
Rule-Based Graph Programs

Detlef Plump

University of York

in cooperation with Tim Atkinson, Chris Bak, Graham Campbell,
Brian Courtehoute, Mike Dodds, Ivaylo Hristakiev, Chris Poskitt,

Sandra Steinert and Gia Wulandari

Overview

Introduction

GP 2 Foundations

Rules and relabelling
Host graphs
Attributed rules

Graph Programs

Abstract syntax
Case study: transitive closure
Case study: vertex colouring
Case study: cycle checking

Time Complexity

Cost of graph matching
Case study: tree recognition
Rooted graph transformation
Case study: rooted tree recognition

Other Topics

Graph Programming Language GP 2

input graph output graph(s)

GP 2 program

◮ Experimental DSL for graphs

◮ Based on graph-transformation rules

◮ Abstracts from low-level data structures

◮ Non-deterministic

◮ Computationally complete

Graph Programming Language GP 2

Compiler to C
input graph output graph

GP2 program

◮ Experimental DSL for graphs

◮ Based on graph-transformation rules

◮ Abstracts from low-level data structures

◮ Non-deterministic

◮ Computationally complete

Graph Programming Language GP 2

Compiler to C
input graph output graph

GP2 program

◮ Experimental DSL for graphs

◮ Based on graph-transformation rules

◮ Abstracts from low-level data structures

◮ Non-deterministic

◮ Computationally complete

Aim: facilitating formal reasoning while supporting practical
problem solving

Example program: transitive closure

A graph is transitive if for every directed path v v ′ with v 6= v ′,
there is an edge v → v ′.

Program for computing a transitive closure of the input graph
(smallest transitive extension):

Main = link!

link(a, b, x, y, z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a b

where not edge(1, 3)

Example program: transitive closure (cont’d)

Example program: transitive closure (cont’d)

⇒

Example program: transitive closure (cont’d)

⇒ ⇒

Example program: transitive closure (cont’d)

⇒ ⇒

⇓

Example program: transitive closure (cont’d)

⇒ ⇒

⇓

⇐

Example program: transitive closure (cont’d)

⇒ ⇒

⇓

4
⇐ ⇐

DPO graph transformation with relabelling

◮ A rule r = 〈L← K → R〉 is a pair of graph inclusions;
L,R are totally labelled and K is partially labelled

◮ Graph morphisms preserve graph structure and labels;
unlabelled items can be mapped to arbitrary items

◮ Given an injective morphism g : L→ G , a direct derivation
G ⇒r ,g H consists of two natural pushouts1 of the form

L K R

G D H

NPO NPOg

◮ NPOs exist if and only if g satisfies the dangling condition

◮ D and H are determined uniquely up to isomorphism

1a pushout is natural if it is also a pullback

Example: direct derivation

1

1

1 1

2

←

1 2

→ 2

1

3

2

↓ NPO ↓ NPO ↓

1

1

1

1

2

1

←

1 2

1

→ 2

1

3

2

1

Construction of direct derivations

Given r = 〈L← K → R〉 and injective g : L→ G satisfying the
dangling condition:

Construct D from G

1. Remove all items in g(L) − g(K)

2. For each unlabelled item x in K , make g(x) unlabelled

Construct H from D

3. Add disjointly all items from R − K , retaining labels

4. For e ∈ ER − EK , sH(e) is sR(e) if sR(e) ∈ VR − VK ,
otherwise gV (sR(e)); analogously for targets

5. For each unlabelled item x in K , label g(x) with lR(x)

GP2 host graph labels and type hierarchy

Label ::= List [Mark]

List ::= empty | Atom | List ‘:’ List

Atom ::= Integer | String

Integer ::= [‘-’] Digit {Digit}

String ::= ‘“ ’{Character}‘ ”’

Mark ::= red | green | blue | grey | dashed

list

atom

int string

char

⊆

⊆

⊆
⊇

(Z ∪ Char
∗)∗

Z ∪Char
∗

Z Char
∗

Char
⊆

⊆

⊆
⊇

Example: GP 2 host graph

1:2:3 25

"£?!"

