Dioptics: a common generalization of gradient-based learners and open games

David A. Dalrymple @davidad
Protocol Labs
SYCO 5
Birmingham, UK 2019-09-05

About This Talk

- Clarifying connections between (a lot of) prior work
- Besides abstractions, main novelty: generalizing backpropagation and gradient descent to Lie groups and framed Riemannian manifolds
- Work in progress; dubious provenance

Overview

Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dы(e)

 Du(Optic $\left.{ }_{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games

Haven't I seen this talk already?

Replying to @davidad

Ok, after both our talks we really need to compare notes!
4:08 PM • Sep 2, 2019 • Twitter Web App

There is a lot of overlap with Jules' talk earlier. A couple differences:

- I only deal with trivializable bundles, $T X \cong X \times X^{\prime}$
- I'm aiming to cover more than just backpropagation

Notations

Overview

Gradient-Based

Learners

Motivation

"Simple Essence"
Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"
Dioptics Dы(e) Dы(Optice) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn
Open Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? Relu
References Thanks $5 / 42$

- Composition: $(f \circ g)(x) \equiv g(f(x)) \equiv x \circ f \circ g$
- homs: $C(A, B)$ means hom (A, B). $[A, B]$ denotes the internal hom from A to B. $A \multimap B$ denotes the space of (literally) linear maps from A to B.
- Definitions:

$$
\underbrace{\text { eval }}_{\text {name }} \underbrace{X, Y}_{\text {variables }}: \underbrace{((X \multimap Y) \otimes X) \rightarrow Y}_{\text {type }}:=\underbrace{\langle f, x\rangle}_{\text {bindings }} \mapsto \underbrace{f(x)}_{\text {expression }}
$$

means the same as

$$
\begin{aligned}
& \operatorname{eval}_{X, Y}:((X \multimap Y) \otimes X) \rightarrow Y \\
& \operatorname{eval}_{X, Y}\langle f, x\rangle=f(x)
\end{aligned}
$$

Dioptics, etc.
@davidad

Section 1

Gradient-Based Learners

Machine Learning in 60 seconds

Overview
Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution

Backpropagation

 "Categories of Optics" "Backprop as Functor"
Dioptics

Dble) Du(Optic ${ }_{e}$)
Quotienting
Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References
Thanks
$7 / 42$

- A (supervised) machine learning problem is a function approximation problem.
- A pretty practical class of functions to approximate things with is neural nets.
- Deep learning is, in part, about composing layers. The deepness is (sequential) composition depth.
- Modern deep learning (e.g. TensorFlow, PyTorch) uses computational graphs.
\leftarrow How much of modern deep learning can be understood from this perspective?

Dioptics, etc.
@davidad

Backpropagation

Overview

Gradient-Based Learners Motivation

"Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dbl(e) Dbl(Optice) Quotienting Dioptic $_{F, G}$ Gradient descent

Getting to Learn

Open Games
"Compos. Game Thy." As Dioptics
Caveat
Future work Truthfulness? Functor recipe? ReLU
References Thanks $8 / 42$

- Forward pass computes $x \mapsto y$
- Backward pass computes $\frac{d-}{d x} \longleftarrow \frac{d-}{d y}$
- Technically, the name "backpropagation" implies codomain \mathbb{R}. Else, reverse-mode automatic differentiation.

Two ideas about how "backpropagation is a functor":

$$
\begin{gathered}
\text { "Simple Essence of Automatic } \\
\text { Differentiation" } \\
\text { arXiv:1804.00746 [cs .PL] }
\end{gathered}
$$

Conal Elliott

"Backprop as Functor" (presented at SYCO 1!)

arXiv:1711.10455 [math.CT]

Brendan Fong, David Spivak, Rémy Tuyéras

How do these relate?

Overview
Gradient-Based Learners Motivation

"Simple Essence"

Abstract version

Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"

Dioptics

 Dы (e) $\mathrm{Db}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games "Compos. Game Thy." As Dioptics Caveat

What's a Derivative?

- Elliott constructs a "derivative" functor D^{+}

For $X, Y:$ Euc, $f: X \rightarrow Y$, let
$D f:(\overbrace{X}^{x} \rightarrow \overbrace{(X \multimap Y)}^{f^{\prime}(x):=\mathrm{g}}):=x \mapsto$ the unique linear g s.t.

$$
\lim _{\varepsilon \rightarrow 0} \frac{\left\|f(x+\varepsilon)-\left[f(x)+f^{\prime}(x)(\varepsilon)\right]\right\|}{\|\varepsilon\|}=0
$$

Chain rule:

$$
D(f ; g)(x)=D f(x) ; D g(f(x))
$$

Problem - not functorial: depends on un-D'd f. Let $D^{+} f: X \rightarrow(Y \times(X \multimap Y)):=x \mapsto\langle f(x), D f(x)\rangle$ Proposition (Elliott). D^{+}is a symmetric monoidal functor from Euc into a category with objects of Euc and morphisms of type $X \rightarrow_{\text {Euc }}(Y \times(X \multimap Y))$.

What do we really need to assume?

Overview

Gradient-Based

Learners

Motivation

"Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Db (e)

$\mathrm{Db}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References
Thanks
$11 / 42$

We can work in any category \mathcal{E} which...

