Bundles, Lenses \& Machine Learning

Jules Hedges ${ }^{1}$
joint work with
Brendan Fong ${ }^{2}$ Eliana Lorch ${ }^{3}$ David Spivak ${ }^{2}$
${ }^{1}$ Max Planck Institute for Mathematics in the Sciences
${ }^{2} \mathrm{MIT}$
${ }^{3}$ University of Oxford
SYCO 5, Birmingham

Bundles, Lenses \& Machine Learning

Jules Hedges ${ }^{1}$
joint work with
Brendan Fong ${ }^{2}$ Eliana Lorch ${ }^{3}$ David Spivak ${ }^{2}$
${ }^{1}$ Max Planck Institute for Mathematics in the Sciences
${ }^{2} \mathrm{MIT}$
${ }^{3}$ University of Oxford
SYCO 5, Birmingham

Motivation

Machine learning is categorical in 2 different ways:

Motivation

Machine learning is categorical in 2 different ways:

```
                    Backprop As Functor
(compositional description of ML with monoidal categories)
                                    +
ML as differential geometry
```

In this talk: smoosh them together
(why? Why not)

Machine learning is categorical in 2 different ways:

In this talk: smoosh them together
(why? Why not)

It clarifies Backprop as Functor more than anything else

Bundles, Lenses \& Machine Learning

Definition (Fong, Spivak \& Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters

Open learners

Bundles,

Definition (Fong, Spivak \& Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
- A function $I: P \times X \rightarrow Y$ (the implementation)

Open learners

Definition (Fong, Spivak \& Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
- A function I: $P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)

Open learners

Definition (Fong, Spivak \& Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
- A function $I: P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)
- A function $r: P \times X \times Y \rightarrow X$ (the request)

Open learners

Definition (Fong, Spivak \& Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
- A function I: $P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)
- A function $r: P \times X \times Y \rightarrow X$ (the request)

Composition of open learners is fiddly

Open learners

Definition (Fong, Spivak \& Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
- A function I: $P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)
- A function $r: P \times X \times Y \rightarrow X$ (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called Learn

Bundles, Lenses \& Machine Learning

A lens $X \rightarrow Y$ is a function $X \rightarrow Y$ and a function $X \times Y \rightarrow X$

Composition of lenses is also fiddly!

A lens $X \rightarrow Y$ is a function $X \rightarrow Y$ and a function $X \times Y \rightarrow X$

Lenses

A lens $X \rightarrow Y$ is a function $X \rightarrow Y$ and a function $X \times Y \rightarrow X$

Composition of lenses is also fiddly!

Theorem (Fong \& Johnson): Open learners compose by pullback of lenses:

Define a category ${ }^{1}$ Para (\mathcal{C}) by:
${ }^{1}$ who cares about monoidal bicategories

The Para construction

Let \mathcal{C} be a monoidal category
Define a category ${ }^{1}$ Para (\mathcal{C}) by:

- Objects: objects of \mathcal{C}
- Morphisms $X \rightarrow Y$: pair $(A, f), A$ object of \mathcal{C}, $f: X \otimes A \rightarrow Y$
${ }^{1}$ who cares about monoidal bicategories

The Para construction

Let \mathcal{C} be a monoidal category
Define a category ${ }^{1}$ Para (\mathcal{C}) by:

- Objects: objects of \mathcal{C}
- Morphisms $X \rightarrow Y$: pair $(A, f), A$ object of \mathcal{C}, $f: X \otimes A \rightarrow Y$
- Identity on $X:(I, X \otimes I \stackrel{\cong}{\rightrightarrows} X)$
${ }^{1}$ who cares about monoidal bicategories

The Para construction

Let \mathcal{C} be a monoidal category
Define a category ${ }^{1}$ Para (\mathcal{C}) by:

- Objects: objects of \mathcal{C}
- Morphisms $X \rightarrow Y$: pair $(A, f), A$ object of \mathcal{C}, $f: X \otimes A \rightarrow Y$
- Identity on $X:(I, X \otimes I \xrightarrow{\cong} X)$
- Composition of $(B, g) \circ(A, f)$:

$$
(A \otimes B, X \otimes A \otimes B \xrightarrow{f \otimes B} Y \otimes B \xrightarrow{g} Z)
$$

