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Section 1

Categories of actions, and some motivation
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Discrete monoid actions

We may view a monoid M as a one-object category.

The category of presheaves on a monoid M,

PSh(M) := [Mop,Set] ' Set-M,

coincides with the category of right actions of M.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 4 / 25



Discrete monoid actions

We may view a monoid M as a one-object category.

The category of presheaves on a monoid M,

PSh(M) := [Mop,Set] ' Set-M,

coincides with the category of right actions of M.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 4 / 25



Continuous monoid actions

We might more generally consider a topological monoid (M, τ).

We can then consider the full subcategory of PSh(M) on the actions
which are continuous with respect to τ (when sets are considered as
discrete spaces):

PSh(M)←↩ Cont(M, τ) : V .

This talk is about categories constructed in this way.

They happen to be examples of Grothendieck toposes.1

1For this talk, it is enough to know that these are a class of (co)complete categories.
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Why study these categories?

• One of many ways of constructing toposes.

• To study monoids, in analogy with studying categories of modules.

• Stepping stone for understanding actions on more general spaces.

• As a context for studying specific actions (in computer science, say).
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Necessary clopens

Definition

Let (M, τ) be a topological monoid, X an ordinary M-set. A necessary
clopen for X is a set of the form,

Ipx := {m ∈ M | xm = xp},

where x ∈ X and p ∈ M.

Note that for each x ∈ X , the subsets Ipx partition M, so that if these
subsets are all open they are also necessarily closed, hence the name
‘necessary clopen’.

Lemma

Let (M, τ) be a topological monoid and X an (ordinary) M-set. Then X is
continuous with respect to τ if and only if all necessary clopens for X are
(cl)open in τ .
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Right adjoint to V

Proposition

Let (M, τ) be a topological monoid. Then the forgetful functor
V : Cont(M, τ)→ PSh(M) is left exact and comonadic; its right adjoint R
sends an M-set X to:

R(X ) := {x ∈ X | ∀p ∈ M, Ipx ∈ τ}.

PSh(M) Cont(M, τ)
R
⊥
V
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Action topologies

PSh(M) Cont(M, τ)
R
⊥
V

Lemma

Let (M, τ) be a topological monoid. Then there is a unique coarsest
topology τ̃ ⊆ τ such that the forgetful functor Cont(M, τ̃) ↪→ Cont(M, τ)
is an equivalence.
Moreover, τ̃ is generated by the Boolean algebra VR(P(M)) ⊆ P(M).

Definition

We say a topology τ is an action topology if τ = τ̃ , and that (M, τ) is a
powder monoid if τ is a T0 action topology.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 9 / 25



Action topologies

PSh(M) Cont(M, τ)
R
⊥
V

Lemma

Let (M, τ) be a topological monoid. Then there is a unique coarsest
topology τ̃ ⊆ τ such that the forgetful functor Cont(M, τ̃) ↪→ Cont(M, τ)
is an equivalence.

Moreover, τ̃ is generated by the Boolean algebra VR(P(M)) ⊆ P(M).

Definition

We say a topology τ is an action topology if τ = τ̃ , and that (M, τ) is a
powder monoid if τ is a T0 action topology.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 9 / 25



Action topologies

PSh(M) Cont(M, τ)
R
⊥
V

Lemma

Let (M, τ) be a topological monoid. Then there is a unique coarsest
topology τ̃ ⊆ τ such that the forgetful functor Cont(M, τ̃) ↪→ Cont(M, τ)
is an equivalence.
Moreover, τ̃ is generated by the Boolean algebra VR(P(M)) ⊆ P(M).

Definition

We say a topology τ is an action topology if τ = τ̃ , and that (M, τ) is a
powder monoid if τ is a T0 action topology.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 9 / 25



Action topologies

PSh(M) Cont(M, τ)
R
⊥
V

Lemma

Let (M, τ) be a topological monoid. Then there is a unique coarsest
topology τ̃ ⊆ τ such that the forgetful functor Cont(M, τ̃) ↪→ Cont(M, τ)
is an equivalence.
Moreover, τ̃ is generated by the Boolean algebra VR(P(M)) ⊆ P(M).

Definition

We say a topology τ is an action topology if τ = τ̃ , and that (M, τ) is a
powder monoid if τ is a T0 action topology.