- is cartesian closed and locally cartesian closed
- has a product-preserving endofunctor T (given a space $X: \mathcal{E}, T X$ is interpreted as its tangent bundle)
- has a "base point" natural transformation $p: \forall X . T X \rightarrow X$ (that is, $p: T \Rightarrow \mathrm{id}_{\mathscr{\varepsilon}}$).
- has a semiadditive subcategory \mathcal{E} Vect of "vector-like spaces" enriched in \mathcal{E}
- has a subcategory \mathcal{E} Triv of "trivializable spaces" s.t. for all $X: \mathcal{E}$ Triv, there is some $X^{\prime}: \mathcal{E}$ Vect satisfying the isomorphism (of bundles over X) $T X \cong X \times X^{\prime}$.
- Observation: $T X \cong X \times X^{\prime}$ looks like a constant-complement lens $T X \rightsquigarrow X$
- satisfies one last hard-to-state assumption about "linearity of derivatives"

What's a Derivative, Again?

Overview

Gradient-Based

Learners

Motivation

"Simple Essence"

Abstract version

 Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"
Dioptics

Dbl(e)

 $\mathrm{Dbl}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games "Compos. Game Thy." As Dioptics Caveat
Future work

Truthfulness?

Functor recipe? ReLU
References Thanks

- If $X, Y: C$ Triv, then $T(f: X \rightarrow Y): T X \rightarrow T Y \cong X \times X^{\prime} \rightarrow Y \times Y^{\prime}$
- By naturality of base-point projection $p: T$ - $\Rightarrow-$, we have $T f\langle x, \cdot\rangle=\langle f(x), \cdot\rangle$.
- Therefore Tf $\left\langle x, x^{\prime}\right\rangle=\left\langle f(x), \pi_{2} T f\left\langle x, x^{\prime}\right\rangle\right)$.
- So we can define $T^{+} f: X \rightarrow\left(Y \times\left(X^{\prime} \rightarrow Y^{\prime}\right)\right):=x \mapsto\left\langle f(x), \lambda x^{\prime} . \pi_{2} T f\left\langle x, x^{\prime}\right\rangle\right\rangle$.
- Our last assumption is that $T^{+}(f)(x)$ is, in fact, a linear map $X^{\prime} \multimap Y^{\prime}$.
- Then $T^{+} f: X \rightarrow\left(Y \times\left(X^{\prime} \multimap Y^{\prime}\right)\right)$, just like Elliott's D^{+}.

All That and a Pony

Overview

Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dbl(e)

 Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games "Compos. Game Thy." As Dioptics Caveat
Future work Truthfulness? Functor recipe? ReLU
References Thanks $13 / 42$

Two ways to instantiate those assumptions:
(1) E can be the microlinear spaces of a well-adapted model of synthetic differential geometry, like the Dubuc/Cahiers topos

- Here, $T X$ is representable as $[D, X]$ where D is the infinitesimal interval
(2) \mathcal{E} can be the category of diffeological spaces due to Souriau

In either case, \mathcal{E} Triv includes all manifolds with trivializable tangent bundles, e.g.

- open subsets of Euclidean spaces
- affine spaces
- Lie groups
- framed manifolds

Backpropagation (Reverse-mode automatic differentiation)

Overview

Gradient-Based

Learners

Motivation

"Simple Essence" Abstract version
Reconstitution
Backpropagation "Categories of Optics" "Backprop as Functor"
Dioptics Dul(e) $\mathrm{Db}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References Thanks
$14 / 42$

$$
\begin{aligned}
& \text { (forward-mode) } \quad T^{+} f: X \rightarrow\left(Y \times\left(X^{\prime} \multimap Y^{\prime}\right)\right) \\
& T_{Z}^{\triangleleft}(f: X \rightarrow Y): X \rightarrow(Y\times[\overbrace{\left(Y^{\prime} \multimap Z^{\prime}\right)}^{k},(\overbrace{X^{\prime}}^{d} \multimap Z^{\prime})]):= \\
& \mapsto\left\langle\left\langle f(x), k \mapsto d \mapsto\langle x, d\rangle ; \gamma_{X}^{-1} ; T f ; \gamma_{Y} \circ \pi_{2} ; k\right\rangle\right.
\end{aligned}
$$

where $\gamma_{X}: T X \cong X \times X^{\prime}, \gamma_{Y}: T Y \cong Y \times Y^{\prime}$.

$$
T_{Z}^{\triangleleft}: \mathcal{E} \text { Triv } \rightarrow \text { Optic }_{\delta}:=X \mapsto\left(X, X^{\prime} \multimap Z^{\prime}\right)
$$

Overview

Gradient-Based Learners

Motivation

"Simple Essence"

Abstract version

Reconstitution
Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dы (e)

 $\mathrm{Db}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descentGetting to Learn

Open Games

"Categories of Optics"

Definition [Ril18]. In any symmetric monoidal category c,

$$
\operatorname{Optic}_{C}\left(\left(X, X^{-}\right),\left(Y, Y^{-}\right)\right):=\int^{M: C} C(X, M \otimes Y) \times C\left(M \otimes Y^{-}, X^{-}\right)
$$

Theorem (Riley). Optic ${ }_{C}$ is a symmetric monoidal category with objects of $C \times C^{\text {op }}$. If C is cartesian, Optic $_{C}$ is equivalent to

$$
\operatorname{Lens}_{C}\left(\left(X, X^{-}\right),\left(Y, Y^{-}\right)\right):=\underbrace{\mathcal{C}(X, Y)}_{\text {get }} \times \underbrace{\mathcal{C}\left(X \times Y^{-}, X^{-}\right)}_{\text {put }}
$$

If C is symmetric monoidal closed, $\mathbf{O p t i c}_{C}$ is equivalent to

$$
\text { CurriedLens }_{C}\left(\left(X, X^{-}\right),\left(Y, Y^{-}\right)\right):=X \rightarrow\left(Y \otimes\left[Y^{-}, X^{-}\right]\right)
$$