${ }^{1}$ who cares about monoidal bicategories

The Para construction

Let \mathcal{C} be a monoidal category
Define a category ${ }^{1}$ Para (\mathcal{C}) by:

- Objects: objects of \mathcal{C}
- Morphisms $X \rightarrow Y$: pair $(A, f), A$ object of \mathcal{C}, $f: X \otimes A \rightarrow Y$
- Identity on $X:(I, X \otimes I \stackrel{\cong}{\cong} X)$
- Composition of $(B, g) \circ(A, f)$:

$$
(A \otimes B, X \otimes A \otimes B \xrightarrow{f \otimes B} Y \otimes B \xrightarrow{g} Z)
$$

\otimes lifts to a monoidal product on Para (\mathcal{C})
${ }^{1}$ who cares about monoidal bicategories

Bundles,

The structure of Para(-)

A lax symmetric monoidal functor $F: \mathcal{C} \rightarrow \mathcal{D}$ lifts to

$$
\operatorname{Para}(F): \operatorname{Para}(\mathcal{D}) \rightarrow \operatorname{Para}(\mathcal{D})
$$

by

$$
F(A, f): F(X) \otimes F(A) \xrightarrow{\varphi} F(X \otimes A) \xrightarrow{F(f)} F(Y)
$$

The structure of Para(-)

A lax symmetric monoidal functor $F: \mathcal{C} \rightarrow \mathcal{D}$ lifts to

$$
\operatorname{Para}(F): \operatorname{Para}(\mathcal{D}) \rightarrow \operatorname{Para}(\mathcal{D})
$$

by

$$
F(A, f): F(X) \otimes F(A) \xrightarrow{\varphi} F(X \otimes A) \xrightarrow{F(f)} F(Y)
$$

Proposition (probably): Para(-) defines a monad on [symmetric monoidal categories, lax symmetric monoidal functors]

Theorem (Fong, Spivak \& Tuyéras): Fix a learning rate $\varepsilon>0$ and a differentiable cost function ${ }^{2} C: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

[^0]
Backprop as Functor

Theorem (Fong, Spivak \& Tuyéras): Fix a learning rate $\varepsilon>0$ and a differentiable cost function ${ }^{2} C: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C}: \operatorname{Para}(E \mathbf{u c}) \rightarrow$ Learn defined by

- On objects $X \mapsto$ underlying set of X
${ }^{2}$ such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible

Backprop as Functor

Theorem (Fong, Spivak \& Tuyéras): Fix a learning rate $\varepsilon>0$ and a differentiable cost function ${ }^{2} C: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C}: \operatorname{Para}(E \mathbf{u c}) \rightarrow$ Learn defined by

- On objects $X \mapsto$ underlying set of X
- On morphisms $f: P \times X \rightarrow Y$:
- Parameters P
- Implementation $I=f$
${ }^{2}$ such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible

Backprop as Functor

Theorem (Fong, Spivak \& Tuyéras): Fix a learning rate $\varepsilon>0$ and a differentiable cost function ${ }^{2} C: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C}: \operatorname{Para}(E u c) \rightarrow$ Learn defined by

- On objects $X \mapsto$ underlying set of X
- On morphisms $f: P \times X \rightarrow Y$:
- Parameters P
- Implementation $I=f$
- Update $U(a, x, y)=a-\varepsilon \nabla_{a} E(a, x, y)$
- Request $r(a, x, y)=($ too awkward to write down)
where $E(a, x, y)=\sum_{i=1}^{\operatorname{dim}(Y)} C\left(f(p, x)_{i}, y_{i}\right)$ is total error
${ }^{2}$ such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible

Backprop as Functor

Theorem (Fong, Spivak \& Tuyéras): Fix a learning rate $\varepsilon>0$ and a differentiable cost function ${ }^{2} C: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C}: \operatorname{Para}(E \mathbf{u c}) \rightarrow$ Learn defined by

