
Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles, Lenses & Machine Learning

Jules Hedges1

joint work with
Brendan Fong2 Eliana Lorch3 David Spivak2

1Max Planck Institute for Mathematics in the Sciences

2MIT

3University of Oxford

SYCO 5, Birmingham

Featuring zero string diagrams :(



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles, Lenses & Machine Learning

Jules Hedges1

joint work with
Brendan Fong2 Eliana Lorch3 David Spivak2

1Max Planck Institute for Mathematics in the Sciences

2MIT

3University of Oxford

SYCO 5, Birmingham

Featuring zero string diagrams :(



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A lens X → Y is a function X → Y and a function X ×Y → X

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by
pullback of lenses:

P × Q × X

P × X Q × Y

X Y Z

y

π2 `1 π2 `2



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A lens X → Y is a function X → Y and a function X ×Y → X

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by
pullback of lenses:

P × Q × X

P × X Q × Y

X Y Z

y

π2 `1 π2 `2



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A lens X → Y is a function X → Y and a function X ×Y → X

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by
pullback of lenses:

P × Q × X

P × X Q × Y

X Y Z

y

π2 `1 π2 `2



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The Para construction

Let C be a monoidal category

Define a category1 Para(C) by:

• Objects: objects of C
• Morphisms X → Y : pair (A, f ), A object of C,
f : X ⊗ A→ Y

• Identity on X : (I ,X ⊗ I
∼=−→ X )

• Composition of (B, g) ◦ (A, f ):

(A⊗ B,X ⊗ A⊗ B
f⊗B−−−→ Y ⊗ B

g−→ Z )

⊗ lifts to a monoidal product on Para(C)

1who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The Para construction

Let C be a monoidal category

Define a category1 Para(C) by:

• Objects: objects of C
• Morphisms X → Y : pair (A, f ), A object of C,

f : X ⊗ A→ Y

• Identity on X : (I ,X ⊗ I
∼=−→ X )

• Composition of (B, g) ◦ (A, f ):

(A⊗ B,X ⊗ A⊗ B
f⊗B−−−→ Y ⊗ B

g−→ Z )

⊗ lifts to a monoidal product on Para(C)

1who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The Para construction

Let C be a monoidal category

Define a category1 Para(C) by:

• Objects: objects of C
• Morphisms X → Y : pair (A, f ), A object of C,

f : X ⊗ A→ Y

• Identity on X : (I ,X ⊗ I
∼=−→ X )

• Composition of (B, g) ◦ (A, f ):

(A⊗ B,X ⊗ A⊗ B
f⊗B−−−→ Y ⊗ B

g−→ Z )

⊗ lifts to a monoidal product on Para(C)

1who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The Para construction

Let C be a monoidal category

Define a category1 Para(C) by:

• Objects: objects of C
• Morphisms X → Y : pair (A, f ), A object of C,

f : X ⊗ A→ Y

• Identity on X : (I ,X ⊗ I
∼=−→ X )

• Composition of (B, g) ◦ (A, f ):

(A⊗ B,X ⊗ A⊗ B
f⊗B−−−→ Y ⊗ B

g−→ Z )

⊗ lifts to a monoidal product on Para(C)

1who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The Para construction

Let C be a monoidal category

Define a category1 Para(C) by:

• Objects: objects of C
• Morphisms X → Y : pair (A, f ), A object of C,

f : X ⊗ A→ Y

• Identity on X : (I ,X ⊗ I
∼=−→ X )

• Composition of (B, g) ◦ (A, f ):

(A⊗ B,X ⊗ A⊗ B
f⊗B−−−→ Y ⊗ B

g−→ Z )

⊗ lifts to a monoidal product on Para(C)

1who cares about monoidal bicategories



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The structure of Para(−)

A lax symmetric monoidal functor F : C → D lifts to

Para(F ) : Para(D)→ Para(D)

by

F (A, f ) : F (X )⊗ F (A)
ϕ−→ F (X ⊗ A)

F (f )−−−→ F (Y )

Proposition (probably): Para(−) defines a monad on
[symmetric monoidal categories, lax symmetric monoidal
functors]



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The structure of Para(−)

A lax symmetric monoidal functor F : C → D lifts to

Para(F ) : Para(D)→ Para(D)

by

F (A, f ) : F (X )⊗ F (A)
ϕ−→ F (X ⊗ A)

F (f )−−−→ F (Y )

Proposition (probably): Para(−) defines a monad on
[symmetric monoidal categories, lax symmetric monoidal
functors]



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate ε > 0
and a differentiable cost function2 C : R2 → R.

