The function is not accessible unless the hol88 library has been loaded.

tyvarsl 801

Example

- theorem "pair" "PAIR";
|- !x. (FST x,SND x) = x

- Compat.tyvars (concl PAIR);
val it = [(==‘:’b‘==),(==‘:’a‘==)] : hol_type list

- Compat.tyvars (--‘x + 1 = SUC x‘--);
[] : hol_type list

Comments
tyvars does not appear in hol90; use type_vars_in_term instead. WARNING: the order
of the list returned from tyvars need not be the same as that returned from type_vars_in_term.

In the current HOL logic, there is no binding operation for types, so ‘is free in’ is
synonymous with ‘appears in’.

See also
hol88Lib.tyvarsl.

tyvarsl (hol88Lib)

Compat.tyvarsl : (term list -> type list)

Synopsis
Returns a list of the type variables free in a list of terms.

Description
Found in the hol88 library. When applied to a list of terms, tyvarsl returns a list (pos-
sibly empty) of the type variables which are free in any of those terms.

Failure
Never fails. The function is not accessible unless the hol88 library has been loaded.

Example

- tyvarsl [--‘!x. x = 1‘--, --‘!x:’a. x = x‘--];
[(==‘:’a‘==)] : hol_type list

Uses
Finding all the free type variables in the assumptions of a theorem, as a check on the
validity of certain inferences.

802 Chapter 1. Pre-defined ML Identifiers

Comments
tyvarsl does not appear in hol90. In the current HOL logic, there is no binding opera-
tion for types, so ‘is free in’ is synonymous with ‘appears in’.

See also
hol88Lib.tyvars.

U (Lib)

U : ’’a list list -> ’’a list

Synopsis
Takes the union of a list of sets.

Description
An application U [l1, ..., ln] is equivalent to union l1 (... (union ln-1, ln)...).
Thus, every element that occurs in one of the lists will appear in the result.

Failure
Never fails.

Example

- U [[1,2,3], [4,5,6], [1,2,5]];
> val it = [3, 6, 4, 1, 2, 5] : int list

Comments
The order in which the elements occur in the resulting list should not be depended
upon.

High performance set operations may be found in the ML Standard Basis Library.
ML equality types are used in the implementation of U and its kin. This limits its

applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op U, Lib.union, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq, Lib.intersect,
Lib.set diff.

uncurry 803

uncurry (Lib)

uncurry : (’a -> ’b -> ’c) -> (’a * ’b) -> ’c

Synopsis
Converts a function taking two arguments into a function taking a single paired argu-
ment.

Description
The application uncurry f returns fn (x,y) => f x y, so that

uncurry f (x,y) = f x y

Failure
Never fails.

Example

- fun add x y = x + y
> val add = fn : int -> int -> int

- uncurry add (3,4);
> val it = 7 : int

See also
Lib, Lib.curry.

UNCURRY_CONV (PairRules)

UNCURRY_CONV : conv

Synopsis
Uncurrys an application of an abstraction.

804 Chapter 1. Pre-defined ML Identifiers

Example

- UNCURRY_CONV (Term ‘(\x y. x + y) 1 2‘);
> val it = |- (\x y. x + y) 1 2 = (\(x,y). x + y) (1,2) : thm

Failure
UNCURRY_CONV tm fails if tm is not double abstraction applied to two arguments

See also
PairRules.CURRY CONV.

UNCURRY_EXISTS_CONV (PairRules)

UNCURRY_EXISTS_CONV : conv

Synopsis
Uncurrys consecutive existential quantifications into a paired existential quantification.

Example

- UNCURRY_EXISTS_CONV (Term ‘?x y. x + y = y + x‘);
> val it = |- (?x y. x + y = y + x) = ?(x,y). x + y = y + x : thm

- UNCURRY_EXISTS_CONV (Term ‘?(w,x) (y,z). w+x+y+z = z+y+x+w‘);
> val it =

|- (?(w,x) (y,z). w + x + y + z = z + y + x + w) =
?((w,x),y,z). w + x + y + z = z + y + x + w : thm

Failure
UNCURRY_EXISTS_CONV tm fails if tm is not a consecutive existential quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.CURRY EXISTS CONV,
PairRules.CURRY FORALL CONV, PairRules.UNCURRY FORALL CONV.

UNCURRY_FORALL_CONV (PairRules)

UNCURRY_FORALL_CONV : conv

UNDISCH 805

Synopsis
Uncurrys consecutive universal quantifications into a paired universal quantification.

Example

- UNCURRY_FORALL_CONV (Term ‘!x y. x + y = y + x‘);
> val it = |- (!x y. x + y = y + x) = !(x,y). x + y = y + x : thm

- UNCURRY_FORALL_CONV (Term ‘!(w,x) (y,z). w+x+y+z = z+y+x+w‘);
> val it =

|- (!(w,x) (y,z). w + x + y + z = z + y + x + w) =
!((w,x),y,z). w + x + y + z = z + y + x + w : thm

Failure
UNCURRY_FORALL_CONV tm fails if tm is not a consecutive universal quantification.

See also
PairRules.CURRY CONV, PairRules.UNCURRY CONV, PairRules.CURRY FORALL CONV,
PairRules.CURRY EXISTS CONV, PairRules.UNCURRY EXISTS CONV.

UNDISCH (Drule)

UNDISCH : (thm -> thm)

Synopsis
Undischarges the antecedent of an implicative theorem.

Description

A |- t1 ==> t2
---------------- UNDISCH

A, t1 |- t2

Note that UNDISCH treats "~u" as "u ==> F".

Failure
UNDISCH will fail on theorems which are not implications or negations.

Comments
If the antecedent already appears in the hypotheses, it will not be duplicated. However,
unlike DISCH, if the antecedent is alpha-equivalent to one of the hypotheses, it will still
be added to the hypotheses.

806 Chapter 1. Pre-defined ML Identifiers

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,
Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN, Drule.NEG DISCH,
Tactic.STRIP TAC, Drule.UNDISCH ALL, Tactic.UNDISCH TAC.

UNDISCH_ALL (Drule)

UNDISCH_ALL : (thm -> thm)

Synopsis
Iteratively undischarges antecedents in a chain of implications.

Description

A |- t1 ==> ... ==> tn ==> t
------------------------------ UNDISCH_ALL

A, t1, ..., tn |- t

Note that UNDISCH_ALL treats "~u" as "u ==> F".

Failure
Unlike UNDISCH, UNDISCH_ALL will, when called on something other than an implication
or negation, return its argument unchanged rather than failing.

Comments
Identical terms which are repeated in A, "t1", ..., "tn" will not be duplicated in the
hypotheses of the resulting theorem. However, if two or more alpha-equivalent terms
appear in A, "t1", ..., "tn", then each distinct term will appear in the result.

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,
Drule.NEG DISCH, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,
Tactic.STRIP TAC, Drule.UNDISCH, Tactic.UNDISCH TAC.

UNDISCH_TAC (Tactic)

UNDISCH_TAC : term -> tactic

UNDISCH THEN 807

Synopsis
Undischarges an assumption.

Description

A ?- t
==================== UNDISCH_TAC v
A - {v} ?- v ==> t

Failure
UNDISCH_TAC will fail if "v" is not an assumption.

Comments
UNDISCHarging v will remove all assumptions which are identical to v, but those which
are alpha-equivalent will remain.

See also
Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC, Thm cont.DISCH THEN,
Drule.NEG DISCH, Tactic.FILTER DISCH TAC, Thm cont.FILTER DISCH THEN,
Tactic.STRIP TAC, Drule.UNDISCH, Drule.UNDISCH ALL.

UNDISCH_THEN (Thm_cont)

Thm_cont.UNDISCH_THEN : term -> thm_tactic -> tactic

Synopsis
Discharges the assumption given and passes it to a theorem-tactic.

Description
UNDISCH_THEN finds the first assumption equal to the term given, removes it from the as-
sumption list, ASSUMEs it, passes it to the theorem-tactic and then applies the consequent

808 Chapter 1. Pre-defined ML Identifiers

tactic. Thus:

UNDISCH_THEN t f ([a1,... ai, t, aj, ... an], goal) =
f (ASSUME t) ([a1,... ai, aj,... an], goal)

For example, if

A u {t1} ?- t
=============== f (ASSUME t1)
B u {t1} ?- v

then

A u {t1} ?- t
=============== UNDISCH_THEN t1 f

B ?- v

Failure
UNDISCH_THEN will fail on goals where the given term is not in the assumption list.

See also
Tactical.PAT ASSUM, Thm.DISCH, Drule.DISCH ALL, Tactic.DISCH TAC,
Thm cont.DISCH THEN, Drule.NEG DISCH, Tactic.FILTER DISCH TAC,
Thm cont.FILTER DISCH THEN, Tactic.STRIP TAC, Drule.UNDISCH, Drule.UNDISCH ALL,
Tactic.UNDISCH TAC.

union (Lib)

union : ’’a list -> ’’a list -> ’’a list

Synopsis
Computes the union of two ‘sets’.

Description
If l1 and l2 are both ‘sets’ (lists with no repeated members), union l1 l2 returns the
set union of l1 and l2. In the case that l1 or l2 is not a set, all the user can depend on
is that union l1 l2 returns a list l3 such that every unique element of l1 and l2 is in l3

and each element of l3 is found in either l1 or l2.

Failure
Never fails.

universal 809

Example

- union [1,2,3] [1,5,4,3];
val it = [2,1,5,4,3] : int list

- union [1,1,1] [1,2,3,2];
val it = [1,2,3,2] : int list

- union [1,2,3,2] [1,1,1] ;
val it = [3,2,1,1,1] : int list

Comments
Do not make the assumption that the order of items in the list returned by union is fixed.
Later implementations may use different algorithms, and return a different concrete
result while still meeting the specification.

