Bundles,
Lenses &
Machine
Learning

Bundles, Lenses & Machine Learning

Jules Hedges!
joint work with
Brendan Fong® Eliana Lorch® David Spivak?

IMax Planck Institute for Mathematics in the Sciences
2MIT

3University of Oxford

SYCO 5, Birmingham

Bundles,
Lenses &
Machine
Learning

Bundles, Lenses & Machine Learning

Jules Hedges!
joint work with
Brendan Fong® Eliana Lorch® David Spivak?

IMax Planck Institute for Mathematics in the Sciences
2MIT

3University of Oxford

SYCO 5, Birmingham

Featuring zero string diagrams :(

Bundles,
Lenses &

Machine Motivation

Learning

Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)
+
ML as differential geometry

Bundles,
Lenses &

Machine Motivation

Learning

Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)
+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

Bundles,
Lenses &

Machine Motivation

Learning

Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)
+
ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
consists of:
® A set P of parameters

Bundles,
Lenses &

Machine Open learners

Learning

Backprop as Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
Functer consists of:

® A set P of parameters

e A function / : P x X — Y (the implementation)

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
consists of:

® A set P of parameters

e A function / : P x X — Y (the implementation)

e A function u: P x X X Y — P (the update)

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
consists of:

® A set P of parameters

e A function / : P x X — Y (the implementation)
e A function u: P x X X Y — P (the update)

e A function r: P x X x Y — X (the request)

Bundles,
Lenses &

Machine Open learners

Learning

Backprop as Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
Functor consists of:

® A set P of parameters

e A function / : P x X — Y (the implementation)
e A function u: P x X X Y — P (the update)

e A function r: P x X x Y — X (the request)

Composition of open learners is fiddly

Bundles,
Lenses &

Machine Open learners

Learning

Backprop as Definition (Fong, Spivak & Tuyéras) : An open learner X — Y
Functor consists of:

A set P of parameters

A function / : P x X — Y (the implementation)
A function u: P x X X Y — P (the update)
A function r: P x X x Y — X (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

who cares about monoidal bicategories

Bundles,
Lenses &

Machine Lenses

Learning

Alens X — Y is a function X — Y and a function X x Y — X

Backprop as
Functor

Bundles,
Lenses &

Machine Lenses

Learning

Alens X — Y is a function X — Y and a function X x Y — X

Backprop as
Functor

Composition of lenses is also fiddly!

Bundles,
Lenses &

Machine Lenses

Learning

Alens X — Y is a function X — Y and a function X x Y — X

Backprop as
Functor

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by
pullback of lenses:

PxQxX
/) \
PxX QxY
> TN

X Y V4

Bundles,
Lenses &

Machine The Para construction

Learning

Let C be a monoidal category

Backprop as
Functor

Define a category! Para(C) by:

'who cares about monoidal bicategories

Bundles,
Lenses &

Machine The Para construction

Learning

Let C be a monoidal category

Backprop as
Functor

Define a category! Para(C) by:
® Objects: objects of C
® Morphisms X — Y: pair (A, f), A object of C,
FXRA=Y

'who cares about monoidal bicategories

Bundles,
Lenses &

Machine The Para construction

Learning

Let C be a monoidal category

Backprop as
Functor

Define a category! Para(C) by:
® Objects: objects of C
® Morphisms X — Y: pair (A, f), A object of C,
F:XQA=Y
o Identity on X: (I, X ® | = X)

'who cares about monoidal bicategories

Bundles,
Lenses &

Machine The Para construction

Learning

Let C be a monoidal category

Backprop as
Functor

Define a category! Para(C) by:
Objects: objects of C

® Morphisms X — Y: pair (A, f), A object of C,
F:X®RA=Y

dentity on X: (I, X ® | = X)
Composition of (B, g) o (A, f):

AeB X®A2B 25 vyeB s 2)

'who cares about monoidal bicategories

Bundles,
Lenses &

Machine The Para construction

Learning

Let C be a monoidal category

Backprop as
Functor

Define a category! Para(C) by:
® Objects: objects of C

® Morphisms X — Y: pair (A, f), A object of C,
F:X®RA=Y

o Identity on X: (I, X ® | = X)
e Composition of (B, g) o (A, f):

AeB X®A2B 25 vyeB s 2)

® lifts to a monoidal product on Para(C)

'who cares about monoidal bicategories

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

The structure of Para(—)

A lax symmetric monoidal functor F : C — D lifts to

by

Para(F) : Para(D) — Para(D)

FA,f): F(X)® F(A) % F(X @ A) 25 Fry)

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

The structure of Para(—)

A lax symmetric monoidal functor F : C — D lifts to
Para(F) : Para(D) — Para(D)

by

FA,f): F(X)® F(A) % F(X @ A) 25 Fry)

Proposition (probably): Para(—) defines a monad on
[symmetric monoidal categories, lax symmetric monoidal
functors]

Bundles,
Lenses &

Machine Backprop as Functor

Learning

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate e > 0

Backprop as and a differentiable cost function? C : R? — R.

