
Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

1 / 42

Dioptics: a common generalization of
gradient-based learners and open games

David A. Dalrymple
@davidad

Protocol Labs

SYCO 5
Birmingham, UK

2019-09-05

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

2 / 42

About This Talk

• Clarifying connections between (a lot of) prior work
• Besides abstractions, main novelty: generalizing backpropagation and gradient
descent to Lie groups and framed Riemannian manifolds
• Work in progress; dubious provenance

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

3 / 42

Haven’t I seen this talk already?

There is a lot of overlap with Jules’ talk earlier. A couple differences:
• I only deal with trivializable bundles, TX ∼= X × X ′

• I’m aiming to cover more than just backpropagation

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

5 / 42

Notations

• Composition:
(
f # g

)
(x) ≡ g(f (x)) ≡ x # f # g

• homs: C
(
A,B

)
means homC

(
A,B

)
. [A,B] denotes the internal hom from A to B.

A(B denotes the space of (literally) linear maps from A to B.
• Definitions:

eval︸︷︷︸
name

X,Y︸︷︷︸
variables

:
(
(X (Y)⊗ X

)
→ Y︸ ︷︷ ︸

type

:= 〈 f , x〉︸ ︷︷ ︸
bindings

7→ f (x)︸︷︷︸
expression

means the same as

evalX,Y :
(
(X (Y)⊗ X

)
→ Y

evalX,Y 〈 f , x〉 = f (x)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

6 / 42

Section 1

Gradient-Based Learners

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

7 / 42

Machine Learning in 60 seconds

∗

∗

+ σ

• A (supervised) machine learning problem.
is a function approximation problem.

• A pretty practical class of functions to
approximate things with is neural nets.
• Deep learning is, in part, about composing
layers. The deepness is (sequential)
composition depth.
• Modern deep learning (e.g. TensorFlow,
PyTorch) uses computational graphs.

^ How much of modern deep learning can be
understood from this perspective?

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

8 / 42

Backpropagation

∗

∗

+ σ

∗′

∗′

+′ σ′

• Forward pass computes x 7→ y
• Backward pass computes d–

dx ← [d–dy
• Technically, the name “backpropagation”
implies codomain R. Else, reverse-mode
automatic differentiation.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

9 / 42

Two ideas about how "backpropagation is a functor":
“Simple Essence of Automatic

Differentiation”
arXiv:1804.00746 [cs.PL]

Conal Elliott

“Backprop as Functor”
(presented at SYCO 1!)

arXiv:1711.10455 [math.CT]

Brendan Fong, David Spivak,
Rémy Tuyéras

How do these relate?

https://arxiv.org/abs/1804.00746v4
https://arxiv.org/abs/1711.10455v2

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

10 / 42

What’s a Derivative?

• Elliott constructs a “derivative” functor D+

For X,Y : Euc, f : X → Y , let

Df : (

x︷︸︸︷
X →

f ′(x):=g︷ ︸︸ ︷
(X (Y)) := x 7→ the unique linear g s.t.

lim
ε→0

∥∥∥ f (x + ε)−
[
f (x) + f ′(x)(ε)

]∥∥∥
‖ε‖

= 0

Chain rule:

D(f # g)(x) = Df (x) # Dg(f (x))

Problem – not functorial: depends on un-D’d f .
Let D+f : X →

(
Y × (X (Y)

)
:= x 7→

〈
f (x), Df (x)

〉
Proposition (Elliott). D+ is a symmetric monoidal
functor from Euc into a category with objects of Euc and
morphisms of type X →Euc

(
Y × (X (Y)

)
.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

11 / 42

What do we really need to assume?