Then there is a symmetric monoidal functor
Fε,C : Para(Euc)→ Learn defined by

• On objects X 7→ underlying set of X
• On morphisms f : P × X → Y :

• Parameters P
• Implementation I = f
• Update U(a, x , y) = a− ε∇aE (a, x , y)
• Request r(a, x , y) = (too awkward to write down)

where E (a, x , y) =
∑dim(Y )

i=1 C (f (p, x)i , yi ) is total error

Update is gradient descent, and request is backpropagation

2such that every ∂
∂y

C(x , y) is invertible



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate ε > 0
and a differentiable cost function2 C : R2 → R.

Then there is a symmetric monoidal functor
Fε,C : Para(Euc)→ Learn defined by

• On objects X 7→ underlying set of X

• On morphisms f : P × X → Y :
• Parameters P
• Implementation I = f
• Update U(a, x , y) = a− ε∇aE (a, x , y)
• Request r(a, x , y) = (too awkward to write down)

where E (a, x , y) =
∑dim(Y )

i=1 C (f (p, x)i , yi ) is total error

Update is gradient descent, and request is backpropagation

2such that every ∂
∂y

C(x , y) is invertible



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate ε > 0
and a differentiable cost function2 C : R2 → R.

Then there is a symmetric monoidal functor
Fε,C : Para(Euc)→ Learn defined by

• On objects X 7→ underlying set of X
• On morphisms f : P × X → Y :

• Parameters P
• Implementation I = f

• Update U(a, x , y) = a− ε∇aE (a, x , y)
• Request r(a, x , y) = (too awkward to write down)

where E (a, x , y) =
∑dim(Y )

i=1 C (f (p, x)i , yi ) is total error

Update is gradient descent, and request is backpropagation

2such that every ∂
∂y

C(x , y) is invertible



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate ε > 0
and a differentiable cost function2 C : R2 → R.

Then there is a symmetric monoidal functor
Fε,C : Para(Euc)→ Learn defined by

• On objects X 7→ underlying set of X
• On morphisms f : P × X → Y :

• Parameters P
• Implementation I = f
• Update U(a, x , y) = a− ε∇aE (a, x , y)
• Request r(a, x , y) = (too awkward to write down)

where E (a, x , y) =
∑dim(Y )

i=1 C (f (p, x)i , yi ) is total error

Update is gradient descent, and request is backpropagation

2such that every ∂
∂y

C(x , y) is invertible



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate ε > 0
and a differentiable cost function2 C : R2 → R.

Then there is a symmetric monoidal functor
Fε,C : Para(Euc)→ Learn defined by

• On objects X 7→ underlying set of X
• On morphisms f : P × X → Y :

• Parameters P
• Implementation I = f
• Update U(a, x , y) = a− ε∇aE (a, x , y)
• Request r(a, x , y) = (too awkward to write down)

where E (a, x , y) =
∑dim(Y )

i=1 C (f (p, x)i , yi ) is total error

Update is gradient descent, and request is backpropagation

2such that every ∂
∂y

C(x , y) is invertible



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles
Work in a category with finite limits

A bundle over X is a morphism

E

X

p

Examples:

1 Trivial bundle

X × Y

X

π1

2 Tangent bundle over a differentiable manifold

TM

M

π

3 Cotangent bundle

T ∗M

M
π∗



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles
Work in a category with finite limits

A bundle over X is a morphism

E

X

p

Examples:

1 Trivial bundle

X × Y

X

π1

2 Tangent bundle over a differentiable manifold

TM

M

π

3 Cotangent bundle

T ∗M

M
π∗



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles
Work in a category with finite limits

A bundle over X is a morphism

E

X

p

Examples:

1 Trivial bundle

X × Y

X

π1

2 Tangent bundle over a differentiable manifold

TM

M

π

3 Cotangent bundle

T ∗M

M
π∗



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles
Work in a category with finite limits