Functor

%such that every 6%C(x,y) is invertible

Bundles,
Lenses &

echne Backprop as Functor
Theorem (Fong, Spivak & Tuyéras): Fix a learning rate e > 0

Backprop as and a differentiable cost function® C : R? — R.

Functor

Then there is a symmetric monoidal functor
Fe,c : Para(Euc) — Learn defined by

® On objects X — underlying set of X

%such that every (,%C(x,y) is invertible

Bundles,
Lenses &

echne Backprop as Functor
Theorem (Fong, Spivak & Tuyéras): Fix a learning rate e > 0

Backprop as and a differentiable cost function® C : R? — R.

Functor

Then there is a symmetric monoidal functor
Fe,c : Para(Euc) — Learn defined by

® On objects X — underlying set of X

® On morphisms f : Px X = Y-

® Parameters P
® |mplementation I = f

%such that every B%C(x,y) is invertible

Bundles,
Lenses &

echne Backprop as Functor
Theorem (Fong, Spivak & Tuyéras): Fix a learning rate e > 0
Backprop as and a differentiable cost function? C : R? — R.

Functor

Then there is a symmetric monoidal functor
Fe,c : Para(Euc) — Learn defined by

® On objects X — underlying set of X

® On morphisms f : Px X = Y-

Parameters P

Implementation [= f

Update U(a, x,y) = a—eV,E(a,x,y)

Request r(a, x, y) = (too awkward to write down)

where E(a, x,y) = Zdlm(y C(f(p,x)i,yi) is total error

%such that every (,%C(x,y) is invertible

Bundles,
Lenses &

echne Backprop as Functor
Theorem (Fong, Spivak & Tuyéras): Fix a learning rate e > 0

Backprop as and a differentiable cost function? C : R? — R.

Functor

Then there is a symmetric monoidal functor
Fe,c : Para(Euc) — Learn defined by

® On objects X — underlying set of X

® On morphisms f : Px X = Y-

Parameters P

Implementation [= f

Update U(a, x,y) = a—eV,E(a,x,y)

Request r(a, x, y) = (too awkward to write down)

where E(a, x,y) = Zdlm(y C(f(p,x)i,yi) is total error

Update is gradient descent, and request is backpropagation

%such that every B%C(x,y) is invertible

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

ML doesn’t work like that

Actual backpropagation backpropagates gradients

Bundles,
Lenses &

Machine ML doesn’t work like that

Learning

Backprop as
Functor

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

ML doesn’t work like that

Actual backpropagation backpropagates gradients
Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

Bundles,
Lenses &
Machine
Learning

Backprop as
Functor

ML doesn’t work like that

Actual backpropagation backpropagates gradients
Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have
differentiable structure

(The benefit is Learn is more general than just ML)

Bundles,
Lenses &

Machine Bundles

Learning

Work in a category with finite limits
E
A bundle over X is a morphism lp

Bundles X

Bundles,
Lenses &

echne Bundles
Work in a category with finite limits
E

A bundle over X is a morphism lp

Bundles X
Examples:

XxY
@ Trivial bundle l“

X

Bundles,
Lenses &
Machine
Learning

Bundles

Bundles
Work in a category with finite limits
E
A bundle over X is a morphism lp

X
Examples:

XxY
@ Trivial bundle l“

X

TM
® Tangent bundle over a differentiable manifold l,r

M

Bundles,
Lenses &

Machine Bundles

Learning

Work in a category with finite limits
E
A bundle over X is a morphism lp

Bundles X
Examples:
XxY
@ Trivial bundle l’”
X
TM
® Tangent bundle over a differentiable manifold lﬂ
M
T*M

