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Section 1

Categories of actions, and some motivation
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Discrete monoid actions

We may view a monoid M as a one-object category.
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Discrete monoid actions

We may view a monoid M as a one-object category.

The category of presheaves on a monoid M,
PSh(M) := [M°P, Set] ~ Set-M,

coincides with the category of right actions of M.
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Continuous monoid actions

We might more generally consider a topological monoid (M, 7).
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Continuous monoid actions

We might more generally consider a topological monoid (M, 7).

We can then consider the full subcategory of PSh(M) on the actions
which are continuous with respect to 7 (when sets are considered as
discrete spaces):

PSh(M) <= Cont(M, 1) : V.
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Continuous monoid actions

We might more generally consider a topological monoid (M, 7).

We can then consider the full subcategory of PSh(M) on the actions
which are continuous with respect to 7 (when sets are considered as
discrete spaces):

PSh(M) <= Cont(M, 1) : V.

This talk is about categories constructed in this way.

They happen to be examples of Grothendieck toposes.!

!For this talk, it is enough to know that these are a class of (co)complete categories.
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Why study these categories?

e One of many ways of constructing toposes.
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Why study these categories?

e One of many ways of constructing toposes.

e To study monoids, in analogy with studying categories of modules.
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Why study these categories?

e One of many ways of constructing toposes.
e To study monoids, in analogy with studying categories of modules.

e Stepping stone for understanding actions on more general spaces.
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Why study these categories?

One of many ways of constructing toposes.

To study monoids, in analogy with studying categories of modules.

Stepping stone for understanding actions on more general spaces.

As a context for studying specific actions (in computer science, say).
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Necessary clopens

Definition

Let (M, 7) be a topological monoid, X an ordinary M-set. A necessary
clopen for X is a set of the form,

ZP .= {me M | xm = xp},

where x € X and p € M.
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Necessary clopens

Definition

Let (M, 7) be a topological monoid, X an ordinary M-set. A necessary
clopen for X is a set of the form,

ZP .= {me M | xm = xp},

where x € X and p € M.

Note that for each x € X, the subsets Zf partition M, so that if these
subsets are all open they are also necessarily closed, hence the name
‘necessary clopen’.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 7/25



Necessary clopens

Definition

Let (M, 7) be a topological monoid, X an ordinary M-set. A necessary
clopen for X is a set of the form,

ZP .= {me M | xm = xp},

where x € X and p € M.

Note that for each x € X, the subsets Zf partition M, so that if these
subsets are all open they are also necessarily closed, hence the name
‘necessary clopen’.

Let (M, 7) be a topological monoid and X an (ordinary) M-set. Then X is
continuous with respect to 7 if and only if all necessary clopens for X are
(cl)open in .
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Right adjoint to V/

Proposition

Let (M, T) be a topological monoid. Then the forgetful functor
V : Cont(M, 7) — PSh(M) is left exact and comonadic; its right adjoint R
sends an M-set X to:

R(X) ={xe X |Vpe M, IF e}
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Right adjoint to V/

Proposition

Let (M, T) be a topological monoid. Then the forgetful functor
V : Cont(M, 7) — PSh(M) is left exact and comonadic; its right adjoint R
sends an M-set X to:

R(X) ={xe X |Vpe M, IF e}

PSh(M) 1 Cont(M,T)
R
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Action topologies

%
PSh(M) ~ L _ Cont(M, 1)
R
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Action topologies

%
PSh(M) ~ L _ Cont(M, 1)
R

Let (M, ) be a topological monoid. Then there is a unique coarsest
topology 7 C 7 such that the forgetful functor Cont(M,7) < Cont(M, 7)
is an equivalence.
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Action topologies

%
PSh(M) ~ L _ Cont(M, 1)
R

Let (M, ) be a topological monoid. Then there is a unique coarsest
topology 7 C 7 such that the forgetful functor Cont(M,7) < Cont(M, 7)
is an equivalence.

Moreover, 7 is generated by the Boolean algebra VR(P(M)) C P(M).
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Action topologies

Vv

PSh(M) ~ L _ Cont(M, 1)
R

Lemma

Let (M, ) be a topological monoid. Then there is a unique coarsest
topology 7 C 7 such that the forgetful functor Cont(M,7) < Cont(M, 7)
is an equivalence.

Moreover, 7 is generated by the Boolean algebra VR(P(M)) C P(M).

