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Theorem (Gordon-Power-Street)

Every tricategory T is triequivalent to a Gray category Gr T.

But the triequivalence T→ Gr T is not strict.

Theorem (G.)

There exists a span of strict triequivalences

T̂

T Tst.
ev [−]
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Definition (bicategory)

Collection of objects Ob(B),
local hom-categories B(a, b) for all objects a, b ∈ B,
identity functors Ia : 1→ B(a, a),
composition functors ∗a,b,c : B(b, c)× B(a, b)→ B(a, c),
and natural transformations a, l , r corresponding to the
axioms of a category.

Peter Guthmann University of Leicester

The tricategory of formal composites and its strictification



The idea in the 3-dimensional case The 2-dimensional case

B(c , d)× B(b, c)× B(a, b) B(b, d)× B(a, b)

B(c , d)× B(a, c) B(a, d),

∗×1

1×∗ ∗

∗

a

B(b, b) × B(a, b)

B(a, b) B(a, b)

∗Ib×1

1

l

B(a, b) × B(a, a)

B(a, b) B(a, b).

∗1×Ia

1

r

Peter Guthmann University of Leicester

The tricategory of formal composites and its strictification



The idea in the 3-dimensional case The 2-dimensional case

The axioms of bicategory are chosen such that a coherence
law holds.

Proposition (Coherence law)

Parallel coherence-morphisms in a free bicategory are equal.
(Free on a Cat− graph.)
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Definition
A 2-category is called strict if a, l , r are identity natural
transformations

In a strict 2-category we can denote 2-cells as follows.
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Proposition (Power)

Pasting diagrams are well defined for 2-categories. (And thus
string diagrams are.)

Example: interchange law

• • •
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Folklore ’theorem’: Pasting diagrams / String diagrams work
also in bicategories. Fix a source fix a target insert coherence
cells as needed and the resulting 2-cell will be well defined. I.e.
independent of the choice of inserted constraint cells. How

can this made precise?
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Proposition

There exists a bicategory B̂ and a strict 2-category Bst

together with strict biequivalences as in the following diagram.

B̂

B Bst.
ev [−]

How does B̂ look like?
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Definition
Let B be a bicategory. Then the following defines a bicategory
B̂ together with a strict biequivalence ev : B̂→ B :

Ob(B̂) = Ob(B) and ev acts on objects as an identity.
The 1-morphisms of B̂ are formal composites of
1-morphisms in B.
Thus a generic 2-morphisms looks like:
f ∗̂
(
(g ∗̂ h) ∗̂ (k ∗̂ l)

)
.

The action of ev on 1-morphisms is given by evaluation.
For example
ev
(
f ∗̂ ((g ∗̂ h) ∗̂ (k ∗̂ l))

)
= f ∗

(
(g ∗ h) ∗ (k ∗ l)

)
.
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Definition

The 2-morphisms of B̂ are triples (α, f̂ , ĝ) : f̂ → ĝ where
α : ev f̂ → ev ĝ is a 2-morphism in B.
ev acts on 2-morphisms via ev(α, f̂ , ĝ) = α.

The constraint-cells of B̂ are given by

âf̂ ĝ ĥ =
(
aev(f̂ ) ev(ĝ) ev(ĥ), (f̂ ∗̂ ĝ) ∗̂ ĥ, f̂ ∗̂ (ĝ ∗̂ ĥ)

)
l̂f̂ = (lev(f̂ ), 1̂tf̂ ∗̂ f̂ , f̂ ) and r̂f̂ = (rev(f̂ ), f̂ ∗̂ 1̂sf̂ , f̂ )
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Parallel coherence morphisms in B̂ are equal.
Thus coherence can be quotient out of B̂ which leads to a
2-category Bst.
Taking equivalence classes gives the desired strict
biequivalence [−] : B→ Bst.
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How can the span of strict biequivalences

B̂

B Bst.
ev [−]

be used to reduce calculations in bicategories to calculations in
2-categories.
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Example: Adjunction in bicategory B

Data:
1-morphism f : a→ b and g : b → a
2-morphism η : 1a → g ∗ f and ε : f ∗ g → 1b.

Axioms:

f
r−1
−−→ f ∗ 1

1∗η−−→ f ∗ (g ∗ f ) a−1
−−→ (f ∗ g) ∗ f ε∗1−−→ 1 ∗ f l−→ f = f

1−→ f
(1)

g
l−1
−−→ 1 ∗ g η∗1−−→ (g ∗ f ) ∗ g a−→ g ∗ (f ∗ g) 1∗ε−−→ g ∗ 1 r−→ g = g

1−→ g .
(2)
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Lift of the adjunction along ev : B̂→ B :

Data:
1-morphism f : a→ b and g : b → a
2-morphism η̂ := (η, 1a, g ∗̂ f ) and ε̂ := (ε, f ∗̂ g , 1b)

Axioms:

f
r̂−1
−−→ f ∗̂ 1

1̂∗̂η̂−−→ f ∗̂ (g ∗̂ f ) â−1
−−→ (f ∗̂ g) ∗̂ f ε̂∗̂1̂−−→ 1 ∗̂ f l̂−→ f = f

1̂−→ f
(3)

g
l̂−1
−−→ 1 ∗̂ g η̂∗̂1̂−−→ (g ∗̂ f ) ∗̂ g â−→ g ∗̂ (f ∗̂ g) 1̂∗̂ε̂−−→ g ∗̂ 1 r̂−→ g = g

1̂−→ g .
(4)
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The adjunction in B̂ under [−] : B̂→ Bst :

[η̂]

[ε̂]

[f ] [g ] [f ] = [f ] and

[η̂]

[ε̂]

[g ] [f ] [g ] = [g ] (5)
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Lemma
Let (f , g , η, ε) be an equivalence in a bicategory B. Then the
equivalence (f , g , η, ε) satisfies both equations 1 and 2 if it
satisfies one of it.
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