© Cotangent bundle lﬂ*
M

Bundles,
Lenses &

Machine Bundles over Euclidean spaces

Learning

If X =R" is a Euclidean space then
e every T,(X) =X

Bundles

Bundles,
Lenses &

Machine Bundles over Euclidean spaces

Learning
If X =R" is a Euclidean space then
e every T,(X) =X
®so, T(X)=XxX

Bundles

Bundles,
Lenses &

Machine Bundles over Euclidean spaces

Learnin
; If X =R" is a Euclidean space then
e every T,(X) =X
®so, T(X)=XxX
Bundles T(X)
® so, the tangent bundle is trivial: lm

X

Bundles,
Lenses &
Machine
Learning

Bundles

Bundles over Euclidean spaces
If X =R" is a Euclidean space then
e every T, (X) =X
®so, T(X)=XxX
T(X)

® so, the tangent bundle is trivial: lm

X
Moreover:

e every T}(X) = X unnaturally (since X* = X)

Bundles,
Lenses &
Machine
Learning

Bundles

Bundles over Euclidean spaces
If X =R" is a Euclidean space then
e every T, (X) =X
®so, T(X)=XxX
T(X)

® so, the tangent bundle is trivial: lﬂz

X
Moreover:
e every T}(X) = X unnaturally (since X* = X)
® so, T*(X) = X x X unnaturally

Bundles,
Lenses &
Machine
Learning

Bundles

Bundles over Euclidean spaces
If X =R" is a Euclidean space then
e every T, (X) =X
®so, T(X)=XxX
T(X)

® so, the tangent bundle is trivial: lﬂz

X
Moreover:
e every T}(X) = X unnaturally (since X* = X)
® so, T*(X) = X x X unnaturally

® elements of X x X are called dual numbers

Bundles,
Lenses &
Machine
Learning

Bundles

Bundles over Euclidean spaces
If X =R" is a Euclidean space then
e every T,(X) =X
®so, T(X)=XxX
T(X)
® so, the tangent bundle is trivial: lﬂz

X
Moreover:
e every T}(X) = X unnaturally (since X* = X)
® so, T*(X) = X x X unnaturally
¢ elements of X x X are called dual numbers

® the cotangent bundle is unnaturally equivalent to a trivial
bundle

Bundles,
Lenses &
Machine
Learning

Bundles

Bundles over Euclidean spaces
If X =R" is a Euclidean space then
e every T, (X) =X
®so, T(X)=XxX
T(X)

® so, the tangent bundle is trivial: erz

X
Moreover:
e every T}(X) = X unnaturally (since X* = X)
® so, T*(X) = X x X unnaturally
¢ elements of X x X are called dual numbers

® the cotangent bundle is unnaturally equivalent to a trivial
bundle

Nb. Euc doesn't have finite limits, so we work in Top

Morphisms of bundles
E F
A bundle morphism f : lp — lq is:

X Y

«Or «Fr o«

it
-
it

DA

Bundles,
Lenses &

Machine Morphisms of bundles
E F
A bundle morphism f : lp — lq is:
X Y
pundles ® Morphisms f : X — Y and f# : X xy F = E

Bundles,

Lenses & .

Machine Morphisms of bundles
E F

A bundle morphism f : lp — lq is:

X Y
Bundles * Morphisms f : X — Y and f# : X xy F - E
® such that

-

Xxy F——

f#i -
|r

X —r—

“—
Q

~<

is a pullback

Bundles,
Lenses &
Machine
Learning

Bundles

Morphisms of bundles
E F

A bundle morphism f : lp — lq is:

X Y
Morphisms f : X — Y and f# : X xy F = E
such that

~r.|

XXy F——

f#£ N
lp

X —r—

<—
Q

~<

is a pullback
Equivalently: f such that X xy F — X factors through p

Bundles,
Lenses &

e Morphisms of bundles
E F
A bundle morphism f : lp — lq is:

X Y
Bundies * Morphisms f : X — Y and f# : X xy F - E
® such that

XxyF——F

A
E q

p
X —F 5y
is a pullback

e Equivalently: f such that X xy F — X factors through p

“Every algebraic geometer knows this definition” — David Spivak

Bundles,
Lenses &

e s The category of bundles
earning
H ;
Identity morphism: E p

Bundles lp

X:X

Bundles,
Lenses &

Machine The category of bundles

Learning

XxxE=Z2E ——F
|-
Identity morphism: E p
Bundles
|r
X /——— X

Composition of morphisms:
XXz7G—— YXxz7G—— G

(&%) g*

X >;y F— F

r

Bundles,
Lenses &

Machine Where does this come from?