High performance set operations may be found in the ML Standard Basis Library.
ML equality types are used in the implementation of union and its kin. This limits its

applicability to types that allow equality. For other types, typically abstract ones, use
the ‘op ’ variants.

See also
Lib.op union, Lib.U, Lib.mk set, Lib.mem, Lib.insert, Lib.set eq, Lib.intersect,
Lib.set diff, Lib.subtract.

universal (boolSyntax)

universal : term

Synopsis
Constant denoting universal quantification.

Description
The ML variable boolSyntax.universal is bound to the term bool$!.

See also
boolSyntax.equality, boolSyntax.implication, boolSyntax.select, boolSyntax.T,
boolSyntax.F, boolSyntax.universal, boolSyntax.existential, boolSyntax.exists1,
boolSyntax.conjunction, boolSyntax.disjunction, boolSyntax.negation,
boolSyntax.conditional, boolSyntax.bool case, boolSyntax.let tm,
boolSyntax.arb.

810 Chapter 1. Pre-defined ML Identifiers

UNPBETA_CONV (PairRules)

UNPBETA_CONV : (term -> conv)

Synopsis
Creates an application of a paired abstraction from a term.

Description
The user nominates some pair structure of variables p and a term t, and UNPBETA_CONV

turns t into an abstraction on p applied to p.

------------------ UNPBETA_CONV "p" "t"
|- t = (\p. t) p

Failure
Fails if p is not a paired structure of variables.

See also
PairRules.PBETA CONV, PairedLambda.PAIRED BETA CONV.

unzip (Lib)

unzip : (’a * ’b) list -> (’a list * ’b list)

Synopsis
Converts a list of pairs into a pair of lists.

Description
unzip [(x1,y1),...,(xn,yn)] returns ([x1,...,xn],[y1,...,yn]).

Failure
Never fails.

Comments
Identical to Lib.split.

update overload maps 811

See also
Lib.split, Lib.zip, Lib.combine.

update_overload_maps (Parse)

update_overload_maps :
string -> ({Name : string, Thy : string} list *

{Name : string, Thy : string} list) -> unit

Synopsis
Adds to the parser’s overloading maps.

Description
The parser/pretty-printer for terms maintains two maps between constants and strings.
From strings to terms, the map is from one string to a set of terms. Each term represents
a possible overloading for the string. In the other direction, a term maps to just one
string, its preferred representation.

The function update_overload_maps adds to (potentially overriding old mappings in)
both of these maps. Its first parameter, a string, is the string involved in both directions.
The two lists of Name-Thy records specify terms for the two maps. The first component of
the tuple, specifies terms that the string will be overloaded to. (Note that it is perfectly
reasonable to ”overload” to just one term, and that this is the default situation for newly
defined constants.)

The second component of the tuple sets the given string as the preferred identifier for
the given terms.

Failure
Fails if any of the Name-Thy pairs doesn’t correspond to an actual constant.

See also
Parse.clear overloads on, Parse.hide, Parse.overload on,
Parse.remove ovl mapping, Parse.reveal.

upto (Lib)

upto : int -> int -> int list

812 Chapter 1. Pre-defined ML Identifiers

Synopsis
Builds a list of integers

Description
An invocation upto b t returns the list [b, b+1, ..., t], if b <= t. Otherwise, the
empty list is returned.

Failure
Never fails.

Example

- upto 2 10;
> val it = [2,3,4,5,6,7,8,9,10]

uptodate_term (Theory)

uptodate_term : term -> bool

Synopsis
Tells if a term is out of date.

Description
Operations in the current theory segment of HOL allow one to redefine types and con-
stants. This can cause theorems to become invalid. As a result, HOL has a rudimentary
consistency maintenance system built around the notion of whether type operators and
term constants are ”up-to-date”.

An invocation uptodate_term M checks M to see if it has been built from any out-of-
date components. The definition of out-of-date is mutually recursive among types,
terms, and theorems. If M is a variable, it is out-of-date if its type is out-of-date. If M

is a constant, it is out-of-date if it has been redeclared, or if its type is out-of-date, or
if the witness theorem used to justify its existence is out-of-date. If M is a combination,
it is out-of-date if either of its components are out-of-date. If M is an abstraction, it is
out-of-date if either the bound variable or the body is out-of-date.

All items from ancestor theories are fixed, and unable to be overwritten, thus are
always up-to-date.

Failure
Never fails.

uptodate thm 813

Example

- Define ‘fact x = if x=0 then 1 else x * fact (x-1)‘;
Equations stored under "fact_def".
Induction stored under "fact_ind".
> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- val M = Term ‘!x. 0 < fact x‘;
> val M = ‘!x. 0 < fact x‘ : term

- uptodate_term M;
> val it = true : bool

- delete_const "fact";
> val it = () : unit

- uptodate_term M;
> val it = false : bool

See also
Theory.uptodate type, Theory.uptodate thm.

uptodate_thm (Theory)

uptodate_thm : thm -> bool

Synopsis
Tells if a theorem is out of date.

Description
Operations in the current theory segment of HOL allow one to redefine types and con-
stants. This can cause theorems to become invalid. As a result, HOL has a rudimentary
consistency maintenance system built around the notion of whether type operators and
term constants are ”up-to-date”.

An invocation uptodate_thm th should check th to see if it has been proved from any
out-of-date components. However, HOL does not currently keep the proofs of theorems,
so a simpler approach is taken. Instead, th is checked to see if its hypotheses and
conclusions are up-to-date.

All items from ancestor theories are fixed, and unable to be overwritten, thus are
always up-to-date.

814 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

- Define ‘fact x = if x=0 then 1 else x * fact (x-1)‘;
Equations stored under "fact_def".
Induction stored under "fact_ind".
> val it = |- fact x = (if x = 0 then 1 else x * fact (x - 1)) : thm

- val th = EVAL (Term ‘fact 3‘);
> val th = |- fact 3 = 6 : thm

- uptodate_thm th;
> val it = true : bool

- delete_const "fact";
> val it = () : unit

- uptodate_thm th;
> val it = false : bool

Comments
It may happen that a theorem th is proved with the use of another theorem th1 that
subsequently becomes garbage because a constant c was deleted. If c does not occur
in th, then th does not become garbage, which may be contrary to expectation. The
conservative extension property of HOL says that th is still provable, even in the absence
of c.

See also
Theory.uptodate type, Theory.uptodate term, Theory.delete const,
Theory.delete type.

uptodate_type (Theory)

uptodate_type : hol_type -> bool

Synopsis
Tells if a type is out of date.

uptodate type 815

Description
Operations in the current theory segment of HOL allow one to redefine types and con-
stants. This can cause theorems to become invalid. As a result, HOL has a rudimentary
consistency maintenance system built around the notion of whether type operators and
term constants are ”up-to-date”.

An invocation uptodate_type ty, checks ty to see if it has been built from any out
of date components, returning false just in case it has. The definition of out-of-date
is mutually recursive among types, terms, and theorems. A type variable never out-
of-date. A compound type is out-of-date if either (a) its type operator is out-of-date,
or (b) any of its argument types are out-of-date. A type operator is out-of-date if it
has been re-declared or if the witness theorem used to justify the type in the call to
new_type_definition is out-of-date. Only a component of the current theory segment
may be out-of-date. All items from ancestor theories are fixed, and unable to be over-
written, thus are always up-to-date.

Failure
Never fails.

Example

- Hol_datatype ‘foo = A | B of ’a‘;
<<HOL message: Defined type: "foo">>
> val it = () : unit

- val ty = Type ‘:’a foo list‘;
> val ty = ‘:’a foo list‘ : hol_type

- uptodate_type ty;
> val it = true : bool

- delete_type "foo";
> val it = () : unit

- uptodate_type ty;
> val it = false : bool

See also
Theory.uptodate term, Theory.uptodate thm.

816 Chapter 1. Pre-defined ML Identifiers

var_compare (Term)

var_compare : term * term -> order

Synopsis
Total ordering on variables.

Description
An invocation var_compare (v1,v2) will return one of {LESS, EQUAL, GREATER}, accord-
ing to an ordering on term variables. The ordering is transitive and total.

Failure
If v1 and v2 are not both variables.

Example

- var_compare (mk_var("x",bool), mk_var("x",bool --> bool));
> val it = LESS : order

Comments
Used to build high performance datastructures for dealing with sets having many vari-
ables.

See also
Term.empty varset, Term.compare.

var_occurs (Term)

var_occurs : term -> term -> bool

Synopsis
Check if a variable occurs in free in a term.

Description
An invocation var_occurs v M returns true just in case v occurs free in M.

Failure
If the first argument is not a variable.

variant 817

Example

- var_occurs (Term‘x:bool‘) (Term ‘a /\ b ==> x‘);
> val it = true : bool

- var_occurs (Term‘x:bool‘) (Term ‘!x. a /\ b ==> x‘);
> val it = false : bool

Comments
Identical to free_in, except for the requirement that the first argument be a variable.

See also
Term.free vars, Term.free in.

variant (Term)

variant : term list -> term -> term

Synopsis
Modifies a variable name to avoid clashes.

Description
When applied to a list of variables to avoid clashing with, and a variable to modify,
variant returns a variant of the variable to modify, that is, it changes the name as
intuitively as possible to make it distinct from any variables in the list, or any constants.
This is normally done by adding primes to the name.

The exact form of the variable name should not be relied on, except that the original
variable will be returned unmodified unless it is itself in the list to avoid clashing with.

Failure
variant l t fails if any term in the list l is not a variable or if t is not a variable.

