Motivation

Backprop a Functor

Bundles

Putting it together

Bundles, Lenses & Machine Learning

Jules Hedges¹ joint work with Brendan Fong² Eliana Lorch³ David Spivak²

¹Max Planck Institute for Mathematics in the Sciences

²MIT

³University of Oxford

SYCO 5, Birmingham

Motivation

Backprop a Functor

Bundles

Putting it together

Bundles, Lenses & Machine Learning

Jules Hedges¹ joint work with Brendan Fong² Eliana Lorch³ David Spivak²

¹Max Planck Institute for Mathematics in the Sciences

 ^{2}MIT

³University of Oxford

SYCO 5, Birmingham

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Featuring zero string diagrams :(

Motivation

Motivation

Backprop a Functor

Bundles

Putting it together

Machine learning is categorical in 2 different ways:

Backprop As Functor

(compositional description of ML with monoidal categories) + ML as differential geometry

Motivation

Motivation

Backprop a Functor

Bundles

Putting it together

Machine learning is categorical in 2 different ways:

Backprop As Functor (compositional description of ML with monoidal categories) + ML as differential geometry

In this talk: smoosh them together

(why? Why not)

Motivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

Backprop a Functor

Bundles

Putting it together

Machine learning is categorical in 2 different ways:

Backprop As Functor (compositional description of ML with monoidal categories) + ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else

Motivation

Backprop as Functor

Bundles

Putting it together

Open learners

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

• A set *P* of parameters

Open learners

Motivation

Backprop as Functor

Bundles

Putting it together Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set *P* of parameters
- A function $I: P \times X \rightarrow Y$ (the implementation)

Motivation

Bundles, Lenses &

Machine Learning

Backprop as Functor

Bundles

Putting it together

Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set *P* of parameters
- A function $I: P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)

Motivation

Bundles, Lenses &

Machine Learning

Backprop as Functor

Bundles

Putting it together

Definition (Fong, Spivak & Tuyéras) : An open learner $X \to Y$ consists of:

- A set *P* of parameters
- A function $I: P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)
- A function $r: P \times X \times Y \rightarrow X$ (the request)

Motivation

Bundles, Lenses &

Learning

Backprop as Functor

Bundles

Putting it together

Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set *P* of parameters
- A function $I: P \times X \rightarrow Y$ (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)
- A function $r: P \times X \times Y \rightarrow X$ (the request)

Composition of open learners is fiddly

Motivation

Bundles, Lenses &

Learning

Backprop as Functor

Bundles

Putting it together

Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set *P* of parameters
- A function *I* : *P* × *X* → *Y* (the implementation)
- A function $u: P \times X \times Y \rightarrow P$ (the update)
- A function $r: P \times X \times Y \rightarrow X$ (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called $\ensuremath{\textbf{Learn}}$

who cares about monoidal bicategories

Motivation

Backprop as Functor

Bundles

Putting it together

Lenses

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

A lens $X \to Y$ is a function $X \to Y$ and a function $X \times Y \to X$

Lenses

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Motivation

Backprop as Functor

Bundles

Putting it together

A lens $X \to Y$ is a function $X \to Y$ and a function $X \times Y \to X$

Composition of lenses is also fiddly!

Motivation

Backprop as Functor

Bundles

Putting it together

A lens $X \to Y$ is a function $X \to Y$ and a function $X \times Y \to X$

Lenses

イロト 不得 トイヨト イヨト

-

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by pullback of lenses:

The Para construction

Motivation

Backprop as Functor

Bundles

Putting it together

Let $\ensuremath{\mathcal{C}}$ be a monoidal category

Define a category¹ Para(C) by:

¹who cares about monoidal bicategories $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box$

Motivation

Backprop as Functor

Bundles

Putting it together

The Para construction

Let $\ensuremath{\mathcal{C}}$ be a monoidal category

```
Define a category<sup>1</sup> Para(C) by:
```

- Objects: objects of $\mathcal C$
- Morphisms $X \to Y$: pair (A, f), A object of C, $f: X \otimes A \to Y$

¹who cares about monoidal bicategories $\langle \Box \rangle \langle \Box \rangle$