"b" "c"

01

−2

Rule schemata for attributed graph transformation

bridge(n : int; s, t : string; a : atom; x, y : list)

n

1

a:x

2

y

3

s t
⇒ x:y

1

7

2 3

n ∗ n

3

a

s t

where n < 0 and not edge(1, 3)

◮ Variables in RHS and condition must occur in LHS

◮ LHS labels are simple:
◮ no operators except ’:’ and unary ’-’
◮ at most one occurrence of a list variable
◮ at most one occurrence of a string variable in each string expression

Rule-schema application

Applying 〈L⇒ R , c〉 to a host graph G :

1. Find injective premorphism g : L→ G (ignoring labels)

2. Check if g induces variable assignment α such that
g : Lα → G is label-preserving

3. Check whether cα,g = true

4. Apply rule instance Lα ⇒ Rα,g with match g

where Lα, Rα,g and cα,g result from

◮ replacing variables x with α(x),

◮ replacing node identifiers v with g(v), and

◮ evaluating the resulting expressions.

Example: rule-schema application

n

1

a:x

2

y

3

s t
⇒

1

x:y

2

4

3

n ∗ n

a

s t

7→

α

7→
α, g

−5

1

0:1:2

2

3

3

"b" "c"
⇒

1

1:2:3

2

4

3

25

0

"b" "c"

↓ g ↓ h

1

−5

2

0:1:2

3

3

2

"b" "c"

01

⇒
1

1:2:3

2

4

3

25

2

"b" "c"

01

0

Abstract syntax of programs

Program ::= Decl {Decl}

Decl ::= RuleDecl | ProcDecl | MainDecl

ProcDecl ::= ProcId ‘=’ [LocalDecl] ComSeq

MainDecl ::= Main ‘=’ ComSeq

ComSeq ::= Com {‘;’ Com}

Com ::= RuleSetCall | ProcCall

| if ComSeq then ComSeq [else ComSeq]

| try ComSeq [then ComSeq [else ComSeq]]

| ComSeq ‘!’

| ComSeq or ComSeq

| ‘(’ ComSeq ‘)’

| break | skip | fail

RuleSetCall ::= RuleId | ‘{’ [RuleId {‘,’ RuleId}] ‘}’

ProcCall ::= ProcId

Case study: transitive closure

Main = link!

link(a, b, x, y, z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a b

where not edge(1, 3)

Program: transitive closure (cont’d)

Proposition (Termination)

On every input graph G, the program terminates after at most
|VG |

2 rule schema applications.

Proof
Given any graph X , let

#X = |{〈v ,w〉 | v ,w ∈ VX and there is no edge v → w}|.

Note that #X ≤ |VX |
2. Moreover, for every step G ⇒link H,

#H = #G − 1. Hence link! terminates after at most |VG |
2 rule

schema applications.

Case study: transitive closure (cont’d)

Proposition (Correctness)

The program returns a transitive closure of the input graph.

Proof
Let G be the input graph and T the resulting graph. For every step
X ⇒link Y , there is an injective morphism X → Y because link
does not delete or relabel any items. Hence T is an extension of G .

Transitivity of T is shown by induction on the length of directed
paths. Consider a path v0, v1, . . . , vn with n > 1 and v0 6= vn. By
induction hypothesis, there is an edge v0 → vn−1. Thus there are
edges v0 → vn−1 → vn. Then there must be an edge v0 → vn
because link has been applied as long as possible.

T is a smallest transitive extension of G because whenever link
creates an edge v → v ′, by the declaration of link there is no
such edge but a path v v ′.