A bundle over X is a morphism

E

X

p

Examples:

1 Trivial bundle

X × Y

X

π1

2 Tangent bundle over a differentiable manifold

TM

M

π

3 Cotangent bundle

T ∗M

M
π∗



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of bundles

A bundle morphism f :

E

X

p →
F

Y

q is:

• Morphisms f : X → Y and f # : X ×Y F → E

• such that
X ×Y F F

E

X Y

f #
y

q

p

f

is a pullback

• Equivalently: f such that X ×Y F → X factors through p

“Every algebraic geometer knows this definition” – David Spivak



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of bundles

A bundle morphism f :

E

X

p →
F

Y

q is:

• Morphisms f : X → Y and f # : X ×Y F → E

• such that
X ×Y F F

E

X Y

f #
y

q

p

f

is a pullback

• Equivalently: f such that X ×Y F → X factors through p

“Every algebraic geometer knows this definition” – David Spivak



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of bundles

A bundle morphism f :

E

X

p →
F

Y

q is:

• Morphisms f : X → Y and f # : X ×Y F → E

• such that
X ×Y F F

E

X Y

f #
y

q

p

f

is a pullback

• Equivalently: f such that X ×Y F → X factors through p

“Every algebraic geometer knows this definition” – David Spivak



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of bundles

A bundle morphism f :

E

X

p →
F

Y

q is:

• Morphisms f : X → Y and f # : X ×Y F → E

• such that
X ×Y F F

E

X Y

f #
y

q

p

f

is a pullback

• Equivalently: f such that X ×Y F → X factors through p

“Every algebraic geometer knows this definition” – David Spivak



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of bundles

A bundle morphism f :

E

X

p →
F

Y

q is:

• Morphisms f : X → Y and f # : X ×Y F → E

• such that
X ×Y F F

E

X Y

f #
y

q

p

f

is a pullback

• Equivalently: f such that X ×Y F → X factors through p

“Every algebraic geometer knows this definition” – David Spivak



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The category of bundles

Identity morphism:

X ×X E ∼= E E

E

X X

y

p

p

Composition of morphisms:

X ×Z G Y ×Z G G

X ×Y F F

E

X Y Z

f ∗(g#)
y

g#
y

rf #
y

q

p

f g



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The category of bundles

Identity morphism:

X ×X E ∼= E E

E

X X

y

p

p

Composition of morphisms:

X ×Z G Y ×Z G G

X ×Y F F

E

X Y Z

f ∗(g#)
y

g#
y

rf #
y

q

p

f g



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Where does this come from?

From the Grothendieck construction:

Bund(C) =

∫
X∈C

(C/X )op

This buys us (conjecture) a monoidal structure:

E

X

p ⊗
F

Y

q =

E × F

X × Y

p×q

(this might not be the right one!)



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Where does this come from?

From the Grothendieck construction:

Bund(C) =

∫
X∈C

(C/X )op

This buys us (conjecture) a monoidal structure:

E

X

p ⊗
F

Y

q =

E × F

X × Y

p×q

(this might not be the right one!)



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A (bimorphic) lens λ : (S ,T )→ (A,B) consists of:

• a morphism λv : S → A called view

• a morphism λu : S × B → T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) =

∫
X∈C

coKl(X ×−)op

Theorem (Lambek): coKl(X ×−) ∼= C[x ], where C[x ] is the
polynomial category formed by freely adjoining x : 1→ X and
closing under finite products



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A (bimorphic) lens λ : (S ,T )→ (A,B) consists of:

• a morphism λv : S → A called view

• a morphism λu : S × B → T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) =

∫
X∈C

coKl(X ×−)op

Theorem (Lambek): coKl(X ×−) ∼= C[x ], where C[x ] is the
polynomial category formed by freely adjoining x : 1→ X and
closing under finite products



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A (bimorphic) lens λ : (S ,T )→ (A,B) consists of:

• a morphism λv : S → A called view

• a morphism λu : S × B → T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) =

∫
X∈C

coKl(X ×−)op

Theorem (Lambek): coKl(X ×−) ∼= C[x ], where C[x ] is the
polynomial category formed by freely adjoining x : 1→ X and
closing under finite products



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses

A (bimorphic) lens λ : (S ,T )→ (A,B) consists of:

• a morphism λv : S → A called view

• a morphism λu : S × B → T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) =

∫
X∈C

coKl(X ×−)op

Theorem (Lambek): coKl(X ×−) ∼= C[x ], where C[x ] is the
polynomial category formed by freely adjoining x : 1→ X and
closing under finite products



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses are bundle morphisms

Another theorem (Lambek): coEM(X ×−) ∼= C/X

So there is a canonoical embedding C[x ] ↪→ C/X

Grothendieck them all together: Lens(C)→ Bund(C)
It takes a lens λ : (S ,T )→ (A,B) to the bundle morphism

S × B A× B

S × T

S A

〈π1,λu〉
y

π2

π2

λv



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses are bundle morphisms

Another theorem (Lambek): coEM(X ×−) ∼= C/X

So there is a canonoical embedding C[x ] ↪→ C/X

Grothendieck them all together: Lens(C)→ Bund(C)
It takes a lens λ : (S ,T )→ (A,B) to the bundle morphism

S × B A× B

S × T

S A

〈π1,λu〉
y

π2

π2

λv



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses are bundle morphisms

Another theorem (Lambek): coEM(X ×−) ∼= C/X

So there is a canonoical embedding C[x ] ↪→ C/X

Grothendieck them all together: Lens(C)→ Bund(C)
It takes a lens λ : (S ,T )→ (A,B) to the bundle morphism

S × B A× B

S × T

S A

〈π1,λu〉
y

π2

π2

λv



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Lenses are bundle morphisms

Another theorem (Lambek): coEM(X ×−) ∼= C/X

So there is a canonoical embedding C[x ] ↪→ C/X

Grothendieck them all together: Lens(C)→ Bund(C)
It takes a lens λ : (S ,T )→ (A,B) to the bundle morphism

S × B A× B

S × T

S A

〈π1,λu〉
y

π2

π2

λv



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of contangent bundles

There is a functor Cot(−) : DiffMfd→ Bund(Top)

It takes f : X → Y to

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y

f ′
y

π∗

π∗

f

where f ′ : (x , c) 7→ (x , c ◦ Jx(f ))

Jx(f ) is the Jacobian (matrix of partial derivatives) of f at x



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of contangent bundles

There is a functor Cot(−) : DiffMfd→ Bund(Top)

It takes f : X → Y to

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y

f ′
y

π∗

π∗

f

where f ′ : (x , c) 7→ (x , c ◦ Jx(f ))

Jx(f ) is the Jacobian (matrix of partial derivatives) of f at x



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Morphisms of contangent bundles

There is a functor Cot(−) : DiffMfd→ Bund(Top)

It takes f : X → Y to

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y

f ′
y

π∗

π∗

f

where f ′ : (x , c) 7→ (x , c ◦ Jx(f ))

Jx(f ) is the Jacobian (matrix of partial derivatives) of f at x



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The chain rule

Functorality of Cot(−):

X ×Z T ∗(Z ) Y ×Z T ∗(Z ) T ∗(Z )

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y Z

f ∗(g ′)
y

g ′
y

π∗f ′
y

π∗

π∗

f g

(g ◦ f )′ = f ′ ◦ f ∗(g ′) is the chain rule in differential geometry



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The chain rule

Functorality of Cot(−):

X ×Z T ∗(Z ) Y ×Z T ∗(Z ) T ∗(Z )

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y Z

f ∗(g ′)
y

g ′
y

π∗f ′
y

π∗

π∗

f g

(g ◦ f )′ = f ′ ◦ f ∗(g ′) is the chain rule in differential geometry



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

From Para(Bund(Top)) to Learn

Consider a morphism of Para(Bund(Top)) in the image of

Para(Cot) : Para(Euc)→ Para(Bund(Top))

It looks like

(X × A)×Y T ∗(Y ) Y

T ∗(X × A)

X × A Y

f ′
y

π∗

π∗

f

We’re going to turn it into an open learner, given ε > 0 and
differentiable C : R2 → R



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

From Para(Bund(Top)) to Learn

Consider a morphism of Para(Bund(Top)) in the image of

Para(Cot) : Para(Euc)→ Para(Bund(Top))

It looks like

(X × A)×Y T ∗(Y ) Y

T ∗(X × A)

X × A Y

f ′
y

π∗

π∗

f

We’re going to turn it into an open learner, given ε > 0 and
differentiable C : R2 → R



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The setup

Obviously, parameters are A and implementation is f

We need to define 〈U, r〉 : A× X × Y → A× X

so, fix a ∈ A, x ∈ X and y ∈ Y

and fix the total error Cy (y ′) =
∑dim(Y )

i=1 C (yi , y
′
i )

Consider the diagram. . .



