Cylinder Diagrams: Visualising Multi-parameter Natural Transformations

Niels Voorneveld Tallinn University of Technology

> September 9, 2022 SYCO 9

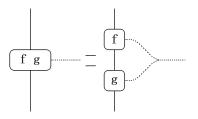
Things I like:

- Functional programs and composition.
- Effects like global store and nondeterminism.
- Parallelism and concurrency.

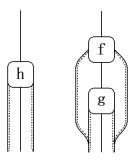
Dimensions of a page:

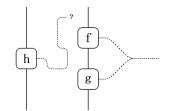
- Height.
- Width.
- ▶ ...

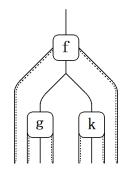
Effectful composition



How to add parallelism?







Motivation

Possible solutions:

- Surface diagrams, sheet diagrams.
- Ribbon diagrams, tape diagrams.
- String diagrams with special operations.

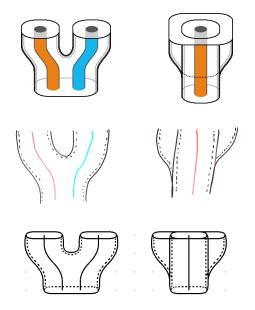
Solution of this talk: Cylinder diagrams Inflate the strings and allow them to contain diagrams.

- Allows for arbitrary nesting.
- Can be neatly flattened to 2 dimensions.

Methods for drawing:

- This presentation will use drawing assembled using tiles with premade illustrations.
- Can also be illustrated by 2-dimensional string diagrams using bracket-strings.

Illustration: Parallel and sequential composition



Core Categorical structure

Given a monoidal category \mathcal{C} , we describe the category consisting of:

- As objects multi-endofunctors on C.
- > As morphisms natural transformations between them.

The resulting category is also monoidal.

It contains $\ensuremath{\mathcal{C}}$ as a full subcategory of constant functors.

Main example is taking the category of sets C =**Set**, with the Cartesian product as monoidal product.

Objects and morphisms of $\mathcal C$

Objects are represented (solid) cylinders, and functions by blocks between them:

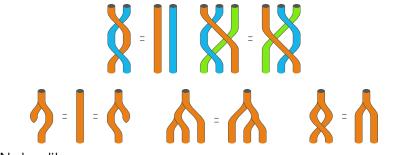
Object:
$$A =$$
 Morphism: $\left(f:\frac{A}{B}\right) = \int_{f}$

Special morphisms which exist in **Set** (\times is the product):

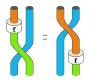
$$\left(S:\frac{X\times Y}{Y\times X}\right) = \left\{\begin{array}{c} C:\frac{X}{X\times X} \\ 1\end{array}\right\} \quad D:\frac{X}{1} = \left\{\begin{array}{c} D\\ 1\end{array}\right\}$$

Objects and morphisms of $\ensuremath{\mathcal{C}}$

Special equations:



Naturality:



Endofunctors of $\ensuremath{\mathcal{C}}$

Functors are represented by hollow cylinders, within which lies the object or morphism to which it is applied.

Functor law for morphism composition:

$$\left(f:\frac{X}{Y},g:\frac{Y}{Z}\right)\mapsto \left(Tg\circ Tf=T(g\circ f):\frac{TX}{TZ}\right)$$

Natural Transformations of $\ensuremath{\mathcal{C}}$

Natural transformations, a parametrized morphisms:

$$\left(\forall X. a_X : \frac{TX}{RX}\right) = \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right)$$

The object *X* goes through the natural transformation block, illustrating naturality:

$$\left(\forall f: \frac{X}{Y}. a_Y \circ Tf = Rf \circ a_X\right)$$

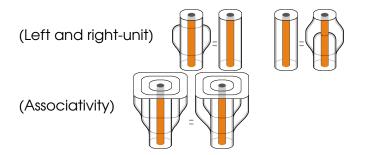
Let there be monads

Definition

A monad is a functor T with two natural transformations

$$(\eta_X : \frac{X}{TX}) = \prod_{i=1}^{n} \text{and } (\mu_X : \frac{TTX}{TX}) = \bigcup_{i=1}^{n}$$
, satisfying the

following two equations:

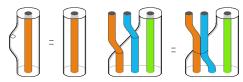


Strength

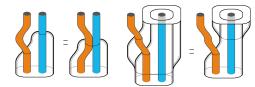
Strength is illustrated by pulling in the parameter:

$$\left(\sigma_{X,Y}:\frac{X\times TY}{T(X\times Y)}\right) =$$

Monoidal strength equations:



Strong monad equations:

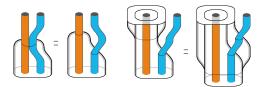


Costrength

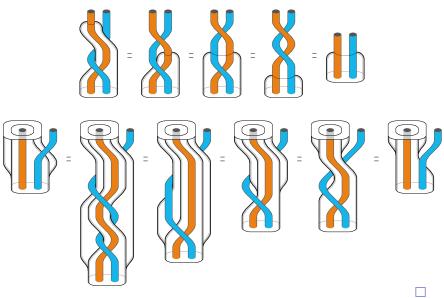
Using swap, we define costrength as

$$\left(\tau_{X,Y}:\frac{TX\times Y}{T(X\times Y)}\right)=\bigcup_{i=1}^{n}\prod_{j=1}^{n}\prod_{i=1}^{n}\prod_{j=1}^{n}\prod_{j=1}^{n}\prod_{j=1}^{n}\prod_{i=1}^{n}\prod_{j=1}^{n}\prod_{j=1}^{n}\prod_{i=1}^{n}\prod_{j=1}^{n}\prod_{j=1}^{n}\prod_{i=1}^{n}\prod_{j=1}^{n}\prod$$

Lemma A strong monad is a costrong monad.



Costrength Proof.



Commutativity

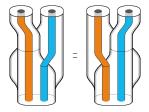
How do we merge monads?

One method is to use strength and costrength.

Commutativity says the order doesn't matter.

Definition

A monad is commutative if the following equation holds:



Monoidal Monad

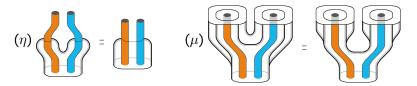
Definition

T is a monoidal monad if there is a natural transformation

$$\left(m:\frac{TX\times TY}{T(X\times Y)}\right) =$$

) satisfying the following two

equations:



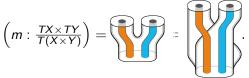
Lemma

Any strong commutative monad is a monoidal monad.

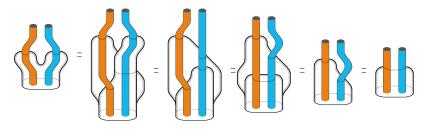
Monoidal Monad

Proof.

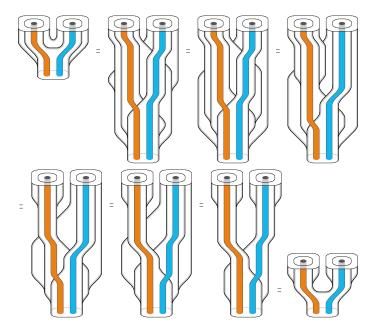
We define the following natural transformation:



Using commutativity, we can prove both monoidal monad properties:



Monoidal Monad



Product of Monads

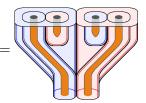
T and R both monads. Assume we have copy and delete.

$$(T \times R)(X) = (TX \times RX) =$$

• The monad unit
$$\left(\eta_X^{T \times R} : \frac{X}{TX \times RX}\right) =$$

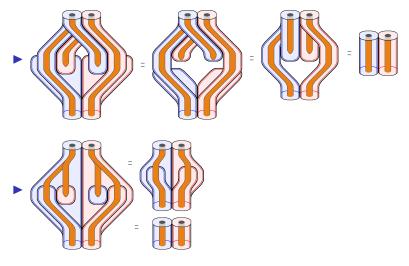
The monad multiplication

$$\left(\mu_X^{T\times R}:\frac{T(TX\times RX)\times R(TX\times RX)}{TX\times RX}\right)$$

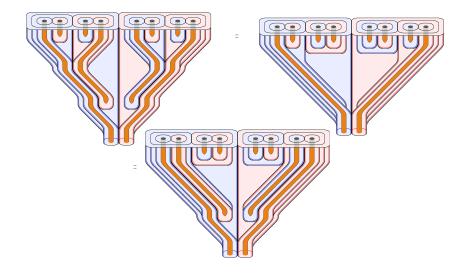


Product of Monads

This is a monad. Proof:

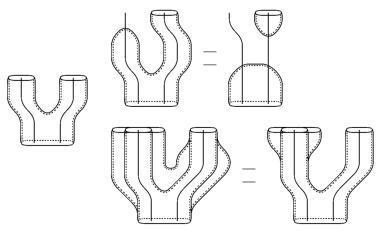


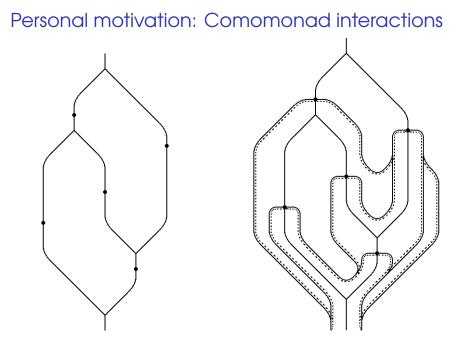
Product of Monads



Personal motivation: Comomonad interactions

- Models with both leading/active monadic structure, and following/passive comonad structure.
- Interaction between programs as lead and follow, using interaction laws.





Multi-functors generically

Functors like $X \times TY$ have multiple arguments.

Generically, this can be illustrated by glueing cylinders.

Natural transformations can be illustrated by connecting the appropriate arguments.

For example, coproduct in **Set** can be represented by glued cylinders. Below is an illustration of distributivity.

$$\left(\delta_{X,Y,Z}:\frac{X\times(Y+Z)}{(X\times Y)+(X\times Z)}\right)=$$

Conclusions: Open questions

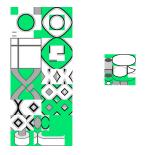
How to do cylinder diagrams monoidally?

Geometric interpretation of cylinder diagrams.

Considering other generic features.

Conclusions: Pictures

Most images were composed by combining tiles in layers, using the following tilesets:



Working on more automatized methods too.

String drawing method on grid: Link