# Completeness of qubit ZX calculus via elementary operations 

Quanlong Wang<br>Department of Computer Science, University of Oxford

Third Workshop on String Diagrams in Computation, Logic and Physics
5 September, 2019

## Outline

## Background

Complete axiomatisation of ZX-calculus with total linearity

Proof of completeness

## What is ZX-calculus

- ZX-calculus is a graphical language for quantum computing proposed by Coecke and Duncan [ICALP'08, New J. Phys., 2011].
- It gives all the details of interacting processes in quantum computation using qubits.
- ZX-calculus can be formalised in the framework of PROPs, which are strict symmetric monoidal categories having the natural numbers as objects, with the tensor product of objects given by addition.
- As a PROP, ZX-calculus can be presented by generators and relations (rewriting rules), just like the presentation of a group.


## How useful is completeness

- Completeness of $Z X$-calculus means quantum computing can be done pure diagrammatically.
- Completeness offers a complete set of rules based on which one could develop an efficient rule set for particular application purpose.
- The key idea of applying ZX-calculus is first encoding matrices into diagrams then choosing suitable rules to rewrite diagrams into a form as simple as you can.


## Original generators of ZX -calculus

|  |  |
| :---: | :---: |
| $H: 1 \rightarrow 1$ | $\sigma: 2 \rightarrow 2$ |
| $\mathbb{I}: 1 \rightarrow 1$ | $e: 0 \rightarrow 0 \quad$. |
| $C_{a}: 0 \rightarrow 2$ | $C_{u}: 2 \rightarrow 0$ |

where $m, n \in \mathbb{N}, \alpha \in[0,2 \pi), a \in \mathbb{C}$, and $e$ represents an empty diagram.

## Standard interpretation of ZX-calculus


where

## Typical rewriting rules of ZX-calculus

## Three properties of the ZX-calculus

- The ZX -calculus is sound: for any two diagrams $D_{1}$ and $D_{2}$, $Z X \vdash D_{1}=D_{2}$ must imply that $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$. [Coecke, Duncan, New J. Phys., 2011]
- The ZX-calculus is universal: for any linear map $L$, there must exist a diagram $D$ in the $Z X$-calculus such that $\llbracket D \rrbracket=L$. [Coecke, Duncan, New J. Phys., 2011]
- The ZX-calculus is complete: for any two diagrams $D_{1}$ and $D_{2}$, $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$ must imply that $Z X+D_{1}=D_{2}$. [Hadzihasanovic, Ng, Wang, LICS'18; Jeandel, Perdrix, Vilmart, LICS'18]


## Why another complete axiomatisation for qubit

 ZX-calculus- The following non-linear axiom was presented in [Jeandel, Perdrix, and Vilmart, LICS'18] and [Jeandel, Perdrix, and Vilmart, LICS'19]:


$$
2 e^{i \theta_{3}} \cos (\gamma)=e^{i \theta_{1}} \cos (\alpha)+e^{i \theta_{2}} \cos (\beta)
$$

## Why another complete axiomatisation for qubit

 ZX-calculus- The following non-linear axiom was presented in [Vilmart, LICS'19]:



## Why another complete axiomatisation for qubit

 ZX-calculus- The following non-linear axiom was presented in [Hadzihasanovic, Ng, Wang, LICS'18]:

where $\lambda e^{i \gamma}=\lambda_{1} e^{i \beta}+\lambda_{2} e^{i \alpha}$.
- Except for [Jeandel, Perdrix, and Vilmart, LICS'19], all the other completeness proofs need the translation from the ZW-calculus.
- All these proofs are not easy to generalise to qudit cases.


## Normal form by [Jeandel, Perdrix, and Vilmart, LICS'19]

- The normal form used in [Jeandel, Perdrix, and Vilmart, LICS'19] is defined recursively.
- (Controlled scalars). A ZX-diagram D : $1 \rightarrow 0$ is a controlled scalar if $\llbracket D \rrbracket|0\rangle=1$.
- (Controlled Normal Form). Given a set S of controlled scalars, the diagrams in normal controlled form with respect to $S(S-C N F)$ are inductively defined as follows:
$-\forall D \in S, D$ is in $S$-CNF;
$-\forall D_{0}, D_{1}$ in $S$-CNF,