Case study: vertex colouring

A vertex colouring is an assignment of colours to nodes such that
adjacent nodes get different colours

Main = mark!; init!; inc!

mark(x : list) init(x : list)

1

x ⇒

1

x

1

x ⇒

1

x:1

inc(a, x, y : list; i : int)

x:i y:i

1 2

a
⇒ x:i y:i+1

1 2

a

Case study: vertex colouring (cont’d)

10

⇐
14⇒

1

2

1

2

1

2

3

4

Partial correctness of vertex colouring

For a node v labelled x :i with i ∈ Z, let colour(v) = i . A graph is
coloured if any adjacent nodes v , v ′ satisfy colour(v) 6= colour(v ′).

Proposition (Partial correctness)

If the program terminates with a graph M, then M is coloured.

Proof
Given a terminating program run

G
∗
⇒
mark

G ′ ∗
⇒
init

H
∗
⇒
inc

M,

H is obtained from G by replacing each node label x with x :1. If
M were not correctly coloured, there were two adjacent nodes with
the same colour. But then inc would be applicable to M,
contradicting the fact that inc has been applied as long as
possible.

Termination of vertex colouring

Lemma (Invariant)

If G ⇒∗
inc

H with colour(v) = 1 for all v ∈ VG , then

{colour(v) | v ∈ VH} = {i | 1 ≤ i ≤ n} for some 1 ≤ n ≤ |VH |.

Proposition (Termination)

Given a host graph G, the program terminates after O(|VG |
2) rule

applications.

Proof
Both mark! and init! terminate after |VG | steps. Suppose there
was an infinite derivation

G
∗
⇒
mark

G ′ ∗
⇒
init

H0 ⇒inc H1 ⇒inc H2 ⇒inc . . .

Termination of vertex colouring (cont’d)

Define #Hi =
∑

v∈VHi
colour(v). By the invariant,

#Hi ≤

|VHi
|∑

j=1

j and hence #Hi ≤

|VG |∑

j=1

j .

But the labelling of inc implies

#Hi < #Hi+1 for every i ≥ 0,

a contradiction. Thus the infinite derivation cannot exist.

Also, any sequence of inc applications starting from G has at
most a quadratic length because

|VG |∑

j=1

j =
|VG | × (|VG |+ 1)

2
.

Case study: recognising cyclic graphs

Main = if Cyclic then P else Q
Cyclic = delete!; {edge, loop}

delete(a, x, y : list)

x y

1 2

a
⇒ x y

1 2

where indeg(1) = 0

/∗ preserves cycles

and cycle-freeness ∗/

edge(a, x, y : list)

x y

1 2

a
⇒ x y

1 2

a

loop(a, x : list)

x

1

a ⇒ x

1

a

Case study: recognising cyclic graphs (cont’d)

G : H :

∗⇒

∗⇒

∗⇒

◮ edge succeeds
⇒ G is cyclic

◮ {edge, loop} fails
⇒ H is acyclic

Time Complexity

◮ Bottleneck for efficient graph transformation: graph matching

◮ Matching a rule’s LHS L in a host graph G requires time |G ||L|

◮ Polynomial since program is fixed (only G is input)

◮ Consequence: linear-time graph algorithms usually require
polynomial-time when recast in (unrooted) GP 2

Example: Complexity of Tree Recognition

A graph is a tree if it contains a node from which there is a unique
directed path to each node

Main = nonempty; prune!; if Invalid then fail

Invalid = {two nodes, loop}

nonempty(x:list) prune(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x
1 1

a

two nodes(x,y:list) loop(a,x:list)

x y ⇒ x y

1 2 1 2

x ⇒ x
1 1a a

Example: Complexity of Tree Recognition

A graph is a tree if it contains a node from which there is a unique
directed path to each node

Main = nonempty; prune!; if Invalid then fail

Invalid = {two nodes, loop}

nonempty(x:list) prune(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x
1 1

a

two nodes(x,y:list) loop(a,x:list)

x y ⇒ x y

1 2 1 2

x ⇒ x
1 1a a

Proposition (Correctness)

The program fails on a graph G if and only if G is not a tree.

Example: Complexity of Tree Recognition

Proposition (Cost of matching)

Finding a match for prune requires time

◮ O(|VG ||EG |) on arbitrary graphs, and

◮ O(|VG |) on graphs of bounded node degree.

