- ACS
 - 
|- !y. ~1 <= y /\ y <= 1 ==> 0 <= acs y /\ acs y <= pi /\ (cos (acs y) = y)
 - ACS_BOUNDS
 - 
|- !y. ~1 <= y /\ y <= 1 ==> 0 <= acs y /\ acs y <= pi
 - ACS_BOUNDS_LT
 - 
|- !y. ~1 < y /\ y < 1 ==> 0 < acs y /\ acs y < pi
 - ACS_COS
 - 
|- !y. ~1 <= y /\ y <= 1 ==> (cos (acs y) = y)
 - ASN
 - 
|- !y.
     ~1 <= y /\ y <= 1 ==>
     ~(pi / 2) <= asn y /\ asn y <= pi / 2 /\ (sin (asn y) = y)
 - ASN_BOUNDS
 - 
|- !y. ~1 <= y /\ y <= 1 ==> ~(pi / 2) <= asn y /\ asn y <= pi / 2
 - ASN_BOUNDS_LT
 - 
|- !y. ~1 < y /\ y < 1 ==> ~(pi / 2) < asn y /\ asn y < pi / 2
 - ASN_SIN
 - 
|- !y. ~1 <= y /\ y <= 1 ==> (sin (asn y) = y)
 - ATN
 - 
|- !y. ~(pi / 2) < atn y /\ atn y < pi / 2 /\ (tan (atn y) = y)
 - ATN_BOUNDS
 - 
|- !y. ~(pi / 2) < atn y /\ atn y < pi / 2
 - ATN_TAN
 - 
|- !y. tan (atn y) = y
 - COS_0
 - 
|- cos 0 = 1
 - COS_2
 - 
|- cos 2 < 0
 - COS_ACS
 - 
|- !x. 0 <= x /\ x <= pi ==> (acs (cos x) = x)
 - COS_ADD
 - 
|- !x y. cos (x + y) = cos x * cos y - sin x * sin y
 - COS_ASN_NZ
 - 
|- !x. ~1 < x /\ x < 1 ==> ~(cos (asn x) = 0)
 - COS_ATN_NZ
 - 
|- !x. ~(cos (atn x) = 0)
 - COS_BOUND
 - 
|- !x. abs (cos x) <= 1
 - COS_BOUNDS
 - 
|- !x. ~1 <= cos x /\ cos x <= 1
 - COS_CONVERGES
 - 
|- !x.
     (\n.
        (\n. (if EVEN n then ~1 pow (n DIV 2) / & (FACT n) else 0)) n *
        x pow n) sums cos x
 - COS_DOUBLE
 - 
|- !x. cos (2 * x) = cos x pow 2 - sin x pow 2
 - COS_FDIFF
 - 
|- diffs (\n. (if EVEN n then ~1 pow (n DIV 2) / & (FACT n) else 0)) =
   (\n. ~(\n. (if EVEN n then 0 else ~1 pow ((n - 1) DIV 2) / & (FACT n))) n)
 - COS_ISZERO
 - 
|- ?!x. 0 <= x /\ x <= 2 /\ (cos x = 0)
 - COS_NEG
 - 
|- !x. cos ~x = cos x
 - COS_NPI
 - 
|- !n. cos (& n * pi) = ~1 pow n
 - COS_PAIRED
 - 
|- !x. (\n. ~1 pow n / & (FACT (2 * n)) * x pow (2 * n)) sums cos x
 - COS_PERIODIC
 - 
|- !x. cos (x + 2 * pi) = cos x
 - COS_PERIODIC_PI
 - 
|- !x. cos (x + pi) = ~cos x
 - COS_PI
 - 
|- cos pi = ~1
 - COS_PI2
 - 
|- cos (pi / 2) = 0
 - COS_POS_PI
 - 
|- !x. ~(pi / 2) < x /\ x < pi / 2 ==> 0 < cos x
 - COS_POS_PI2
 - 
|- !x. 0 < x /\ x < pi / 2 ==> 0 < cos x
 - COS_POS_PI2_LE
 - 
|- !x. 0 <= x /\ x <= pi / 2 ==> 0 <= cos x
 - COS_POS_PI_LE
 - 
|- !x. ~(pi / 2) <= x /\ x <= pi / 2 ==> 0 <= cos x
 - COS_SIN
 - 
|- !x. cos x = sin (pi / 2 - x)
 - COS_SIN_SQ
 - 
|- !x. ~(pi / 2) <= x /\ x <= pi / 2 ==> (cos x = sqrt (1 - sin x pow 2))
 - COS_SIN_SQRT
 - 
|- !x. 0 <= cos x ==> (cos x = sqrt (1 - sin x pow 2))
 - COS_TOTAL
 - 
|- !y. ~1 <= y /\ y <= 1 ==> ?!x. 0 <= x /\ x <= pi /\ (cos x = y)
 - COS_ZERO
 - 
|- !x.