We can work in any category E which. . .
• is cartesian closed and locally cartesian closed
• has a product-preserving endofunctor T (given a space X : E, TX is interpreted as
its tangent bundle)
• has a “base point” natural transformation p : ∀X.TX → X (that is, p : T ⇒ idE).
• has a semiadditive subcategory EVect of “vector-like spaces” enriched in E

• has a subcategory ETriv of “trivializable spaces” s.t. for all X : ETriv, there is
some X ′ : EVect satisfying the isomorphism (of bundles over X) TX ∼= X × X ′.
• Observation: TX ∼= X × X ′ looks like a constant-complement lens TX X

• satisfies one last hard-to-state assumption about “linearity of derivatives”

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

12 / 42

What’s a Derivative, Again?

• If X,Y : CTriv, then T (f : X → Y) : TX→TY ∼= X × X ′ → Y × Y ′

• By naturality of base-point projection p : T–⇒ –, we have Tf 〈x, ·〉 = 〈 f (x), ·〉.
• Therefore Tf 〈x, x′〉 =

〈
f (x), π2Tf 〈x, x′〉

)
.

• So we can define T+f : X →
(
Y × (X ′ → Y ′)

)
:= x 7→

〈
f (x), λx′.π2Tf 〈x, x′〉

〉
.

• Our last assumption is that T+(f)(x) is, in fact, a linear map X ′(Y ′.
• Then T+f : X →

(
Y × (X ′(Y ′)

)
, just like Elliott’s D+.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

13 / 42

All That and a Pony

Two ways to instantiate those assumptions:
1 E can be the microlinear spaces of a well-adapted model of synthetic differential

geometry, like the Dubuc/Cahiers topos
• Here, TX is representable as [D,X] where D is the infinitesimal interval

2 E can be the category of diffeological spaces due to Souriau
In either case, ETriv includes all manifolds with trivializable tangent bundles, e.g.
• open subsets of Euclidean spaces
• affine spaces
• Lie groups
• framed manifolds

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

14 / 42

Backpropagation (Reverse-mode automatic differentiation)

(forward-mode) T+f : X →
(
Y × (X ′(Y ′)

)

TCZ (f : X → Y) : X →
(
Y ×

[k︷ ︸︸ ︷
(Y ′(Z′) , (

d︷︸︸︷
X ′ (Z′)

])
:=

x 7→
〈
f (x), k 7→ d 7→

〈
x, d
〉

γ−1X # Tf # γY # π2 # k
〉

where γX : TX ∼= X × X ′, γY : TY ∼= Y × Y ′.

TCZ f

ev

value in value out

gradient out gradient ink : Y ′ (Z′

YX

X′ (Z′

TCZ : ETriv→ OpticE := X 7→
(
X,X ′(Z′

)

OpticE
(

(X,X−), (Y ,Y−)
)
∼= X →

(
Y × [Y−, X−]

)
X− := (X ′(Z′)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

15 / 42

“Categories of Optics”

Definition [Ril18]. In any symmetric monoidal category C,

OpticC
(

(X,X−), (Y ,Y−)
)

:=

∫ M:C

C(X,M ⊗ Y)× C(M ⊗ Y−,X−)

Theorem (Riley). OpticC is a symmetric monoidal category with objects of C × Cop.

If C is cartesian, OpticC is equivalent to

LensC
(

(X,X−), (Y ,Y−)
)

:= C(X,Y)︸ ︷︷ ︸
get

×C(X × Y−,X−)︸ ︷︷ ︸
put

If C is symmetric monoidal closed, OpticC is equivalent to
CurriedLensC

(
(X,X−), (Y ,Y−)

)
:= X →

(
Y ⊗ [Y−, X−]

)
Theorem (de Paiva). If C is cartesian closed and locally cartesian closed, OpticC is a
symmetric monoidal closed category, with internal hom defined as

(X,X−) C (Y ,Y−) =

([
X,Y × [Y−,X−]C

]
C
,X × Y−

)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

16 / 42

Backpropagation (Reverse-mode automatic differentiation)

(forward-mode) T+f : X →
(
Y × (X ′(Y ′)

)

TCZ (f : X → Y) : X →
(
Y ×

[k︷ ︸︸ ︷
(Y ′(Z′) , (

d︷︸︸︷
X ′ (Z′)

])
:=

x 7→
〈
f (x), k 7→ d 7→

〈
x, d
〉

γ−1X # Tf # γY # π2 # k
〉

where γX : TX ∼= X × X ′, γY : TY ∼= Y × Y ′.