Corollary (Complexity of tree recognition)

The program’s time complexity is

◮ O(|VG |
2|EG |) on arbitrary graphs, and

◮ O(|VG |
2) on graphs of bounded node degree.

Proof
Rule prune is applied at most |VG | − 1 times. The cost of each
application is dominated by the matching time.

Rooted Graph Transformation

◮ Idea goes back to [Dörr 1995]: distinguish certain nodes as
roots and match roots in rules with roots in host graphs

◮ Only the neighbourhood of host graph roots needs to be
searched for matches

◮ Allows constant-time matching under mild conditions

◮ Adapted to DPO setting in [Dodds-P 2006] and to graph
programs in [Bak-P 2012]

◮ Price to pay: programs get more complicated and less
declarative

Example: Complexity of Rooted Tree Recognition

Main = init; {prune, push}!; if Invalid then fail

Invalid = {two nodes,loop}

init(x:list) two nodes(x,y:list) loop(a,x:list)

x ⇒ x
1 1

x y ⇒ x y

1 2 1 2

x ⇒ x
1 1a a

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x
1 1

a
x y ⇒ x y

1 2 1 2

a a

(pink is a wild card)

Assumption: input graphs have grey nodes

Example: Complexity of Rooted Tree Recognition

Main = init; {prune, push}!; if Invalid then fail

Invalid = {two nodes,loop}

init(x:list) two nodes(x,y:list) loop(a,x:list)

x ⇒ x
1 1

x y ⇒ x y

1 2 1 2

x ⇒ x
1 1a a

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x
1 1

a
x y ⇒ x y

1 2 1 2

a a

Proposition (Correctness and Complexity)

(1) The program fails on a graph G if and only if G is not a tree.

(2) On graphs of bounded node degree, the program terminates in
time O(|VG |).

Fast Rules

A conditional rule 〈L⇒ R , c〉 is fast if

(1) each node in L is undirectedly reachable from some root,

(2) neither L nor R contain repeated list, string or atom variables,

(3) the condition c contains neither an edge predicate nor a test
e1=e2 or e1!=e2 where both e1 and e2 contain a list, string or
atom variable.

Theorem (Complexity of matching fast rules [Bak-P 2012])

Rooted graph matching can be implemented to run in constant
time for fast rules, provided there are upper bounds on the
maximal node degree and the number of roots in host graphs.

Graph Classes for Benchmarking

Star graphs Square grids

Balanced binary trees Linked lists

Measurements for Rooted Tree Recognition

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes in input

E
xe
cu
ti
on

ti
m
e
(s
)

Linked list
Square grid
Binary tree

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of nodes in input
E
xe
cu
ti
on

ti
m
e
(s
)

Star graph
Linked list

Bounded-degree graphs Star graphs and linked lists

More Linear-Time Algorithms

◮ Recognition of acyclic graphs and binary acyclic graphs

◮ Recognition of connected graphs

◮ Computing a 2-colouring

◮ Topological sorting of acyclic graphs

All programs use depth-first search strategies and expect
bounded-degree graphs

Other Topics in Graph Programs

◮ Hoare-style program verification [Poskitt-P 10,12a,12b,14;
Poskitt 13; P 16; Wulandari-P 18]

◮ Checking confluence by critical-pair analysis
[Hristakiev-P 15,17,18; Hristakiev 17]

◮ Computational completeness [P 17]

◮ Structural operational semantics [Steinert-P 10, P 11]

◮ Compiling GP2 to C [Bak 15; Bak-P 16]

◮ Probabilistic graph programs for randomised and evolutionary
algorithms [Atkinson-P-Stepney 18a,18b,19]

	Introduction
	GP2 Foundations
	Graph transformation with relabelling
	Host graphs
	Rule schemata

	Graph Programs
	Abstract syntax
	Case studies

	Time Complexity
	Graph matching
	Rooted graph transformation

	Other Topics