Learning

From the Grothendieck construction:

Bundles

Bund(C) — / (C/X)°P

XeC

Bundles,
Lenses &

Machine Where does this come from?

Learning

From the Grothendieck construction:
Bundles

Bund(C) = / (C/X)*P

XeC

This buys us (conjecture) a monoidal structure:

E F ExF
bofo= |
X Y XxY

(this might not be the right one!)

Bundles,
Lenses &

Machine Lenses

Learning

A (bimorphic) lens X : (S, T) — (A, B) consists of:
® a morphism A\, : S — A called view

Bundles ® a morphism A, : S x B — T called update

Bundles,
Lenses &

Machine Lenses

Learning

A (bimorphic) lens X : (S, T) — (A, B) consists of:
® a morphism A\, : S — A called view

Bundles ® a morphism A, : S x B — T called update

Composition of lenses is fiddly

Bundles,
Lenses &

Machine Lenses

Learning

A (bimorphic) lens X : (S, T) — (A, B) consists of:
® a morphism A\, : S — A called view

Bundles ® a morphism A\, : § x B — T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) :/ coKI(X x —)°P
XecC

Bundles,
Lenses &

Machine Lenses

Learning

A (bimorphic) lens X : (S, T) — (A, B) consists of:
® a morphism A\, : S — A called view
Bundles ® a morphism A\, : § x B — T called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

Lens(C) :/ coKI(X x —)°P
XecC

Theorem (Lambek): coKI(X x —) = C[x], where C[x] is the
polynomial category formed by freely adjoining x : 1 — X and
closing under finite products

Lenses are bundle morphisms
Another theorem (Lambek): coEM(X x —) = C/X

«O>» «Fr «=>»

«E)»

DA

Bundles,
Lenses &

Machine Lenses are bundle morphisms

Learning

Another theorem (Lambek): coEM(X x —) = C/X

So there is a canonoical embedding C[x] — C/X

Bundles

Bundles,
Lenses &
Machine
Learning

Bundles

Lenses are bundle morphisms

Another theorem (Lambek): coEM(X x —) = C/X
So there is a canonoical embedding C[x] — C/X

Grothendieck them all together: Lens(C) — Bund(C)
It takes a lens A : (S, T) — (A, B) to the bundle morphism

SxB—— AxB
<7r1)>‘u>i -
SxT ™2

e
A

S— A

Bundles,
Lenses &
Machine
Learning

Bundles

Lenses are bundle morphisms

Another theorem (Lambek): coEM(X x —) = C/X
So there is a canonoical embedding C[x] — C/X

Grothendieck them all together: Lens(C) — Bund(C)
It takes a lens A : (S, T) — (A, B) to the bundle morphism

SxB—— AxB

(7r17>\u)l -

SxT ™2

e
A

S———— A

Bundles,
Lenses &

Machine Morphisms of contangent bundles

Learning

There is a functor Cot(—) : DiffMfd — Bund(Top)

Bundles

Bundles,
Lenses &

Machine Morphisms of contangent bundles

Learning

There is a functor Cot(—) : DiffMfd — Bund(Top)

It takes f : X = Y to

Bundles

X xy TH(Y) —— T*(Y)

vl

T*(X) o

W*l
f

X ——Y

where ' : (x,¢) — (x,c o Ji(f))

Bundles,
Lenses &

Machine Morphisms of contangent bundles

Learning

There is a functor Cot(—) : DiffMfd — Bund(Top)

It takes f : X = Y to

Bundles

X xy THY) —— T*(Y)

rl

T*(X) *

W*l
f

X — Y
where ' : (x,¢) — (x,c o Ji(f))

Jx(f) is the Jacobian (matrix of partial derivatives) of f at x

Bundles,

Lenses & ;
echne The chain rule
Functorality of Cot(—):
Bundles X Xz T*(Z) —_— Y Xz T*(Z) e T*(Z)
*(g’) - -4 B

~ ~

X xy T*(Y) ——— T*(Y)

Bundles,

Lenses & R
echne The chain rule
Functorality of Cot(—):
Bundles XxzTHZ) —— Y xz TY(Z) — T*(2)
*(g’) - g B
X Xy TH(Y) —— T*(Y)
f! - T
T*(X) "
7.(.*
X d Y £ z

