Lifting weights
Enriched lenses between transport plans

Paolo Perrone
University of Oxford,
Dept. of Computer Science
SYCO 9
September 8th, 2022
Couplings and optimal transport

Given a (metric) space X, the product space $X \times X$ encodes “transport plans”.
Couplings and optimal transport

Given a (metric) space X, the product space $X \times X$ encodes “transport plans”.

```
• As objects, prob. measures $p$ on $X$;
• As morphisms, transport plans $t$.
```
Couplings and optimal transport

Given a (metric) space X, the product space $X \times X$ encodes “transport plans”.
Couplings and optimal transport

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.
Couplings and optimal transport

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

• As objects, prob. measures p on X;
• As morphisms, transport plans t.
Couplings and optimal transport

The category PX has
- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,
The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

$$c(x, x) = 0$$
Couplings and optimal transport

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

Couplings and optimal transport

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c, $c(x, y) =$ “cost of transport”
The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

$$C(t) := \int_{X^2} c(x, y) \, t(dx \, dy).$$
Couplings and optimal transport

The category PX has

- As objects, prob. measures p on X;
- As morphisms, transport plans t.

If X has a cost function c,

$$C_k(t) := \sqrt[k]{\int_{X^2} c(x, y)^k \, t(dx \, dy)}.$$
Weighted categories and functors

Main definitions
A *weighted category* is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number $w(f)$ called the *weight*, such that

\[
w(id) = 0; \\
Y \\
X \\
Z \\
\text{w}(g \circ f) \leq \text{w}(f) + \text{w}(g).
\]
Weighted categories and functors

Main definitions
A *weighted category* is a category where each morphism \(f : X \to Y \) is equipped with a nonnegative number \(w(f) \) called the *weight*, such that

\[
w(id) = 0;
\]
Weighted categories and functors

Main definitions
A weighted category is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number $w(f)$ called the weight, such that

$$w(id) = 0;$$

$$w(g \circ f) \leq w(f) + w(g).$$
Weighted categories and functors

Main definitions
A **weighted category** is a category where each morphism $f : X \to Y$ is equipped with a nonnegative number $w(f)$ called the *weight*, such that

$$w(id) = 0;$$

$$w(g \circ f) \leq w(f) + w(g).$$

A **weighted functor** is a functor $F : C \to D$ such that for every morphism f of C,

$$w(Ff) \leq w(f).$$
Examples

Categories of paths of a space

Let X be a metric space (e.g. \mathbb{R}^n). The weighted category $\text{Path}(X)$ has

- As objects, the points of X;
- As morphisms, the curves in X with their length as weight.
Examples

Generalized metric spaces

A *pseudo-quasi* (or *Lawvere*) *metric space* is a set X with a “cost” function $c : X \times X \to [0, \infty]$ such that

- $d(x, x) = 0$;
- $d(x, z) \leq d(x, y) + d(y, z)$

A pq-metric space is a weighted preorder.
Examples

Optimization over paths
Given a weighted category C, for objects X and Y consider the “optimum” weight

$$\inf_{f: X \to Y} w(f)$$

This gives a pq-metric on the objects of C. We call the resulting space $\text{Opt}(C)$.

The Wasserstein distances are an example [Villani, 2009].
Examples

Optimization over paths
Given a weighted category C, for objects X and Y consider the “optimum” weight

$$\inf_{f: X \to Y} w(f)$$

This gives a pq-metric on the objects of C. We call the resulting space $\text{Opt}(C)$.
The Wasserstein distances are an example [Villani, 2009].
Weighted categories and weighted graphs

Free weighted category

Let G be a weighted graph. The *free weighted category over G* has

- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.
Weighted categories and weighted graphs

Free weighted category
Let G be a weighted graph. The \textit{free weighted category over G} has

- As objects, the vertices of G;
- As morphisms, \textit{walks} in G;
- The weight is the sum of the weights.