Theorem (de Paiva). If C is cartesian closed and locally cartesian closed, Optic ${ }_{C}$ is a symmetric monoidal closed category, with internal hom defined as

$$
\left(X, X^{-}\right) \rightsquigarrow_{c}\left(Y, Y^{-}\right)=\left(\left[X, Y \times\left[Y^{-}, X^{-}\right]_{e}\right]_{e}, X \times Y^{-}\right)
$$

Backpropagation (Reverse-mode automatic differentiation)

Overview

Dioptics

 Dul(e) $\mathrm{Dbl}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOverview
Gradient-Based Learners

Motivation

"Simple Essence"

Abstract version

Reconstitution
Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Db (e)

 Dbl(Optice ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References Thanks
$17 / 42$

Definition [FST17]. Given X, Y : Set, a learner ℓ from $X \rightarrow Y$ is defined by:

$$
\begin{aligned}
& S_{\ell}: \text { Set } \\
& I_{\ell}: S_{\ell} \times X \rightarrow Y \\
& r_{\ell}: S_{\ell} \times X \times Y \rightarrow X \\
& U_{\ell}: S_{\ell} \times X \times Y \rightarrow S_{\ell}
\end{aligned}
$$

the parameter space the implementation function the request function the update function

"Backprop as Functor": Learn

Overview

Gradient-Based Learners Motivation "Simple Essence" Abstatat version Reconstitution

Backpropagation

 "Categories of Optics" "Backprop as Functor"Dioptics
Dbl(e) Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games "Compos. Game Thy." As Dioptics Caveat

Future work

Definition [FST17]. Given $X, Y:$ Set, a learner ℓ from $X \rightarrow Y$ is defined by:

$$
\begin{aligned}
& S_{\ell}: \text { Set } \\
& I_{\ell}: S_{\ell} \times X \rightarrow Y \\
& r_{\ell}: S_{\ell} \times X \times Y \rightarrow X \\
& U_{\ell}: S_{\ell} \times X \times Y \rightarrow S_{\ell}
\end{aligned}
$$

the parameter space
the implementation function
the request function
the update function

Equivalently, a learner $\ell: X \rightarrow Y$ is exactly

- a family of lenses, i.e. a set S_{ℓ} and for each $s: S_{\ell}$ a lens $\ell_{s}:(X, X) \rightsquigarrow_{\text {Set }}(Y, Y)$
- $U_{\ell}: S_{\ell} \times X \times Y \rightarrow S_{\ell}$

Observation: Also equivalently, a learner $\ell: X \rightarrow Y$ is exactly a set S_{ℓ} and a lens $\left(S_{\ell}, S_{\ell}\right) \rightsquigarrow_{\text {Set }}\left((X, X) \rightsquigarrow_{\text {Set }}(Y, Y)\right)$, or $\left(\left(S_{\ell}, S_{\ell}\right) \otimes(X, X)\right) \rightsquigarrow_{\text {Set }}(Y, Y)$.

Proposition [FST17]. There is a symmetric monoidal category Learn whose objects are sets and whose morphisms are equivalence classes of learners.
Dioptics, etc.

Gradient-Based

Learners

Motivation

Section 2

Dioptics

Dbl((C)

Overview

Gradient-Based Learners

Motivation

 "Simple Essence"
Abstract version

Reconstitution

Backpropagation

 "Categories of Optics" "Backprop as Functor"
Dioptics

Dbl(e)
Dbl(Optice)
Quotienting
Dioptic $_{F, G}$

Definition (Sprunger, Katsumata). Given a cartesian category \mathcal{C}, the double category $\operatorname{Dbl}(C)$ has

- One 0-cell, written as •
- Horizontal and vertical 1-cells both given by objects of C, composed with \times_{C}, with identity given by the terminal object in C.
- A 2-cell with boundary X, Y, S, S^{\prime} is given by a morphism $C\left(S \times X, S^{\prime} \times Y\right)$.

$\operatorname{Dbl}\left(\right.$ Optic $\left._{e}\right)$

Overview

Gradient-Based

Learners

Motivation

"Simple Essence"
Abstract version
Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"
Dioptics

Dы(e)

Dl(Optic ${ }_{e}$)
Quotienting
Dioptic $_{F, G}$
Gradient descent
Getting to Learn
Open Games
"Compos. Game Thy." As Dioptics Caveat
Future work

Truthfulness?

References

Thanks

$20 / 42$

2-cells/tiles of $\mathbf{D b l}\left(\mathbf{O p t i c}_{C}\right)$ are morphisms
$\operatorname{Optic}_{C}\left(\left(S, S^{-}\right) \otimes\left(X, X^{-}\right),\left(S^{\prime}, S^{\prime-}\right) \otimes\left(Y, Y^{-}\right)\right)$.
If we look only at tiles with trivial vertical codomain (monoidal unit), we get Optic $_{C}\left(\left(S \times X, S^{-} \times X^{-}\right),\left(Y, Y^{-}\right)\right)$, exactly the desired structure:

Quotienting by equivalence of parameter space S

If composition of parameterized morphisms involves Cartesian-product-ing their parameter spaces, then associativity of composition does not (directly, strictly) hold.

Ways to solve this:

- Make the parameter space into an "opaque" or "existential" type:
(1) Explicit meta-theoretic quotient (as for Learn, Para, Game)
(2) Bind it with a coend (as for Optic) - this is what I do for now with Dioptic ${ }_{F, G}$
- Give up strict associativity; define a bicategory instead. (2-morphisms are reparameterizations.)
- Construct the double category $\mathbf{D b l}(C)$, using monoidal strictification. Question: how do we recover a symmetric monoidal category?

