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Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)
+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else
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Backprop as Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
Functor consists of:

A set P of parameters

A function / : P x X — Y (the implementation)
A function u: P x X X Y — P (the update)
A function r: P x X x Y — X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories
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Alens X — Y is a function X — Y and a function X x Y — X

Backprop as
Functor

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by
pullback of lenses:

PxQxX
/ ) \
PxX QxY
> TN

X Y V4
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Let C be a monoidal category

Backprop as
Functor

Define a category! Para(C) by:
® Objects: objects of C

® Morphisms X — Y: pair (A, f), A object of C,
F:X®RA=Y

o Identity on X: (I, X ® | = X)
e Composition of (B, g) o (A, f):

AeB X®A2B 25 vyeB s 2)

® lifts to a monoidal product on Para(C)

'who cares about monoidal bicategories
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The structure of Para(—)

A lax symmetric monoidal functor F : C — D lifts to
Para(F) : Para(D) — Para(D)

by

FA,f): F(X)® F(A) % F(X @ A) 25 Fry)

Proposition (probably): Para(—) defines a monad on
[symmetric monoidal categories, lax symmetric monoidal
functors]
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Theorem (Fong, Spivak & Tuyéras): Fix a learning rate e > 0

Backprop as and a differentiable cost function? C : R? — R.

Functor

Then there is a symmetric monoidal functor
Fe,c : Para(Euc) — Learn defined by

® On objects X — underlying set of X

® On morphisms f : Px X = Y-

Parameters P

Implementation [ = f

Update U(a, x,y) = a—eV,E(a,x,y)

Request r(a, x, y) = (too awkward to write down)

where E(a, x,y) = Zdlm(y C(f(p,x)i,yi) is total error

Update is gradient descent, and request is backpropagation

%such that every B%C(x,y) is invertible
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Backprop as
Functor

ML doesn’t work like that

Actual backpropagation backpropagates gradients
Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)
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Work in a category with finite limits
E
A bundle over X is a morphism lp

Bundles X
Examples:
XxY
@ Trivial bundle l’”
X
TM
® Tangent bundle over a differentiable manifold lﬂ
M
T*M

© Cotangent bundle lﬂ*
M
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Bundles over Euclidean spaces
If X =R" is a Euclidean space then
e every T, (X) =X
®so, T(X)=XxX
T(X)

® so, the tangent bundle is trivial: erz

X
Moreover:
e every T}(X) = X unnaturally (since X* = X)
® so, T*(X) = X x X unnaturally
¢ elements of X x X are called dual numbers

® the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn't have finite limits, so we work in Top



Morphisms of bundles
E F
A bundle morphism f : lp — lq is:

X Y

«Or «Fr o«

it
-
it

DA
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E F

A bundle morphism f : lp — lq is:

X Y
Morphisms f : X — Y and f# : X xy F = E
such that

~r.|

XXy F——

f#£ N
lp

X —r—

<—
Q

~<

is a pullback
Equivalently: f such that X xy F — X factors through p
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E F
A bundle morphism f : lp — lq is:

X Y
Bundies * Morphisms f : X — Y and f# : X xy F - E
® such that

XxyF——F

A
E q

p
X —F 5y
is a pullback

e Equivalently: f such that X xy F — X factors through p

“Every algebraic geometer knows this definition” — David Spivak
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XxxE=Z2E ——F
|-
Identity morphism: E p
Bundles
|r
X /——— X

Composition of morphisms:
XXz7G—— YXxz7G—— G

(&%) g*

X >;y F— F

# r
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Learning

From the Grothendieck construction:
Bundles

Bund(C) = / (C/X)*P

XeC

This buys us (conjecture) a monoidal structure:

E F ExF
bofo= |
X Y XxY

(this might not be the right one!)
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A (bimorphic) lens X : (S, T) — (A, B) consists of:
® a morphism A\, : S — A called view
Bundles ® a morphism A\, : § x B — T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) :/ coKI(X x —)°P
XecC

