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What is ZX-calculus

I ZX-calculus is a graphical language for quantum computing
proposed by Coecke and Duncan [ICALP’08, New J. Phys.,
2011].

I It gives all the details of interacting processes in quantum
computation using qubits.

I ZX-calculus can be formalised in the framework of PROPs,
which are strict symmetric monoidal categories having the
natural numbers as objects, with the tensor product of objects
given by addition.

I As a PROP, ZX-calculus can be presented by generators and
relations (rewriting rules), just like the presentation of a group.



How useful is completeness

I Completeness of ZX-calculus means quantum computing can
be done pure diagrammatically.

I Completeness offers a complete set of rules based on which
one could develop an efficient rule set for particular
application purpose.

I The key idea of applying ZX-calculus is first encoding
matrices into diagrams then choosing suitable rules to rewrite
diagrams into a form as simple as you can.



Original generators of ZX-calculus
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where m, n ∈ N, α ∈ [0, 2π), a ∈ C, and e represents an empty diagram.



Standard interpretation of ZX-calculus
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Typical rewriting rules of ZX-calculus
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Three properties of the ZX-calculus

I The ZX-calculus is sound: for any two diagrams D1 and D2,
ZX ` D1 = D2 must imply that ~D1� = ~D2�. [Coecke,
Duncan, New J. Phys., 2011]

I The ZX-calculus is universal: for any linear map L , there must
exist a diagram D in the ZX-calculus such that ~D� = L .
[Coecke, Duncan, New J. Phys., 2011]

I The ZX-calculus is complete: for any two diagrams D1 and D2,
~D1� = ~D2� must imply that ZX ` D1 = D2. [Hadzihasanovic,
Ng, Wang, LICS’18; Jeandel, Perdrix, Vilmart, LICS’18]



Why another complete axiomatisation for qubit
ZX-calculus

I The following non-linear axiom was presented in [Jeandel,
Perdrix, and Vilmart, LICS’18] and [Jeandel, Perdrix, and
Vilmart, LICS’19]:



Why another complete axiomatisation for qubit
ZX-calculus

I The following non-linear axiom was presented in [Vilmart,
LICS’19]:



Why another complete axiomatisation for qubit
ZX-calculus

I The following non-linear axiom was presented in
[Hadzihasanovic, Ng, Wang, LICS’18]:
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γ

where λe iγ = λ1e iβ + λ2e iα.
I Except for [Jeandel, Perdrix, and Vilmart, LICS’19], all the

other completeness proofs need the translation from the
ZW-calculus.

I All these proofs are not easy to generalise to qudit cases.



Normal form by [Jeandel, Perdrix, and Vilmart, LICS’19]
I The normal form used in [Jeandel, Perdrix, and Vilmart, LICS’19] is

defined recursively.
I (Controlled scalars). A ZX-diagram D : 1→ 0 is a controlled

scalar if ~D� |0〉 = 1.
I (Controlled Normal Form). Given a set S of controlled scalars, the

diagrams in normal controlled form with respect to S (S-CNF) are
inductively defined as follows:



Normal form by [Jeandel, Perdrix, and Vilmart, LICS’19]
I (Normal Form). Given a set S of controlled scalars, for any

n,m ∈ N, and any D : 1→ n + m in S-CNF, the following diagram is
called a normal form with respect to S (S-NF):

I Define ΛR : C→ ZX [1, 0] as:

I Theorem [Jeandel, Perdrix, and Vilmart, LICS’19] Any ZX-diagram
can be put into a normal form with respect toSR, and the
ZX-calculus is complete for the full pure quibt QM.



Generators for pure linear complete axiomatisation of
qubit ZX-calculus
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Table: Generators of qubit ZX-calculus

where m, n ∈ N, α ∈ [0, 2π), a ∈ C, and e represents an empty diagram.



Standard interpretation of new generators�������������������������
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where a is an arbitrary complex number.



Rules for pure linear complete axiomatisation of qubit
ZX-calculus
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Figure: Rules I, where α, β ∈ [0, 2π), a, b ∈ C.



Rules for pure linear complete axiomatisation of qubit
ZX-calculus
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Rules for pure linear complete axiomatisation of qubit
ZX-calculus
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Derivable rules

I
π

π π... ...

=
H

H
=

Proved in [Backens, Perdrix, Wang, QPL’16]

I =
π

-1 (TR3’)

Directly obtained by plugging a triangle on both sides of (TR3).



Derivable rules
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Normal form

Any complex vector (a0, a1, · · · , a2m−1)T can be uniquely
represented by
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where ai connects to wires by red nodes depending on i, and all
possible connections are included in the normal form.



Where does this normal form come from
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How to prove completeness

I the juxtaposition of any two diagrams in normal form can be
rewritten into a normal form.

I a self-plugging on a diagram in normal form can be rewritten
into a normal form.

I all generators can be rewritten into normal forms.



One simple application of the linear version of ZX

I Translate arbitrary H-box in ZH to ZX:
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I With this translation, we can say that ZH is “SLOCC

equivalent” to ZX.



Further work

I Generalise the completeness result of the ZX-calculus from
qubit to qudit for arbitrary dimension d. Normal form for
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Further work

I Achieve a complete axiomatization of the ZX-calculus with
mixed dimensions.

I Find useful ZX rules for optimisation of Benchmark quantum
circuits.

I Apply to linguistics.



Thank you!
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