Dr Morgan Rogers (LIPN) Continuous homomorphisms 9 / 25



The situation

Set PSh(M) Cont(M, τ)

−×M

HomSet(M,−)

⊥

⊥
U

R
⊥
V

Definitions

Let F , E be Grothendieck toposes. A geometric morphism f : F → E is an
adjunction (f ∗ a f∗), where f∗ : F → E and f ∗ preserves finite limits.
A point of a Grothendieck topos E is a geometric morphism Set→ E .

Thus from the above diagram we recover a canonical point,
(U ◦ V a R ◦HomSet(M,−)), of Cont(M, τ).
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Section 2

Semigroup homomorphisms

Dr Morgan Rogers (LIPN) Continuous homomorphisms 11 / 25



Comparing categories of actions

Suppose that we have two topological monoids (M, τ) and (M ′, τ ′). Then
we have a diagram,

and any semigroup homomorphism φ : M → M ′

induces an essential geometric morphism between the presheaf categories:

PSh(M) PSh(M ′)

Cont(M,τ) Cont(M ′,τ ′),

f∗

⊥
⊥
f!

R

f ∗

R′V a

Rf ∗V ′

V ′ a

When is the restricted functor the inverse image of a geometric morphism?
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Continuous homomorphisms

Lemma

The following are equivalent:

1. f ∗ : PSh(M ′)→ PSh(M) maps every (M ′, τ ′)-set to an (M, τ)-set.

2. φ is continuous with respect to τ and τ̃ ′.

3. The composite functor Rf ∗V ′ (is left exact and) has a right adjoint G
satisfying GR ∼= R ′f∗, which is to say that f restricts along the
functors V ,V ′ to a geometric morphism
(G a Rf ∗V ′) : Cont(M, τ)→ Cont(M ′, τ ′) making the square
commute.

Proof sketch: The precomposition functor f ∗ maps (M ′, τ ′)-sets to
(M, τ)-sets if and only if φ−1 sends necessary clopens to opens, which is
equivalent to continuity. It also implies the existence of the right adjoint
via the identity V (Rf ∗V ′) ∼= f ∗V ′, which is equivalent to the third
statement. �
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Continuous homomorphisms

In particular, any continuous semigroup homomorphism φ : M → M ′ gives
a commuting square of geometric morphisms:

PSh(M) PSh(M ′)

Cont(M,τ) Cont(M ′,τ ′),

f∗

⊥
⊥
f!

R

f ∗

R′

g∗
⊥

V a
g∗

V ′ a

Remark

Even if we restrict to powder monoids, it is not the case that all geometric
morphisms arise from continuous semigroup homomorphisms; in particular,
there are equivalences of such toposes which are not induced by semigroup
homomorphisms.
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Factorizations

The two best-known factorization systems for geometric morphisms are
the surjection–inclusion and hyperconnected–localic factorizations, and
these are compatible:

F G H E

f

hyperconnected localic
surjection

inclusion

For discrete monoids, the factorization of a geometric morphism induced
by a semigroup homomorphism is represented by a factorization of the
semigroup homomorphism:

M L N M ′

φ

surjective
monoid hom

injective
monoid hom

subsemigroup
inclusion
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Factorizations

The natural next question is what happens for topological monoids?

Let’s consider the surjection–inclusion factorization. We can endow the
intermediate monoid with the subspace topology to get a commuting
diagram,

PSh(M) PSh(N) PSh(M ′)

Cont(M, τ) Cont(N, τ ′|N) Cont(M ′, τ ′).

f

s

h

i

h′′ h′

g

t j

We deduce that t is a surjection since h′′ ◦ s is, but is j an inclusion?
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Factorizations

At this level of generality, j could have a non-trivial hyperconnected factor,
and it’s not clear that the intermediate topos will necessarily be a topos of
monoid actions.

We need to characterize toposes of topological monoid actions, which
brings us to a new class of topological monoids.
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Section 3

Complete monoids
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Best approximation

Suppose that we are given a topos E , i.e. a category with the basic
necessary properties to have a chance of being a category of continuous
actions of a monoid, and a point of such a topos:

Set [Lop,Set] Cont(L, ρ) E

p

Theorem

There is a canonical factorization of p through a topos of topological
monoid actions.
Namely, consider the monoid L := End(p∗)op, dual to the monoid of
natural endomorphisms of p∗.
This comes equipped with the coarsest topology making all of the actions
of the form p∗(X ) continuous.
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Complete monoids

In particular, the given point expresses E as a topos of actions of a
topological monoid if and only if the comparison morphism
Cont(L, ρ)→ E is an equivalence.