- On objects $X \mapsto$ underlying set of X
- On morphisms $f: P \times X \rightarrow Y$:
- Parameters P
- Implementation $I=f$
- Update $U(a, x, y)=a-\varepsilon \nabla_{a} E(a, x, y)$
- Request $r(a, x, y)=($ too awkward to write down)
where $E(a, x, y)=\sum_{i=1}^{\operatorname{dim}(Y)} C\left(f(p, x)_{i}, y_{i}\right)$ is total error
Update is gradient descent, and request is backpropagation
${ }^{2}$ such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible

Bundles, Lenses \& Machine Learning

ML doesn't work like that

Actual backpropagation backpropagates gradients

ML doesn't work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

ML doesn't work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn't have differentiable structure

ML doesn't work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn't have differentiable structure
(The benefit is Learn is more general than just ML)

Work in a category with finite limits
A bundle over X is a morphism $\underset{\underset{X}{ }}{\stackrel{\rightharpoonup}{p}}$

Bundles

E

Bundles

Work in a category with finite limits

Examples:

Bundles

Work in a category with finite limits
E
A bundle over X is a morphism $\underset{X}{\stackrel{\rightharpoonup}{p}}$
Examples:

TM
(2) Tangent bundle over a differentiable manifold

Bundles

Work in a category with finite limits

$$
E
$$

A bundle over X is a morphism $\underset{X}{\stackrel{\rightharpoonup}{p}}$
Examples:

TM
(2) Tangent bundle over a differentiable manifold
$T^{*} \mathcal{M}$
(3) Cotangent bundle

$$
\begin{gathered}
\downarrow \pi^{*} \\
\mathcal{M}
\end{gathered}
$$

Bundles, Lenses \& Machine Learning

Motivation
Backprop as Functor

Bundles over Euclidean spaces

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$

Bundles, Lenses \& Machine

Bundles over Euclidean spaces

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$

Bundles,

Bundles over Euclidean spaces

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$

$$
T(X)
$$

- so, the tangent bundle is trivial:

Bundles,

Bundles over Euclidean spaces

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$
- so, the tangent bundle is trivial:

$$
T(X)
$$

Moreover:

- every $T_{X}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T_{x}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)
- so, $T^{*}(X) \cong X \times X$ unnaturally

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T_{x}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)
- so, $T^{*}(X) \cong X \times X$ unnaturally
- elements of $X \times X$ are called dual numbers

Bundles over Euclidean spaces

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$

$$
T(X)
$$

- so, the tangent bundle is trivial:

Moreover:

- every $T_{x}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)
- so, $T^{*}(X) \cong X \times X$ unnaturally
- elements of $X \times X$ are called dual numbers
- the cotangent bundle is unnaturally equivalent to a trivial bundle

Bundles over Euclidean spaces

If $X=\mathbb{R}^{n}$ is a Euclidean space then

- every $T_{x}(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T_{x}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)
- so, $T^{*}(X) \cong X \times X$ unnaturally
- elements of $X \times X$ are called dual numbers
- the cotangent bundle is unnaturally equivalent to a trivial bundle

Nb. Euc doesn't have finite limits, so we work in Top

Bundles, Lenses \& Machine Learning

Motivation
Backprop as Functor

Bundles
Putting it together

Morphisms of bundles

$E \quad F$
 A bundle morphism $f: \downarrow p \rightarrow \downarrow q$ is:
 $X \quad Y$

Bundles, Lenses \& Machine Learning

Morphisms of bundles

- Morphisms $f: X \rightarrow Y$ and $f^{\#}: X \times_{Y} F \rightarrow E$

Bundles,
is a pullback

Morphisms of bundles

- Morphisms $f: X \rightarrow Y$ and $f^{\#}: X \times_{Y} F \rightarrow E$
- such that

is a pullback
- Equivalently: f such that $X \times_{Y} F \rightarrow X$ factors through p

Morphisms of bundles

- Morphisms $f: X \rightarrow Y$ and $f^{\#}: X \times_{Y} F \rightarrow E$
- such that

$$
\begin{aligned}
& X \times_{y} F \longrightarrow F
\end{aligned}
$$

is a pullback

- Equivalently: f such that $X \times_{Y} F \rightarrow X$ factors through p
"Every algebraic geometer knows this definition" - David Spivak

Bundles, Lenses \& Machine Learning

Motivation

Backprop as Functor

Bundles
Putting it together

The category of bundles

Identity morphism:

The category of bundles

Composition of morphisms:

Where does this come from?