TCZ f

ev

value in value out

gradient out gradient ink : Y ′ (Z′

YX

X′ (Z′

TCZ : ETriv→ OpticE := X 7→
(
X,X ′(Z′

)
OpticE

(
(X,X−), (Y ,Y−)

)
∼= X →

(
Y × [Y−, X−]

)
X− := (X ′(Z′)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

17 / 42

“Backprop as Functor”: Learn

Definition [FST17]. Given X,Y : Set, a learner ` from X → Y is defined by:

S` : Set the parameter space
I` : S` × X → Y the implementation function
r` : S` × X × Y → X the request function
U` : S` × X × Y → S` the update function

fcurry

f
(
p,−

)

parameters/
strategies

inputs/
observations

outputs/
moves

S

X Y

fcurry

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

17 / 42

“Backprop as Functor”: Learn

Definition [FST17]. Given X,Y : Set, a learner ` from X → Y is defined by:

S` : Set the parameter space
I` : S` × X → Y the implementation function
r` : S` × X × Y → X the request function
U` : S` × X × Y → S` the update function

Equivalently, a learner ` : X → Y is exactly
• a family of lenses, i.e. a set S` and for each s : S` a lens `s : (X,X) Set (Y ,Y)

• U` : S` × X × Y → S`
Observation: Also equivalently, a learner ` : X → Y is exactly a set S` and a lens
(S`, S`) Set

(
(X,X) Set (Y ,Y)

)
, or

(
(S`, S`)⊗ (X,X)

)
 Set

(
Y ,Y

)
.

Proposition [FST17]. There is a symmetric monoidal category Learn whose objects
are sets and whose morphisms are equivalence classes of learners.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

18 / 42

Section 2

Dioptics

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

19 / 42

Dbl(C)

Definition (Sprunger, Katsumata). Given a cartesian category C, the double category
Dbl(C) has
• One 0-cell, written as ·
• Horizontal and vertical 1-cells both given by objects of C, composed with ×C,
with identity given by the terminal object in C.
• A 2-cell with boundary X,Y , S, S′ is given by a morphism C

(
S × X, S′ × Y

)
.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

20 / 42

Dbl(OpticC)

2-cells/tiles of Dbl(OpticC) are morphisms
OpticC

(
(S, S−)⊗ (X,X−), (S′, S′−)⊗ (Y ,Y−)

)
.

If we look only at tiles with trivial vertical codomain (monoidal unit), we get
OpticC

(
(S × X, S− × X−), (Y ,Y−)

)
, exactly the desired structure:

`0 r0

`1

r1

parameters/
strategies updates

inputs/
observations

outputs/
moves

request/
feedback

gradient/
coutility

S S−

X

X−

Y

Y−

`0 r0

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

21 / 42

Quotienting by equivalence of parameter space S

If composition of parameterized morphisms involves Cartesian-product-ing their
parameter spaces, then associativity of composition does not (directly, strictly) hold.

Ways to solve this:
• Make the parameter space into an “opaque” or “existential” type:

1 Explicit meta-theoretic quotient (as for Learn, Para, Game)
2 Bind it with a coend (as for Optic) — this is what I do for now with DiopticF,G

• Give up strict associativity; define a bicategory instead.
(2-morphisms are reparameterizations.)
• Construct the double category Dbl(C), using monoidal strictification.
Question: how do we recover a symmetric monoidal category?