     (cos x = 0) =
     (?n. ~EVEN n /\ (x = & n * (pi / 2))) \/
     ?n. ~EVEN n /\ (x = ~(& n * (pi / 2)))
 - COS_ZERO_LEMMA
 - 
|- !x. 0 <= x /\ (cos x = 0) ==> ?n. ~EVEN n /\ (x = & n * (pi / 2))
 - DIFF_ACS
 - 
|- !x. ~1 < x /\ x < 1 ==> (acs diffl ~inv (sqrt (1 - x pow 2))) x
 - DIFF_ACS_LEMMA
 - 
|- !x. ~1 < x /\ x < 1 ==> (acs diffl inv ~sin (acs x)) x
 - DIFF_ASN
 - 
|- !x. ~1 < x /\ x < 1 ==> (asn diffl inv (sqrt (1 - x pow 2))) x
 - DIFF_ASN_LEMMA
 - 
|- !x. ~1 < x /\ x < 1 ==> (asn diffl inv (cos (asn x))) x
 - DIFF_ATN
 - 
|- !x. (atn diffl inv (1 + x pow 2)) x
 - DIFF_COMPOSITE
 - 
|- ((f diffl l) x /\ ~(f x = 0) ==>
    ((\x. inv (f x)) diffl ~(l / f x pow 2)) x) /\
   ((f diffl l) x /\ (g diffl m) x /\ ~(g x = 0) ==>
    ((\x. f x / g x) diffl ((l * g x - m * f x) / g x pow 2)) x) /\
   ((f diffl l) x /\ (g diffl m) x ==> ((\x. f x + g x) diffl (l + m)) x) /\
   ((f diffl l) x /\ (g diffl m) x ==>
    ((\x. f x * g x) diffl (l * g x + m * f x)) x) /\
   ((f diffl l) x /\ (g diffl m) x ==> ((\x. f x - g x) diffl (l - m)) x) /\
   ((f diffl l) x ==> ((\x. ~f x) diffl ~l) x) /\
   ((g diffl m) x ==>
    ((\x. g x pow n) diffl (& n * g x pow (n - 1) * m)) x) /\
   ((g diffl m) x ==> ((\x. exp (g x)) diffl (exp (g x) * m)) x) /\
   ((g diffl m) x ==> ((\x. sin (g x)) diffl (cos (g x) * m)) x) /\
   ((g diffl m) x ==> ((\x. cos (g x)) diffl (~sin (g x) * m)) x)
 - DIFF_COS
 - 
|- !x. (cos diffl ~sin x) x
 - DIFF_EXP
 - 
|- !x. (exp diffl exp x) x
 - DIFF_LN
 - 
|- !x. 0 < x ==> (ln diffl inv x) x
 - DIFF_LN_COMPOSITE
 - 
|- !g m x.
