- CONT_ADD
 - 
|- !f g x. f contl x /\ g contl x ==> (\x. f x + g x) contl x
 - CONT_ATTAINS
 - 
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M.
       (!x. a <= x /\ x <= b ==> f x <= M) /\
       ?x. a <= x /\ x <= b /\ (f x = M)
 - CONT_ATTAINS2
 - 
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M.
       (!x. a <= x /\ x <= b ==> M <= f x) /\
       ?x. a <= x /\ x <= b /\ (f x = M)
 - CONT_ATTAINS_ALL
 - 
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?L M.
       L <= M /\
       (!y. L <= y /\ y <= M ==> ?x. a <= x /\ x <= b /\ (f x = y)) /\
       !x. a <= x /\ x <= b ==> L <= f x /\ f x <= M
 - CONT_BOUNDED
 - 
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M. !x. a <= x /\ x <= b ==> f x <= M
 - CONT_COMPOSE
 - 
|- !f g x. f contl x /\ g contl f x ==> (\x. g (f x)) contl x
 - CONT_CONST
 - 
|- !k x. (\x. k) contl x
 - CONT_DIV
 - 
|- !f g x. f contl x /\ g contl x /\ ~(g x = 0) ==> (\x. f x / g x) contl x
 - CONT_HASSUP
 - 
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M.
       (!x. a <= x /\ x <= b ==> f x <= M) /\
       !N. N < M ==> ?x. a <= x /\ x <= b /\ N < f x
 - CONT_INJ_LEMMA
 - 
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     ~!z. abs (z - x) <= d ==> f z <= f x
 - CONT_INJ_LEMMA2
 - 
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     ~!z. abs (z - x) <= d ==> f x <= f z
 - CONT_INJ_RANGE
 - 
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     ?e. 0 < e /\ !y. abs (y - f x) <= e ==> ?z. abs (z - x) <= d /\ (f z = y)
 - CONT_INV
 - 
|- !f x. f contl x /\ ~(f x = 0) ==> (\x. inv (f x)) contl x
 - CONT_INVERSE
 - 
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     g contl f x
 - CONT_MUL
 - 
|- !f g x. f contl x /\ g contl x ==> (\x. f x * g x) contl x
 - CONT_NEG
 - 
|- !f x. f contl x ==> (\x. ~f x) contl x
 - CONT_SUB
 - 
|- !f g x. f contl x /\ g contl x ==> (\x. f x - g x) contl x
 - CONTL_LIM
 - 
|- !f x. f contl x = (f -> f x) x
 - DIFF_ADD
 - 
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x ==> ((\x. f x + g x) diffl (l + m)) x
 - DIFF_CARAT
 - 
|- !f l x.
     (f diffl l) x =
     ?g. (!z. f z - f x = g z * (z - x)) /\ g contl x /\ (g x = l)
 - DIFF_CHAIN
 - 
|- !f g l m x.
     (f diffl l) (g x) /\ (g diffl m) x ==> ((\x. f (g x)) diffl (l * m)) x
 - DIFF_CMUL
 - 
|- !f c l x. (f diffl l) x ==> ((\x. c * f x) diffl (c * l)) x
 - DIFF_CONST
 - 
|- !k x. ((\x. k) diffl 0) x
 - DIFF_CONT
 - 
|- !f l x. (f diffl l) x ==> f contl x
 - DIFF_DIV
 - 
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x /\ ~(g x = 0) ==>
     ((\x. f x / g x) diffl ((l * g x - m * f x) / g x pow 2)) x
 - DIFF_INV
 - 
|- !f l x.
     (f diffl l) x /\ ~(f x = 0) ==>
     ((\x. inv (f x)) diffl ~(l / f x pow 2)) x
 - DIFF_INVERSE
 - 
|- !f g l x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) /\ (f diffl l) x /\ ~(l = 0) ==>
     (g diffl inv l) (f x)
 - DIFF_INVERSE_LT
 - 
|- !f g l x d.
     0 < d /\ (!z. abs (z - x) < d ==> (g (f z) = z)) /\
     (!z. abs (z - x) < d ==> f contl z) /\ (f diffl l) x /\ ~(l = 0) ==>
     (g diffl inv l) (f x)
 - DIFF_INVERSE_OPEN
 - 
|- !f g l a x b.
     a < x /\ x < b /\ (!z. a < z /\ z < b ==> (g (f z) = z) /\ f contl z) /\
     (f diffl l) x /\ ~(l = 0) ==>
     (g diffl inv l) (f x)
 - DIFF_ISCONST
 - 
|- !f a b.
     a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> (f diffl 0) x) ==>
     !x. a <= x /\ x <= b ==> (f x = f a)
 - DIFF_ISCONST_ALL
 - 
|- !f. (!x. (f diffl 0) x) ==> !x y. f x = f y
 - DIFF_ISCONST_END
 - 
|- !f a b.
     a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> (f diffl 0) x) ==>
     (f b = f a)
 - DIFF_LCONST
 - 
|- !f x l.
     (f diffl l) x /\ (?d. 0 < d /\ !y. abs (x - y) < d ==> (f y = f x)) ==>
     (l = 0)
 - DIFF_LDEC
 - 
|- !f x l.