Motivation

Backprop as Functor

Bundles

Putting it together

The Para construction

Let $\ensuremath{\mathcal{C}}$ be a monoidal category

Define a category¹ Para(C) by:

- Objects: objects of $\mathcal C$
- Morphisms $X \to Y$: pair (A, f), A object of C, $f: X \otimes A \to Y$
- Identity on X: $(I, X \otimes I \xrightarrow{\cong} X)$

¹who cares about monoidal bicategories $\langle \Box \rangle \langle B \rangle$

Motivation

Backprop as Functor

Bundles

Putting it together

The Para construction

Let $\ensuremath{\mathcal{C}}$ be a monoidal category

Define a category¹ Para(C) by:

- Objects: objects of $\mathcal C$
- Morphisms $X \to Y$: pair (A, f), A object of C, $f: X \otimes A \to Y$
- Identity on X: $(I, X \otimes I \xrightarrow{\cong} X)$
- Composition of (B,g) \circ (A, f):

$$(A \otimes B, X \otimes A \otimes B \xrightarrow{f \otimes B} Y \otimes B \xrightarrow{g} Z)$$

Motivation

Backprop as Functor

Bundles

Putting it together

The Para construction

Let $\ensuremath{\mathcal{C}}$ be a monoidal category

Define a category¹ Para(C) by:

- Objects: objects of $\mathcal C$
- Morphisms $X \to Y$: pair (A, f), A object of C, $f: X \otimes A \to Y$
- Identity on X: $(I, X \otimes I \xrightarrow{\cong} X)$
- Composition of (B,g) \circ (A, f):

$$(A \otimes B, X \otimes A \otimes B \xrightarrow{f \otimes B} Y \otimes B \xrightarrow{g} Z)$$

 \otimes lifts to a monoidal product on **Para**(C)

¹who cares about monoidal bicategories $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Motivation

Backprop as Functor

Bundles

Putting it together

by

The structure of Para(-)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A lax symmetric monoidal functor $F : C \to D$ lifts to **Para**(F) : **Para**(D) \to **Para**(D)

 $F(A, f): F(X) \otimes F(A) \xrightarrow{\varphi} F(X \otimes A) \xrightarrow{F(f)} F(Y)$

Motivation

Backprop as Functor

Bundles

Putting it together

The structure of Para(-)

A lax symmetric monoidal functor $F : \mathcal{C} \to \mathcal{D}$ lifts to

$$\mathsf{Para}(F) : \mathsf{Para}(\mathcal{D}) \to \mathsf{Para}(\mathcal{D})$$

by

$$F(A, f): F(X) \otimes F(A) \xrightarrow{\varphi} F(X \otimes A) \xrightarrow{F(f)} F(Y)$$

Proposition (probably): **Para**(-) defines a monad on [symmetric monoidal categories, lax symmetric monoidal functors]

Motivation

Backprop as Functor

Bundles

Putting it together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function² $C : \mathbb{R}^2 \to \mathbb{R}$.

²such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Motivation

Backprop as Functor

Bundles

Putting it together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function² $C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor

- $F_{\varepsilon,C}$: **Para(Euc)** \rightarrow **Learn** defined by
 - On objects $X \mapsto$ underlying set of X

Motivation

Backprop as Functor

Bundles

Putting it together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function² $C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor

- $F_{\varepsilon,C}$: **Para(Euc)** \rightarrow **Learn** defined by
 - On objects $X \mapsto$ underlying set of X
 - On morphisms $f : P \times X \to Y$:
 - Parameters P
 - Implementation I = f

²such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box$

Motivation

Backprop as Functor

Bundles

Putting it together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function² $C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor

- $F_{\varepsilon,C}$: **Para(Euc)** \rightarrow **Learn** defined by
 - On objects $X \mapsto$ underlying set of X
 - On morphisms $f : P \times X \to Y$:
 - Parameters P
 - Implementation I = f
 - Update $U(a, x, y) = a \varepsilon \nabla_a E(a, x, y)$
 - Request r(a, x, y) = (too awkward to write down)

where $E(a, x, y) = \sum_{i=1}^{\dim(Y)} C(f(p, x)_i, y_i)$ is total error

²such that every $\frac{\partial}{\partial y}C(x,y)$ is invertible $\langle \Box \rangle \langle \Box \rangle \langle$