     (g diffl m) x /\ 0 < g x ==> ((\x. ln (g x)) diffl (inv (g x) * m)) x
 - DIFF_SIN
 - 
|- !x. (sin diffl cos x) x
 - DIFF_TAN
 - 
|- !x. ~(cos x = 0) ==> (tan diffl inv (cos x pow 2)) x
 - DINT_UNIQ
 - 
|- !a b f k1 k2. a <= b /\ Dint (a,b) f k1 /\ Dint (a,b) f k2 ==> (k1 = k2)
 - DIVISION_0
 - 
|- !a b. (a = b) ==> (dsize (\n. (if n = 0 then a else b)) = 0)
 - DIVISION_1
 - 
|- !a b. a < b ==> (dsize (\n. (if n = 0 then a else b)) = 1)
 - DIVISION_APPEND
 - 
|- !a b c.
     (?D1 p1. tdiv (a,b) (D1,p1) /\ fine g (D1,p1)) /\
     (?D2 p2. tdiv (b,c) (D2,p2) /\ fine g (D2,p2)) ==>
     ?D p. tdiv (a,c) (D,p) /\ fine g (D,p)
 - DIVISION_EQ
 - 
|- !D a b. division (a,b) D ==> ((a = b) = (dsize D = 0))
 - DIVISION_EXISTS
 - 
|- !a b g.
     a <= b /\ gauge (\x. a <= x /\ x <= b) g ==>
     ?D p. tdiv (a,b) (D,p) /\ fine g (D,p)
 - DIVISION_GT
 - 
|- !D a b. division (a,b) D ==> !n. n < dsize D ==> D n < D (dsize D)
 - DIVISION_LBOUND
 - 
|- !D a b. division (a,b) D ==> !r. a <= D r
 - DIVISION_LBOUND_LT
 - 
|- !D a b. division (a,b) D /\ ~(dsize D = 0) ==> !n. a < D (SUC n)
 - DIVISION_LE
 - 
|- !D a b. division (a,b) D ==> a <= b
 - DIVISION_LHS
 - 
|- !D a b. division (a,b) D ==> (D 0 = a)
 - DIVISION_LT
 - 
|- !D a b. division (a,b) D ==> !n. n < dsize D ==> D 0 < D (SUC n)
 - DIVISION_LT_GEN
 - 
|- !D a b m n. division (a,b) D /\ m < n /\ n <= dsize D ==> D m < D n
 - DIVISION_RHS
 - 
|- !D a b. division (a,b) D ==> (D (dsize D) = b)
 - DIVISION_SINGLE
 - 
|- !a b. a <= b ==> division (a,b) (\n. (if n = 0 then a else b))
 - DIVISION_THM
 - 
|- !D a b.
     division (a,b) D =
     (D 0 = a) /\ (!n. n < dsize D ==> D n < D (SUC n)) /\
     !n. n >= dsize D ==> (D n = b)
 - DIVISION_UBOUND
 - 
|- !D a b. division (a,b) D ==> !r. D r <= b
 - DIVISION_UBOUND_LT
 - 
|- !D a b n. division (a,b) D /\ n < dsize D ==> D n < b
 - EXP_0
 - 
|- exp 0 = 1
 - EXP_ADD
 - 
|- !x y. exp (x + y) = exp x * exp y
 - EXP_ADD_MUL
 - 
|- !x y. exp (x + y) * exp ~x = exp y
 - EXP_CONVERGES
 - 
|- !x. (\n. (\n. inv (& (FACT n))) n * x pow n) sums exp x
 - EXP_FDIFF
 - 
|- diffs (\n. inv (& (FACT n))) = (\n. inv (& (FACT n)))
 - EXP_INJ
 - 
|- !x y. (exp x = exp y) = (x = y)
 - EXP_LE_X
 - 