Dioptics, etc. @davidad Overview Gradient-Based Learners

Motivation

"Simple Essence"
Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor" Dioptics Dы(e) Du(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games
"Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References Thanks
$22 / 42$

Recovering a symmetric monoidal category from $\operatorname{Dbl}\left(\right.$ Optic $\left._{C}\right)$
Proposed approach: Cat $($ Cat $) \xrightarrow{?}$ SymMon2Cat $\xrightarrow{\text { forgetful }}$ SymMonCat

Dioptics, etc.
@davidad

Recovering a symmetric monoidal category from $\mathbf{D b l}\left(\right.$ Optic $\left._{C}\right)$

Overview

Gradient-Based

Learners

Motivation
"Simple Essence"
Abstract version
Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"

Dioptics Dы (C) $\mathrm{Dbl}\left(\right.$ Optic $\left._{e}\right)$ Quotienting
Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games

"Compos. Game Thy." As Dioptics
Caveat
Future work Truthfulness? Functor recipe? ReLU
References Thanks

22 / 42
@davidad

Dioptic $_{F, G}$

Overview
Gradient-Based Learners Motivation
"Simple Essence"
Abstract version Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"

Dioptics

 Dbl(e) Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games
"Compos. Game Thy." As Dioptics

Caveat

Future work Truthfulness? Functor recipe? ReLU
References Thanks $23 / 42$

Construction takes as input:

- C a cartesian closed, locally cartesian closed category
- \mathcal{S}, \mathcal{T} symmetric monoidal categories
- $F: \mathcal{T} \rightarrow$ Optic $_{C}$, $G: \mathcal{S} \rightarrow$ Optic $_{C}$ are symmetric oplax monoidal functors
- Canonical embedding $\left(C \times{ }^{\text {Op }}\right) \hookrightarrow$ Optic $_{C}$ can be useful
- Conjecture: If F is strong symmetric monoidal, Dioptic $_{F, G}$ is symmetric monoidal.
$\operatorname{Dioptic}_{F, G}: \mathscr{T}^{\text {op }} \times \mathcal{T} \rightarrow \operatorname{Set}:=(\ddot{X}, \ddot{Y}) \mapsto \int^{\ddot{S}: \delta} \operatorname{Optic}_{C}\left(G \ddot{S}, F \ddot{X} \rightsquigarrow_{C} F \ddot{Y}\right)=\int^{\ddot{S}: \delta} \operatorname{Optic}_{C}(G \ddot{S} \times F \ddot{X}, F \ddot{Y})$

Para as Dioptic ${ }_{\text {Fwd,Fwd }}$

Dioptics

Db (e)

 Dl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games

Let \mathcal{E} be the Dubuc topos or the category of diffeological spaces; then let

$$
\text { Fwd : Euc } \rightarrow \mathcal{E} \times \mathcal{E}^{\mathrm{op}}:=X \mapsto(X, 1)
$$

Then we have

$$
\begin{aligned}
\operatorname{Dioptic}_{\mathrm{Fwd}, \mathrm{Fwd}}(X, Y) & =\int^{S: E u c} \operatorname{Optic}_{C}\left((S, 1),(X, 1) \rightsquigarrow_{C}(Y, 1)\right) \\
& \cong \int^{S: E u c} \operatorname{Lens}_{C}((S, 1) \otimes(X, 1),(Y, 1)) \\
& \cong \int^{S: \operatorname{Euc}} C(S \times X, Y)
\end{aligned}
$$

GradLearn := Dioptic $_{T_{\mathrm{R}}^{\triangleleft}, T_{\mathrm{R}}^{\triangleleft}}$

Let \mathcal{E} be the Dubuc topos or the category of diffeological spaces, with \mathcal{E} Triv the subcategory with trivializable bundles ($T X \cong X \times X^{\prime}$). Then

$$
T_{\mathbb{R}}^{\triangleleft}: \delta \operatorname{Triv} \rightarrow \text { Optic }_{\delta}=X \mapsto\left(X, X^{\prime} \multimap \mathbb{R}\right)
$$

We have

$$
\begin{aligned}
\operatorname{Dioptic}_{T_{\mathbb{R}}^{\triangleleft}, T_{\mathbb{R}}^{\triangleleft}}(X, Y) & =\int^{S: \& \operatorname{Triv}^{\prime}} \operatorname{Optic}_{\delta}\left(\left(S, S^{\prime} \multimap \mathbb{R}\right),\left(X, X^{\prime} \multimap \mathbb{R}\right) \rightsquigarrow \delta\left(Y, Y^{\prime} \multimap \mathbb{R}\right)\right) \\
& \cong \int^{S: \mathcal{E T r i v}} \operatorname{Lens}_{\mathcal{E}}\left(\left(S, S^{\prime *}\right) \otimes\left(X, X^{\prime *}\right),\left(Y, Y^{\prime *}\right)\right) \\
& \cong \int^{S: \mathcal{E T r i v}} \operatorname{Lens}_{\mathcal{E}}\left(\left(S \times X, S^{\prime *} \times X^{\prime *}\right),\left(Y, Y^{\prime *}\right)\right) \\
& \cong \int^{\text {S:ETriv }} \mathcal{E}(S \times X, Y) \times \mathcal{E}\left(S \times X \times Y^{\prime *}, S^{\prime *} \times X^{\prime *}\right)
\end{aligned}
$$

T_{Z}^{\triangleleft} is strong symmetric monoidal: $(X \times Y)^{\prime} \multimap \mathrm{Z} \cong\left(X^{\prime} \multimap \mathrm{Z}\right) \times\left(Y^{\prime} \multimap \mathrm{Z}\right)$, due to product-preservation of T and semiadditivity of ε Vect.

Dioptics, etc. @davidad

Learn as Dioptic $\Delta_{\Delta_{\mathrm{set}}}^{\rightleftarrows}, \nu_{\mathrm{set}}^{\stackrel{\rightharpoonup}{e}}$

Overview

Gradient-Based

Learners

Motivation

"Simple Essence"
Abstract version
Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dbl(e)

 Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References Thanks
$26 / 42$

Let

$$
\Delta_{\text {Set }}^{\stackrel{\rightharpoonup}{\rightleftarrows}}: \text { Core }(\text { Set }) \rightarrow \text { Optic }_{\text {Set }}:=X \mapsto(X, X)
$$

Then we have

$$
\begin{aligned}
\operatorname{Dioptic}_{\Delta_{\text {Set }}^{\rightleftarrows}, \Delta_{\text {Set }}^{\rightleftarrows}}^{\rightleftarrows}(X, Y) & =\int^{S: \text { Set }} \operatorname{Optic}_{\text {Set }}\left((S, S),(X, X) \rightsquigarrow{ }_{\text {Set }}(Y, Y)\right) \\
& =\int^{S: S \mathrm{Set}} \operatorname{Set}(S \times X, Y) \times \operatorname{Set}(S \times X \times Y, S \times X) \\
& \cong \operatorname{Learn}(X, Y)
\end{aligned}
$$

Motivation

"Simple Essence" Abstract version Reconstitution
Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics ды (e) Dl(Optic ${ }_{e}$) Quotienting
Dioptic $_{F, G}$
Gradient descent
-
Open Games "Compos. Game Thy." As Dioptics Caveat

Future work
Truthfulness? Functor recipe? ReLU

References
Thanks
$27 / 42$

Earlier, I said instead of computing an unknown Y^{\prime} from an unknown X^{\prime}, we want to compute $X^{\prime} \multimap \mathbb{R}\left(\right.$ that is, $\left.X^{\prime *}\right)$ from $Y^{\prime} \multimap \mathbb{R}\left(\right.$ that is, $\left.Y^{\prime *}\right)$.
Actually, we want to compute a new value of type S ! Fortunately, we have a covector $c: S^{\prime} \multimap \mathbb{R}$ to work with.
Steps to compute a new value for S, assuming S is equipped with a Riemannian structure (a symmetric, nonnegative, nondegenerate bilinear form $g: S^{\prime} \times S^{\prime} \multimap \mathbb{R}$:

- There exists a unique vector v such that $c=\lambda d . g(v, d)$.
- Scale the vector by an arbitrary learning rate $\eta: \mathbb{R}$ (and probably -1 , if you're minimizing a loss).
- Handling hyperparameters like η internal to the theory is very WIP, but should work.
- Using the Riemannian structure, compute the unique torsion-free Levi-Civita connection for parallel transport.
- Apply some appropriate theorem for the existence and uniqueness of differential equation solutions to integrate the tangent vector $-\eta v$ along a geodesic $a(t)$ starting from the current parameter state $s_{i}: S$.
- Let $s_{i+1}:=a(1)$.

By vertically composing all that machinery on top of a gradient-based learner of type $\left(S, S^{\prime *}\right) \rightsquigarrow\left(X, X^{\prime *}\right) \rightsquigarrow\left(Y, Y^{\prime *}\right)$, we obtain a dioptic $(S, S) \rightsquigarrow\left(X, X^{\prime *}\right) \rightsquigarrow\left(Y, Y^{\prime *}\right)$.

Gradient descent

@davidad

Overview

Gradient-Based

 LearnersMotivation

"Simple Essence"
Abstract version
Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"

Dioptrics Dbl (e) Dbl(Optic ${ }_{e}$)
Quotienting
Dioptric $_{F, G}$
Gradient descent
Getting to Learn
Open Games
"Compos. Game Thy."
As Dioptics
Caveat
Future work
Truthfulness? Functor recipe?
ReLU
References

Thanks

$28 / 42$

25-01-2019
an inner product, i.e. something of type $(D \Sigma Q S) \rightarrow \mathbb{R}$ symmetric \& positive

A Single Gradient Descent Step

This "additional machinery".
is needed to turn the gradient.
of type. $D^{*} \Sigma$ into an updated. parameter rector of type \sum. It is the natural location for most aspects of the descent algorithm itself (vs. data, loss, backdrop algorithms

Getting to Learn

Overview

Gradient-Based Learners

Motivation

"Simple Essence"
Abstract version Reconstitution

Backpropagation

"Categories of Optics" "Backprop as Functor"

Dioptics

Dы (e)
Dl(Optic ${ }_{e}$)
Quotienting
Dioptic $_{F, G}$
Gradient descent
Getting to Learn
Open Games
"Compos. Game Thy."
As Dioptics
Caveat
Future work
Truthfulness?
Functor recipe? ReLU
References

- We now have $(S, S) \rightsquigarrow\left(X, X^{\prime *}\right) \rightsquigarrow\left(Y, Y^{\prime *}\right)$, but in Learn we have dioptics of type $(S, S) \rightsquigarrow(X, X) \rightsquigarrow(Y, Y)$.
- Getting to learn requires a bit of a hack-we need to package up the loss function and the gradient of its inverse into every morphism (tile). This introduces a lot of unnecessary operations, and the same is true for [FST17]'s original functor from

Para \rightarrow Learn.

Given a positive number $\eta: \mathbb{R}$ (the step size) and a differentiable function $e(x, y): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ (the loss function) such that $\frac{\partial e}{\partial x}(z,-): \mathbb{R} \rightarrow \mathbb{R}$ is invertible $\forall z: \mathbb{R}$, we can define a faithful, injective-on-objects, symmetric monoidal functor $L_{e, \eta}:$ Para \rightarrow Learn that sends each parametrised functionf : $S \times X \rightarrow Y$ to the learner $\left(S, f, U_{f}, r_{f}\right)$ defined by

$$
\begin{aligned}
U_{f}(s, x, y) & :=s-\eta \nabla_{s} \sum_{j} e\left(f(s, x)_{j}, y_{j}\right) \\
r_{f}(s, x, y) & :=f_{x}\left(\nabla_{x} \sum_{j} e\left(f(s, x)_{j}, y_{j}\right)\right)
\end{aligned}
$$

where f_{x} is componentwise application of the inverse to $\frac{\partial e}{\partial x}\left(x_{i},-\right)$ for each i.

- The same trick works in a dioptic context, but only for bona fide Euclidean spaces.
ioptics, etc.
@davidad

Overview

Gradient-Based

Learners

Motivation
"Simple Essence"
Abstract version
Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"

Dioptics

Dbl(e)
Dbl(Optic ${ }_{e}$)
Quotienting
Dioptic $_{F, G}$ Gradient descent Getting to Learn
Open Games
"Compos. Game Thy."
As Dioptics
Caveat
Future work Truthfulness? Functor recipe?
ReLU
References Thanks
$30 / 42$

Section 3

Open Games

Overview

Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Db (e)

 Dl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn
"Compositional Game Theory": Game

Definition [GHWZ18]. Given X, X^{-}, Y, Y^{-}: Set, an open game $\mathcal{L}_{\mathcal{L}}$ from $\left(X, X^{-}\right) \rightarrow\left(Y, Y^{-}\right)$is defined by:

$$
\begin{aligned}
& S_{\mathscr{G}}: \text { Set } \\
& P_{\mathcal{G}}: S_{\mathcal{G}} \times X \rightarrow Y \\
& C_{\mathscr{G}}: S_{\mathcal{G}} \times X \times Y^{-} \rightarrow X^{-} \\
& E_{\mathscr{G}}: S_{\mathcal{G}} \times X \times\left(Y \rightarrow Y^{-}\right) \rightarrow S_{\mathscr{G}} \rightarrow \mathbf{2}
\end{aligned}
$$

the strategy profile space the play function the coplay function the equilibrium function

We define these auxiliary functors, with codomain Set \times Set $^{\text {op }}$:

$$
\begin{gathered}
E^{+}:=S \mapsto(S, \mathbf{2}), \quad C^{+}:=\left(X, X^{-}\right) \mapsto\left(X,\left[X, X^{-}\right]\right) \\
B^{+}:=E^{+} ; C^{+}=S \mapsto(S,[S, \mathbf{2}])
\end{gathered}
$$

The oplaxator of E^{+}is defined using conjunction:

$$
E^{+} . \Delta_{S, T}: \overbrace{E^{+}(S \times T)}^{(S \times T, 2)} \rightarrow_{\mathrm{Set} \times \mathrm{Set}^{\mathrm{p}}} \overbrace{E^{+} S \otimes E^{+} T}^{(S \times T, 2 \times 2)}:=((s, t) \mapsto(s, t),(a \wedge b) \leftrightarrow(a, b))
$$

Conjecture. Game has a faithful, identity-on-objects functor into Dioptic ${ }_{C^{+}, B^{+}}$.

Open Games as Dioptics

@davidad

Overview

Gradient-Based

Learners

Motivation
"Simple Essence"
Abstract version
Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"
Dioptics Dul(e) $\mathrm{Dbl}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games

"Compos. Game Thy."
As Dioptics
Caveat
Future work
Truthfulness?
Functor recipe?
ReLU
References
Thanks
$32 / 42$

$$
\begin{aligned}
& \operatorname{Dioptic}_{C^{+}, B^{+}}\left(\left(X, X^{-}\right),\left(Y, Y^{-}\right)\right) \\
& =\int^{\ddot{s}: \text { Set }} \text { Optic }_{\text {Set }}\left(B^{+} \ddot{S}, C^{+}\left(X, X^{-}\right) \rightsquigarrow_{\text {Set }} C^{+}\left(Y, Y^{-}\right)\right) \\
& =\int^{S: \text { Set }} \operatorname{Optic}_{\text {Set }}\left((S, S \rightarrow \mathbf{2}),\left(X, X \rightarrow X^{-}\right) \rightsquigarrow \text { Set }\left(Y, Y \rightarrow Y^{-}\right)\right) \\
& \cong \int^{S: \text { Set }} \operatorname{Optic}_{\text {Set }}\left((S, S \rightarrow \mathbf{2}),\left(X \rightarrow\left(Y \times\left(\left(Y \rightarrow Y^{-}\right) \rightarrow\left(X \rightarrow X^{-}\right)\right)\right), X \times\left(Y \rightarrow Y^{-}\right)\right)\right) \\
& \cong \int^{S: \text { Set }} \operatorname{Set}\left(S, X \rightarrow\left(Y \times\left(\left(Y \rightarrow Y^{-}\right) \rightarrow\left(X \rightarrow X^{-}\right)\right)\right)\right) \times \operatorname{Set}\left(S \times X \times\left(Y \rightarrow Y^{-}\right),(S \rightarrow \mathbf{2})\right) \\
& \cong \int^{S: S e t} \operatorname{Set}(S \times X, Y) \times \operatorname{Set}\left(S \times X \times\left(Y \rightarrow Y^{-}\right),\left(X \rightarrow X^{-}\right)\right) \times \operatorname{Set}\left(X \times\left(Y \rightarrow Y^{-}\right),(S \times S \rightarrow \mathbf{2})\right) \\
& \leftarrow \coprod_{S: \text { Set }} \operatorname{Set}(S \times X, Y) \times \operatorname{Set}\left(S \times X \times\left(Y \rightarrow Y^{-}\right),\left(X \rightarrow X^{-}\right)\right) \times \operatorname{Set}\left(X \times\left(Y \rightarrow Y^{-}\right),(S \times S \rightarrow \mathbf{2})\right) \\
& \stackrel{\phi}{\leftarrow} \coprod_{S: \text { Set }} \overbrace{\operatorname{Set}(S \times X, Y)}^{\text {play function } P} \times \overbrace{\operatorname{Set}\left(S \times X \times Y^{-}, X^{-}\right)}^{\text {coplay function } C} \times \overbrace{\operatorname{Set}\left(X \times\left(Y \rightarrow Y^{-}\right),(S \times S) \rightarrow \mathbf{2}\right)}^{\text {best-response function } B} \\
& \hookleftarrow \operatorname{Game}\left(\left(X, X^{-}\right),\left(Y, Y^{-}\right)\right)
\end{aligned}
$$

where
$\phi:=(S, P, C, B) \mapsto(S, P,(s, x, k) \mapsto x \mapsto C(s, x, k(P(s, x))), B) \quad \phi^{\leftarrow}:=(S, P, K, B) \mapsto\left(S, P,\left(s, x, Y^{-}\right) \mapsto K\left(s, x,\left(y \mapsto Y^{-}\right)\right)(x), B\right)$

Dishonest morphisms

Overview
Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dы (e)

 Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games

References Thanks
$33 / 42$

- Nothing I've done says the continuation that's output to the left has to be true.
- The sequential composition rule holds up, but a "dishonest" tile can corrupt a whole diagram out of the subcategory that corresponds to Game.

But it's not even monoidal

- Unfortunately Dioptic C $_{C^{+}, B^{+}}$fails to be monoidal, because C^{+}is not a strong monoidal functor (merely bilax monoidal and Frobenius monoidal)
- There are natural transformations

$$
\mu_{\left(X, X^{-}\right),\left(Y, Y^{-}\right)}: \overbrace{\left(X,\left[X, X^{-}\right]\right)}^{C^{+}\left(\left(X, X^{-}\right)\right)} \otimes \overbrace{\left(Y,\left[Y, Y^{-}\right]\right)}^{C^{+}\left(\left(Y, Y^{-}\right)\right)} \longrightarrow \overbrace{\left(X \times Y,\left[X \times Y, X^{-} \times Y^{-}\right]\right)}^{C^{+}\left(\left(X, X^{-}\right) \otimes\left(Y, Y^{-}\right)\right)}
$$ and

$$
\Delta_{\left(X, X^{-}\right),\left(Y, Y^{-}\right)}: \overbrace{\left(X,\left[X, X^{-}\right]\right)}^{C^{+}\left(\left(X, X^{-}\right)\right)} \otimes \overbrace{\left(Y,\left[Y, Y^{-}\right]\right)}^{C^{+}\left(\left(Y, Y^{-}\right)\right)} \longleftarrow \overbrace{\left(X \times Y,\left[X \times Y, X^{-} \times Y^{-}\right]\right)}^{C^{+}\left(\left(X, X^{-}\right) \otimes\left(Y, Y^{-}\right)\right)}
$$

but they are not inverses

- The backwards part (put) of μ, of type

$$
X \times Y \times\left[X \times Y, X^{-} \times Y^{-}\right] \rightarrow\left[X, X^{-}\right] \times\left[Y, Y^{-}\right] \text {is lossy }
$$

- As a result, in Dioptic $C_{C^{+}, B^{+}}, \mathrm{id}_{X} \otimes \mathrm{id}_{Y} \neq \mathrm{id}_{X \otimes Y}$

Is there a different way?

Overview

Gradient-Based

 Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"
Dioptics

Dы(e)

$\mathrm{Db}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games "Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU
References Thanks

- Problem: passing $X \rightarrow X^{-}$to f and $Y \rightarrow Y^{-}$to g loses information about the joint dependency $X \times Y \rightarrow X^{-} \times Y^{-}$.
- Perhaps continuations can be upgraded to some kind of "nominal diagrams" that express dependencies on all uncles, and from which joint information can be recovered.

- Decorated cospans?

Future work

Overview

Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor" Dioptics Dbl(e) Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

References

Thanks

- Actually proving stuff
- Working out the quotienting machinery
- Blue-sky idea: if it works, can it replace coend in the definition of Optic itself?

$$
\operatorname{Optic}_{e}\left(\left(X, X^{-}\right),\left(Y, Y^{-}\right)\right):=\int^{M: C} e(X, M \otimes Y) \times C\left(M \otimes Y^{-}, X^{-}\right)
$$

- Proving stuff in Coq
- Generalizing to nontrivializable bundles (merge with Jules')
- Trying more computable base fields than \mathbb{R}

Characterizing truthfulness

Overview
Gradient-Based Learners Motivation "Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dы (e)

Du(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient desent Getting to Learn
Open Games "Compos. Game Thy." As Dioptics Caveat
Future work Truthfuness? Functor recipe? ReLU
References Thanks
$37 / 42$

- Would be nice to axiomatize which dioptics are in the image of the faithful functor Game \hookrightarrow Dioptic $_{C^{+}, B^{+}}$
- Naïvely, might hope that "truthful" ~ "lawful", but there seems to be no applicable definition of "lawful"

Synthesizing functors between categories of dioptics

Overview

- The alleged functors

$$
\begin{aligned}
& T^{*}: \text { Para } \cong \text { Dioptic }_{\text {Fwd,Fwd }} \rightarrow \text { Dioptic }_{T_{\mathbb{R}}^{\triangleleft}, T_{\mathbb{R}}^{\triangleleft}}=: \text { GradLearn } \\
& L_{e, \eta}^{*}: \text { GradLearn }^{*}=\text { Dioptic }_{T_{\mathbb{R}}^{\triangleleft}, T_{\mathbb{R}}^{\triangleleft}} \rightarrow \text { Dioptic }_{\Delta_{\text {Set }}^{\rightleftarrows}}^{\stackrel{\rightharpoonup}{\text { Set }}} \stackrel{\rightharpoonup}{\rightleftarrows} \cong \text { Learn } \\
& D_{\eta}^{*}: \text { GradLearn }=\text { Dioptic }_{T_{\mathbb{R}}}, T_{\mathbb{R}}^{\triangleleft} \rightarrow \text { Dioptic }_{T_{\mathbb{R}}^{\triangleleft}}, \Delta_{\text {Set }}^{\rightleftharpoons}=\text { GradDesc }
\end{aligned}
$$

all go from one category of dioptics to another.

- Is there a generic "recipe"?
@davidad

Nonsmooth activation functions

Overview

Gradient-Based

 Learners
Motivation

"Simple Essence" Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

Dbl(e) Dbl(Optic ${ }_{e}$) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games
"Compos. Game Thy." As Dioptics Caveat

Future work Truthfuluness? Functor recipe?
ReLU
References
Thanks
$39 / 42$

At least 5 ways to handle:
(0) Pretend $\operatorname{ReLU}^{\prime}(0):=1$
(1) Smooth almost everywhere
(2) Subdifferentiable
(3) Semismooth from the right
(4) $\operatorname{ReLU}^{\prime}(0):=\perp$

- ReLU ("Rectified Linear Unit") is a pervasive ML primitive

$$
\operatorname{ReLU}(x):=\max \{x, 0\}
$$

Dioptics, etc.

Selected References

Overview
Gradient-Based Learners Motivation
"Simple Essence"
Abstract version
Reconstitution
Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics

 Du(e) $\mathrm{Dbl}\left(\right.$ Optic $\left._{e}\right)$ Quotienting Dioptic $_{F, G}$ Gradient descent Getting to LearnOpen Games

"Compos. Game Thy."

 As Dioptics CaveatFuture work Truthfulness? Functor recipe? ReLU
References Thanks
$40 / 42$

Riley, Mitchell. Categories of Optics, 7th Sept. 2018, arXiv: $1809.00738 v 2$ [math.CT] (cited on p. 14).
Fong, Brendan, David I. Spivak and Rémy Tuyéras. Backprop as Functor: A compositional perspective on supervised learning, 13th Dec. 2017, arXiv: 1711.10455 v 2 [math.CT] (cited on pp. 16, 17, 30).
Ghani, Neil, Jules Hedges, Viktor Winschel and Philipp Zahn.
"Compositional game theory", Logic in Computer Science,
LICS '18 (Oxford, UK), 9th-12th July 2018,
DOI: 10.1145/3209108. 3209165 (cited on p. 32);
preliminary version on arXiv: 1603.04641 v 3 [cs.GT] (15th Mar. 2016).
Elliotт, Conal. "The simple essence of automatic differentiation", Proc. ACM on Programming Languages, ICFP 2018 (St. Louis, MO, USA), vol. 2.70, 24th-26th Sept. 2018, DOI: $10.1145 / 3236765$; extended version on arXiv: 1804.00746 v 4 [cs.PL]; URL: http://conal.net/papers/essence-of-ad/ (Mar. 2018).
Sprunger, David and Shin-ya Katsumata. Differentiable Causal Computations via Delayed Trace, 4th Mar. 2019, arXiv: 1903.01093 v 1 [cs.LO].

Acknowledgments

Overview
Gradient-Based Learners

Motivation

"Simple Essence"
Abstract version
Reconstitution
Backpropagation
"Categories of Optics" "Backprop as Functor"

Dioptics ды(e) Du(Optice) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games
"Compos. Game Thy." As Dioptics Caveat

Future work Truthfulness? Functor recipe? ReLU

References Thanks $41 / 42$

- Thanks to Eliana Lorch for key insights
- Thanks to Jules Hedges, David Spivak, and Brendan Fong for support and conversations.

Dioptics, etc. @davidad

Overview
Gradient-Based Learners

Motivation

"Simple Essence"
Abstract version Reconstitution Backpropagation "Categories of Optics" "Backprop as Functor"

Dioptics Dbl(e) Dbl(Optice) Quotienting Dioptic $_{F, G}$ Gradient descent Getting to Learn

Open Games
"Compos. Game Thy."
As Dioptics
Caveat
Future work Truthfulness? Functor recipe? ReLU

References Thanks 42 / 42

Thank you for your attention!

David A. Dalrymple @davidad
Protocol Labs
SYCO 5
Birmingham, UK
2019-09-05