818 Chapter 1. Pre-defined ML Identifiers

Example
The following shows a couple of typical cases:

- variant [Term‘y:bool‘, Term‘z:bool‘] (Term‘x:bool‘);
> val it = ‘x‘ : term

- variant [Term‘x:bool‘, Term‘x’:num‘, Term‘x’’:num‘] (Term ‘x:bool‘);
> val it = ‘x’’’‘ : term

while the following shows that clashes with the names of constants are also avoided:

- variant [] (mk_var("T",bool));
> val it = ‘T’‘ : term

The style of renaming can be altered by modifying the reference variable Globals.priming:

- with_flag (priming,SOME "_")
(uncurry variant)
([Term‘x:bool‘, Term‘x’:num‘, Term‘x’’:num‘], Term ‘x:bool‘);

> val it = ‘x_1‘ : term

Uses
The function variant is extremely useful for complicated derived rules which need to
rename variables to avoid free variable capture while still making the role of the variable
obvious to the user.

See also
Term.genvar, Term.prim variant, Globals.priming.

version (Globals)

Globals.version : string

Synopsis
The version of the HOL system being run.

W 819

Example

- Globals.version;

val it = "Kananaskis" : string

W (Lib)

W : (’a -> ’a -> ’b) -> ’a -> ’b

Synopsis
Duplicates function argument : W f x equals f x x.

Description
The W combinator can be understood as a planner: in the application f x x, the function
f can scrutinize x and generate a function that then gets applied to x.

Failure
W f never fails. W f x fails if f x fails or if f x x fails.

Example

- load "tautLib";
- tautLib.TAUT_PROVE (Term ‘(a = b) = (~a = ~b)‘);
> val it = |- (a = b) = (~a = ~b) : thm

- W (GENL o free_vars o concl) it;
> val it = |- !b a. (a = b) = (~a = ~b) : thm

See also
Lib.##, Lib.A, Lib.B, Lib.C, Lib.I, Lib.K, Lib.S.

WARNING_outstream (Feedback)

WARNING_outstream : TextIO.outstream ref

820 Chapter 1. Pre-defined ML Identifiers

Synopsis
Controlling output stream used when printing HOL_WARNING

Description
The value of reference cell WARNING_outstream controls where HOL_WARNING prints its
argument.

The default value of WARNING_outstream is TextIO.stdOut.

Example

- val ostrm = TextIO.openOut "foo";
> val ostrm = <outstream> : outstream

- WARNING_outstream := ostrm;
> val it = () : unit

- HOL_WARNING "Module" "Function" "Sufferin’ Succotash!";
> val it = () : unit

- TextIO.closeOut ostrm;
> val it = () : unit

- val istrm = TextIO.openIn "foo";
> val istrm = <instream> : instream

- print (TextIO.inputAll istrm);
<<HOL warning: Module.Function: Sufferin’ Succotash!>>

See also
Feedback, Feedback.HOL WARNING, Feedback.ERR outstream, Feedback.MESG outstream,
Feedback.emit WARNING.

WARNING_to_string (Feedback)

WARNING_to_string : (string -> string -> string -> string) ref

Synopsis
Alterable function for formatting HOL_WARNING

Description
WARNING_to_string is a reference to a function for formatting the argument to HOL_WARNING.

WF REL TAC 821

The default value of WARNING_to_string is format_WARNING.

Example

- fun alt_WARNING_report s t u =
String.concat["WARNING---", s,".",t,": ",u,"---END WARNING\n"];

- WARNING_to_string := alt_WARNING_report;

- HOL_WARNING "Foo" "bar" "Look out";
WARNING---Foo.bar: Look out---END WARNING
> val it = () : unit

See also
Feedback, Feedback.HOL WARNING, Feedback.format WARNING, Feedback.ERR to string,
Feedback.MESG to string.

WF_REL_TAC (bossLib)

WF_REL_TAC : term quotation -> tactic

Synopsis
Start termination proof.

Description
WF_REL_TAC builds a tactic that starts a termination proof. An invocation WF_REL_TAC q,
where q should parse into a term that denotes a wellfounded relation, builds a tactic tac

that is intended to be applied to a goal arising from an application of tgoal or tprove.
Such a goal has the form

?R. WF R /\ ...

The tactic tac will instantiate R with the relation denoted by q and will attempt various
simplifications of the goal. For example, it will try to automatically prove the well-
foundedness of the relation denoted by q, and will also attempt to simplify the goal
using some basic facts about well-founded relations. Often this can result in a much
simpler goal.

Failure
WF_REL_TAC q fails if q does not parse into a term whose type is an instance of ’a -> ’a -> bool.

822 Chapter 1. Pre-defined ML Identifiers

Example
Suppose that a version of Quicksort had been defined as follows:

val qsort_defn =
Hol_defn "qsort"

‘(qsort ___ [] = []) /\
(qsort ord (x::rst) =

APPEND (qsort ord (FILTER ($~ o ord x) rst))
(x :: qsort ord (FILTER (ord x) rst)))‘;

Then one can start a termination proof as follows: set up a goalstack with tgoal and
then apply WF_REL_TAC with a quotation denoting a suitable wellfounded relation.

- tgoal qsort_defn;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
?R. WF R /\
(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)) /\
!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

- e (WF_REL_TAC ‘measure (LENGTH o SND)‘);

OK..
2 subgoals:
> val it =

!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)

!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst)

Execution of WF_REL_TAC has automatically proved the wellfoundedness of

measure (LENGTH o SND)

and the remainder of the goal has been simplified into a pair of easy goals.

Comments
There are two problems to deal with when trying to prove termination. First, one has to
understand, intuitively and then mathematically, why the function under consideration
terminates. Second, one must be able to phrase this in HOL. In the following, we shall
give a few examples of how this is done.

There are a number of basic and advanced means of specifying wellfounded relations.
The most common starting point for dealing with termination problems for recursive
functions is to find some function, known as a a ’measure’ under which the arguments
of a function call are larger than the arguments to any recursive calls that result.

WF REL TAC 823

For a very simple starter example, consider the following definition of a function that
computes the greatest common divisor of two numbers:

- val gcd_defn = Hol_defn "gcd"
‘(gcd (0,n) = n) /\
(gcd (m,n) = gcd (n MOD m, m))‘;

- Defn.tgoal gcd_defn;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
?R. WF R /\ !v2 n. R (n MOD SUC v2,SUC v2) (SUC v2,n)

The recursion happens in the first argument, and the recursive call in that position
is a smaller number. The way to phrase the termination of gcd in HOL is to use a
‘measure‘ function to map from the domain of gcd—a pair of numbers—to a number.
The definition of measure is equivalent to

measure f x y = (f x < f y).

(The actual definition of measure in prim_recTheory is more primitive.) Now we must
pick out the argument position to measure and invoke WF_REL_TAC:

- e (WF_REL_TAC ‘measure FST‘);
OK..

1 subgoal:
> val it =
!v2 n. n MOD SUC v2 < SUC v2

This goal is easy to prove with a few simple arithmetic facts:

- e (PROVE_TAC [arithmeticTheory.DIVISION, prim_recTheory.LESS_0]);
OK..

Goal proved. ...

Sometimes one needs a measure function that is itself recursive. For example, consider
a type of binary trees and a function that ‘unbalances‘ trees. The algorithm works by
rotating the tree until it gets a Leaf in the left branch, then it recurses into the right

824 Chapter 1. Pre-defined ML Identifiers

branch. At the end of execution the tree has been linearized.

- Hol_datatype
‘btree = Leaf

| Brh of btree => btree‘;

- val Unbal_defn =
Hol_defn "Unbal"
‘(Unbal Leaf = Leaf)

/\ (Unbal (Brh Leaf bt) = Brh Leaf (Unbal bt))
/\ (Unbal (Brh (Brh bt1 bt2) bt) = Unbal (Brh bt1 (Brh bt2 bt)))‘;

- Defn.tgoal Unbal_defn;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
?R. WF R /\

(!bt. R bt (Brh Leaf bt)) /\
!bt bt2 bt1. R (Brh bt1 (Brh bt2 bt)) (Brh (Brh bt1 bt2) bt)

Since the size of the tree is unchanged in the last clause in the definition of Unbal, a
simple size measure will not work. Instead, we can assign weights to nodes in the tree
such that the recursive calls of Unbal decrease the total weight in every case. One such
assignment is

Weight (Leaf) = 0
Weight (Brh x y) = (2 * Weight x) + (Weight y) + 1

It is easiest to use Define to define Weight, but if one is worried about ”polluting” the

WF REL TAC 825

signature, one can also use prove_rec_fn_exists from the Prim_rec structure:

val Weight =
Prim_rec.prove_rec_fn_exists (TypeBase.axiom_of "btree")
(Term‘(Weight (Leaf) = 0) /\

(Weight (Brh x y) = (2 * Weight x) + (Weight y) + 1)‘);

> val Weight =
|- ?Weight.

(Weight Leaf = 0) /\
!x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1 : thm

- e (STRIP_ASSUME_TAC Weight);
OK..

1 subgoal:
> val it =

?R.
WF R /\ (!bt. R bt (Brh Leaf bt)) /\
!bt bt2 bt1. R (Brh bt1 (Brh bt2 bt)) (Brh (Brh bt1 bt2) bt)

0. Weight Leaf = 0
1. !x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1

Now we can invoke WF_REL_TAC:

e (WF_REL_TAC ‘measure Weight‘);
OK..

2 subgoals:
> val it =
!bt bt2 bt1.

Weight (Brh bt1 (Brh bt2 bt)) < Weight (Brh (Brh bt1 bt2) bt)

0. Weight Leaf = 0
1. !x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1

!bt. Weight bt < Weight (Brh Leaf bt)

0. Weight Leaf = 0
1. !x y. Weight (Brh x y) = 2 * Weight x + Weight y + 1

Both of these subgoals are quite easy to prove.
The technique of ‘weighting‘ nodes in a tree in order to prove termination also goes

by the name of ‘polynomial interpretation‘. It must be admitted that finding the correct
weighting for a termination proof is more an art than a science. Typically, one makes a
guess and then tries the termination proof to see if it works.