See Jade’s talk later today!
Weighted categories and weighted graphs

Free weighted category
Let G be a weighted graph. The *free weighted category over G* has
- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.
Weighted categories and weighted graphs

Free weighted category
Let G be a weighted graph. The *free weighted category over G* has

- As objects, the vertices of G;
- As morphisms, *walks* in G;
- The weight is the sum of the weights.

See Jade’s talk later today!
Weighted lenses

Canada → United States → United Kingdom
Weighted lenses

- Toronto
- Montréal
- Vancouver
- New York
- Boston
- Seattle
- Edinburgh
- London
- Oxford

Canada ➔ United States ➔ United Kingdom
Weighted lenses

Toronto \rightarrow New York \rightarrow Edinburgh
Montréal \rightarrow Boston \rightarrow London
Vancouver \rightarrow Seattle \rightarrow Oxford

Canada \rightarrow United States \rightarrow United Kingdom
Weighted lenses

Toronto → New York → Edinburgh
Montréal → Boston → London
Vancouver → Seattle → Oxford

Canada → United States → United Kingdom
Weighted lenses

Toronto → New York → Edinburgh
Montréal → Boston → London
Vancouver → Seattle → Oxford

Canada → United States → United Kingdom
Weighted lenses

Toronto New York Edinburgh
Montréal
Vancouver Seattle

Canada United States United Kingdom
Weighted lenses

Toronto \rightarrow New York \rightarrow Edinburgh

Montréal \rightarrow Boston \rightarrow London

Vancouver \rightarrow Seattle \rightarrow Oxford

Canada \rightarrow United States \rightarrow United Kingdom
Weighted lenses
Weighted lenses

Toronto ←→ New York ←→ Edinburgh
Montréal ←→ Boston ←→ London
Vancouver ←→ Seattle ←→ Oxford

Canada ←→ United States ←→ United Kingdom
Weighted lenses

Toronto ➔ New York ➔ Edinburgh
Montréal ➔ Boston ➔ London
Vancouver ➔ Seattle ➔ Oxford

Canada ➔ United States ➔ United Kingdom
Weighted lenses

Toronto → New York → Edinburgh
Montréal → Boston → London
Vancouver → Seattle → Oxford

Canada → United States → United Kingdom
Weighted lenses

Toronto ➔ New York ➔ Edinburgh

Montréal ➔ Boston ➔ London

Vancouver ➔ Seattle ➔ Oxford

Canada ➔ United States ➔ United Kingdom
Weighted lenses

Canada → United States → United Kingdom
Weighted lenses

Toronto New York Edinburgh

Montréal Boston London

Vancouver Seattle Oxford

Canada United States United Kingdom
Weighted lenses

Toronto \rightarrow New York \rightarrow Edinburgh
Montréal \rightarrow Boston \rightarrow London
Vancouver \rightarrow Seattle \rightarrow Oxford

Canada \rightarrow United States \rightarrow United Kingdom
Weighted lenses
Weighted lenses

Definition: weighted lifting
- Let \(F : E \to B \) be a functor;
- Let \(b : B \to B' \) in \(B \);
- Let \(E \in E \) with \(F(E) = B \).

A *lifting of \(b \) at \(E \) consists of

\[
\begin{align*}
E & \quad \Rightarrow \quad B' \\
\downarrow & \quad \downarrow b \\
B & \quad \Rightarrow \quad B'
\end{align*}
\]
Weighted lenses

Definition: weighted lifting

- Let $F : E \to B$ be a functor;
- Let $b : B \to B'$ in B;
- Let $E \in E$ with $F(E) = B$.

A *lifting of b at E consists of*

- an object $E' \in E$ with $F(E') = B'$;
Weighted lenses

Definition: weighted lifting

- Let $F : E \to B$ be a functor;
- Let $b : B \to B'$ in B;
- Let $E \in E$ with $F(E) = B$.