From the Grothendieck construction:

$$
\operatorname{Bund}(\mathcal{C})=\int_{X \in \mathcal{C}}(\mathcal{C} / X)^{\mathrm{op}}
$$

Where does this come from?

From the Grothendieck construction:

$$
\operatorname{Bund}(\mathcal{C})=\int_{X \in \mathcal{C}}(\mathcal{C} / X)^{\mathrm{op}}
$$

This buys us (conjecture) a monoidal structure:

$$
\begin{array}{ccc}
E & F & E \times F \\
\underset{\downarrow}{p} \otimes \underset{ }{\downarrow}= & \underset{\sim}{q}= \\
X & Y & X \times Y
\end{array}
$$

(this might not be the right one!)

A (bimorphic) lens $\lambda:(S, T) \rightarrow(A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_{u}: S \times B \rightarrow T$ called update

Lenses

A (bimorphic) lens $\lambda:(S, T) \rightarrow(A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_{u}: S \times B \rightarrow T$ called update

Composition of lenses is fiddly

Lenses

A (bimorphic) lens $\lambda:(S, T) \rightarrow(A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_{u}: S \times B \rightarrow T$ called update

Composition of lenses is fiddly
Where does this come from? The Grothendieck construction:

$$
\operatorname{Lens}(\mathcal{C})=\int_{X \in \mathcal{C}} \operatorname{coKl}(X \times-)^{\mathrm{op}}
$$

Lenses

A (bimorphic) lens $\lambda:(S, T) \rightarrow(A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_{u}: S \times B \rightarrow T$ called update

Composition of lenses is fiddly
Where does this come from? The Grothendieck construction:

$$
\operatorname{Lens}(\mathcal{C})=\int_{X \in \mathcal{C}} \operatorname{coKl}(X \times-)^{\mathrm{op}}
$$

Theorem (Lambek): $\operatorname{coKl}(X \times-) \cong \mathcal{C}[x]$, where $\mathcal{C}[x]$ is the polynomial category formed by freely adjoining $x: 1 \rightarrow X$ and closing under finite products

Bundles, Lenses \& Machine Learning

Motivation
Backprop as Functor Bundles

Putting it together

Lenses are bundle morphisms

Another theorem (Lambek): $\operatorname{coEM}(X \times-) \cong \mathcal{C} / X$

Bundles,

Lenses are bundle morphisms

Another theorem (Lambek): $\operatorname{coEM}(X \times-) \cong \mathcal{C} / X$
So there is a canonoical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C} / X$

Lenses are bundle morphisms

Another theorem (Lambek): $\operatorname{coEM}(X \times-) \cong \mathcal{C} / X$
So there is a canonoical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C} / X$
Grothendieck them all together: $\operatorname{Lens}(\mathcal{C}) \rightarrow \operatorname{Bund}(\mathcal{C})$ It takes a lens $\lambda:(S, T) \rightarrow(A, B)$ to the bundle morphism

Lenses are bundle morphisms

Another theorem (Lambek): $\operatorname{coEM}(X \times-) \cong \mathcal{C} / X$
So there is a canonoical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C} / X$
Grothendieck them all together: $\operatorname{Lens}(\mathcal{C}) \rightarrow \operatorname{Bund}(\mathcal{C})$ It takes a lens $\lambda:(S, T) \rightarrow(A, B)$ to the bundle morphism

Bundles,

Morphisms of contangent bundles

There is a functor $\operatorname{Cot}(-):$ DiffMfd \rightarrow Bund(Top)