Motivation

Backprop as Functor

Bundles

Putting it together

Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function² $C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor

- $F_{\varepsilon,C}$: **Para(Euc)** \rightarrow **Learn** defined by
 - On objects $X \mapsto$ underlying set of X
 - On morphisms $f : P \times X \to Y$:
 - Parameters P
 - Implementation I = f
 - Update $U(a, x, y) = a \varepsilon \nabla_a E(a, x, y)$
 - Request r(a, x, y) = (too awkward to write down)

where $E(a, x, y) = \sum_{i=1}^{\dim(Y)} C(f(p, x)_i, y_i)$ is total error

Update is gradient descent, and request is backpropagation

² such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible $\langle \Box \rangle \langle \Box$

Motivation

Backprop as Functor

Bundles

Putting it together

ML doesn't work like that

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Actual backpropagation backpropagates gradients

Motivation

Backprop as Functor

Bundles

Putting it together

ML doesn't work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

Motivation

Backprop as Functor

Bundles

Putting it together

ML doesn't work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of **Learn** doesn't have differentiable structure

Motivation

Backprop as Functor

Bundles

Putting it together

ML doesn't work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of **Learn** doesn't have differentiable structure

(The benefit is **Learn** is more general than just ML)

Motivation

Backprop a Functor Bundles Work in a category with finite limits A bundle over X is a morphism \downarrow_{p}^{p} X

Bundles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Motivation

Backprop a Functor

Bundles

Putting it together

Bundles

Bundles, Lenses & **Bundles** Machine Learning Work in a category with finite limits Ε A bundle over X is a morphism p \downarrow Х Bundles Examples: $X \times Y$ 1 Trivial bundle π_1 Х $T\mathcal{M}$ **2** Tangent bundle over a differentiable manifold π \mathcal{M}

イロト 不得 トイヨト イヨト

э

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_X(X) \cong X$

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X) \cong X \times X$

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X) \cong X \times X$

so, the tangent bundle is trivial:

T(X) \downarrow^{π_2} Х

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X) \cong X \times X$

• so, the tangent bundle is trivial:

T(X) \downarrow^{π_2} X

Moreover:

• every $T_x^*(X) \cong X$ unnaturally (since $X^* \cong X$)

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X) \cong X \times X$

• so, the tangent bundle is trivial:

T(X) \downarrow^{π_2} X

Moreover:

- every $T_x^*(X) \cong X$ unnaturally (since $X^* \cong X$)
- so, $T^*(X) \cong X \times X$ unnaturally

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

T(X)

 \downarrow^{π_2}

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X) \cong X \times X$
 - so, the tangent bundle is trivial:

Moreover:

- every $T_x^*(X) \cong X$ unnaturally (since $X^* \cong X$)
- so, $T^*(X) \cong X imes X$ unnaturally
- elements of $X \times X$ are called dual numbers

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X) \cong X \times X$
 - so, the tangent bundle is trivial:

```
T(X)
\downarrow^{\pi_2}
X
```

Moreover:

- every $T_{X}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)
- so, $T^*(X)\cong X imes X$ unnaturally
- elements of $X \times X$ are called dual numbers
- the cotangent bundle is unnaturally equivalent to a trivial bundle

Motivation

Backprop as Functor

Bundles

Putting it together

Bundles over Euclidean spaces

- If $X = \mathbb{R}^n$ is a Euclidean space then
 - every $T_x(X) \cong X$
 - so, $T(X)\cong X imes X$

• so, the tangent bundle is trivial:

$\begin{array}{c} \downarrow \pi_2 \\ X \end{array}$

T(X)

Moreover:

• every $T_{X}^{*}(X) \cong X$ unnaturally (since $X^{*} \cong X$)

• so, $T^*(X)\cong X imes X$ unnaturally

- elements of $X \times X$ are called dual numbers
- the cotangent bundle is unnaturally equivalent to a trivial bundle