Definition

We say a topology 7 is an action topology if 7 = 7, and that (M, 1) is a
powder monoid if 7 is a Ty action topology.
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The situation

—xM

VTN

v
Set < PSh(M) 1 Cont(M,7)

L~ f

Homset(M,—)

Dr Morgan Rogers (LIPN) Continuous homomorphisms 10/25



The situation

—xM

VTN

v
Set < PSh(M) 1 Cont(M,7)
R

N L~

Homset(M,—)

Definitions

Let F, & be Grothendieck toposes. A geometric morphism f : F — £ is an
adjunction (f* - £,), where f, : ¥ — £ and f* preserves finite limits.
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The situation

—xM

VTN

v
Set < PSh(M) 1 Cont(M,7)
R

N L~

HomSet(Mv_)

Definitions

Let F, & be Grothendieck toposes. A geometric morphism f : F — £ is an
adjunction (f* - £,), where f, : ¥ — £ and f* preserves finite limits.

A point of a Grothendieck topos £ is a geometric morphism Set — £.
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The situation

—xM

VTN

v
Set < PSh(M) 1 Cont(M,7)
R

N L~

HomSet(Mv_)

Definitions

Let F, & be Grothendieck toposes. A geometric morphism f : F — £ is an
adjunction (f* - £,), where f, : ¥ — £ and f* preserves finite limits.
A point of a Grothendieck topos £ is a geometric morphism Set — £.

Thus from the above diagram we recover a canonical point,
(Uo V - RoHomge (M, —)), of Cont(M, 7).
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Section 2

Semigroup homomorphisms
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Comparing categories of actions

Suppose that we have two topological monoids (M, 7) and (M, 7'). Then
we have a diagram,

Dr Morgan Rogers (LIPN) Continuous homomorphisms 12 /25



Comparing categories of actions

Suppose that we have two topological monoids (M, 7) and (M, 7'). Then
we have a diagram,

PSh(M) PSh(M")
VI_'lR v']—dR'
Cont(M,7) Cont(M',7'),
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Comparing categories of actions

Suppose that we have two topological monoids (M, 7) and (M, 7'). Then
we have a diagram, and any semigroup homomorphism ¢ : M — M’
induces an essential geometric morphism between the presheaf categories:

PSh(M) PSh(M")
VI_'lR V’I—QR’
Cont(M,7) Cont(M',7'),
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Comparing categories of actions

Suppose that we have two topological monoids (M, 7) and (M, 7'). Then
we have a diagram, and any semigroup homomorphism ¢ : M — M’
induces an essential geometric morphism between the presheaf categories:

_ i
PSh(M) <—f— PSh(M')
VI_'lR ]\—QR’

Cont(M,7) Cont(M',7'),
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Comparing categories of actions

Suppose that we have two topological monoids (M, 7) and (M, 7'). Then
we have a diagram, and any semigroup homomorphism ¢ : M — M’
induces an essential geometric morphism between the presheaf categories:

Jﬁ_
PSh(M) ———£= PSh(M’)
—

T —F 7 Ve

Cont(M,7) e Cont(M',7'),

When is the restricted functor the inverse image of a geometric morphism?
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Continuous homomorphisms

The following are equivalent:

1. £*: PSh(M’) — PSh(M) maps every (M’, 7’)-set to an (M, 7)-set.

2. ¢ is continuous with respect to 7 and 7.

3. The composite functor Rf*V’ (is left exact and) has a right adjoint G
satisfying GR = R'f,, which is to say that f restricts along the
functors V, V'’ to a geometric morphism
(G 4 Rf*V') : Cont(M, ) — Cont(M’, 7") making the square
commute.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 13 /25



Continuous homomorphisms

Lemma

The following are equivalent:

1. £*: PSh(M’) — PSh(M) maps every (M’, 7')-set to an (M, 7)-set.

2. ¢ is continuous with respect to 7 and 7.