Morphisms of contangent bundles

There is a functor $\operatorname{Cot}(-):$ DiffMfd \rightarrow Bund(Top)
It takes $f: X \rightarrow Y$ to

$$
\begin{array}{ccc}
X \times{ }_{Y} T^{*}(Y) & \longrightarrow T^{*}(Y) \\
f^{\prime} \downarrow & & \\
T^{*}(X) & & \pi^{*} \mid \\
\pi^{*} \downarrow & & \downarrow \\
X & f & Y
\end{array}
$$

where $f^{\prime}:(x, c) \mapsto\left(x, c \circ J_{x}(f)\right)$

Morphisms of contangent bundles

There is a functor $\operatorname{Cot}(-):$ DiffMfd \rightarrow Bund(Top)
It takes $f: X \rightarrow Y$ to

$$
\begin{array}{ccc}
X \times{ }_{Y} T^{*}(Y) & \longrightarrow T^{*}(Y) \\
f^{\prime} \downarrow & & \\
T^{*}(X) & & \pi^{*} \mid \\
\pi^{*} \downarrow & & \downarrow \\
X & f & Y
\end{array}
$$

where $f^{\prime}:(x, c) \mapsto\left(x, c \circ J_{x}(f)\right)$
$J_{x}(f)$ is the Jacobian (matrix of partial derivatives) of f at x

Functorality of $\boldsymbol{\operatorname { C o t }}(-)$:

$$
\begin{aligned}
& X \times_{Z} T^{*}(Z) \longrightarrow Y \times_{Z} T^{*}(Z) \longrightarrow T^{*}(Z) \\
& \begin{array}{cc}
f^{*}\left(g^{\prime}\right) \downarrow \\
X \times_{Y} T^{*}(Y) \longrightarrow & g^{\prime} \downarrow \\
& T^{*}(Y)
\end{array} \\
& \begin{array}{c}
f^{\prime} \downarrow \\
T^{*}(X)
\end{array} \\
& \pi^{*} \downarrow \\
& \pi^{*} \downarrow \\
& \underset{X}{f} Y \xrightarrow{\downarrow} \stackrel{\downarrow}{Z}
\end{aligned}
$$

The chain rule

Functorality of $\operatorname{Cot}(-)$:

$$
\begin{aligned}
& X \times_{Z} T^{*}(Z) \longrightarrow Y \times_{Z} T^{*}(Z) \longrightarrow T^{*}(Z) \\
& \begin{array}{cc}
f^{*}\left(g^{\prime}\right) \downarrow \\
X \times_{Y} T^{*}(Y) \longrightarrow & g^{\prime} \downarrow \\
& T^{*}(Y)
\end{array} \\
& \begin{array}{c}
f^{\prime} \downarrow \\
T^{*}(X)
\end{array} \\
& \pi^{*} \downarrow \\
& \pi^{*} \downarrow \\
& X \longrightarrow \quad Y \xrightarrow{f} Z
\end{aligned}
$$

$(g \circ f)^{\prime}=f^{\prime} \circ f^{*}\left(g^{\prime}\right)$ is the chain rule in differential geometry

From Para(Bund(Top)) to Learn

Consider a morphism of Para(Bund(Top)) in the image of

$$
\text { Para(Cot) }: \operatorname{Para}(\text { Euc }) \rightarrow \operatorname{Para}(\text { Bund(Top) })
$$

It looks like

$$
\begin{aligned}
& (X \times A) \times_{Y} T^{*}(Y) \longrightarrow Y
\end{aligned}
$$

From Para(Bund(Top)) to Learn

Consider a morphism of Para(Bund(Top)) in the image of

$$
\text { Para(Cot) }: \operatorname{Para}(\text { Euc }) \rightarrow \operatorname{Para}(\text { Bund(Top }))
$$

It looks like

We're going to turn it into an open learner, given $\varepsilon>0$ and differentiable $C: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Bundles, Lenses \& Machine Learning

The setup

Obviously, parameters are A and implementation is f

The setup

Obviously, parameters are A and implementation is f
We need to define $\langle U, r\rangle: A \times X \times Y \rightarrow A \times X$
so, fix $a \in A, x \in X$ and $y \in Y$
and fix the total error $C_{y}\left(y^{\prime}\right)=\sum_{i=1}^{\operatorname{dim}(Y)} C\left(y_{i}, y_{i}^{\prime}\right)$

The setup

Obviously, parameters are A and implementation is f
We need to define $\langle U, r\rangle: A \times X \times Y \rightarrow A \times X$
so, fix $a \in A, x \in X$ and $y \in Y$
and fix the total error $C_{y}\left(y^{\prime}\right)=\sum_{i=1}^{\operatorname{dim}(Y)} C\left(y_{i}, y_{i}^{\prime}\right)$
Consider the diagram...