     (f diffl l) x /\ l < 0 ==>
     ?d. 0 < d /\ !h. 0 < h /\ h < d ==> f x < f (x - h)
 - DIFF_LINC
 - 
|- !f x l.
     (f diffl l) x /\ 0 < l ==>
     ?d. 0 < d /\ !h. 0 < h /\ h < d ==> f x < f (x + h)
 - DIFF_LMAX
 - 
|- !f x l.
     (f diffl l) x /\ (?d. 0 < d /\ !y. abs (x - y) < d ==> f y <= f x) ==>
     (l = 0)
 - DIFF_LMIN
 - 
|- !f x l.
     (f diffl l) x /\ (?d. 0 < d /\ !y. abs (x - y) < d ==> f x <= f y) ==>
     (l = 0)
 - DIFF_MUL
 - 
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x ==>
     ((\x. f x * g x) diffl (l * g x + m * f x)) x
 - DIFF_NEG
 - 
|- !f l x. (f diffl l) x ==> ((\x. ~f x) diffl ~l) x
 - DIFF_POW
 - 
|- !n x. ((\x. x pow n) diffl (& n * x pow (n - 1))) x
 - DIFF_SUB
 - 
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x ==> ((\x. f x - g x) diffl (l - m)) x
 - DIFF_SUM
 - 
|- !f f' m n x.
     (!r. m <= r /\ r < m + n ==> ((\x. f r x) diffl f' r x) x) ==>
     ((\x. sum (m,n) (\n. f n x)) diffl sum (m,n) (\r. f' r x)) x
 - DIFF_UNIQ
 - 
|- !f l m x. (f diffl l) x /\ (f diffl m) x ==> (l = m)
 - DIFF_X
 - 
|- !x. ((\x. x) diffl 1) x
 - DIFF_XM1
 - 
|- !x. ~(x = 0) ==> ((\x. inv x) diffl ~(inv x pow 2)) x
 - INTERVAL_ABS
 - 
|- !x z d. x - d <= z /\ z <= x + d = abs (z - x) <= d
 - INTERVAL_CLEMMA
 - 
|- !a b x.
     a < x /\ x < b ==> ?d. 0 < d /\ !y. abs (y - x) <= d ==> a < y /\ y < b
 - INTERVAL_LEMMA
 - 
|- !a b x.
     a < x /\ x < b ==> ?d. 0 < d /\ !y. abs (x - y) < d ==> a <= y /\ y <= b
 - IVT
 - 
|- !f a b y.
     a <= b /\ (f a <= y /\ y <= f b) /\
     (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?x. a <= x /\ x <= b /\ (f x = y)
 - IVT2
 - 
|- !f a b y.
     a <= b /\ (f b <= y /\ y <= f a) /\
     (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?x. a <= x /\ x <= b /\ (f x = y)
 - LIM
 - 
|- !f y0 x0.
     (f -> y0) x0 =
     !e.
       0 < e ==>
       ?d.
         0 < d /\
         !x. 0 < abs (x - x0) /\ abs (x - x0) < d ==> abs (f x - y0) < e
 - LIM_ADD
 - 
|- !f g l m x. (f -> l) x /\ (g -> m) x ==> ((\x. f x + g x) -> (l + m)) x
 - LIM_CONST
 - 
|- !k x. ((\x. k) -> k) x
 - LIM_DIV
 - 
|- !f g l m x.
     (f -> l) x /\ (g -> m) x /\ ~(m = 0) ==> ((\x. f x / g x) -> (l / m)) x
 - LIM_EQUAL
 - 
|- !f g l x0. (!x. ~(x = x0) ==> (f x = g x)) ==> ((f -> l) x0 = (g -> l) x0)
 - LIM_INV
 - 
|- !f l x. (f -> l) x /\ ~(l = 0) ==> ((\x. inv (f x)) -> inv l) x
 - LIM_MUL
 - 
|- !f g l m x. (f -> l) x /\ (g -> m) x ==> ((\x. f x * g x) -> (l * m)) x
 - LIM_NEG
 - 
|- !f l x. (f -> l) x = ((\x. ~f x) -> ~l) x
 - LIM_NULL
 - 
|- !f l x. (f -> l) x = ((\x. f x - l) -> 0) x
 - LIM_SUB
 - 
|- !f g l m x. (f -> l) x /\ (g -> m) x ==> ((\x. f x - g x) -> (l - m)) x
 - LIM_TRANSFORM
 - 
|- !f g x0 l. ((\x. f x - g x) -> 0) x0 /\ (g -> l) x0 ==> (f -> l) x0
 - LIM_UNIQ
 - 
|- !f l m x. (f -> l) x /\ (f -> m) x ==> (l = m)
 - LIM_X
 - 
|- !x0. ((\x. x) -> x0) x0
 - MVT
 - 
|- !f a b.
     a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> f differentiable x) ==>
     ?l z. a < z /\ z < b /\ (f diffl l) z /\ (f b - f a = (b - a) * l)
 - MVT_LEMMA
 - 
|- !f a b.
     (\x. f x - (f b - f a) / (b - a) * x) a =
     (\x. f x - (f b - f a) / (b - a) * x) b
 - ROLLE
 - 
|- !f a b.
     a < b /\ (f a = f b) /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> f differentiable x) ==>
     ?z. a < z /\ z < b /\ (f diffl 0) z