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e As morphisms, transport
plans t.

If X has a cost function c,
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Weighted categories and functors

Main definitions
A weighted category is a category where each morphism f : X — Y is
equipped with a nonnegative number w(f) called the weight, such

that
w(id) = 0;
Y
s w(g o f) < w(f)+ w(g).
X — Z

A weighted functor is a functor F : C — D such that for every
morphism f of C,
w(Ff) < w(f).
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Examples

Categories of paths of a space
Let X be a metric space

(e.g. R™). The weighted category
Path(X) has

e As objects, the points of X;

e As morphisms, the curves in X
with their length as weight.




Examples

Generalized metric spaces
A pseudo-quasi (or Lawvere)
metric space is a set X with a
“cost” function

c: X x X — [0,00] such that
e d(x,x)=0;

* d(x,z) < d(x,y) +d(y,2)

A pg-metric space is a weighted
preorder.
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Examples

Optimization over paths
Given a weighted category C, for
objects X and Y consider the
“optimum” weight
inf f

f:)l<n—>Y W( )
This gives a pg-metric on the
objects of C. We call the X
resulting space Opt(C).
The Wasserstein distances are an
example [Villani, 2009].
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Weighted categories and weighted graphs

Free weighted category A 4
Let G be a weighted graph. The 0.5 0.8
free weighted category over G
has 2.3
e As objects, the vertices of G; B < 1.2 (D
e As morphisms, walks in G; 14
e The weight is the sum of the \
weights. 2.0 0.9
S c B

See Jade's talk later today!
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Weighted lenses

Definition: weighted lifting

e Let F: E — B be a functor;

e let b: B— B'in B;

e Let E € E with F(E) = B.

A lifting of b at E consists of

e an object E’ € E with
SHED = B';

e an arrow ®(E,b) : E — E' of
E such that F(®(E, b)) = b,
with the same weight as b.
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Weighted lenses

Definition: weighted lens
Let E and B be categories. A
weighted lens from E — B is
e A functor F : E — B;

e For each morphism
b: B — B’ of B and each
object E of E with F(E) = B,
a chosen weighted lifting
®(E,b) : E — E’, such that
e |dentities and compositions
are preserved.
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Lenses between categories of couplings

Theorem (P 2021)
Let X and Y be pg-metric, standard Borel spaces. Let (f,¢) be a
weighted lens such that the assignments f and ¢ are measurable.
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Theorem (P 2021)

Let X and Y be pg-metric, standard Borel spaces. Let (f,¢) be a
weighted lens such that the assignments f and ¢ are measurable.
There is a weighted lens (f;, ;) between PX and PY where

® The projection f; : PX — PY is the pushforward,;

e The lifting @4 : PX xpy P(Y x Y) — P(X x X) takes p € PX
and a coupling s € P(Y x Y') with first marginal f.p, and returns
the coupling @;(p,s) € P(X x X) given for all measurable
AA C X by

Bo(p,s)(A x A) = /A /Y 1 (1%, y)) s{dlyl£ (x)) plebc).
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Lenses between categories of couplings

Intuitively, we are “lifting random transitions" .
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Co-history!

Enriched lenses [Clarke and Di Meglio, 2022]
Let E and B be V-enriched categories. A V-lens (F,®):E — B is

e A V-functor F : E — B;

-
) T 1
| Vpo
‘it
B
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Co-history!

Enriched lenses [Clarke and Di Meglio, 2022]
Let E and B be V-enriched categories. A V-lens (F,®):E — B is

e A V-functor F : E — B;
e For each object E € E and

B’ € B, a V-arrow lifting

/ d>E7Bl E
B(FE,B') — py
and satisfying identity and

composition requirements.
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Co-history!

Weak submetries are enriched lenses (Callum Reader)

For V = [0, o] ordered downward (Lawvere metric spaces):
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Co-history!

Weak submetries are enriched lenses (Callum Reader)

For V = [0, o] ordered downward (Lawvere metric spaces):

dy (f(x),y") :xelfnf( (x,x")
In terms of open balls,
f(BX(x, r)) By(
for all x € X r € R. In geometry, -

this is called a weak submetry.
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