3. The composite functor Rf*V’ (is left exact and) has a right adjoint G
satisfying GR = R'f,, which is to say that f restricts along the
functors V, V'’ to a geometric morphism
(G 4 Rf*V') : Cont(M, ) — Cont(M’, 7") making the square
commute. )

Proof sketch: The precomposition functor f* maps (M’ 7')-sets to
(M, 7)-sets if and only if ¢! sends necessary clopens to opens, which is
equivalent to continuity. It also implies the existence of the right adjoint
via the identity V(Rf*V') = f*V’, which is equivalent to the third
statement. [J
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Continuous homomorphisms

In particular, any continuous semigroup homomorphism ¢ : M — M’ gives
a commuting square of geometric morphisms:
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Continuous homomorphisms

In particular, any continuous semigroup homomorphism ¢ : M — M’ gives
a commuting square of geometric morphisms:

Jf!_
PSh(M) «—==—F= PSh(M’)
—

V]\—QR gﬁ; V'I—|lR'

Cont(M,7) = 1  Cont(M',7),
8x
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Continuous homomorphisms

In particular, any continuous semigroup homomorphism ¢ : M — M’ gives
a commuting square of geometric morphisms:

Jfg_
PSh(M) «——F= PSh(M’)
—

VI—QR gf: V'IAlR'
Cont(M,r) = 1 Cont(M',7'),
g+

Even if we restrict to powder monoids, it is not the case that all geometric
morphisms arise from continuous semigroup homomorphisms; in particular,
there are equivalences of such toposes which are not induced by semigroup
homomorphisms.
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The two best-known factorization systems for geometric morphisms are

the surjection—inclusion and hyperconnected—localic factorizations, and
these are compatible:

f
m P
hyperconnected localic inclusion
surjection
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Factorizations

The two best-known factorization systems for geometric morphisms are
the surjection—inclusion and hyperconnected—localic factorizations, and
these are compatible:

f
hyperconnected localic inclusion
surjection

For discrete monoids, the factorization of a geometric morphism induced

by a semigroup homomorphism is represented by a factorization of the
semigroup homomorphism:

M/\L—\N\*M'

. . 4 . . 4 . 7
surjective injective subsemigroup
monoid hom monoid hom inclusion
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Factorizations

The natural next question is what happens for topological monoids?
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Factorizations

The natural next question is what happens for topological monoids?
Let's consider the surjection—inclusion factorization. We can endow the

intermediate monoid with the subspace topology to get a commuting
diagram,

PSh(M) ——— PSh(N) ———— PSh(M)

| b b

Cont(M, ) —— Cont(N,'|y) —L— Cont(M', ).
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Factorizations

The natural next question is what happens for topological monoids?
Let's consider the surjection—inclusion factorization. We can endow the

intermediate monoid with the subspace topology to get a commuting
diagram,

PSh(M) ——5—— PSh(N) ————— PSh(M’)
,,l lh" lh'
Cont(M, ) —— Cont(N,'|y) —L— Cont(M', ).

\_/'

g

We deduce that t is a surjection since h” o s is, but is j an inclusion?
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Factorizations

At this level of generality, j could have a non-trivial hyperconnected factor,

and it's not clear that the intermediate topos will necessarily be a topos of
monoid actions.
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Factorizations

At this level of generality, j could have a non-trivial hyperconnected factor,
and it's not clear that the intermediate topos will necessarily be a topos of
monoid actions.

We need to characterize toposes of topological monoid actions, which
brings us to a new class of topological monoids.
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Section 3

Complete monoids
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Best approximation

Suppose that we are given a topos &, i.e. a category with the basic

necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

p
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Best approximation

Suppose that we are given a topos &, i.e. a category with the basic

necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

p

Theorem

There is a canonical factorization of p through a topos of topological
monoid actions.
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Best approximation

Suppose that we are given a topos &, i.e. a category with the basic
necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

p

5 &

Theorem

There is a canonical factorization of p through a topos of topological
monoid actions.

Namely, consider the monoid L := End(p*)°P, dual to the monoid of
natural endomorphisms of p*.
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Best approximation

Suppose that we are given a topos &, i.e. a category with the basic
necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

p

Set —— [L°P,Set] —— Cont(L, p) &

There is a canonical factorization of p through a topos of topological
monoid actions.

Namely, consider the monoid L := End(p*)°P, dual to the monoid of
natural endomorphisms of p*.

This comes equipped with the coarsest topology making all of the actions
of the form p*(X) continuous.

Theorem
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Complete monoids

In particular, the given point expresses £ as a topos of actions of a
topological monoid if and only if the comparison morphism
Cont(L, p) — £ is an equivalence.
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Complete monoids

In particular, the given point expresses £ as a topos of actions of a
topological monoid if and only if the comparison morphism
Cont(L, p) — £ is an equivalence.