826 Chapter 1. Pre-defined ML Identifiers

Occasionally, there’s a combination of factors that complicate the termination argu-
ment. For example, the following specification describes a naive pattern matching al-
gorithm on strings (represented as lists here). The function takes four arguments: the
first is the remainder of the pattern being matched. The second is the remainder of the
string being searched. The third argument holds the original pattern to be matched.
The fourth argument is the string being searched. If the pattern (first argument) be-
comes exhausted, then a match has been found and the function returns T. Otherwise,
if the string being searched becomes exhausted, the function returns F.

val match0_defn =
Hol_defn "match0"

‘(match0 [] __ __ __ = T)
/\ (match0 __ [] __ __ = F)
/\ (match0 (p::pp) (s::ss) p0 rs =

if p=s then match0 pp ss p0 rs else
if NULL rs then F

else match0 p0 (TL rs) p0 (TL rs))‘;

- val match = Define ‘match pat str = match0 pat str pat str‘;

The remaining case is when there’s more searching to do; the function checks if the
head of the pattern is the same as the head of the string being searched. If yes, then we
recursively search, using the tail of the pattern and the tail of the string being searched.
If no, that means that we have failed to match the pattern, so we should move one
character ahead in the string being searched and try again. If the string being searched
is empty, however, then we return F. The second and third arguments both represent the
string being searched. The second argument is a kind of ‘local‘ version of the string being
searched; we recurse into it as long as there are matches with the pattern. However,
if the search eventually fails, then the fourth argument, which ‘remembers‘ where the
search started from, is used to restart the search.

So much for the behaviour of the function. Why does it terminate? There are two
recursive calls. The first call reduces the size of the first and second arguments, and
leaves the other arguments unchanged. The second call can increase the size of the first
and second arguments, but reduces the size of the fourth.

This is a classic situation in which to use a lexicographic ordering: some arguments to
the function are reduced in some recursive calls, and some others are reduced in other
recursive calls. Recall that LEX is an infix operator, defined in pairTheory as follows:

LEX R1 R2 = \(x,y) (p,q). R1 x p \/ ((x=p) /\ R2 y q)

In the second recursive call, the length of rs is reduced, and in the first it stays the
same. This motivates having the length of the fourth argument be the first component

WF REL TAC 827

of the lexicographic combination, and the length of the second argument as the second
component.

What we need now is to formalize this. We want to map from the four-tuple of
arguments into a lexicographic combination of relations. This is enabled by inv_image

from relationTheory:

inv_image R f = \x y. R (f x) (f y)

The actual relation maps from the four-tuple of arguments into a pair of numbers (m,n),
where m is the length of the fourth argument, and n is the length of the second argument.
These lengths are then compared lexicographically with respect to less-than (<).

- Defn.tgoal match0_defn;

- e (WF_REL_TAC ‘inv_image ($< LEX $<)
(\(w,x,y,z). (LENGTH z, LENGTH x))‘);

OK..
2 subgoals:
> val it =
!rs ss s p.

(p=s) ==> LENGTH rs < LENGTH rs \/ LENGTH ss < LENGTH (s::ss)

!ss rs s p.
~(p = s) /\ ~NULL rs ==>
LENGTH (TL rs) < LENGTH rs \/
(LENGTH (TL rs) = LENGTH rs) /\ LENGTH (TL rs) < LENGTH (s::ss)

The first subgoal needs a case-split on rs before it is proved by rewriting, and the
seconds is also easy to prove by rewriting.

As a final example, one occasionally needs to recurse over non-concrete data, such as
finite sets or multisets. We can define a ‘fold‘ function (of questionable utility) for finite
sets as follows:

load "pred_setTheory"; open pred_setTheory;

val FOLD_SET_defn =
Defn.Hol_defn "FOLD_SET"
‘FOLD_SET (s:’a->bool) (b:’b) =

if FINITE s then
if s={} then b
else FOLD_SET (REST s) (f (CHOICE s) b)

else ARB‘;

Typically, such functions terminate because the cardinality of the set (or multiset) is

828 Chapter 1. Pre-defined ML Identifiers

reduced in the recursive call, and this is another application of measure:

val (FOLD_SET_0, FOLD_SET_IND) =
Defn.tprove (FOLD_SET_defn,
WF_REL_TAC ‘measure (CARD o FST)‘
THEN PROVE_TAC [CARD_PSUBSET, REST_PSUBSET]);

The desired recursion equation

|- FINITE s ==> (FOLD_SET f s b =
if s = {} then b
else FOLD_SET f (REST s) (f (CHOICE s) b))

is easy to obtain from FOLD_SET_0.

See also
Defn.tgoal, Defn.tprove, bossLib..Hol defn, TotalDefn.guessR.

WF_REL_TAC (TotalDefn)

WF_REL_TAC : term quotation -> tactic

Synopsis
Initiate a termination proof.

Description
bossLib.WF_REL_TAC is identical to TotalDefn.WF_REL_TAC.

See also
bossLib.WF REL TAC.

with_exn (Lib)

with_exn : (’a -> ’b) -> ’a -> exn -> ’b

Synopsis
Apply a function to an argument, raising supplied exception on failure.

with flag 829

Description
An evaluation of with_exn f x e applies function f to argument x. If that compu-
tation finishes with y, then y is the result. Otherwise, f x raised an exception, and
the exception e is raised instead. However, if f x raises the Interrupt exception, then
with_exn f x e results in the Interrupt exception being raised.

Failure
When f x fails or is interrupted.

Example

- with_exn dest_comb (Term‘\x. x /\ y‘) (Fail "My kingdom for a horse");
! Uncaught exception:
! Fail "My kingdom for a horse"

- with_exn (fn _ => raise Interrupt) 1 (Fail "My kingdom for a horse");
> Interrupted.

Comments
Often with_exn can be used to clean up programming where lots of exceptions may be
handled. For example, taking apart a compound term of a certain desired form may fail
at several places, but a uniform error message is desired.

local val expected = mk_HOL_ERR "" "dest_quant" "expected !v.M or ?v.M"
in
fun dest_quant tm =

let val (q,body) = with_exn dest_comb tm expected
val (p as (v,M)) = with_exn dest_abs body expected

in
if q = universal orelse q = existential
then p
else raise expected

end
end

See also
Feedback.wrap exn, Lib.assert exn, Lib.assert.

with_flag (Lib)

with_flag : ’a ref * ’a -> (’b -> ’c) -> ’b -> ’c

830 Chapter 1. Pre-defined ML Identifiers

Synopsis
Apply a function under a particular flag setting.

Description
An invocation with_flag (r,v) f x sets the reference variable r to the value v, then
evaluates f x, then resets r to its original value, and returns the value of f x.

Failure
Fails if f x fails. In that case, r is reset to its original value before raising the exception
from f x.

Example

- fun print_term_nl tm = (print_term tm; print "\n");
> val print_term_nl = fn : term -> unit

- with_flag (show_types, true) print_term_nl (concl T_DEF);
T = ((\(x :bool). x) = (\(x :bool). x))
> val it = () : unit

- print_term_nl (concl T_DEF);
T = ((\(x. x) = (\x. x))
> val it = () : unit

See also
Feedback.traces, Feedback.register btrace, Feedback.trace, Lib.time.

words2 (Lib)

words2 : string -> string -> string list

Synopsis
Splits a string into a list of substrings, breaking at occurrences of a specified character.

Description
words2 char s splits the string s into a list of substrings. Splitting occurs at each occur-
rence of a sequence of the character char. The char characters do not appear in the list
of substrings. Leading and trailing occurrences of char are also thrown away. If char

is not a single-character string (its length is not 1), then s will not be split and so the
result will be the list [s].

wrap exn 831

Failure
Never fails.

Example

- words2 "/" "/the/cat//sat/on//the/mat/";
> val it = ["the", "cat", "sat", "on", "the", "mat"] : string list

- words2 "//" "/the/cat//sat/on//the/mat/";
> val it = ["/the/cat//sat/on//the/mat/"] : string list

Comments
The SML Library functions String.tokens and String.fields offer similar functionality.

wrap_exn (Feedback)

wrap_exn : string -> string -> exn -> exn

Synopsis
Adds supplementary information to an application of HOL_ERR.

Description
wrap_exn s1 s2 (HOL_ERR{origin_structure,origin_function,message}) where s1 typ-
ically denotes a structure and s2 typically denotes a function, returns
HOL_ERR{origin_structure=s1,origin_function=s2,message}

where origin_structure and origin_function have been added to the message field.
This can be used to achieve a kind of backtrace when an error occurs.

In MoscowML, the interrupt signal in Unix is mapped into the Interrupt exception.
If wrap_exn were to translate an interrupt into a HOL_ERR exception, crucial information
might be lost. For this reason, wrap_exn s1 s2 Interrupt raises the Interrupt exception.

Every other exception is mapped into an application of HOL_ERR by wrap_exn.

Failure
Never fails.

Example
In the following example, the original HOL_ERR is from Foo.bar. After wrap_exn is called,
the HOL_ERR is from Fred.barney and its message field has been augmented to reflect the

832 Chapter 1. Pre-defined ML Identifiers

original source of the exception.

- val test_exn = mk_HOL_ERR "Foo" "bar" "incomprehensible input";
> val test_exn = HOL_ERR : exn

- wrap_exn "Fred" "barney" test_exn;
> val it = HOL_ERR : exn

- print(exn_to_string it);

Exception raised at Fred.barney:
Foo.bar - incomprehensible input

The following example shows how wrap_exn treats the Interrupt exception.

- wrap_exn "Fred" "barney" Interrupt;
> Interrupted.

The following example shows how wrap_exn translates all exceptions that aren’t either
HOL_ERR or Interrupt into applications of HOL_ERR.

- wrap_exn "Fred" "barney" Div;
> val it = HOL_ERR : exn

- print(exn_to_string it);

Exception raised at Fred.barney:
Div

See also
Feedback, Feedback.HOL ERR, Feedback.with exn.

X_CASES_THEN (Thm_cont)

X_CASES_THEN : term list list -> thm_tactical

Synopsis
Applies a theorem-tactic to all disjuncts of a theorem, choosing witnesses.

Description
Let [yl1,...,yln] represent a list of variable lists, each of length zero or more, and
xl1,...,xln each represent a vector of zero or more variables, so that the variables in

X CASES THEN 833

each of yl1...yln have the same types as the corresponding xli. X_CASES_THEN expects
such a list of variable lists, [yl1,...,yln], a tactic generating function f:thm->tactic,
and a disjunctive theorem, where each disjunct may be existentially quantified:

th = |-(?xl1.B1) \/...\/ (?xln.Bn)

each disjunct having the form (?xi1 ... xim. Bi). If applying f to the theorem ob-
tained by introducing witness variables yli for the objects xli whose existence is as-
serted by each disjunct, typically ({Bi[yli/xli]} |- Bi[yli/xli]), produce the follow-
ing results when applied to a goal (A ?- t):

A ?- t
========= f ({B1[yl1/xl1]} |- B1[yl1/xl1])
A ?- t1

...

A ?- t
========= f ({Bn[yln/xln]} |- Bn[yln/xln])
A ?- tn

then applying (X_CHOOSE_THEN [yl1,...,yln] f th) to the goal (A ?- t) produces n

subgoals.

A ?- t
======================= X_CHOOSE_THEN [yl1,...,yln] f th
A ?- t1 ... A ?- tn

Failure
Fails (with X_CHOOSE_THEN) if any yli has more variables than the corresponding xli, or
(with SUBST) if corresponding variables have different types. Failures may arise in the
tactic-generating function. An invalid tactic is produced if any variable in any of the yli

is free in the corresponding Bi or in t, or if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.

Example
Given the goal ?- (x MOD 2) <= 1, the following theorem may be used to split into 2

834 Chapter 1. Pre-defined ML Identifiers

cases:

th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)

by the tactic

X_CASES_THEN [[Term‘n:num‘],[Term‘n:num]] ASSUME_TAC th

to produce the subgoals:

{x = (2 * n) + 1} ?- (x MOD 2) <= 1

{x = 2 * n} ?- (x MOD 2) <= 1

See also
Thm cont.DISJ CASES THENL, Thm cont.X CASES THENL, Thm cont.X CHOOSE THEN.

X_CASES_THENL (Thm_cont)

X_CASES_THENL : term list list -> thm_tactic list -> thm_tactic

Synopsis
Applies theorem-tactics to corresponding disjuncts of a theorem, choosing witnesses.

Description
Let [yl1,...,yln] represent a list of variable lists, each of length zero or more, and
xl1,...,xln each represent a vector of zero or more variables, so that the variables
in each of yl1...yln have the same types as the corresponding xli. The function
X_CASES_THENL expects a list of variable lists, [yl1,...,yln], a list of tactic-generating
functions [f1,...,fn]:(thm->tactic)list, and a disjunctive theorem, where each dis-
junct may be existentially quantified:

th = |-(?xl1.B1) \/...\/ (?xln.Bn)

each disjunct having the form (?xi1 ... xim. Bi). If applying each fi to the theorem
obtained by introducing witness variables yli for the objects xli whose existence is

X CASES THENL 835

asserted by the ith disjunct, ({Bi[yli/xli]} |- Bi[yli/xli]), produces the following
results when applied to a goal (A ?- t):

A ?- t
========= f1 ({B1[yl1/xl1]} |- B1[yl1/xl1])
A ?- t1

...

A ?- t
========= fn ({Bn[yln/xln]} |- Bn[yln/xln])
A ?- tn

then applying X_CASES_THENL [yl1,...,yln] [f1,...,fn] th to the goal (A ?- t) pro-
duces n subgoals.

A ?- t
======================= X_CASES_THENL [yl1,...,yln] [f1,...,fn] th
A ?- t1 ... A ?- tn

Failure
Fails (with X_CASES_THENL) if any yli has more variables than the corresponding xli,
or (with SUBST) if corresponding variables have different types, or (with combine) if the
number of theorem tactics differs from the number of disjuncts. Failures may arise in
the tactic-generating function. An invalid tactic is produced if any variable in any of the
yli is free in the corresponding Bi or in t, or if the theorem has any hypothesis which
is not alpha-convertible to an assumption of the goal.

Example
Given the goal ?- (x MOD 2) <= 1, the following theorem may be used to split into 2
cases:

th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)

by the tactic

X_CASES_THENL [[Term‘n:num‘], [Term‘n:num‘]] [ASSUME_TAC, SUBST1_TAC] th

to produce the subgoals:

?- (((2 * n) + 1) MOD 2) <= 1

{x = 2 * n} ?- (x MOD 2) <= 1

See also
Thm cont.DISJ CASES THEN, Thm cont.X CASES THEN, Thm cont.X CHOOSE THEN.

836 Chapter 1. Pre-defined ML Identifiers

X_CHOOSE_TAC (Tactic)

X_CHOOSE_TAC : term -> thm_tactic

Synopsis
Assumes a theorem, with existentially quantified variable replaced by a given witness.

Description
X_CHOOSE_TAC expects a variable y and theorem with an existentially quantified conclu-
sion. When applied to a goal, it adds a new assumption obtained by introducing the
variable y as a witness for the object x whose existence is asserted in the theorem.

A ?- t
=================== X_CHOOSE_TAC y (A1 |- ?x. w)
A u {w[y/x]} ?- t (y not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a variable. Failures may arise in the tactic-generating function. An invalid tactic is
produced if the introduced variable is free in w or t, or if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

Example
Given a goal of the form

{n < m} ?- ?x. m = n + (x + 1)

the following theorem may be applied:

th = [n < m] |- ?p. m = n + p

by the tactic (X_CHOOSE_TAC (Term‘q:num‘) th) giving the subgoal:

{n < m, m = n + q} ?- ?x. m = n + (x + 1)

See also
Thm.CHOOSE, Thm cont.CHOOSE THEN, Thm cont.X CHOOSE THEN.

X CHOOSE THEN 837

X_CHOOSE_THEN (Thm_cont)

X_CHOOSE_THEN : (term -> thm_tactical)

Synopsis
Replaces existentially quantified variable with given witness, and passes it to a theorem-
tactic.

Description
X_CHOOSE_THEN expects a variable y, a tactic-generating function f:thm->tactic, and a
theorem of the form (A1 |- ?x. w) as arguments. A new theorem is created by intro-
ducing the given variable y as a witness for the object x whose existence is asserted in
the original theorem, (w[y/x] |- w[y/x]). If the tactic-generating function f applied to
this theorem produces results as follows when applied to a goal (A ?- t):

A ?- t
========= f ({w[y/x]} |- w[y/x])
A ?- t1

then applying (X_CHOOSE_THEN "y" f (A1 |- ?x. w)) to the goal (A ?- t) produces the
subgoal:

A ?- t
========= X_CHOOSE_THEN y f (A1 |- ?x. w)
A ?- t1 (y not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a variable. Failures may arise in the tactic-generating function. An invalid tactic is
produced if the introduced variable is free in w or t, or if the theorem has any hypothesis
which is not alpha-convertible to an assumption of the goal.

838 Chapter 1. Pre-defined ML Identifiers

Example
Given a goal of the form

{n < m} ?- ?x. m = n + (x + 1)

the following theorem may be applied:

th = [n < m] |- ?p. m = n + p

by the tactic (X_CHOOSE_THEN (Term‘q:num‘) SUBST1_TAC th) giving the subgoal:

{n < m} ?- ?x. n + q = n + (x + 1)

See also
Thm.CHOOSE, Thm cont.CHOOSE THEN, Thm cont.CONJUNCTS THEN,
Thm cont.CONJUNCTS THEN2, Thm cont.DISJ CASES THEN, Thm cont.DISJ CASES THEN2,
Thm cont.DISJ CASES THENL, Thm cont.STRIP THM THEN, Tactic.X CHOOSE TAC.

X_FUN_EQ_CONV (Conv)

X_FUN_EQ_CONV : (term -> conv)

Synopsis
Performs extensionality conversion for functions (function equality).

Description
The conversion X_FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. For any
variable "x" and equation "f = g", where x is of type ty1 and f and g are functions of
type ty1->ty2, a call to X_FUN_EQ_CONV "x" "f = g" returns the theorem:

|- (f = g) = (!x. f x = g x)

Failure
X_FUN_EQ_CONV x tm fails if x is not a variable or if tm is not an equation f = g where f

and g are functions. Furthermore, if f and g are functions of type ty1->ty2, then the
variable x must have type ty1; otherwise the conversion fails. Finally, failure also occurs
if x is free in either f or g.

X GEN TAC 839

See also
Drule.EXT, Conv.FUN EQ CONV.

X_GEN_TAC (Tactic)

X_GEN_TAC : (term -> tactic)

Synopsis
Specializes a goal with the given variable.

Description
When applied to a term x’, which should be a variable, and a goal A ?- !x. t, the tactic
X_GEN_TAC returns the goal A ?- t[x’/x].

A ?- !x. t
============== X_GEN_TAC "x’"
A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified and the term a variable of the
appropriate type. It also fails if the variable given is free in either the assumptions or
(initial) conclusion of the goal.

