The tricategory of formal composites and its strictification

Peter Guthmann

University of Leicester

September 11, 2019

University of Leicester

Peter Guthmann

1 The idea in the 3-dimensional case

2 The 2-dimensional case

University of Leicester

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The tricategory of formal composites and its strictification

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Peter Guthmann

Peter Guthmann

The tricategory of formal composites and its strictification

University of Leicester

Peter Guthmann

University of Leicester

Theorem (Gordon-Power-Street)

Every tricategory T is triequivalent to a Gray category Gr T.

But the triequivalence $T \rightarrow \mathsf{Gr}\, T$ is not strict.

University of Leicester

The tricategory of formal composites and its strictification

Theorem (Gordon-Power-Street)

Every tricategory T is triequivalent to a Gray category Gr T.

But the triequivalence $T \rightarrow \mathsf{Gr}\, T$ is not strict.

Theorem (G.)

There exists a span of strict triequivalences

Peter Guthmann

University of Leicester

Image: A matrix

Definition (bicategory)

- Collection of objects Ob(B),
- local hom-categories B(a, b) for all objects $a, b \in B$,
- identity functors $I_a: 1 \rightarrow B(a, a)$,
- composition functors $*_{a,b,c} : B(b,c) \times B(a,b) \rightarrow B(a,c)$,
- and natural transformations a, I, r corresponding to the axioms of a category.

Peter Guthmann

University of Leicester

University of Leicester

The axioms of bicategory are chosen such that a coherence law holds.

Proposition (Coherence law)

Parallel coherence-morphisms in a free bicategory are equal. (Free on a Cat - graph.)

Peter Guthmann

Definition

A 2-category is called strict if a, I, r are identity natural transformations

In a strict 2-category we can denote 2-cells as follows.

Peter Guthmann

Proposition (Power)

Pasting diagrams are well defined for 2-categories. (And thus string diagrams are.)

Example: interchange law

Peter Guthmann

Folklore 'theorem': Pasting diagrams / String diagrams work also in bicategories. Fix a source fix a target insert coherence cells as needed and the resulting 2-cell will be well defined. I.e. independent of the choice of inserted constraint cells. How

can this made precise?

The tricategory of formal composites and its strictification

University of Leicester

Proposition

There exists a bicategory \widehat{B} and a strict 2-category B^{st} together with strict biequivalences as in the following diagram.

How does \widehat{B} look like?

Peter Guthmann

Definition

Let B be a bicategory. Then the following defines a bicategory \widehat{B} together with a strict biequivalence $ev:\widehat{B}\to B$:

- $Ob(\widehat{B}) = Ob(B)$ and ev acts on objects as an identity.
- The 1-morphisms of B are formal composites of 1-morphisms in B.

Thus a generic 2-morphisms looks like:

 $f \mathrel{\hat{\ast}} ((g \mathrel{\hat{\ast}} h) \mathrel{\hat{\ast}} (k \mathrel{\hat{\ast}} l)).$

The action of ev on 1-morphisms is given by evaluation.
 For example
 ev (f * ((g * h) * (k * l))) = f * ((g * h) * (k * l)).

Peter Guthmann

Image: A mathematical states and a mathem

Definition

- The 2-morphisms of \hat{B} are triples $(\alpha, \hat{f}, \hat{g}) : \hat{f} \to \hat{g}$ where $\alpha : \text{ev } \hat{f} \to \text{ev } \hat{g}$ is a 2-morphism in B.
- ev acts on 2-morphisms via $ev(\alpha, \hat{f}, \hat{g}) = \alpha$.
- The constraint-cells of \widehat{B} are given by

$$\begin{split} \hat{a}_{\hat{f}\hat{g}\hat{h}} &= \left(a_{\mathsf{ev}(\hat{f})\,\mathsf{ev}(\hat{g})\,\mathsf{ev}(\hat{h})}, \left(\hat{f}\,\hat{*}\,\hat{g}\right)\hat{*}\,\hat{h}, \hat{f}\,\hat{*}\,\left(\hat{g}\,\hat{*}\,\hat{h}\right)\right)\\ \hat{l}_{\hat{f}} &= \left(l_{\mathsf{ev}(\hat{f})}, \hat{1}_{t\hat{f}}\,\hat{*}\,\hat{f}, \hat{f}\right) \quad \text{and} \quad \hat{r}_{\hat{f}} = \left(r_{\mathsf{ev}(\hat{f})}, \hat{f}\,\hat{*}\,\hat{1}_{s\hat{f}}, \hat{f}\right) \end{split}$$