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

22 / 42

Recovering a symmetric monoidal category from Dbl(OpticC)

Proposed approach: Cat(Cat) ?−→ SymMon2Cat
forgetful−−−−→ SymMonCat

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

22 / 42

Recovering a symmetric monoidal category from Dbl(OpticC)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

23 / 42

DiopticF ,G

`0 r0

`1

r1

π1GS̈ π2GS̈

π1FẌ

π2FẌ

π1FŸ

π2FŸ

FŸFẌ

inputs/
observations

gradient/
feedback/
request

outputs/
moves

gradient/
coutility

updatesparameters/
strategies

GS̈

S̈

Ẍ Ÿ

∫

`0 r0

Construction takes as input:
• C a cartesian closed,

locally cartesian closed
category
• S,T symmetric

monoidal categories
• F : T → OpticC,
G : S → OpticC are
symmetric oplax
monoidal functors
• Canonical

embedding
(C×Cop) ↪→ OpticC
can be useful

• Conjecture: If F is
strong symmetric
monoidal, DiopticF ,G is
symmetric monoidal.

DiopticF ,G : Top×T → Set := (Ẍ, Ÿ) 7→
∫ S̈:S

OpticC(GS̈, FẌ C FŸ) =

∫ S̈:S
OpticC(GS̈×FẌ, FŸ)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

24 / 42

Para as DiopticFwd,Fwd

Let E be the Dubuc topos or the category of diffeological spaces; then let

Fwd : Euc→ E × Eop := X 7→ (X, 1)

Then we have

DiopticFwd,Fwd(X,Y) =

∫ S:Euc
OpticC

(
(S, 1), (X, 1) C (Y , 1)

)
∼=
∫ S:Euc

LensC((S, 1)⊗ (X, 1), (Y , 1))

∼=
∫ S:Euc

C(S × X,Y)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

25 / 42

GradLearn := DiopticTCR ,TCR
Let E be the Dubuc topos or the category of diffeological spaces, with ETriv the
subcategory with trivializable bundles (TX ∼= X × X ′). Then

TCR : ETriv→ OpticE = X 7→
(
X, X ′(R

)
We have

DiopticTCR ,TCR (X,Y) =

∫ S:ETriv
OpticE

(
(S, S′(R), (X,X ′(R) E (Y ,Y ′(R)

)
∼=
∫ S:ETriv

LensE
(

(S, S′∗)⊗ (X,X ′∗), (Y ,Y ′∗)
)

∼=
∫ S:ETriv

LensE
(

(S × X, S′∗ × X ′∗), (Y ,Y ′∗)
)

∼=
∫ S:ETriv

E
(
S × X,Y

)
× E

(
S × X × Y ′∗, S′∗ × X ′∗

)
TCZ is strong symmetric monoidal: (X × Y)′(Z ∼= (X ′(Z)× (Y ′(Z), due to
product-preservation of T and semiadditivity of EVect.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

26 / 42

Learn as Dioptic∆�Set,∆
�
Set

Let
∆�Set : Core

(
Set
)
→ OpticSet := X 7→ (X,X)

Then we have

Dioptic
∆�Set,∆

�
Set

(X,Y) =

∫ S:Set
OpticSet

(
(S, S), (X,X) Set (Y ,Y)

)
=

∫ S:Set
Set
(
S × X, Y

)
× Set

(
S × X × Y , S × X

)
∼= Learn(X,Y)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

27 / 42

Gradient descent
Earlier, I said instead of computing an unknown Y ′ from an unknown X ′, we want to
compute X ′(R (that is, X ′∗) from Y ′(R (that is, Y ′∗).
Actually, we want to compute a new value of type S! Fortunately, we have a covector
c : S′(R to work with.
Steps to compute a new value for S, assuming S is equipped with a Riemannian
structure (a symmetric, nonnegative, nondegenerate bilinear form g : S′ × S′(R:
• There exists a unique vector v such that c = λd.g(v, d).
• Scale the vector by an arbitrary learning rate η : R (and probably −1, if you’re

minimizing a loss).
• Handling hyperparameters like η internal to the theory is very WIP, but should

work.
• Using the Riemannian structure, compute the unique torsion-free Levi-Civita

connection for parallel transport.
• Apply some appropriate theorem for the existence and uniqueness of differential

equation solutions to integrate the tangent vector −ηv along a geodesic a(t)
starting from the current parameter state si : S.
• Let si+1 := a(1).