See also
Tactic.FILTER GEN TAC, Thm.GEN, Drule.GENL, Drule.GEN ALL, Thm.SPEC,
Drule.SPECL, Drule.SPEC ALL, Tactic.SPEC TAC, Tactic.STRIP TAC.

X_SKOLEM_CONV (Conv)

X_SKOLEM_CONV : (term -> conv)

Synopsis
Introduces a user-supplied Skolem function.

840 Chapter 1. Pre-defined ML Identifiers

Description
X_SKOLEM_CONV takes two arguments. The first is a variable f, which must range over
functions of the appropriate type, and the second is a term of the form !x1...xn. ?y. P.
Given these arguments, X_SKOLEM_CONV returns the theorem:

|- (!x1...xn. ?y. P) = (?f. !x1...xn. tm[f x1 ... xn/y])

which expresses the fact that a skolem function f of the universally quantified variables
x1...xn may be introduced in place of the the existentially quantified value y.

Failure
X_SKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of
the form !x1...xn. ?y. P, or if the variable f is free in tm, or if the type of f does not
match its intended use as an n-place curried function from the variables x1...xn to a
value having the same type as y.

See also
Conv.SKOLEM CONV.

xDefine (bossLib)

xDefine : string -> term quotation -> thm

Synopsis
General-purpose function definition facility.

Description
xDefine behaves exactly like Define, except that it takes an alphanumeric string which
is used as a stem for building names with which to store the definition, associated
induction theorem (if there is one), and any auxiliary definitions used to construct the
specified function (if there are any) in the current theory segment.

Failure
xDefine allows the definition of symbolic identifiers, but Define doesn’t. In all other
respects, xDefine and Define succeed and fail in the same way.

xDefine 841

Example
The following example shows how Define fails when asked to define a symbolic identi-
fier.

- set_fixity ("/", Infixl 600); (* tell the parser about "/" *)
> val it = () : unit

- Define
‘x/y = if y=0 then NONE else

if x<y then SOME 0
else OPTION_MAP SUC ((x-y)/y)‘;

Definition failed! Can’t make name for storing definition
because there is no alphanumeric identifier in:

"/".

Try "xDefine <alphanumeric-stem> <eqns-quotation>" instead.

Next the same definition is attempted with xDefine, supplying the name for binding
the definition and the induction theorem with in the current theory.

- xDefine "div"
‘x/y = if y=0 then NONE else

if x<y then SOME 0
else OPTION_MAP SUC ((x-y)/y)‘;

Equations stored under "div_def".
Induction stored under "div_ind".

> val it =
|- x / y =

(if y = 0 then NONE
else
(if x < y then SOME 0

else OPTION_MAP SUC ((x - y) / y))) : thm

Comments
Define can be thought of as an application of xDefine, in which the stem is taken to be
the name of the function being defined.
bossLib.xDefine is most commonly used. TotalDefn.xDefine is identical to bossLib.xDefine,

except that the TotalDefn structure comes with less baggage—it depends only on numLib

and pairLib.

See also
bossLib.Define.

842 Chapter 1. Pre-defined ML Identifiers

xDefine (TotalDefn)

xDefine : string -> term quotation -> thm

Synopsis
General purpose function definition facility.

Description
bossLib.xDefine is identical to TotalDefn.xDefine.

See also
bossLib.xDefine.

zip (Lib)

zip : ’a list -> ’b list -> (’a * ’b) list

Synopsis
Transforms a pair of lists into a list of pairs.

Description
zip [x1,...,xn] [y1,...,yn] returns [(x1,y1),...,(xn,yn)].

Failure
Fails if the two lists are of different lengths.

Comments
Has much the same effect as the SML Basis function ListPair.zip except that it fails if
the arguments are not of equal length. zip is a curried version of combine

See also
Lib.combine, Lib.unzip, Lib.split.

|-> (Lib)

op |-> : ’a * ’b -> {redex : ’a, residue : ’b}

—-¿ 843

Synopsis
Infix operator for building a component of a substitution.

Description
An application x |-> y is equal to {redex = x, residue = y}. Since HOL substitutions
are lists of {redex,residue} records, the |-> operator is merely sugar used to create
substitutions.

Failure
Never fails.

Example

- type_subst [alpha |-> beta, beta |-> gamma]
(alpha --> beta);

> val it = ‘:’b -> ’c‘ : hol_type

See also
Lib.subst, Type.type subst, Term.subst, Term.inst, Thm.SUBST.

844 Chapter 1. Pre-defined ML Identifiers

Index

++, 3, 548
--, 3
-->, 4
==, 4
##, 1
&&, 2

A, 5
ABS, 5
ABS CONV, 6
Absyn, 7
AC CONV, 8
ACCEPT TAC, 9
aconv, 10
ADD ASSUM, 10
add bare numeral form, 11
add implicit rewrites, 12
add infix, 12
add listform, 15
add numeral form, 17
add rewrites, 19
add rule, 20
add user printer, 25
adjoin to theory, 30
after new theory, 31
all, 33
all2, 33
all consts, 34
ALL CONV, 35
ALL TAC, 36
ALL THEN, 37
all thys, 37
all vars, 38

all varsl, 38
allowed term constant, 39
allowed type constant, 40
ALPHA, 41
alpha, 41
ALPHA CONV, 42
ancestry, 42
AND EXISTS CONV, 43
AND FORALL CONV, 44
AND PEXISTS CONV, 44
AND PFORALL CONV, 45
ANTE CONJ CONV, 45
ANTE RES THEN, 46
AP TERM, 47
AP TERM TAC, 47
AP THM, 48
AP THM TAC, 49
append, 49
apropos, 50
arb, 51
arith ss, 51
ASM CASES TAC, 53
ASM MESON TAC, 54
ASM REWRITE RULE, 55
ASM REWRITE TAC, 55
ASM SIMP RULE, 56
ASM SIMP TAC, 57, 58
assert, 58
assert exn, 59
assoc, 60
assoc1, 61
assoc2, 61

845

846 Index

associate restriction, 62
ASSUM LIST, 64
ASSUME, 65
ASSUME TAC, 66
augment srw ss, 68
axioms, 69

B, 70
b, 70
backup, 71
Beta, 73
beta, 73
BETA CONV, 75
beta conv, 74
BETA RULE, 75
BETA TAC, 76
BINDER CONV, 77
BINOP CONV, 78
body, 78
BODY CONJUNCTS, 79
bool, 80
bool case, 80
BOOL CASES TAC, 80
bool compset, 81, 348
bool EQ CONV, 82
bool rewrites, 83
bool ss, 84
butlast, 87
bvar, 88
by, 88

C, 89
can, 90
Cases, 91, 92
Cases on, 93
CASES THENL, 94
CBV CONV, 95
CCONTR, 97
CCONTR TAC, 98
CHANGED CONV, 99
CHANGED TAC, 99

CHECK ASSUME TAC, 100
CHOOSE, 101
CHOOSE TAC, 101
CHOOSE THEN, 102
class, 104
clear overloads on, 104
clear prefs for term, 105
CNF CONV, 106
combine, 107
commafy, 108
compare, 108, 109
completeInduct on, 110
concat, 110
concl, 111
COND CASES TAC, 111
COND CONV, 113
conditional, 113
CONJ, 114
CONJ DISCH, 114
CONJ DISCHL, 115
CONJ LIST, 115
CONJ PAIR, 117
CONJ SET CONV, 117
CONJ TAC, 118
CONJUNCT1, 118
CONJUNCT2, 119
conjunction, 120
CONJUNCTS, 120
CONJUNCTS CONV, 121
CONJUNCTS THEN, 122
CONJUNCTS THEN2, 123
cons, 124
constants, 125
CONTR, 126
CONTR TAC, 126
CONTRAPOS, 127
CONTRAPOS CONV, 127
CONV RULE, 128
CONV TAC, 128
current axioms, 129

Index 847

current definitions, 130
current defs, 131
current theorems, 131
current theory, 132
current thms, 133
current trace, 133
curry, 134
CURRY CONV, 134
CURRY EXISTS CONV, 135
CURRY FORALL CONV, 136

data, 136
DECIDE, 137
DECIDE TAC, 138
decls, 138, 139
Define, 140, 147
define new type bijections, 147
define type, 148
DefineSchema, 151
definitions, 153
delete binding, 153
delete const, 155
delete type, 156
delta, 157, 158
delta apply, 158
delta map, 159
delta pair, 160
deprecate int, 161
DEPTH CONV, 162
dest abs, 164
dest arb, 164
dest bool case, 165
dest comb, 165
dest cond, 166
dest conj, 166
dest cons, 166
dest const, 167
dest disj, 167
dest eq, 168
dest eq ty, 168

dest exists, 169
dest exists1, 169
dest forall, 170
dest imp, 170
dest imp only, 171
dest let, 171
dest list, 172
dest neg, 172
dest pabs, 173
dest pair, 173
dest pexists, 174
dest pforall, 174
dest prod, 175
dest pselect, 175
dest res abstract, 176
dest res exists, 176
dest res exists unique, 177
dest res forall, 177
dest res select, 178
dest select, 178
dest theory, 179
dest thm, 181
dest thy const, 181
dest thy type, 182
dest type, 183
dest var, 183
dest vartype, 184
DISCARD TAC, 184
DISCH, 186
disch, 185
DISCH ALL, 186
DISCH TAC, 187
DISCH THEN, 188
DISJ1, 189
DISJ1 TAC, 190
DISJ2, 190
DISJ2 TAC, 191
DISJ CASES, 191
DISJ CASES TAC, 192
DISJ CASES THEN, 193