Theorem (Lambek): coKI(X x —) = C[x], where C[x] is the
polynomial category formed by freely adjoining x : 1 — X and
closing under finite products



Lenses are bundle morphisms
Another theorem (Lambek): coEM(X x —) = C/X

«O>» «Fr «=>»

«E)»

DA
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Lenses are bundle morphisms

Another theorem (Lambek): coEM(X x —) = C/X
So there is a canonoical embedding C[x] — C/X

Grothendieck them all together: Lens(C) — Bund(C)
It takes a lens A : (S, T) — (A, B) to the bundle morphism

SxB—— AxB
<7r1)>‘u>i -
SxT ™2

e
A

S— A
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Lenses are bundle morphisms

Another theorem (Lambek): coEM(X x —) = C/X
So there is a canonoical embedding C[x] — C/X

Grothendieck them all together: Lens(C) — Bund(C)
It takes a lens A : (S, T) — (A, B) to the bundle morphism

SxB—— AxB

(7r17>\u)l -

SxT ™2

e
A

S———— A
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There is a functor Cot(—) : DiffMfd — Bund(Top)

It takes f : X = Y to

Bundles

X xy THY) —— T*(Y)

rl

T*(X) *

W*l
f

X — Y
where ' : (x,¢) — (x,c o Ji(f))

Jx(f) is the Jacobian (matrix of partial derivatives) of f at x
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Bundles X Xz T*(Z) —_— Y Xz T*(Z) e T*(Z)
*(g’) - -4 B

~ ~

X xy T*(Y) ——— T*(Y)
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Functorality of Cot(—):
Bundles XxzTHZ) —— Y xz TY(Z) — T*(2)
*(g’) - g B
X Xy TH(Y) —— T*(Y)
f! - T
T*(X) "
7.(.*
X d Y £ z

(gof) =f"of*(g’)is the chain rule in differential geometry
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Consider a morphism of Para(Bund(Top)) in the image of
Para(Cot) : Para(Euc) — Para(Bund(Top))

Putting it It |OOkS I|ke

together

XxA—7F vy

We're going to turn it into an open learner, given € > 0 and
differentiable C : R? — R



The setup

Obviously, parameters are A and implementation is f
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The setup

Obviously, parameters are A and implementation is f
We need to define (U,r) :Ax X xY - Ax X

so, fixac A xeXandyeY

and fix the total error C,(y") = Z?i:nll(y) Clyi,y!)

Consider the diagram. ..
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B2 T g (B) — (X A) < THR) —— ¥ g T'(B) —— T'(B)
R
Putting it
together T;(x a)(Y) _ (X X A) Xy T*(Y) _— T*(Y)
l | f’l |
To (XX A) s TH(X < A) -
P -
12 T*(1) -
1

X x A f y
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Putting it

together The result is (r, U) (a, x,y)



Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply
e : THX X A) = X x A

Putting it

together The result is (r, U) (a, x, y)

1e takes a finite step in the gradient direction:

:U’E((Xa a)v (Vv W)) = (X +v,a+ EW)



Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply
e : THX X A) = X x A

Putting it

together The result is (r, U) (a, x,y)

1e takes a finite step in the gradient direction:

:U’E((Xa a)v (Vv W)) = (X +v,a+ EW)

What is p.? We couldn’t find any nice properties



Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply

e : THX X A) = X x A
Putting it

together The result is (r, U) (a, x,y)

1e takes a finite step in the gradient direction:

:U’E((Xa a)v (Vv W)) = (X +v,a+ EW)

What is p.? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map
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The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) O Im(Para(Cot)) — Learn

Another conjecture: This commutes:

Para (Cot)

Para(Euc) ————— Im(Para(Cot))

\ l

Learn

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we've just rewritten Backprop as Functor in a different way!
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Putting i What happens if we extend the functor to the whole of
o Para(Bund(Top))? We have no idea!

Optimistic hope: This allows defining general “ML-like”
systems, not necessarily involving gradients (eg. “discrete ML"
on Bayesian networks)
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