By vertically composing all that machinery on top of a gradient-based learner of type
(S, S′∗) (X,X ′∗) (Y ,Y ′∗), we obtain a dioptic (S, S) (X,X ′∗) (Y ,Y ′∗).

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

28 / 42

Gradient descent

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

29 / 42

Getting to Learn

• We now have (S, S) (X,X ′∗) (Y ,Y ′∗), but in Learn we have dioptics of
type (S, S) (X,X) (Y ,Y).
• Getting to learn requires a bit of a hack—we need to package up the loss function

and the gradient of its inverse into every morphism (tile). This introduces a lot of
unnecessary operations, and the same is true for [FST17]’s original functor from
Para→ Learn.

Given a positive number η : R (the step size) and a differentiable function
e(x, y) : R×R→ R (the loss function) such that ∂e∂x(z,−) : R→ R is invertible
∀z : R, we can define a faithful, injective-on-objects, symmetric monoidal functor
Le,η : Para→ Learn that sends each parametrised function f : S × X → Y to
the learner (S, f ,Uf , rf) defined by

Uf (s, x, y) := s− η∇s
∑

je
(
f (s, x)j, yj

)
rf (s, x, y) := fx

(
∇x
∑

je
(
f (s, x)j, yj

))
where fx is componentwise application of the inverse to ∂e

∂x(xi,−) for each i.

• The same trick works in a dioptic context, but only for bona fide Euclidean
spaces.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

30 / 42

Section 3

Open Games

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

31 / 42

“Compositional Game Theory”: Game
Definition [GHWZ18]. Given X,X−,Y ,Y− : Set, an open game G from
(X,X−)→ (Y ,Y−) is defined by:

SG : Set the strategy profile space
PG : SG × X → Y the play function
CG : SG × X × Y− → X− the coplay function
EG : SG × X × (Y → Y−)→ SG → 2 the equilibrium function

We define these auxiliary functors, with codomain Set× Setop:

E+ := S 7→ (S, 2), C+ := (X,X−) 7→ (X, [X,X−])

B+ := E+ # C+ = S 7→ (S, [S, 2])

The oplaxator of E+ is defined using conjunction:

E+.∆S,T :

(S×T ,2)︷ ︸︸ ︷
E+(S × T)→Set×Setop

(S×T ,2×2)︷ ︸︸ ︷
E+S ⊗ E+T :=

(
(s, t) 7→ (s, t), (a ∧ b)← [(a, b)

)
Conjecture. Game has a faithful, identity-on-objects functor into DiopticC+,B+ .

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

32 / 42

Open Games as Dioptics

DiopticC+,B+
(

(X,X−), (Y ,Y−)
)

=

∫ S̈:Set
OpticSet

(
B+S̈,C+(X,X−) Set C+(Y ,Y−)

)
=

∫ S:Set
OpticSet

((
S, S → 2

)
,
(
X,X → X−

)
 Set

(
Y ,Y → Y−

))
∼=
∫ S:Set

OpticSet

(S, S → 2
)
,

(
X →

(
Y ×

(
(Y → Y−)→ (X → X−)

))
,X × (Y → Y−)

)
∼=
∫ S:Set

Set

(
S,X →

(
Y ×

(
(Y → Y−)→ (X → X−)

)))
× Set

(
S × X × (Y → Y−), (S → 2)

)
∼=
∫ S:Set

Set
(
S × X,Y

)
× Set

(
S × X × (Y → Y−), (X → X−)

)
× Set

(
X × (Y → Y−), (S × S → 2)

)
←
∐
S:Set

Set
(
S × X,Y

)
× Set

(
S × X × (Y → Y−), (X → X−)