848 Index

DISJ CASES THEN2, 195
DISJ CASES THENL, 196
DISJ CASES UNION, 197
DISJ IMP, 198
disjunction, 199
dom rng, 199

e, 200
el, 201
emit ERR, 201
emit MESG, 202
emit WARNING, 203
empty rewrites, 204
empty tmset, 204
empty varset, 204
end itlist, 205
end time, 205
enumerate, 206
EQ IMP RULE, 207
EQ MP, 207
EQ TAC, 208
EQF ELIM, 208
EQF INTRO, 209
EQT ELIM, 209
EQT INTRO, 210
equal, 210
equality, 211
ERR outstream, 211
ERR to string, 212
error record, 213
Eta, 214
ETA CONV, 215
eta conv, 214
etyvar, 216
EVAL, 216
EVAL RULE, 217
EVAL TAC, 218
EVERY, 218
EVERY ASSUM, 219
EVERY CONJ CONV, 220

EVERY CONV, 221
EVERY DISJ CONV, 221
EVERY TCL, 222
EXISTENCE, 223
existential, 224, 226
EXISTS, 225
exists, 224
EXISTS AND CONV, 226
EXISTS EQ, 227
EXISTS IMP, 228
EXISTS IMP CONV, 228
EXISTS NOT CONV, 229
EXISTS OR CONV, 230
EXISTS TAC, 230
exists tyvar, 231
EXISTS UNIQUE CONV, 231
exn to string, 232
expand, 233
expandf, 236
export rewrites, 238
export theory, 239
EXT, 240

F, 241
fail, 241
FAIL TAC, 242
failwith, 243
Feedback, 244
fetch, 244
filter, 244
FILTER ASM REWRITE RULE, 245
FILTER ASM REWRITE TAC, 246
FILTER DISCH TAC, 247
FILTER DISCH THEN, 248
FILTER GEN TAC, 249
FILTER ONCE ASM REWRITE RULE, 249
FILTER ONCE ASM REWRITE TAC, 250
FILTER PGEN TAC, 251
FILTER PSTRIP TAC, 251
FILTER PSTRIP THEN, 253

Index 849

FILTER PURE ASM REWRITE RULE, 254
FILTER PURE ASM REWRITE TAC, 254
FILTER PURE ONCE ASM REWRITE RULE, 255
FILTER PURE ONCE ASM REWRITE TAC, 256
FILTER STRIP TAC, 257
FILTER STRIP THEN, 258
find, 259–261
FIRST, 262
first, 261
FIRST ASSUM, 262
FIRST CONV, 263
FIRST TCL, 264
FIRST X ASSUM, 264
flatten, 265
for, 266
for se, 267
FORALL AND CONV, 267
FORALL EQ, 268
FORALL IMP CONV, 268
FORALL NOT CONV, 269
FORALL OR CONV, 270
FORK CONV, 270
format ERR, 271
format MESG, 272
format WARNING, 272
free in, 273
free vars, 274
free vars lr, 275
free varsl, 275
frees, 276
freesl, 277
FREEZE THEN, 278
FRONT CONJ CONV, 280
front last, 280
fst, 281
ftyvar, 282
FULL SIMP TAC, 282, 284
FUN EQ CONV, 284
funpow, 285
FVL, 286

g, 286
gamma, 287
gather, 288
GEN, 288
GEN ALL, 289
GEN ALPHA CONV, 290
GEN BETA CONV, 291
GEN MESON TAC, 292
GEN PALPHA CONV, 293
GEN REWRITE CONV, 294
GEN REWRITE RULE, 295
GEN REWRITE TAC, 297
GEN TAC, 299
gen tyvar, 299
GENL, 300
genvar, 301
genvars, 302
genvarstruct, 303
GPSPEC, 304
GSPEC, 304
GSUBST TAC, 305
GSYM, 306

HALF MK ABS, 307
HALF MK PABS, 307
hash, 308
hidden, 309
hide, 309
Hol datatype, 310
Hol defn, 317, 323
HOL ERR, 324
HOL MESG, 325
Hol reln, 326, 329
hol type, 329
HOL WARNING, 329
hyp, 330

I, 331
IMP ANTISYM RULE, 331
IMP CANON, 332
IMP CONJ, 332

850 Index

IMP ELIM, 333
IMP RES FORALL CONV, 334
IMP RES TAC, 334
IMP RES THEN, 335
IMP TRANS, 337
implication, 338
implicit rewrites, 338
ind, 340
IndDefRules, 340
index, 341
Induct, 341, 344
Induct on, 344, 345
INDUCT TAC, 346
INDUCT THEN, 346
insert, 349
INST, 351
inst, 350
INST TY TERM, 352
INST TYPE, 352
int of string, 354
int sort, 354
int to string, 355
intersect, 356
IPSPEC, 356
IPSPECL, 357
is abs, 358
is arb, 358
is bool case, 359
is comb, 359
is cond, 359
is conj, 360
is cons, 360
is const, 361
is disj, 361
is eq, 362
is exists, 362
is exists1, 363
is forall, 363
is gen tyvar, 364
is genvar, 364

is imp, 365
is imp only, 365
is let, 366
is list, 367
is neg, 367
is pabs, 367
is pair, 368
is pexists, 368
is pforall, 369
is prod, 369
is pselect, 370
is pvar, 370
is res abstract, 371
is res exists, 371
is res exists unique, 372
is res forall, 372
is res select, 372
is select, 373
is type, 373
is var, 374
is vartype, 374
isEmpty, 375
ISPEC, 375
ISPECL, 376
istream, 377
itlist, 377
itlist2, 378

K, 378
known constants, 379

LAND CONV, 379
last, 380
LAST EXISTS CONV, 381
LEFT AND EXISTS CONV, 381
LEFT AND FORALL CONV, 382
LEFT AND PEXISTS CONV, 382
LEFT AND PFORALL CONV, 383
LEFT IMP EXISTS CONV, 383
LEFT IMP FORALL CONV, 384
LEFT IMP PEXISTS CONV, 384

Index 851

LEFT IMP PFORALL CONV, 385
LEFT LIST PBETA, 386
LEFT OR EXISTS CONV, 386
LEFT OR FORALL CONV, 387
LEFT OR PEXISTS CONV, 387
LEFT OR PFORALL CONV, 388
LEFT PBETA, 389
let tm, 389
lhs, 390
Lib.doc, 390
LIST BETA CONV, 391
list compare, 391
LIST CONJ, 392
list mk abs, 393
list mk binder, 394
list mk comb, 396
list mk conj, 396
list mk disj, 397
LIST MK EXISTS, 398
list mk exists, 398
list mk forall, 399
list mk fun, 400
list mk imp, 400
list mk pabs, 401
list mk pair, 401
LIST MK PEXISTS, 402
LIST MK PFORALL, 403
list mk res exists, 403
list mk res forall, 404
LIST MP, 404
LIST PBETA CONV, 405
list ss, 406
listDB, 408

map2, 408
MAP EVERY, 409
MAP FIRST, 410
mapfilter, 410
match, 411
MATCH ACCEPT TAC, 412

MATCH MP, 413
MATCH MP TAC, 414
match term, 415
match terml, 416
match type, 418
match typel, 419
matcher, 420
matchp, 422
max print depth, 424
measureInduct on, 424
mem, 425
merge, 426
MESG outstream, 426
MESG to string, 427
MESON TAC, 428
MK ABS, 429
mk abs, 430
mk arb, 430
mk bool case, 431
MK COMB, 432
mk comb, 431
MK COMB TAC, 433
mk cond, 433
mk conj, 434
mk cons, 434
mk const, 435
mk disj, 436
mk eq, 436
MK EXISTS, 437
mk exists, 437
mk exists1, 438
mk forall, 438
mk HOL ERR, 439
mk imp, 440
mk istream, 440
mk let, 441
mk list, 441
mk neg, 442
mk oracle thm, 442
MK PABS, 444

852 Index

mk pabs, 445
MK PAIR, 445
mk pair, 446
MK PEXISTS, 446
MK PFORALL, 447
mk primed var, 447
mk prod, 448
MK PSELECT, 449
mk res abstract, 449
mk res exists, 450
mk res exists unique, 450
mk res forall, 451
mk res select, 451
mk select, 452
mk set, 452
mk simpset, 453
mk thm, 453
mk thy const, 455
mk thy type, 455
mk type, 456
mk var, 457
mk vartype, 458
mlquote, 458
monitoring, 459
MP, 460
MP TAC, 461

NEG DISCH, 461
negation, 462
new axiom, 462
new binder, 463
new binder definition, 464
new constant, 466
new definition, 466
new infix, 467
new infixl definition, 469
new infixr definition, 470
new recursive definition, 471
new specification, 474
new theory, 476

new type, 478
new type definition, 479
next, 481
NO CONV, 482
NO TAC, 482
NO THEN, 483
norm subst, 483
NOT ELIM, 484
NOT EQ SYM, 485
NOT EXISTS CONV, 485
NOT FORALL CONV, 486
NOT INTRO, 486
NOT PEXISTS CONV, 487
NOT PFORALL CONV, 488
null intersection, 488

occs in, 489
ONCE ASM REWRITE RULE, 489
ONCE ASM REWRITE TAC, 490
ONCE DEPTH CONV, 491
ONCE REWRITE CONV, 493
ONCE REWRITE RULE, 493
ONCE REWRITE TAC, 494
op arity, 495
op insert, 496
op intersect, 497
op mem, 498
op mk set, 498
op set diff, 499
op U, 500
OR EXISTS CONV, 502
OR FORALL CONV, 502
OR PEXISTS CONV, 503
OR PFORALL CONV, 503
ORELSE, 504
ORELSE TCL, 504
ORELSEC, 505
overload on, 505

p, 507
P FUN EQ CONV, 507

Index 853

P PCHOOSE TAC, 508
P PCHOOSE THEN, 509
P PGEN TAC, 510
P PSKOLEM CONV, 510
PABS, 511
PABS CONV, 512
paconv, 513
pair, 513
PAIR CONV, 514
PAIRED BETA CONV, 514
PAIRED ETA CONV, 516
PALPHA, 517
PALPHA CONV, 518
parents, 520
parse from grammars, 520
parse in context, 522
PART MATCH, 523
PART PMATCH, 524
partial, 525
partition, 525
PAT ASSUM, 526
PBETA CONV, 527
PBETA RULE, 529
PBETA TAC, 529
pbody, 530
PCHOOSE, 530
PCHOOSE TAC, 531
PCHOOSE THEN, 532
PETA CONV, 532
PEXISTENCE, 533
PEXISTS, 533
PEXISTS AND CONV, 534
PEXISTS CONV, 535
PEXISTS EQ, 536
PEXISTS IMP, 536
PEXISTS IMP CONV, 537
PEXISTS NOT CONV, 538
PEXISTS OR CONV, 539
PEXISTS RULE, 539
PEXISTS TAC, 540