|- !x. 0 <= x ==> 1 + x <= exp x
 - EXP_LN
 - 
|- !x. (exp (ln x) = x) = 0 < x
 - EXP_LT_1
 - 
|- !x. 0 < x ==> 1 < exp x
 - EXP_MONO_IMP
 - 
|- !x y. x < y ==> exp x < exp y
 - EXP_MONO_LE
 - 
|- !x y. exp x <= exp y = x <= y
 - EXP_MONO_LT
 - 
|- !x y. exp x < exp y = x < y
 - EXP_N
 - 
|- !n x. exp (& n * x) = exp x pow n
 - EXP_NEG
 - 
|- !x. exp ~x = inv (exp x)
 - EXP_NEG_MUL
 - 
|- !x. exp x * exp ~x = 1
 - EXP_NEG_MUL2
 - 
|- !x. exp ~x * exp x = 1
 - EXP_NZ
 - 
|- !x. ~(exp x = 0)
 - EXP_POS_LE
 - 
|- !x. 0 <= exp x
 - EXP_POS_LT
 - 
|- !x. 0 < exp x
 - EXP_SUB
 - 
|- !x y. exp (x - y) = exp x / exp y
 - EXP_TOTAL
 - 
|- !y. 0 < y ==> ?x. exp x = y
 - EXP_TOTAL_LEMMA
 - 
|- !y. 1 <= y ==> ?x. 0 <= x /\ x <= y - 1 /\ (exp x = y)
 - FINE_MIN
 - 
|- !g1 g2 D p.
     fine (\x. (if g1 x < g2 x then g1 x else g2 x)) (D,p) ==>
     fine g1 (D,p) /\ fine g2 (D,p)
 - FTC1
 - 
|- !f f' a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> (f diffl f' x) x) ==>
     Dint (a,b) f' (f b - f a)
 - GAUGE_MIN
 - 
|- !E g1 g2.
     gauge E g1 /\ gauge E g2 ==>
     gauge E (\x. (if g1 x < g2 x then g1 x else g2 x))
 - INTEGRAL_NULL
 - 
|- !f a. Dint (a,a) f 0
 - LN_1
 - 
|- ln 1 = 0
 - LN_DIV
 - 
|- !x y. 0 < x /\ 0 < y ==> (ln (x / y) = ln x - ln y)
 - LN_EXP
 - 
|- !x. ln (exp x) = x
 - LN_INJ
 - 
|- !x y. 0 < x /\ 0 < y ==> ((ln x = ln y) = (x = y))
 - LN_INV
 - 
|- !x. 0 < x ==> (ln (inv x) = ~ln x)
 - LN_LE
 - 
|- !x. 0 <= x ==> ln (1 + x) <= x
 - LN_LT_X
 - 
|- !x. 0 < x ==> ln x < x
 - LN_MONO_LE
 - 
|- !x y. 0 < x /\ 0 < y ==> (ln x <= ln y = x <= y)
 - LN_MONO_LT
 - 
|- !x y. 0 < x /\ 0 < y ==> (ln x < ln y = x < y)
 - LN_MUL
 - 
|- !x y. 0 < x /\ 0 < y ==> (ln (x * y) = ln x + ln y)
 - LN_POS
 - 
|- !x. 1 <= x ==> 0 <= ln x
 - LN_POW
 - 
|- !n x. 0 < x ==> (ln (x pow n) = & n * ln x)
 - MCLAURIN
 - 
|- !f diff h n.
     0 < h /\ 0 < n /\ (diff 0 = f) /\
     (!m t. m < n /\ 0 <= t /\ t <= h ==> (diff m diffl diff (SUC m) t) t) ==>
     ?t.
       0 < t /\ t < h /\
       (f h =
        sum (0,n) (\m. diff m 0 / & (FACT m) * h pow m) +
        diff n t / & (FACT n) * h pow n)
 - MCLAURIN_ALL_LE
 - 
|- !f diff.
     (diff 0 = f) /\ (!m x. (diff m diffl diff (SUC m) x) x) ==>
     !x n.