## Normal form by [Jeandel, Perdrix, and Vilmart, LICS'19]

- (Normal Form). Given a set $S$ of controlled scalars, for any $n, m \in \mathbb{N}$, and any $D: 1 \rightarrow n+m$ in S-CNF, the following diagram is called a normal form with respect to $S(S-N F)$ :

- Define $\Lambda_{\mathbb{R}}: \mathbb{C} \rightarrow Z X[1,0]$ as:

$$
-\Lambda_{\mathbb{R}}(0)=8 \downarrow
$$

$$
-\forall \rho>0, \forall \theta \in[0,2 \pi), \Lambda_{\mathbb{R}}\left(\rho e^{i \theta}\right):=
$$



$$
\left(\begin{array}{l}
n:=\max \left(0,\left\lceil\log _{2}(\rho)\right\rceil\right) \\
\beta:=\arccos \left(\frac{\rho}{2^{n}}\right) \\
\gamma:=\arccos \left(\frac{1}{2^{n}}\right)
\end{array}\right)
$$

and $S_{\mathbb{R}}:=\left\{\Lambda_{\mathbb{R}}(x) \mid x \in \mathbb{C}\right\}$.

- Theorem [Jeandel, Perdrix, and Vilmart, LICS'19] Any ZX-diagram can be put into a normal form with respect to $S_{\mathbb{R}}$, and the ZX-calculus is complete for the full pure quibt QM.


## Generators for pure linear complete axiomatisation of qubit ZX-calculus



Table: Generators of qubit ZX-calculus
where $m, n \in \mathbb{N}, \alpha \in[0,2 \pi), a \in \mathbb{C}$, and $e$ represents an empty diagram.

## Standard interpretation of new generators


where $a$ is an arbitrary complex number.

## Rules for pure linear complete axiomatisation of qubit ZX-calculus



Figure: Rules I, where $\alpha, \beta \in[0,2 \pi), a, b \in \mathbb{C}$.

## Rules for pure linear complete axiomatisation of qubit ZX-calculus



Figure: Ruels II, $a, b \in \mathbb{C}$

## Rules for pure linear complete axiomatisation of qubit ZX-calculus



## Derivable rules



- $1=00^{-1}$ (TR3')

Directly obtained by plugging a triangle on both sides of (TR3).

## Derivable rules



## Derivable rules





## Derivable rules





## Derivable rules




## Derivable rules



## Derivable rules



## Derivable rules




## Normal form

Any complex vector $\left(a_{0}, a_{1}, \cdots, a_{2^{m}-1}\right)^{T}$ can be uniquely represented by

where $a_{i}$ connects to wires by red nodes depending on $i$, and all possible connections are included in the normal form.

## Where does this normal form come from

$$
\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right) \xrightarrow[\text { addition }]{\text { row }}\left(\begin{array}{c}
a_{0} \\
0 \\
\vdots \\
1
\end{array}\right) \xrightarrow[\text { addition }]{\text { row }}\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{2^{m}-1} \\
1
\end{array}\right) \xrightarrow[\text { multiplication }]{\text { row }}\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{2^{m}-2} \\
a_{2^{m}-1}
\end{array}\right)
$$

## How to prove completeness

- the juxtaposition of any two diagrams in normal form can be rewritten into a normal form.
- a self-plugging on a diagram in normal form can be rewritten into a normal form.
- all generators can be rewritten into normal forms.


## One simple application of the linear version of ZX

- Translate arbitrary H-box in ZH to ZX:

where the general H -box corresponds to the matrix:
$\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \cdots & \vdots \\ 1 & \cdots & a\end{array}\right)$.
- With this translation, we can say that ZH is "SLOCC equivalent" to ZX.


## Further work

- Generalise the completeness result of the ZX-calculus from qubit to qudit for arbitrary dimension $d$. Normal form for

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d^{m}-2} \\
a_{d^{m}-1}
\end{array}\right):
$$


where

$$
K_{1}=|d-1\rangle, \vec{a}_{i}=\left(0, \cdots, 0, a_{i}\right), \vec{a}_{d^{m}-1}=\left(1, \cdots, 1, a_{d^{m}-1}\right) .
$$

## Further work

- Achieve a complete axiomatization of the ZX-calculus with mixed dimensions.
- Find useful ZX rules for optimisation of Benchmark quantum circuits.
- Apply to linguistics.

Thank you!