(gof) =f"of*(g’)is the chain rule in differential geometry

Bundles,
Lenses &

Machine From Para(Bund(Top)) to Learn

Learning

Consider a morphism of Para(Bund(Top)) in the image of
Para(Cot) : Para(Euc) — Para(Bund(Top))

Bt e It looks like

together

Bundles,
Lenses &

Machine From Para(Bund(Top)) to Learn

Learning

Consider a morphism of Para(Bund(Top)) in the image of
Para(Cot) : Para(Euc) — Para(Bund(Top))

Putting it It |OOkS I|ke

together

XxA—7F vy

We're going to turn it into an open learner, given € > 0 and
differentiable C : R? — R

The setup

Obviously, parameters are A and implementation is f

«O>» «Fr «=>»

«E)»

DA

Bundles,
Lenses &
Machine
Learning

Putting it
together

The setup

Obviously, parameters are A and implementation is f
We need to define (U,r) :Ax X xY - Ax X
so, fixac A xeXandyeY

and fix the total error C,(y") = Z?i:nll(y) Clyi,y!)

Bundles,
Lenses &
Machine
Learning

Putting it
together

The setup

Obviously, parameters are A and implementation is f
We need to define (U,r) :Ax X xY - Ax X

so, fixac A xeXandyeY

and fix the total error C,(y") = Z?i:nll(y) Clyi,y!)

Consider the diagram. ..

Bundles,
Lenses &

Machine The brain exploding part

Learning

B2 T g (B) — (X A) < THR) —— ¥ g T'(B) —— T'(B)
R
Putting it
together T;(x a)(Y) _ (X X A) Xy T*(Y) _— T*(Y)
l | f’l |
To (XX A) s TH(X < A) -
P -
12 T*(1) -
1

X x A f y

Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply

e : THX X A) = X x A
Putting it

together The result is (r, U) (a, x,y)

Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply
e : THX X A) = X x A

Putting it

together The result is (r, U) (a, x, y)

1e takes a finite step in the gradient direction:

:U’E((Xa a)v (Vv W)) = (X +v,a+ EW)

Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply
e : THX X A) = X x A

Putting it

together The result is (r, U) (a, x,y)

1e takes a finite step in the gradient direction:

:U’E((Xa a)v (Vv W)) = (X +v,a+ EW)

What is p.? We couldn’t find any nice properties

Bundles,
Lenses &

Machine The part we don't understand

Learning

Now: Chase 1 € R to T*(X x A) and then apply

e : THX X A) = X x A
Putting it

together The result is (r, U) (a, x,y)

1e takes a finite step in the gradient direction:

:U’E((Xa a)v (Vv W)) = (X +v,a+ EW)

What is p.? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map

Bundles,

L[ﬂhi The catch
Conjecture: This defines a symmetric monoidal functor
Para(Bund(Top)) O Im(Para(Cot)) — Learn
Putting it

together

Bundles,
Lenses &

Machine The catch

Learning
Conjecture: This defines a symmetric monoidal functor
Para(Bund(Top)) O Im(Para(Cot)) — Learn
Putting it
ey Another conjecture: This commutes:

Para (Cot)

Para(Euc) ————— Im(Para(Cot))

\ l

Learn

Bundles,
Lenses &
Machine
Learning

Putting it
together

The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) O Im(Para(Cot)) — Learn

Another conjecture: This commutes:

Para (Cot)

Para(Euc) ————— Im(Para(Cot))

\ l

Learn

The catch: We think Para(Cot) is an equivalence of categories
onto its image

Bundles,
Lenses &
Machine
Learning

Putting it
together

The catch

Conjecture: This defines a symmetric monoidal functor

Para(Bund(Top)) O Im(Para(Cot)) — Learn

Another conjecture: This commutes:

Para (Cot)

Para(Euc) ————— Im(Para(Cot))

\ l

Learn

The catch: We think Para(Cot) is an equivalence of categories
onto its image

So, we've just rewritten Backprop as Functor in a different way!

Bundles,
Lenses &

Machine Even more hard questions

Learning

Putting i What happens if we extend the functor to the whole of
o Para(Bund(Top))? We have no idea!

Optimistic hope: This allows defining general “ML-like”
systems, not necessarily involving gradients (eg. “discrete ML"
on Bayesian networks)

	Motivation
	Backprop as Functor
	Bundles
	Putting it together

