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Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else
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Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X → Y
consists of:

• A set P of parameters

• A function I : P × X → Y (the implementation)

• A function u : P × X × Y → P (the update)

• A function r : P × X × Y → X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories
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Lenses

A lens X → Y is a function X → Y and a function X ×Y → X

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by
pullback of lenses:

P × Q × X

P × X Q × Y

X Y Z

y

π2 `1 π2 `2
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The Para construction

Let C be a monoidal category

Define a category1 Para(C) by:

• Objects: objects of C
• Morphisms X → Y : pair (A, f ), A object of C,
f : X ⊗ A→ Y

• Identity on X : (I ,X ⊗ I
∼=−→ X )

• Composition of (B, g) ◦ (A, f ):

(A⊗ B,X ⊗ A⊗ B
f⊗B−−−→ Y ⊗ B

g−→ Z )

⊗ lifts to a monoidal product on Para(C)

1who cares about monoidal bicategories
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The structure of Para(−)

A lax symmetric monoidal functor F : C → D lifts to

Para(F ) : Para(D)→ Para(D)

by

F (A, f ) : F (X )⊗ F (A)
ϕ−→ F (X ⊗ A)

F (f )−−−→ F (Y )

Proposition (probably): Para(−) defines a monad on
[symmetric monoidal categories, lax symmetric monoidal
functors]
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Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate ε > 0
and a differentiable cost function2 C : R2 → R.

Then there is a symmetric monoidal functor
Fε,C : Para(Euc)→ Learn defined by

• On objects X 7→ underlying set of X
• On morphisms f : P × X → Y :

• Parameters P
• Implementation I = f
• Update U(a, x , y) = a− ε∇aE (a, x , y)
• Request r(a, x , y) = (too awkward to write down)

where E (a, x , y) =
∑dim(Y )

i=1 C (f (p, x)i , yi ) is total error

Update is gradient descent, and request is backpropagation

2such that every ∂
∂y

C(x , y) is invertible
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ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)
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Bundles
Work in a category with finite limits

A bundle over X is a morphism

E

X

p

Examples:

1 Trivial bundle

X × Y

X

π1

2 Tangent bundle over a differentiable manifold

TM

M

π

3 Cotangent bundle

T ∗M

M
π∗
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Bundles over Euclidean spaces
If X = Rn is a Euclidean space then

• every Tx(X ) ∼= X

• so, T (X ) ∼= X × X

• so, the tangent bundle is trivial:

T (X )

X

π2

Moreover:

• every T ∗x (X ) ∼= X unnaturally (since X ∗ ∼= X )

• so, T ∗(X ) ∼= X × X unnaturally

• elements of X × X are called dual numbers

• the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn’t have finite limits, so we work in Top
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Morphisms of bundles

A bundle morphism f :

E

X

p →
F

Y

q is:

• Morphisms f : X → Y and f # : X ×Y F → E

• such that
X ×Y F F

E

X Y

f #
y

q

p

f

is a pullback

• Equivalently: f such that X ×Y F → X factors through p

“Every algebraic geometer knows this definition” – David Spivak
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The category of bundles

Identity morphism:

X ×X E ∼= E E

E

X X

y

p

p

Composition of morphisms:

X ×Z G Y ×Z G G

X ×Y F F

E

X Y Z

f ∗(g#)
y

g#
y

rf #
y

q

p

f g
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Where does this come from?

From the Grothendieck construction:

Bund(C) =

∫
X∈C

(C/X )op

This buys us (conjecture) a monoidal structure:

E

X

p ⊗
F

Y

q =

E × F

X × Y

p×q

(this might not be the right one!)
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Lenses

A (bimorphic) lens λ : (S ,T )→ (A,B) consists of:

• a morphism λv : S → A called view

• a morphism λu : S × B → T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) =

∫
X∈C

coKl(X ×−)op

Theorem (Lambek): coKl(X ×−) ∼= C[x ], where C[x ] is the
polynomial category formed by freely adjoining x : 1→ X and
closing under finite products
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Lenses are bundle morphisms

Another theorem (Lambek): coEM(X ×−) ∼= C/X

So there is a canonoical embedding C[x ] ↪→ C/X

Grothendieck them all together: Lens(C)→ Bund(C)
It takes a lens λ : (S ,T )→ (A,B) to the bundle morphism

S × B A× B

S × T

S A

〈π1,λu〉
y

π2

π2

λv
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Morphisms of contangent bundles

There is a functor Cot(−) : DiffMfd→ Bund(Top)

It takes f : X → Y to

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y

f ′
y

π∗

π∗

f

where f ′ : (x , c) 7→ (x , c ◦ Jx(f ))

Jx(f ) is the Jacobian (matrix of partial derivatives) of f at x
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The chain rule

Functorality of Cot(−):

X ×Z T ∗(Z ) Y ×Z T ∗(Z ) T ∗(Z )

X ×Y T ∗(Y ) T ∗(Y )

T ∗(X )

X Y Z

f ∗(g ′)
y

g ′
y

π∗f ′
y

π∗

π∗

f g

(g ◦ f )′ = f ′ ◦ f ∗(g ′) is the chain rule in differential geometry
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From Para(Bund(Top)) to Learn

Consider a morphism of Para(Bund(Top)) in the image of

Para(Cot) : Para(Euc)→ Para(Bund(Top))

It looks like

(X × A)×Y T ∗(Y ) Y

T ∗(X × A)

X × A Y

f ′
y

π∗

π∗

f

We’re going to turn it into an open learner, given ε > 0 and
differentiable C : R2 → R
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The setup

Obviously, parameters are A and implementation is f

We need to define 〈U, r〉 : A× X × Y → A× X

so, fix a ∈ A, x ∈ X and y ∈ Y

and fix the total error Cy (y ′) =
∑dim(Y )

i=1 C (yi , y
′
i )

Consider the diagram. . .
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The brain exploding part

R ∼= T ∗Cy (f (x ,a))(R) (X × A)×R T ∗(R) Y ×R T ∗(R) T ∗(R)

T ∗f (x ,a)(Y ) (X × A)×Y T ∗(Y ) T ∗(Y )

T ∗(x ,a)(X × A) T ∗(X × A)

1 ∼= T ∗(1)

1 X × A Y R

y
f ∗(C ′y )

y
C ′y

y

π∗

y
f ′

y

π∗!
y

π∗

(x ,a) f Cy
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The part we don’t understand

Now: Chase 1 ∈ R to T ∗(X × A) and then apply

µε : T ∗(X × A)→ X × A

The result is 〈r ,U〉 (a, x , y)

µε takes a finite step in the gradient direction:

µε((x , a), (v ,w)) = (x + v , a + εw)

What is µε? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map
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The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) ⊇ Im(Para(Cot))→ Learn

Another conjecture: This commutes:

Para(Euc) Im(Para(Cot))

Learn

Para(Cot)

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we’ve just rewritten Backprop as Functor in a different way!
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Even more hard questions

What happens if we extend the functor to the whole of
Para(Bund(Top))? We have no idea!

Optimistic hope: This allows defining general “ML-like”
systems, not necessarily involving gradients (eg. “discrete ML”
on Bayesian networks)
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