A lifting of b at E consists of

- an object $E' \in E$ with $F(E') = B'$;
- an arrow $\Phi(E, b) : E \to E'$ of E such that $F(\Phi(E, b)) = b$, with the same weight as b.
Weighted lenses

Definition: weighted lens

Let E and B be categories. A \textit{weighted lens} from $E \to B$ is

- A functor $F : E \to B$;
- For each morphism $b : B \to B'$ of B and each object E of E with $F(E) = B$, a chosen weighted lifting $\Phi(E, b) : E \to E'$, such that
- Identities and compositions are preserved.
Lenses between categories of couplings

Theorem (P 2021)
Let X and Y be pq-metric, standard Borel spaces. Let (f, ϕ) be a weighted lens such that the assignments f and ϕ are measurable.
Lenses between categories of couplings

Theorem (P 2021)

Let X and Y be pq-metric, standard Borel spaces. Let (f, ϕ) be a weighted lens such that the assignments f and ϕ are measurable. There is a weighted lens $(f_\#, \tilde{\phi}_\#)$ between PX and PY where

- The projection $f_\# : PX \to PY$ is the pushforward;
Lenses between categories of couplings

Theorem (P 2021)

Let X and Y be pq-metric, standard Borel spaces. Let (f, ϕ) be a weighted lens such that the assignments f and ϕ are measurable. There is a weighted lens $(f_\#, \tilde{\phi}_\#)$ between PX and PY where

- The projection $f_\# : PX \to PY$ is the pushforward;
- The lifting $\tilde{\phi}_\# : PX \times PY \to P(X \times X)$ takes $p \in PX$ and a coupling $s \in P(Y \times Y)$ with first marginal f_*p, and returns the coupling $\tilde{\phi}_\#(p, s) \in P(X \times X)$ given for all measurable $A, A' \subseteq X$ by

$$\tilde{\phi}_\#(p, s)(A \times A') := \int_A \int_Y 1_{A'}(\phi(x, y)) \ s(dy | f(x)) \ p(dx).$$
Lenses between categories of couplings

Intuitively, we are “lifting random transitions”.

\[
\tilde{\varphi}(s)(A|x) = \int_Y 1_A(\varphi(x, y)) s(dy|f(x))
\]
Co-history!

Enriched lenses [Clarke and Di Meglio, 2022]

Let E and B be V-enriched categories. A V-lens $(F, \Phi) : E \to B$ is

- A V-functor $F : E \to B$;
- For each object $E \in E$ and $B' \in B$, a V-arrow lifting $B(FE, B') \xrightarrow{\Phi_E, B'} \sqcup_{E' \in F^{-1}(B')} E(E, E')$ and satisfying identity and composition requirements.
Co-history!

Enriched lenses [Clarke and Di Meglio, 2022]

Let E and B be V-enriched categories. A V-**lens** $(F, \Phi) : E \to B$ is

- A V-functor $F : E \to B$;
- For each object $E \in E$ and $B' \in B$, a V-arrow lifting

$$B(FE, B') \xrightarrow{\Phi_{E, B'}} \coprod_{E' \in F^{-1}(B')} E(E, E')$$

and satisfying identity and composition requirements.
Weak submetries are enriched lenses (Callum Reader)

For $V = [0, \infty]$ ordered downward (Lawvere metric spaces):

$$d_Y(f(x), y') = \inf_{x' \in f^{-1}(y)} d(x, x').$$
Weak submetries are enriched lenses (Callum Reader)

For $V = [0, \infty]$ ordered downward (Lawvere metric spaces):

$$d_Y(f(x), y') = \inf_{x' \in f^{-1}(y)} d(x, x').$$

In terms of open balls,

$$f(B_X(x, r)) = B_Y(f(x), r)$$

for all $x \in X$ $r \in \mathbb{R}$. In geometry, this is called a *weak submetry*.
Some references

Contents

Couplings and optimal transport
Weighted categories and functors
Examples
Weighted categories and weighted graphs
Weighted lenses
Lenses between categories of couplings
Co-history!
References