Bundles, Lenses \& Machine Learning

The brain exploding part

The part we don't understand

Now: Chase $1 \in \mathbb{R}$ to $T^{*}(X \times A)$ and then apply

$$
\mu_{\varepsilon}: T^{*}(X \times A) \rightarrow X \times A
$$

The result is $\langle r, U\rangle(a, x, y)$

The part we don't understand

Now: Chase $1 \in \mathbb{R}$ to $T^{*}(X \times A)$ and then apply

$$
\mu_{\varepsilon}: T^{*}(X \times A) \rightarrow X \times A
$$

The result is $\langle r, U\rangle(a, x, y)$
μ_{ε} takes a finite step in the gradient direction:

$$
\mu_{\varepsilon}((x, a),(v, w))=(x+v, a+\varepsilon w)
$$

The part we don't understand

Now: Chase $1 \in \mathbb{R}$ to $T^{*}(X \times A)$ and then apply

$$
\mu_{\varepsilon}: T^{*}(X \times A) \rightarrow X \times A
$$

The result is $\langle r, U\rangle(a, x, y)$
μ_{ε} takes a finite step in the gradient direction:

$$
\mu_{\varepsilon}((x, a),(v, w))=(x+v, a+\varepsilon w)
$$

What is μ_{ε} ? We couldn't find any nice properties

The part we don't understand

Now: Chase $1 \in \mathbb{R}$ to $T^{*}(X \times A)$ and then apply

$$
\mu_{\varepsilon}: T^{*}(X \times A) \rightarrow X \times A
$$

The result is $\langle r, U\rangle(a, x, y)$
μ_{ε} takes a finite step in the gradient direction:

$$
\mu_{\varepsilon}((x, a),(v, w))=(x+v, a+\varepsilon w)
$$

What is μ_{ε} ? We couldn't find any nice properties
It looks a bit like a thing called an exponential map

The catch

Conjecture: This defines a symmetric monoidal functor

$$
\operatorname{Para}(\text { Bund }(\text { Top })) \supseteq \operatorname{Im}(\text { Para }(\text { Cot })) \rightarrow \text { Learn }
$$

The catch

Conjecture: This defines a symmetric monoidal functor

$$
\operatorname{Para}(\operatorname{Bund}(\text { Top })) \supseteq \operatorname{Im}(\text { Para }(\text { Cot })) \rightarrow \text { Learn }
$$

Another conjecture: This commutes:

The catch

Conjecture: This defines a symmetric monoidal functor

$$
\operatorname{Para}(\text { Bund }(\text { Top })) \supseteq \operatorname{Im}(\text { Para }(\text { Cot })) \rightarrow \text { Learn }
$$

Another conjecture: This commutes:

The catch: We think Para(Cot) is an equivalence of categories onto its image

The catch

Conjecture: This defines a symmetric monoidal functor

$$
\operatorname{Para}(\text { Bund }(\text { Top })) \supseteq \operatorname{Im}(\text { Para }(\text { Cot })) \rightarrow \text { Learn }
$$

Another conjecture: This commutes:

The catch: We think Para(Cot) is an equivalence of categories onto its image

So, we've just rewritten Backprop as Functor in a different way!

Even more hard questions

What happens if we extend the functor to the whole of Para(Bund(Top))? We have no idea!

Optimistic hope: This allows defining general "ML-like" systems, not necessarily involving gradients (eg. "discrete ML" on Bayesian networks)

[^0]: ${ }^{2}$ such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible