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The setup

Obviously, parameters are A and implementation is f

We need to define 〈U, r〉 : A× X × Y → A× X

so, fix a ∈ A, x ∈ X and y ∈ Y

and fix the total error Cy (y ′) =
∑dim(Y )

i=1 C (yi , y
′
i )

Consider the diagram. . .



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The setup

Obviously, parameters are A and implementation is f

We need to define 〈U, r〉 : A× X × Y → A× X

so, fix a ∈ A, x ∈ X and y ∈ Y

and fix the total error Cy (y ′) =
∑dim(Y )

i=1 C (yi , y
′
i )

Consider the diagram. . .



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The brain exploding part

R ∼= T ∗Cy (f (x ,a))(R) (X × A)×R T ∗(R) Y ×R T ∗(R) T ∗(R)

T ∗f (x ,a)(Y ) (X × A)×Y T ∗(Y ) T ∗(Y )

T ∗(x ,a)(X × A) T ∗(X × A)

1 ∼= T ∗(1)

1 X × A Y R

y
f ∗(C ′y )

y
C ′y

y

π∗

y
f ′

y

π∗!
y

π∗

(x ,a) f Cy



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The part we don’t understand

Now: Chase 1 ∈ R to T ∗(X × A) and then apply

µε : T ∗(X × A)→ X × A

The result is 〈r ,U〉 (a, x , y)

µε takes a finite step in the gradient direction:

µε((x , a), (v ,w)) = (x + v , a + εw)

What is µε? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The part we don’t understand

Now: Chase 1 ∈ R to T ∗(X × A) and then apply

µε : T ∗(X × A)→ X × A

The result is 〈r ,U〉 (a, x , y)

µε takes a finite step in the gradient direction:

µε((x , a), (v ,w)) = (x + v , a + εw)

What is µε? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The part we don’t understand

Now: Chase 1 ∈ R to T ∗(X × A) and then apply

µε : T ∗(X × A)→ X × A

The result is 〈r ,U〉 (a, x , y)

µε takes a finite step in the gradient direction:

µε((x , a), (v ,w)) = (x + v , a + εw)

What is µε? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The part we don’t understand

Now: Chase 1 ∈ R to T ∗(X × A) and then apply

µε : T ∗(X × A)→ X × A

The result is 〈r ,U〉 (a, x , y)

µε takes a finite step in the gradient direction:

µε((x , a), (v ,w)) = (x + v , a + εw)

What is µε? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) ⊇ Im(Para(Cot))→ Learn

Another conjecture: This commutes:

Para(Euc) Im(Para(Cot))

Learn

Para(Cot)

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we’ve just rewritten Backprop as Functor in a different way!



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) ⊇ Im(Para(Cot))→ Learn

Another conjecture: This commutes:

Para(Euc) Im(Para(Cot))

Learn

Para(Cot)

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we’ve just rewritten Backprop as Functor in a different way!



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) ⊇ Im(Para(Cot))→ Learn

Another conjecture: This commutes:

Para(Euc) Im(Para(Cot))

Learn

Para(Cot)

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we’ve just rewritten Backprop as Functor in a different way!



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) ⊇ Im(Para(Cot))→ Learn

Another conjecture: This commutes:

Para(Euc) Im(Para(Cot))

Learn

Para(Cot)

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we’ve just rewritten Backprop as Functor in a different way!



Bundles,
Lenses &
Machine
Learning

Motivation

Backprop as
Functor

Bundles

Putting it
together

Even more hard questions

What happens if we extend the functor to the whole of
Para(Bund(Top))? We have no idea!

Optimistic hope: This allows defining general “ML-like”
systems, not necessarily involving gradients (eg. “discrete ML”
on Bayesian networks)


	Motivation
	Backprop as Functor
	Bundles
	Putting it together