       ?t.
         abs t <= abs x /\
         (f x =
          sum (0,n) (\m. diff m 0 / & (FACT m) * x pow m) +
          diff n t / & (FACT n) * x pow n)
 - MCLAURIN_ALL_LT
 - 
|- !f diff.
     (diff 0 = f) /\ (!m x. (diff m diffl diff (SUC m) x) x) ==>
     !x n.
       ~(x = 0) /\ 0 < n ==>
       ?t.
         0 < abs t /\ abs t < abs x /\
         (f x =
          sum (0,n) (\m. diff m 0 / & (FACT m) * x pow m) +
          diff n t / & (FACT n) * x pow n)
 - MCLAURIN_EXP_LE
 - 
|- !x n.
     ?t.
       abs t <= abs x /\
       (exp x =
        sum (0,n) (\m. x pow m / & (FACT m)) + exp t / & (FACT n) * x pow n)
 - MCLAURIN_EXP_LT
 - 
|- !x n.
     ~(x = 0) /\ 0 < n ==>
     ?t.
       0 < abs t /\ abs t < abs x /\
       (exp x =
        sum (0,n) (\m. x pow m / & (FACT m)) + exp t / & (FACT n) * x pow n)
 - MCLAURIN_NEG
 - 
|- !f diff h n.
     h < 0 /\ 0 < n /\ (diff 0 = f) /\
     (!m t. m < n /\ h <= t /\ t <= 0 ==> (diff m diffl diff (SUC m) t) t) ==>
     ?t.
       h < t /\ t < 0 /\
       (f h =
        sum (0,n) (\m. diff m 0 / & (FACT m) * h pow m) +
        diff n t / & (FACT n) * h pow n)
 - MCLAURIN_ZERO
 - 
|- !diff n x.
     (x = 0) /\ 0 < n ==>
     (sum (0,n) (\m. diff m 0 / & (FACT m) * x pow m) = diff 0 0)
 - PI2
 - 
|- pi / 2 = @x. 0 <= x /\ x <= 2 /\ (cos x = 0)
 - PI2_BOUNDS
 - 
|- 0 < pi / 2 /\ pi / 2 < 2
 - PI_POS
 - 
|- 0 < pi
 - POW_2_SQRT
 - 
|- 0 <= x ==> (sqrt (x pow 2) = x)
 - POW_ROOT_POS
 - 
|- !n x. 0 <= x ==> (root (SUC n) (x pow SUC n) = x)
 - REAL_DIV_SQRT
 - 
|- !x. 0 <= x ==> (x / sqrt x = sqrt x)
 - ROOT_0
 - 
|- !n. root (SUC n) 0 = 0
 - ROOT_1
 - 
|- !n. root (SUC n) 1 = 1
 - ROOT_DIV
 - 
|- !n x y.
     0 <= x /\ 0 <= y ==>
     (root (SUC n) (x / y) = root (SUC n) x / root (SUC n) y)
 - ROOT_INV
 - 
|- !n x. 0 <= x ==> (root (SUC n) (inv x) = inv (root (SUC n) x))
 - ROOT_LN
 - 
|- !n x. 0 < x ==> (root (SUC n) x = exp (ln x / & (SUC n)))
 - ROOT_LT_LEMMA
 - 
|- !n x. 0 < x ==> (exp (ln x / & (SUC n)) pow SUC n = x)
 - ROOT_MONO_LE
 - 
|- !x y. 0 <= x /\ x <= y ==> root (SUC n) x <= root (SUC n) y
 - ROOT_MUL
 - 
|- !n x y.
