Meaning, Mapping & Correspondence in Tangible User Interfaces

CHI '07 Workshop on Tangible User Interfaces in Context & Theory

Darren Edge
Rainbow Group
Computer Laboratory
University of Cambridge
A Solid Diagram Metaphor for Tangible Interaction

Alan Blackwell, Cecily Morrison & Darren Edge: University of Cambridge

• Technical paradigms of UbiComp are founded on *implicit metaphors* of interaction design:

<table>
<thead>
<tr>
<th>Ubicomp Paradigm</th>
<th>Demonstrates Technology</th>
<th>Founded on Metaphor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversational NLP</td>
<td>NLP</td>
<td>Conduit</td>
</tr>
<tr>
<td>Inference</td>
<td>Sensing & Machine Learning</td>
<td>Sentience & Context</td>
</tr>
<tr>
<td>Solid Diagram Sensing</td>
<td>Sensing</td>
<td>Notation</td>
</tr>
</tbody>
</table>

• *Solid Diagrams* provide a human-centric approach to the specification of *abstract data structures* in the physical world.
Tangible Interaction in a Mobile Context

- Many multimedia computing devices are portable
 - Mobile phones, Music players, Video players
- Opportunity to support tangible interaction “on the spot”
- Design experiments:
 - Linking mobile devices to tangible surfaces
 - Bimanual interaction with mobile devices
 - Interaction with small articulated tangibles
Putting TUIs in Context: A Unifying Framework for Next Generation HCI

Michael Horn, Orit Shaer, Audrey Girouard, Leanne Hirshfield, Erin Treacy Solovey, Jamie Zigelbaum*, Robert Jacob: Tufts University, *MIT Media Lab

• *Reality-Based Interaction (RBI)* takes advantage of
 – Interfaces *like* the real world
 – Interaction *in* the real world

• Design should consider the *Power—Reality* tradeoff
 – Favour realistic features over unrealistic
 – Use unrealistic to increase “power”
 – Use analogies for unrealistic
Generative Design Methods for the Tangible Social Interfaces (TSI)

Pamela Jennings: Carnegie Mellon University

• **Constructed Narratives** is a TSI for collaborative design
• Tangible blocks generated from *Shape Grammars*
• Interaction:
 – Users log in profile of self-id, origins, environment & values
 – Users construct a physical 3D block model
 – Links sensed and fed into semantic engine
 – Visual semiotics seed WordNet searches
 – Results printed on a digital 3D model
Meaning, Mapping & Correspondence

• Meaning
 – User interpretation of the world

• Mapping
 – Relationship between the physical and the digital
 – “Physical : Digital”

• Correspondence
 – Deriving meaning from perceptions of the world
 – “Shown : Meant”
Spatial Mapping

- **Physical Arrangement → Digital Interpretation**
- *Style of Mapping* (Ullmer & Ishii: Emerging Frameworks)
- *TAC Paradigm* (Ullmer; Shaer, Leland, Calvillo & Jacob)
- *Spatial Syntactic Relations* (Engelhardt: Language of Graphics)
 - **Solid Diagrams**
 - “Examples of structural diagrammatic relations in the world include registering which objects are touching which other object, and which objects are contained within particular spatial regions”
 - **Personalization**
 - “Many TUI projects demonstrate spatial layout as a means to intentional physical personalization”
Action Mapping

• Physical Input → Digital Output

• Indirection (Beaudouin-Lafon: Instrumental Interaction)
 – Hybrid Interaction
 • References Embodiment (Fishkin: TUI Taxonomy)
 – Five Properties
 • Behavioural mapping “temporal and spatial contiguity”

• Compatibility (Beaudouin-Lafon: Instrumental Interaction)
 – Five Properties
 • Behavioural mapping “covariation”
Attribute Mapping

• **Physical Attributes → Digital Information**

• **Coherence** (Koleva et al.: TUI Framework)

 – **Five Properties**

 • “Perceptual mappings are coherent when there is a direct correspondence between the surface or visual physical and digital properties of a tangible interface”

• **Integration** (Beaudouin-Lafon: Instrumental Interaction)

• **Multiplexing** (Fitzmaurice: Graspable UIs)
Temporal Mapping

- Physical Specification → Digital Behaviour

- *Abstraction & Notation* (Blackwell)
 - Solid Diagrams
 - “Most [implicit metaphors of interaction] focus on the immediate effect of communication to provoke system action or change of state. A further alternative is for the user to specify the structure of the required behaviour, rather than directly specifying the required actions”
Visual Correspondence

- **Visual Appearance → Action Possibility**
- **Affordance** (Gibson: Ecological Perception, Norman: POET)
 - Five Properties
 - “Perceptual affordances are opportunities for action within the environment for individuals with suitable sensory-motor skills”
 - Hybrid Interaction
 - “Sensorial affordances”
 - Mobile Context
 - “The size, form and controls on the [mobile phone] case afford certain kinds of interaction in themselves”
Tactile Correspondence

- Tactile Experience → Action Performance
- *Feedback* (Norman: POET)
 - Personalization
 - “Favourite ping-pong paddle”
 - “Emphasis on material properties could open up new avenues of physical personalization”
Representation Correspondence

- **Physical Representations → Conceptual Roles**
- *Iconic vs Symbolic* (Dourish: Where the Action Is)
 - Five Properties
 - “Semantic mapping between physical and digital representations may be literal, analogical, or metaphorical”
 - Augmented Toys
 - “Semantic mapping between the (virtual) role or function of an object and its appearance”
 - “Semantic distinction... can also [be] established by metonymic association”
 - Reality-Based
 - Interaction *like the real world*
Relation Correspondence

- **Object Relations → Conceptual Relations**
- *Preconceptual Image Schemata* (Lakoff: Spatialization of Form)
- **Indexical**
 - Everyday Manipulation
 - “Things that matter are close. Things that are close matter”
 - “Human everyday strategy to arrange objects in the real world into places”
 - Reality-Based
 - Information organization *in the real world*
MAC Analysis

<table>
<thead>
<tr>
<th>More Physical</th>
<th>Mapping</th>
<th>Correspondence</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Digital</td>
<td>Spatial</td>
<td>Tactile</td>
</tr>
<tr>
<td></td>
<td>Attribute</td>
<td>Visual</td>
</tr>
<tr>
<td></td>
<td>Action</td>
<td>Relation</td>
</tr>
<tr>
<td></td>
<td>Temporal</td>
<td>Representation</td>
</tr>
</tbody>
</table>

Mapping and Correspondence (MAC) Analysis in TUI design is analogous to Cognitive Walkthrough in GUI design
Discussion Points

• Utility
 – Conceptual level
 – Completeness

• Usability
 – Terminology selection
 – Examples

• Integration
 – Experience, Expectations and Learning
 – Needs, Activities and Context