PEXISTS UNIQUE CONV, 540
PEXT, 541
PFORALL AND CONV, 542
PFORALL EQ, 542
PFORALL IMP CONV, 543
PFORALL NOT CONV, 544
PFORALL OR CONV, 545
PGEN, 545
PGEN TAC, 546
PGENL, 547
pluck, 547
PMATCH MP, 549
PMATCH MP TAC, 549
polymorphic, 550
POP ASSUM, 551
POP ASSUM LIST, 552
pp tag, 553
prefer form with tok, 554
prefer int, 555
prim mk const, 556
prim variant, 556
prime, 557
priming, 558
print term, 558
print theory, 559
PROVE, 560–562
prove, 562
prove abs fn one one, 563, 564
prove abs fn onto, 564, 565
prove cases thm, 566
prove constructors distinct, 567
prove constructors one one, 568
PROVE HYP, 569
prove induction thm, 569
prove rec fn exists, 570
prove rep fn one one, 571
prove rep fn onto, 572
PROVE TAC, 573
prove thm, 574
PSELECT CONV, 575

854 Index

PSELECT ELIM, 575
PSELECT EQ, 576
PSELECT INTRO, 577
PSELECT RULE, 577
PSKOLEM CONV, 578
PSPEC, 579
PSPEC ALL, 580
PSPEC PAIR, 581
PSPEC TAC, 581
PSPECL, 582
PSTRIP ASSUME TAC, 583
PSTRIP GOAL THEN, 584
PSTRIP TAC, 586
PSTRIP THM THEN, 587
PSTRUCT CASES TAC, 589
PSUB CONV, 589
Psyntax, 590
PURE ASM REWRITE RULE, 593
PURE ASM REWRITE TAC, 593
PURE ONCE ASM REWRITE RULE, 594
PURE ONCE ASM REWRITE TAC, 594
PURE ONCE REWRITE CONV, 595
PURE ONCE REWRITE RULE, 596
PURE ONCE REWRITE TAC, 596
PURE REWRITE CONV, 597
PURE REWRITE RULE, 597
PURE REWRITE TAC, 598
pure ss, 599
pvariant, 601

Q TAC, 602
QUANT CONV, 602
quote, 603

r, 604
Raise, 604
rand, 605
RAND CONV, 605
rator, 606
RATOR CONV, 607
raw match, 607

raw match type, 609
read, 610
recInduct, 611, 612
REDEPTH CONV, 612
REFINE EXISTS TAC, 613
REFL, 614
REFL TAC, 615
register btrace, 615
register ftrace, 616
register trace, 617
remove ovl mapping, 617
remove rules for term, 618
remove termtok, 619
remove user printer, 621
rename bvar, 621
RENAME VARS CONV, 622
REPEAT, 624
repeat, 623
REPEAT GTCL, 624
REPEAT TCL, 625
REPEATC, 626
RES CANON, 626
RES EXISTS CONV, 629
RES EXISTS UNIQUE CONV, 630
RES FORALL AND CONV, 630
RES FORALL CONV, 631
RES FORALL SWAP CONV, 631
RES SELECT CONV, 632
RES TAC, 633
RES THEN, 634
reset, 635
reset trace, 636
reset traces, 636
RESQ HALF SPEC, 637
RESQ REWR CANON, 637
RESQ REWRITE1 CONV, 638
RESQ REWRITE1 TAC, 639
RESQ SPEC, 640
RESTR EVAL CONV, 640
RESTR EVAL RULE, 641

Index 855

RESTR EVAL TAC, 642
rev assoc, 642
rev itlist, 643
rev itlist2, 644
reveal, 644
REVERSE, 645
REWR CONV, 646
REWRITE CONV, 649
REWRITE RULE, 650
REWRITE TAC, 651
rewrites, 653
rhs, 654
RIGHT AND EXISTS CONV, 654
RIGHT AND FORALL CONV, 655
RIGHT AND PEXISTS CONV, 655
RIGHT AND PFORALL CONV, 656
RIGHT BETA, 657
RIGHT CONV RULE, 657
RIGHT IMP EXISTS CONV, 658
RIGHT IMP FORALL CONV, 659
RIGHT IMP PEXISTS CONV, 659
RIGHT IMP PFORALL CONV, 660
RIGHT LIST BETA, 660
RIGHT LIST PBETA, 661
RIGHT OR EXISTS CONV, 662
RIGHT OR FORALL CONV, 662
RIGHT OR PEXISTS CONV, 663
RIGHT OR PFORALL CONV, 663
RIGHT PBETA, 664
Rsyntax, 665
RULE ASSUM TAC, 667
RW TAC, 667, 668

S, 669
same const, 669
save thm, 670
say, 671
scrub, 671
select, 673
SELECT CONV, 673

SELECT ELIM, 674
SELECT EQ, 675
SELECT INTRO, 676
SELECT RULE, 677
set backup, 678
set base rewrites, 685
set diff, 681
set eq, 681
set fixity, 682
set goal, 684
set known constants, 686
set MLname, 687
set trace, 688
setify, 689
show numeral types, 690
show tags, 691
show types, 692
SIMP CONV, 693, 695
SIMP PROVE, 696
SIMP RULE, 697
SIMP TAC, 698, 699
SIMPSET, 700
SKOLEM CONV, 703
snd, 703
sort, 704
SPEC, 705
SPEC ALL, 706
SPEC TAC, 707
SPEC VAR, 707
Specialize, 708
SPECL, 709
spine pair, 710
split, 710
split after, 711
SPOSE NOT THEN, 712
srw ss, 713
SRW TAC, 714
start time, 715
state, 716
std ss, 717

856 Index

store thm, 719
string of int, 719
string to int, 720
strip abs, 721, 722
STRIP ASSUME TAC, 722
strip binder, 724
STRIP BINDER CONV, 725
strip comb, 726
strip conj, 727
strip disj, 727
strip exists, 728
strip forall, 729
strip fun, 729
STRIP GOAL THEN, 730
strip imp, 732
strip imp only, 732
strip neg, 733
strip pabs, 734
strip pair, 735
strip pexists, 735
strip pforall, 736
STRIP QUANT CONV, 736
strip res exists, 737
strip res forall, 738
STRIP TAC, 738
STRIP THM THEN, 740
STRUCT CASES TAC, 741
SUB CONV, 743
SUBGOAL THEN, 743
SUBS, 745
SUBS OCCS, 746
SUBST, 749
subst, 747, 748
SUBST1 TAC, 752
SUBST ALL TAC, 753
subst assoc, 754
SUBST CONV, 755
SUBST MATCH, 756
subst occs, 758
SUBST OCCS TAC, 758

SUBST TAC, 760
subtract, 761
SWAP EXISTS CONV, 761
SWAP PEXISTS CONV, 762
SWAP PFORALL CONV, 762
SYM, 763
SYM CONV, 763

T, 764
TAC PROOF, 764
tag, 765
Term, 766
term, 768
term grammar, 768
term to string, 769
tgoal, 769
THEN, 770
THEN1, 771
THEN TCL, 772
THENC, 773
THENL, 774
theorems, 774
thm, 775
thm count, 775
thms, 776
thy, 777
thy addon, 778
time, 779
TOP DEPTH CONV, 779
top goal, 780
top thm, 781
total, 781
tprove, 782
trace, 784
traces, 786
TRANS, 786
TRY, 788
try, 787
TRY CONV, 789
trye, 789

Index 857

tryfind, 790
type abbrev, 791
type of, 792
type rws, 793
type subst, 794
type var in, 795
type vars, 796
type vars in term, 797
type varsl, 797
TypeBase, 798
types, 799
tyvars, 800
tyvarsl, 801

U, 802
uncurry, 803
UNCURRY CONV, 803
UNCURRY EXISTS CONV, 804
UNCURRY FORALL CONV, 804
UNDISCH, 805
UNDISCH ALL, 806
UNDISCH TAC, 806
UNDISCH THEN, 807
union, 501, 808
universal, 809
UNPBETA CONV, 810
unzip, 810
update overload maps, 811
upto, 811
uptodate term, 812
uptodate thm, 813
uptodate type, 814

var compare, 816
var occurs, 816
variant, 817
version, 818

W, 819
WARNING outstream, 819
WARNING to string, 820

WF REL TAC, 821, 828
with exn, 828
with flag, 829
words2, 830
wrap exn, 831

X CASES THEN, 832
X CASES THENL, 834
X CHOOSE TAC, 836
X CHOOSE THEN, 837
X FUN EQ CONV, 838
X GEN TAC, 839
X SKOLEM CONV, 839
xDefine, 840, 842

zip, 842