)
× Set

(
X × (Y → Y−), (S × S → 2)

)

φ←−
∐
S:Set

play function P︷ ︸︸ ︷
Set
(
S × X,Y

)
×

coplay function C︷ ︸︸ ︷
Set
(
S × X × Y−,X−

)
×

best-response function B︷ ︸︸ ︷
Set
(
X × (Y → Y−), (S × S)→ 2

)
←↩ Game

(
(X,X−), (Y ,Y−)

)
where

φ :=
(
S, P,C,B

)
7→
(
S, P,

(
s, Ax, k

)
7→ x 7→ C

(
s, x, k

(
P(s, x)

))
,B
)

φ← :=
(
S, P,K,B

)
7→
(
S, P,

(
s, x,Y−

)
7→ K

(
s, x, (y 7→ Y−)

)
(x),B

)

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

33 / 42

Dishonest morphisms

EG

PG

CG

strategies equilib?

observations moves

continuation continuation

S [S, 2]

X

[X,X−]

Y

[Y ,Y−]

EG

• Nothing I’ve done says the continuation that’s output to the left has to be true.
• The sequential composition rule holds up, but a “dishonest” tile can corrupt a
whole diagram out of the subcategory that corresponds to Game.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

34 / 42

But it’s not even monoidal

• Unfortunately DiopticC+,B+ fails to be monoidal, because C+ is not a strong
monoidal functor (merely bilax monoidal and Frobenius monoidal)
• There are natural transformations

µ(X,X−),(Y ,Y−) :

C+((X,X−))︷ ︸︸ ︷(
X, [X,X−]

)
⊗

C+((Y ,Y−))︷ ︸︸ ︷(
Y , [Y ,Y−]

)
−→

C+((X,X−)⊗(Y ,Y−))︷ ︸︸ ︷(
X × Y , [X × Y ,X− × Y−]

)
and

∆(X,X−),(Y ,Y−) :

C+((X,X−))︷ ︸︸ ︷(
X, [X,X−]

)
⊗

C+((Y ,Y−))︷ ︸︸ ︷(
Y , [Y ,Y−]

)
←−

C+((X,X−)⊗(Y ,Y−))︷ ︸︸ ︷(
X × Y , [X × Y ,X− × Y−]

)
but they are not inverses

• The backwards part (put) of µ, of type
X × Y × [X × Y ,X− × Y−]→ [X,X−]× [Y ,Y−] is lossy
• As a result, in DiopticC+,B+ , idX ⊗ idY 6∼= idX⊗Y

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

35 / 42

Is there a different way?

• Problem: passing X → X− to f and Y → Y− to g loses information about the
joint dependency X × Y → X− × Y−.
• Perhaps continuations can be upgraded to some kind of “nominal diagrams” that
express dependencies on all uncles, and from which joint information can be
recovered. 7 6 5 3 1

8 4

• Decorated cospans?

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

36 / 42

Future work

• Actually proving stuff
• Working out the quotienting machinery

• Blue-sky idea: if it works, can it replace coend in the definition of Optic itself?

OpticC
(

(X,X−), (Y ,Y−)
)

:=

∫ M:C

C(X,M ⊗ Y)× C(M ⊗ Y−,X−)

• Proving stuff in Coq
• Generalizing to nontrivializable bundles (merge with Jules’)
• Trying more computable base fields than R

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

37 / 42

Characterizing truthfulness

• Would be nice to axiomatize which dioptics are in the image of the faithful
functor Game ↪→ DiopticC+,B+

• Naïvely, might hope that “truthful” ∼ “lawful”, but there seems to be no
applicable definition of “lawful”

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

38 / 42

Synthesizing functors between categories of dioptics

• The alleged functors

T ∗ : Para ∼= DiopticFwd,Fwd → DiopticTCR ,TCR =: GradLearn

L∗e,η : GradLearn := DiopticTCR ,TCR → Dioptic
∆�Set,∆

�
Set

∼= Learn

D∗η : GradLearn := DiopticTCR ,TCR → DiopticTCR ,∆�Set
=: GradDesc

all go from one category of dioptics to another.
• Is there a generic “recipe”?