Nb. Euc doesn't have finite limits, so we work in Top

Morphisms of bundles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A bundle morphism $f: \begin{array}{cc} E & F \\ \downarrow_{p} \rightarrow & \downarrow_{q} \\ X & Y \end{array}$ is:

Motivatio

Backprop as Functor

Bundles

Putting it together

Morphisms of bundles

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

A bundle morphism
$$f: \begin{array}{c} E & F \\ \downarrow_{p} \rightarrow & \downarrow_{q} \\ X & Y \end{array}$$
 is:

• Morphisms $f : X \to Y$ and $f^{\#} : X \times_Y F \to E$

_

Motivation

Backprop a Functor

Bundles

Putting it together

Motivation

Backprop as Functor

Bundles

Putting it together

Morphisms of bundles

A bundle morphism
$$f: \downarrow_{p}^{L} \rightarrow \downarrow_{q}^{r}$$
 is:
 $X \qquad Y$

• Morphisms $f: X \to Y$ and $f^{\#}: X \times_Y F \to E$

F

such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Г

is a pullback

Motivation

Backprop as Functor

Bundles

Putting it together

Morphisms of bundles

A bundle morphism
$$f: \begin{array}{c} E & F \\ \downarrow_{p} \rightarrow & \downarrow_{q} \end{array}$$
 is:
 $X \qquad Y$

• Morphisms $f: X \to Y$ and $f^{\#}: X \times_Y F \to E$

с г

such that

is a pullback

• Equivalently: f such that $X \times_Y F \to X$ factors through p

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

Backprop as Functor

Bundles

Putting it together

Morphisms of bundles

A bundle morphism
$$f: \begin{array}{c} E & F \\ \downarrow_{p} \rightarrow & \downarrow_{q} \end{array}$$
 is:
 $X \qquad Y$

• Morphisms $f: X \to Y$ and $f^{\#}: X \times_Y F \to E$

Г

such that

_

is a pullback

• Equivalently: f such that $X \times_Y F \to X$ factors through p

"Every algebraic geometer knows this definition" – David Spivak

Motivation

Backprop a Functor Identity morphism:

Bundles

Putting it together The category of bundles $X \times_X E \cong E = E$ $\begin{bmatrix} & \neg & \\ & \downarrow & \\ & \downarrow^p & \\ & \chi = X$

Motivation

Backprop a Functor

Bundles

Putting it together

Composition of morphisms:

Motivation

Backprop a Functor

Bundles

Putting it together

Where does this come from?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

From the Grothendieck construction:

$$\mathsf{Bund}(\mathcal{C}) = \int_{X\in\mathcal{C}} (\mathcal{C}/X)^{\operatorname{op}}$$

Motivation

Backprop a Functor

Bundles

Putting it together

Where does this come from?

From the Grothendieck construction:

$$\mathsf{Bund}(\mathcal{C}) = \int_{X\in\mathcal{C}} (\mathcal{C}/X)^{\operatorname{op}}$$

This buys us (conjecture) a monoidal structure:

$$\begin{array}{cccc}
E & F & E \times F \\
\downarrow_{p} \otimes & \downarrow_{q} = & \downarrow_{p \times q} \\
X & Y & X \times Y
\end{array}$$

(this might not be the right one!)

Motivation

Backprop a Functor

Bundles

Putting it together

A (bimorphic) lens $\lambda : (S, T) \rightarrow (A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_u : S \times B \to T$ called update

Lenses

Motivation

Backprop a Functor

Bundles

Putting it together

A (bimorphic) lens $\lambda : (S, T) \rightarrow (A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_u : S \times B \to T$ called update

Composition of lenses is fiddly

Lenses

Motivatio

Backprop a Functor

Bundles

Putting it together

A (bimorphic) lens $\lambda : (S, T) \rightarrow (A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_u : S \times B \to T$ called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

$$\mathsf{Lens}(\mathcal{C}) = \int_{X \in \mathcal{C}} \operatorname{coKl}(X \times -)^{\operatorname{op}}$$

Lenses

Motivation

Backprop a Functor

Bundles

Putting it together

A (bimorphic) lens $\lambda : (S, T) \rightarrow (A, B)$ consists of:

- a morphism $\lambda_{v}: S \rightarrow A$ called view
- a morphism $\lambda_u : S \times B \to T$ called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

$$\mathsf{Lens}(\mathcal{C}) = \int_{X \in \mathcal{C}} \operatorname{coKl}(X \times -)^{\operatorname{op}}$$

Theorem (Lambek): $\operatorname{coKl}(X \times -) \cong \mathcal{C}[x]$, where $\mathcal{C}[x]$ is the polynomial category formed by freely adjoining $x : 1 \to X$ and closing under finite products

Lenses

Motivation

Backprop a: Functor

Bundles

Putting it together

Lenses are bundle morphisms

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Another theorem (Lambek): $\operatorname{coEM}(X \times -) \cong \mathcal{C}/X$

Motivation

Backprop a Functor

Bundles

Putting it together

Lenses are bundle morphisms

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Another theorem (Lambek): $\operatorname{coEM}(X \times -) \cong \mathcal{C}/X$

So there is a canonoical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C}/X$

Motivation

Backprop a Functor

Bundles

Putting it together

Lenses are bundle morphisms

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Another theorem (Lambek): $\operatorname{coEM}(X \times -) \cong \mathcal{C}/X$

So there is a canonoical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C}/X$

Grothendieck them all together: **Lens**(C) \rightarrow **Bund**(C) It takes a lens $\lambda : (S, T) \rightarrow (A, B)$ to the bundle morphism

Motivation

Backprop a Functor

Bundles

Putting it together

Lenses are bundle morphisms

Another theorem (Lambek): $\operatorname{coEM}(X \times -) \cong \mathcal{C}/X$

So there is a canonoical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C}/X$

Grothendieck them all together: **Lens**(C) \rightarrow **Bund**(C) It takes a lens $\lambda : (S, T) \rightarrow (A, B)$ to the bundle morphism

Motivation

Backprop as Functor

Bundles

Putting it together

Morphisms of contangent bundles

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

There is a functor Cot(-): DiffMfd \rightarrow Bund(Top)

Motivation

Backprop a Functor

Bundles

Putting it together

Morphisms of contangent bundles

There is a functor Cot(-): DiffMfd \rightarrow Bund(Top)

It takes $f: X \to Y$ to

where $f': (x, c) \mapsto (x, c \circ J_x(f))$

Motivation

Backprop a: Functor

Bundles

Putting it together

Morphisms of contangent bundles

There is a functor Cot(-): DiffMfd \rightarrow Bund(Top)

It takes $f: X \to Y$ to

where $f': (x, c) \mapsto (x, c \circ J_x(f))$

 $J_x(f)$ is the Jacobian (matrix of partial derivatives) of f at x

The chain rule

Motivation

Backprop a Functor

Bundles

Putting it together

Functorality of Cot(-):

The chain rule

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

Backprop a Functor

Bundles

Putting it together

Functorality of Cot(-):

 $(g \circ f)' = f' \circ f^*(g')$ is the chain rule in differential geometry

Motivation

Backprop a Functor

Bundles

Putting it together

From Para(Bund(Top)) to Learn

Consider a morphism of $\mbox{Para}(\mbox{Bund}(\mbox{Top}))$ in the image of

 $Para(Cot): Para(Euc) \rightarrow Para(Bund(Top))$

It looks like

Motivation

Backprop a Functor

Bundles

Putting it together

From Para(Bund(Top)) to Learn

Consider a morphism of **Para**(**Bund**(**Top**)) in the image of

 $Para(Cot) : Para(Euc) \rightarrow Para(Bund(Top))$

It looks like

We're going to turn it into an open learner, given $\varepsilon > 0$ and differentiable $C : \mathbb{R}^2 \to \mathbb{R}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

The setup

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Motivation

Bundles, Lenses & Machine

Learning

Backprop a Functor

Bundles

Putting it together

Obviously, parameters are A and implementation is f

The setup

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

Bundles, Lenses &

Machine Learning

Backprop a: Functor

Bundles

Putting it together

Obviously, parameters are A and implementation is f

We need to define $\langle U, r \rangle : A \times X \times Y \to A \times X$

so, fix $a \in A$, $x \in X$ and $y \in Y$

and fix the total error $C_y(y') = \sum_{i=1}^{\dim(Y)} C(y_i, y'_i)$

The setup

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

Bundles, Lenses &

Machine Learning

Backprop a Functor

Bundles

Putting it together

Obviously, parameters are A and implementation is f

We need to define $\langle U, r \rangle : A \times X \times Y \to A \times X$

so, fix $a \in A$, $x \in X$ and $y \in Y$

and fix the total error $C_y(y') = \sum_{i=1}^{\dim(Y)} C(y_i, y'_i)$

Consider the diagram...