Definition

We call a topological monoid complete if it is isomorphic to the
topological monoid of endomorphisms of its canonical point.
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Complete monoids

In particular, the given point expresses £ as a topos of actions of a
topological monoid if and only if the comparison morphism
Cont(L, p) — £ is an equivalence.

We call a topological monoid complete if it is isomorphic to the
topological monoid of endomorphisms of its canonical point.

Examples

e Any discrete monoid is complete.

e Any prodiscrete monoid is complete. Consider the profinite
completion or p-adic completion of the integers or the profinite
completion of the natural numbers, say.

e The complete monoid corresponding to the real numbers under
addition (with their usual topology) is the trivial monoid.
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Complete monoids

Theorem

A topos £ is a topos of topological monoid actions if and only if £ has a

point which factors as an essential surjection followed by a hyperconnected
morphism.
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Complete monoids

A topos £ is a topos of topological monoid actions if and only if £ has a
point which factors as an essential surjection followed by a hyperconnected
morphism.

Proof sketch: One direction is by the factorization of the canonical
geometric morphism. For the other, we perform the factorization we just
saw and verify that the comparison morphism is an equivalence. [J
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Intrinsic characterization

Theorem

Given a topos &, a hyperconnected geometric morphism h : PSh(M) — &
realises £ as the topos of continuous actions for a topology 7 on M
making (M, 7) a complete monoid if and only if h is representably full and
faithful on essential geometric morphisms, meaning that the functor,

ho — : EssGeom(#, PSh(M)) — Geom(H, &)

is full and faithful for each topos H. Similarly, powder monoids are
identified by hyperconnected morphisms which are representably faithful
on essential geometric morphisms.
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Intrinsic characterization

Theorem

Given a topos &, a hyperconnected geometric morphism h : PSh(M) — &
realises £ as the topos of continuous actions for a topology 7 on M
making (M, 7) a complete monoid if and only if h is representably full and
faithful on essential geometric morphisms, meaning that the functor,

ho — : EssGeom(H,PSh(M)) — Geom(#H, &)

is full and faithful for each topos H. Similarly, powder monoids are
identified by hyperconnected morphisms which are representably faithful
on essential geometric morphisms.

Proof sketch: One can reduce to the case that H = Set and consider the
essential point of PSh(M) in one direction, and extend from this case in
the other. O
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Surjection—Inclusion

Corollary

For complete monoids (M, 7) and (M’,7'), the surjection—inclusion
factorization of a geometric morphism induced by a continuous semigroup
homomorphism ¢ : M — M’ is represented by the factorization of ¢ as a
monoid homomorphism followed by an inclusion of semigroups, where the
intermediate monoid is endowed with the subspace topology.
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Surjection—Inclusion

Corollary

For complete monoids (M, 7) and (M’,7'), the surjection—inclusion
factorization of a geometric morphism induced by a continuous semigroup
homomorphism ¢ : M — M’ is represented by the factorization of ¢ as a
monoid homomorphism followed by an inclusion of semigroups, where the
intermediate monoid is endowed with the subspace topology.

Proof sketch: Consider the right-hand square from earlier,

PSh(N) ———— PSh(M’)

b b

Cont(N, 7'|y) —2— Cont(M',7").

Since inclusions are representably full and faithful, we deduce that the
hyperconnected part of the factorization of h’ o i coincides with h”. [J
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Hyperconnected—Localic

The other case is more interesting.

Corollary

For complete monoids (M, 7) and (M’, 7'), the hyperconnected—localic
factorization of a geometric morphism induced by a continuous semigroup
homomorphism ¢ : M — M’ is represented by the dense—closed
factorization of ¢. In particular, a closed subsemigroup of a complete
monoid is complete.
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Hyperconnected—Localic

The other case is more interesting.

Corollary

For complete monoids (M, 7) and (M’, 7'), the hyperconnected—localic
factorization of a geometric morphism induced by a continuous semigroup
homomorphism ¢ : M — M’ is represented by the dense—closed
factorization of ¢. In particular, a closed subsemigroup of a complete
monoid is complete.

Proof sketch: To show that dense morphisms induce hyperconnected
morphisms, we directly check the necessary clopens. For the other factor,
we consider a general continuous injective monoid homomorphism and
observe that the complete monoid induced by the hyperconnected factor is
the closure of its image. [J
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Thanks for listening!

Any questions?
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