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

39 / 42

Nonsmooth activation functions

x ReLU y

−2 −1 1 2

−2

−1

1

2

ReLU(x) := max{x, 0}

• ReLU (“Rectified Linear Unit”) is a
pervasive ML primitive

At least 5 ways to handle:
0 Pretend ReLU′(0) := 1
1 Smooth almost everywhere
2 Subdifferentiable
3 Semismooth from the right
4 ReLU′(0) :=⊥

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

40 / 42

Selected References

Riley, Mitchell. Categories of Optics, 7th Sept. 2018,
arXiv: 1809.00738v2 [math.CT] (cited on p. 14).
Fong, Brendan, David I. Spivak and Rémy Tuyéras.
Backprop as Functor: A compositional perspective on supervised learning,
13th Dec. 2017, arXiv: 1711.10455v2 [math.CT]
(cited on pp. 16, 17, 30).
Ghani, Neil, Jules Hedges, Viktor Winschel and Philipp Zahn.
“Compositional game theory”, Logic in Computer Science,
LICS ’18 (Oxford, UK), 9th–12th July 2018,
doi: 10.1145/3209108.3209165 (cited on p. 32);
preliminary version on arXiv: 1603.04641v3 [cs.GT]
(15th Mar. 2016).
Elliott, Conal. “The simple essence of automatic differentiation”,
Proc. ACM on Programming Languages,
ICFP 2018 (St. Louis, MO, USA), vol. 2.70, 24th–26th Sept. 2018,
doi: 10.1145/3236765; extended version on
arXiv: 1804.00746v4 [cs.PL];
url: http://conal.net/papers/essence-of-ad/ (Mar. 2018).
Sprunger, David and Shin-ya Katsumata.
Differentiable Causal Computations via Delayed Trace, 4th Mar. 2019,
arXiv: 1903.01093v1 [cs.LO].

https://arxiv.org/abs/1809.00738v2
https://arxiv.org/abs/1711.10455v2
https://doi.org/10.1145/3209108.3209165
https://arxiv.org/abs/1603.04641v3
https://doi.org/10.1145/3236765
https://arxiv.org/abs/1804.00746v4
http://conal.net/papers/essence-of-ad/
https://arxiv.org/abs/1903.01093v1

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

41 / 42

Acknowledgments

• Thanks to Eliana Lorch for key insights
• Thanks to Jules Hedges, David Spivak, and Brendan Fong for support and
conversations.

Dioptics, etc.

@davidad

Overview

Gradient-Based
Learners
Motivation

“Simple Essence”

Abstract version

Reconstitution

Backpropagation

“Categories of Optics”

“Backprop as Functor”

Dioptics
Dbl(C)

Dbl(Optic
C
)

Quotienting

DiopticF,G
Gradient descent

Getting to Learn

Open Games
“Compos. Game Thy.”

As Dioptics

Caveat

Future work
Truthfulness?

Functor recipe?

ReLU

References

Thanks

42 / 42

Thank you for your attention!

David A. Dalrymple
@davidad

Protocol Labs

SYCO 5
Birmingham, UK

2019-09-05

	About This Talk
	Gradient-Based Learners
	Motivation
	``Simple Essence of Automatic Differentiation''
	Abstract version
	Reconstitution
	Backpropagation
	``Categories of Optics''
	``Backprop as Functor''

	Dioptics
	Dbl(C)
	Dbl(OpticC)
	Quotienting
	DiopticF,G
	Gradient descent
	Getting to Learn

	Open Games
	``Compositional Game Theory''
	Open Games as Dioptics
	Caveat

	Future work
	Characterizing truthfulness
	Synthesizing functors between categories of dioptics
	Nonsmooth activation functions

	References
	Thanks