Definition

We call a topological monoid complete if it is isomorphic to the
topological monoid of endomorphisms of its canonical point.

Examples

• Any discrete monoid is complete.

• Any prodiscrete monoid is complete. Consider the profinite
completion or p-adic completion of the integers or the profinite
completion of the natural numbers, say.

• The complete monoid corresponding to the real numbers under
addition (with their usual topology) is the trivial monoid.
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Complete monoids

Theorem

A topos E is a topos of topological monoid actions if and only if E has a
point which factors as an essential surjection followed by a hyperconnected
morphism.

Proof sketch: One direction is by the factorization of the canonical
geometric morphism. For the other, we perform the factorization we just
saw and verify that the comparison morphism is an equivalence. �
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Intrinsic characterization

Theorem

Given a topos E , a hyperconnected geometric morphism h : PSh(M)→ E
realises E as the topos of continuous actions for a topology τ on M
making (M, τ) a complete monoid if and only if h is representably full and
faithful on essential geometric morphisms, meaning that the functor,

h ◦ − : EssGeom(H,PSh(M))→ Geom(H, E)

is full and faithful for each topos H. Similarly, powder monoids are
identified by hyperconnected morphisms which are representably faithful
on essential geometric morphisms.

Proof sketch: One can reduce to the case that H = Set and consider the
essential point of PSh(M) in one direction, and extend from this case in
the other. �
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faithful on essential geometric morphisms, meaning that the functor,

h ◦ − : EssGeom(H,PSh(M))→ Geom(H, E)

is full and faithful for each topos H. Similarly, powder monoids are
identified by hyperconnected morphisms which are representably faithful
on essential geometric morphisms.

Proof sketch: One can reduce to the case that H = Set and consider the
essential point of PSh(M) in one direction, and extend from this case in
the other. �
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Surjection–Inclusion

Corollary

For complete monoids (M, τ) and (M ′, τ ′), the surjection–inclusion
factorization of a geometric morphism induced by a continuous semigroup
homomorphism φ : M → M ′ is represented by the factorization of φ as a
monoid homomorphism followed by an inclusion of semigroups, where the
intermediate monoid is endowed with the subspace topology.

Proof sketch: Consider the right-hand square from earlier,

PSh(N) PSh(M ′)

Cont(N, τ ′|N) Cont(M ′, τ ′).

i

h′′ h′

j

Since inclusions are representably full and faithful, we deduce that the
hyperconnected part of the factorization of h′ ◦ i coincides with h′′. �

Dr Morgan Rogers (LIPN) Continuous homomorphisms 23 / 25



Surjection–Inclusion

Corollary

For complete monoids (M, τ) and (M ′, τ ′), the surjection–inclusion
factorization of a geometric morphism induced by a continuous semigroup
homomorphism φ : M → M ′ is represented by the factorization of φ as a
monoid homomorphism followed by an inclusion of semigroups, where the
intermediate monoid is endowed with the subspace topology.

Proof sketch: Consider the right-hand square from earlier,

PSh(N) PSh(M ′)

Cont(N, τ ′|N) Cont(M ′, τ ′).

i

h′′ h′

j

Since inclusions are representably full and faithful, we deduce that the
hyperconnected part of the factorization of h′ ◦ i coincides with h′′. �

Dr Morgan Rogers (LIPN) Continuous homomorphisms 23 / 25



Hyperconnected–Localic

The other case is more interesting.

Corollary

For complete monoids (M, τ) and (M ′, τ ′), the hyperconnected–localic
factorization of a geometric morphism induced by a continuous semigroup
homomorphism φ : M → M ′ is represented by the dense–closed
factorization of φ. In particular, a closed subsemigroup of a complete
monoid is complete.

Proof sketch: To show that dense morphisms induce hyperconnected
morphisms, we directly check the necessary clopens. For the other factor,
we consider a general continuous injective monoid homomorphism and
observe that the complete monoid induced by the hyperconnected factor is
the closure of its image. �
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Fin

Thanks for listening!

Any questions?
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