Peter Guthmann

University of Leicester

- Parallel coherence morphisms in \widehat{B} are equal.
- Thus coherence can be quotient out of B which leads to a 2-category Bst.
- Taking equivalence classes gives the desired strict biequivalence [-]: B → Bst.

The tricategory of formal composites and its strictification

University of Leicester

How can the span of strict biequivalences

be used to reduce calculations in bicategories to calculations in 2-categories.

Peter Guthmann

Example: Adjunction in bicategory B

Data: 1-morphism $f : a \to b$ and $g : b \to a$ 2-morphism $\eta : 1_a \to g * f$ and $\epsilon : f * g \to 1_b$.

Axioms:

$$f \xrightarrow{r^{-1}} f * 1 \xrightarrow{1*\eta} f * (g * f) \xrightarrow{a^{-1}} (f * g) * f \xrightarrow{\epsilon*1} 1 * f \xrightarrow{l} f = f \xrightarrow{1} f$$
(1)

$$g \xrightarrow{l^{-1}} 1 * g \xrightarrow{\eta * 1} (g * f) * g \xrightarrow{a} g * (f * g) \xrightarrow{1 * \epsilon} g * 1 \xrightarrow{r} g = g \xrightarrow{1} g.$$
(2)

< 口 > < 同

Peter Guthmann

University of Leicester

Lift of the adjunction along $ev:\widehat{B}\to B:$

Data:

1-morphism
$$f : a \to b$$
 and $g : b \to a$
2-morphism $\hat{\eta} \coloneqq (\eta, 1_a, g \hat{*} f)$ and $\hat{\epsilon} \coloneqq (\epsilon, f \hat{*} g, 1_b)$

University of Leicester

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The tricategory of formal composites and its strictification

Lift of the adjunction along ev : $\widehat{B} \to B$:

Data:

1-morphism $f : a \to b$ and $g : b \to a$ 2-morphism $\hat{\eta} \coloneqq (\eta, 1_a, g \hat{*} f)$ and $\hat{\epsilon} \coloneqq (\epsilon, f \hat{*} g, 1_b)$

Axioms:

$$f \xrightarrow{\hat{r}^{-1}} f \hat{*} 1 \xrightarrow{\hat{1}\hat{*}\hat{\eta}} f \hat{*} (g \hat{*} f) \xrightarrow{\hat{a}^{-1}} (f \hat{*} g) \hat{*} f \xrightarrow{\hat{c}\hat{*}\hat{1}} 1 \hat{*} f \xrightarrow{\hat{f}} f = f \xrightarrow{\hat{1}} f$$
(3)

$$g \xrightarrow{\hat{l}^{-1}} 1 \mathbin{\hat{\ast}} g \xrightarrow{\hat{\eta} \mathbin{\hat{\ast}} \widehat{1}} (g \mathbin{\hat{\ast}} f) \mathbin{\hat{\ast}} g \xrightarrow{\hat{a}} g \mathbin{\hat{\ast}} (f \mathbin{\hat{\ast}} g) \xrightarrow{\hat{1} \mathbin{\hat{\ast}} \widehat{e}} g \mathbin{\hat{\ast}} 1 \xrightarrow{\hat{r}} g = g \xrightarrow{\hat{1}} g.$$
(4)

Peter Guthmann

University of Leicester

The adjunction in \widehat{B} under $[-]:\widehat{B}\to B^{\tt st}:$

TI 1 1 1 1 1

Peter Guthmann

Lemma

Peter Guthmann

Let (f, g, η, ϵ) be an equivalence in a bicategory B. Then the equivalence (f, g, η, ϵ) satisfies both equations 1 and 2 if it satisfies one of it.

Peter Guthmann

The tricategory of formal composites and its strictification

University of Leicester