The brain exploding part

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

Bundles, Lenses &

Machine Learning

Backprop a Functor

Bundles

Putting it together

Motivation

Backprop as Functor

Bundles

Putting it together

The part we don't understand

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Now: Chase
$$1 \in \mathbb{R}$$
 to $T^*(X \times A)$ and then apply

$$\mu_{arepsilon}: T^*(X imes A) o X imes A$$

The result is $\langle r, U \rangle (a, x, y)$

Motivation

Backprop as Functor

Bundles

Putting it together

The part we don't understand

Now: Chase
$$1 \in \mathbb{R}$$
 to $T^*(X \times A)$ and then apply

$$\mu_{\varepsilon}: T^*(X imes A) o X imes A$$

The result is $\langle r, U \rangle (a, x, y)$

 μ_{ε} takes a finite step in the gradient direction:

 $\mu_{\varepsilon}((x,a),(v,w)) = (x+v,a+\varepsilon w)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Motivation

Backprop as Functor

Bundles

Putting it together

The part we don't understand

Now: Chase
$$1 \in \mathbb{R}$$
 to $T^*(X \times A)$ and then apply

$$\mu_{\varepsilon}: T^*(X imes A) o X imes A$$

The result is $\langle r, U \rangle (a, x, y)$

 μ_{ε} takes a finite step in the gradient direction:

$$\mu_{\varepsilon}((x,a),(v,w)) = (x+v,a+\varepsilon w)$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

What is μ_{ε} ? We couldn't find any nice properties

Motivation

Ν

Backprop as Functor

Bundles

Putting it together

The part we don't understand

low: Chase
$$1\in\mathbb{R}$$
 to $\mathcal{T}^*(X imes A)$ and then apply

$$\mu_{\varepsilon}: T^*(X imes A) o X imes A$$

The result is $\langle r, U \rangle (a, x, y)$

 μ_{ε} takes a finite step in the gradient direction:

$$\mu_{\varepsilon}((x,a),(v,w)) = (x+v,a+\varepsilon w)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

What is μ_{ε} ? We couldn't find any nice properties

It looks a bit like a thing called an exponential map

Motivation

Backprop a Functor

Bundles

Putting it together

The catch

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Conjecture: This defines a symmetric monoidal functor $Para(Bund(Top)) \supseteq Im(Para(Cot)) \rightarrow Learn$

Motivation

Backprop a Functor

Bundles

Putting it together

Conjecture: This defines a symmetric monoidal functor $Para(Bund(Top)) \supseteq Im(Para(Cot)) \rightarrow Learn$

The catch

Another conjecture: This commutes:

Motivation

Backprop a Functor

Bundles

Putting it together

Conjecture: This defines a symmetric monoidal functor $Para(Bund(Top)) \supseteq Im(Para(Cot)) \rightarrow Learn$

Another conjecture: This commutes:

The catch: We think **Para(Cot**) is an equivalence of categories onto its image

The catch

Motivation

Backprop a: Functor

Bundles

Putting it together

Conjecture: This defines a symmetric monoidal functor $Para(Bund(Top)) \supseteq Im(Para(Cot)) \rightarrow Learn$

The catch

Another conjecture: This commutes:

The catch: We think **Para(Cot**) is an equivalence of categories onto its image

So, we've just rewritten Backprop as Functor in a different way!

Motivation

Backprop as Functor

Bundles

Putting it together

Even more hard questions

What happens if we extend the functor to the whole of **Para(Bund(Top))**? We have no idea!

Optimistic hope: This allows defining general "ML-like" systems, not necessarily involving gradients (eg. "discrete ML" on Bayesian networks)