     0 <= x /\ 0 <= y ==>
     (root (SUC n) (x * y) = root (SUC n) x * root (SUC n) y)
 - ROOT_POS
 - 
|- !n x. 0 <= x ==> 0 <= root (SUC n) x
 - ROOT_POS_LT
 - 
|- !n x. 0 < x ==> 0 < root (SUC n) x
 - ROOT_POS_UNIQ
 - 
|- !n x y. 0 <= x /\ 0 <= y /\ (y pow SUC n = x) ==> (root (SUC n) x = y)
 - ROOT_POW_POS
 - 
|- !n x. 0 <= x ==> (root (SUC n) x pow SUC n = x)
 - SIN_0
 - 
|- sin 0 = 0
 - SIN_ACS_NZ
 - 
|- !x. ~1 < x /\ x < 1 ==> ~(sin (acs x) = 0)
 - SIN_ADD
 - 
|- !x y. sin (x + y) = sin x * cos y + cos x * sin y
 - SIN_ASN
 - 
|- !x. ~(pi / 2) <= x /\ x <= pi / 2 ==> (asn (sin x) = x)
 - SIN_BOUND
 - 
|- !x. abs (sin x) <= 1
 - SIN_BOUNDS
 - 
|- !x. ~1 <= sin x /\ sin x <= 1
 - SIN_CIRCLE
 - 
|- !x. sin x pow 2 + cos x pow 2 = 1
 - SIN_CONVERGES
 - 
|- !x.
     (\n.
        (\n. (if EVEN n then 0 else ~1 pow ((n - 1) DIV 2) / & (FACT n))) n *
        x pow n) sums sin x
 - SIN_COS
 - 
|- !x. sin x = cos (pi / 2 - x)
 - SIN_COS_ADD
 - 
|- !x y.
     (sin (x + y) - (sin x * cos y + cos x * sin y)) pow 2 +
     (cos (x + y) - (cos x * cos y - sin x * sin y)) pow 2 =
     0
 - SIN_COS_NEG
 - 
|- !x. (sin ~x + sin x) pow 2 + (cos ~x - cos x) pow 2 = 0
 - SIN_COS_SQ
 - 
|- !x. 0 <= x /\ x <= pi ==> (sin x = sqrt (1 - cos x pow 2))
 - SIN_COS_SQRT
 - 
|- !x. 0 <= sin x ==> (sin x = sqrt (1 - cos x pow 2))
 - SIN_DOUBLE
 - 
|- !x. sin (2 * x) = 2 * (sin x * cos x)
 - SIN_FDIFF
 - 
|- diffs (\n. (if EVEN n then 0 else ~1 pow ((n - 1) DIV 2) / & (FACT n))) =
   (\n. (if EVEN n then ~1 pow (n DIV 2) / & (FACT n) else 0))
 - SIN_NEG
 - 
|- !x. sin ~x = ~sin x
 - SIN_NEGLEMMA
 - 
|- !x.
     ~sin x =
     suminf
       (\n.
          ~((\n. (if EVEN n then 0 else ~1 pow ((n - 1) DIV 2) / & (FACT n)))
              n * x pow n))
 - SIN_NPI
 - 
|- !n. sin (& n * pi) = 0
 - SIN_PAIRED
 - 
|- !x. (\n. ~1 pow n / & (FACT (2 * n + 1)) * x pow (2 * n + 1)) sums sin x
 - SIN_PERIODIC
 - 
|- !x. sin (x + 2 * pi) = sin x
 - SIN_PERIODIC_PI
 - 
|- !x. sin (x + pi) = ~sin x
 - SIN_PI
 - 
|- sin pi = 0
 - SIN_PI2
 - 
|- sin (pi / 2) = 1
 - SIN_POS
 - 
|- !x. 0 < x /\ x < 2 ==> 0 < sin x
 - SIN_POS_PI
 - 
|- !x. 0 < x /\ x < pi ==> 0 < sin x
 - SIN_POS_PI2
 - 
|- !x. 0 < x /\ x < pi / 2 ==> 0 < sin x
 - SIN_POS_PI2_LE
 - 
|- !x. 0 <= x /\ x <= pi / 2 ==> 0 <= sin x
 - SIN_POS_PI_LE
 - 
|- !x. 0 <= x /\ x <= pi ==> 0 <= sin x
 - SIN_TOTAL
 - 
|- !y. ~1 <= y /\ y <= 1 ==> ?!x. ~(pi / 2) <= x /\ x <= pi / 2 /\ (sin x = y)
 - SIN_ZERO
 - 
|- !x.
     (sin x = 0) =
     (?n. EVEN n /\ (x = & n * (pi / 2))) \/
     ?n. EVEN n /\ (x = ~(& n * (pi / 2)))
 - SIN_ZERO_LEMMA
 - 
|- !x. 0 <= x /\ (sin x = 0) ==> ?n. EVEN n /\ (x = & n * (pi / 2))
 - SQRT_0
 - 
|- sqrt 0 = 0
 - SQRT_1
 - 
|- sqrt 1 = 1
 - SQRT_DIV
 - 
|- !x y. 0 <= x /\ 0 <= y ==> (sqrt (x / y) = sqrt x / sqrt y)
 - SQRT_EQ
 - 
|- !x y. (x pow 2 = y) /\ 0 <= x ==> (x = sqrt y)
 - SQRT_EVEN_POW2
 - 
|- !n. EVEN n ==> (sqrt (2 pow n) = 2 pow (n DIV 2))
 - SQRT_INV
 - 
|- !x. 0 <= x ==> (sqrt (inv x) = inv (sqrt x))
 - SQRT_MONO_LE
 - 
|- !x y. 0 <= x /\ x <= y ==> sqrt x <= sqrt y
 - SQRT_MUL
 - 
|- !x y. 0 <= x /\ 0 <= y ==> (sqrt (x * y) = sqrt x * sqrt y)
 - SQRT_POS_LE
 - 
|- !x. 0 <= x ==> 0 <= sqrt x
 - SQRT_POS_LT
 - 
|- !x. 0 < x ==> 0 < sqrt x
 - SQRT_POS_UNIQ
 - 
|- !x y. 0 <= x /\ 0 <= y /\ (y pow 2 = x) ==> (sqrt x = y)
 - SQRT_POW2
 - 
|- !x. (sqrt x pow 2 = x) = 0 <= x
 - SQRT_POW_2
 - 
|- !x. 0 <= x ==> (sqrt x pow 2 = x)
 - TAN_0
 - 
|- tan 0 = 0
 - TAN_ADD
 - 
|- !x y.
     ~(cos x = 0) /\ ~(cos y = 0) /\ ~(cos (x + y) = 0) ==>
     (tan (x + y) = (tan x + tan y) / (1 - tan x * tan y))
 - TAN_ATN
 - 
|- !x. ~(pi / 2) < x /\ x < pi / 2 ==> (atn (tan x) = x)
 - TAN_DOUBLE
 - 
|- !x.
     ~(cos x = 0) /\ ~(cos (2 * x) = 0) ==>
     (tan (2 * x) = 2 * tan x / (1 - tan x pow 2))
 - TAN_NEG
 - 
|- !x. tan ~x = ~tan x
 - TAN_NPI
 - 
|- !n. tan (& n * pi) = 0
 - TAN_PERIODIC
 - 
|- !x. tan (x + 2 * pi) = tan x
 - TAN_PI
 - 
|- tan pi = 0
 - TAN_POS_PI2
 - 
|- !x. 0 < x /\ x < pi / 2 ==> 0 < tan x
 - TAN_SEC
 - 
|- !x. ~(cos x = 0) ==> (1 + tan x pow 2 = inv (cos x) pow 2)
 - TAN_TOTAL
 - 
|- !y. ?!x. ~(pi / 2) < x /\ x < pi / 2 /\ (tan x = y)
 - TAN_TOTAL_LEMMA
 - 
|- !y. 0 < y ==> ?x. 0 < x /\ x < pi / 2 /\ y < tan x
 - TAN_TOTAL_POS
 - 
|- !y. 0 <= y ==> ?x. 0 <= x /\ x < pi / 2 /\ (tan x = y)