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Couplings and optimal transport

Given a (metric) space X , the
product space X × X encodes
“transport plans”.

The category PX has

• As objects, prob. measures
p on X ;

• As morphisms, transport
plans t.

If X has a cost function c ,
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Couplings and optimal transport

The category PX has

• As objects, prob. measures
p on X ;

• As morphisms, transport
plans t.

If X has a cost function c ,

c(x , x) = 0

1 of 14



Couplings and optimal transport

The category PX has

• As objects, prob. measures
p on X ;

• As morphisms, transport
plans t.

If X has a cost function c ,

1 of 14



Couplings and optimal transport

The category PX has

• As objects, prob. measures
p on X ;

• As morphisms, transport
plans t.

If X has a cost function c ,

c(x , y) = “cost of transport”
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Couplings and optimal transport

The category PX has

• As objects, prob. measures
p on X ;

• As morphisms, transport
plans t.

If X has a cost function c ,

C(t) :=

∫
X 2

c(x , y) t(dx dy).
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Couplings and optimal transport

The category PX has

• As objects, prob. measures
p on X ;

• As morphisms, transport
plans t.

If X has a cost function c ,

Ck(t) := k

√∫
X 2

c(x , y)k t(dx dy).
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Weighted categories and functors

Main definitions
A weighted category is a category where each morphism f : X → Y is
equipped with a nonnegative number w(f ) called the weight, such
that

w(id) = 0;

Y

X Z

gf

g◦f

w(g ◦ f ) ≤ w(f ) + w(g).

A weighted functor is a functor F : C→ D such that for every
morphism f of C,

w(Ff ) ≤ w(f ).
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Examples

Categories of paths of a space

Let X be a metric space
(e.g. Rn). The weighted category
Path(X ) has
• As objects, the points of X ;

• As morphisms, the curves in X
with their length as weight. X

x

y
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Examples

Generalized metric spaces

A pseudo-quasi (or Lawvere)
metric space is a set X with a
“cost” function
c : X × X → [0,∞] such that
• d(x , x) = 0;

• d(x , z) ≤ d(x , y) + d(y , z)

A pq-metric space is a weighted
preorder.

X

x

y
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Examples

Optimization over paths

Given a weighted category C, for
objects X and Y consider the
“optimum” weight

inf
f :X→Y

w(f )

This gives a pq-metric on the
objects of C. We call the
resulting space Opt(C).

The Wasserstein distances are an
example [Villani, 2009].

X

x

y
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Weighted categories and weighted graphs

Free weighted category

Let G be a weighted graph. The
free weighted category over G
has
• As objects, the vertices of G ;

• As morphisms, walks in G ;

• The weight is the sum of the
weights.

See Jade’s talk later today!

B

A

C

D

0.5

2.3

1.4

2.0

0.8

0.9

1.2
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Weighted lenses

Toronto New York Edinburgh

Montréal Boston London

Vancouver Seattle Oxford

Canada United States United Kingdom
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Montréal Boston London

Vancouver Seattle Oxford

Canada United States United Kingdom

7 of 14



Weighted lenses

Toronto New York Edinburgh
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Montréal Boston London

Vancouver Seattle Oxford

Canada United States United Kingdom

7 of 14



Weighted lenses

Definition: weighted lifting
• Let F : E→ B be a functor;

• Let b : B → B ′ in B;

• Let E ∈ E with F (E ) = B.

A lifting of b at E consists of

• an object E ′ ∈ E with
F (E ′) = B ′;

• an arrow Φ(E , b) : E → E ′ of
E such that F

(
Φ(E , b)

)
= b,

with the same weight as b.

E

B

E

B B ′b
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Weighted lenses

Definition: weighted lens

Let E and B be categories. A
weighted lens from E→ B is
• A functor F : E→ B;

• For each morphism
b : B → B ′ of B and each
object E of E with F (E ) = B,
a chosen weighted lifting
Φ(E , b) : E → E ′, such that

• Identities and compositions
are preserved.

E

B

E
E ′

E ′′

B
B ′

B ′′b

Φ(E , b)

b′

Φ(E ′, b′)
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Lenses between categories of couplings

Theorem (P 2021)

Let X and Y be pq-metric, standard Borel spaces. Let (f , φ) be a
weighted lens such that the assignments f and φ are measurable.

There is a weighted lens (f], ϕ̃]) between PX and PY where

• The projection f] : PX → PY is the pushforward;

• The lifting ϕ̃] : PX ×PY P(Y × Y )→ P(X × X ) takes p ∈ PX
and a coupling s ∈ P(Y × Y ) with first marginal f∗p, and returns
the coupling ϕ̃](p, s) ∈ P(X × X ) given for all measurable
A,A′ ⊆ X by

ϕ̃](p, s)(A× A′) :=

∫
A

∫
Y

1A′
(
ϕ(x , y)

)
s
(
dy |f (x)

)
p(dx).
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Lenses between categories of couplings

Intuitively, we are “lifting random transitions”.

X

Y

A
x

ϕ(x , y)

f (x) ys

ϕ̃](s)(A|x) =

∫
Y

1A
(
ϕ(x , y)

)
s
(
dy |f (x)

)
11 of 14



Co-history!

Enriched lenses [Clarke and Di Meglio, 2022]

Let E and B be V-enriched categories. A V-lens (F ,Φ) : E→ B is

• A V -functor F : E→ B;

• For each object E ∈ E and
B ′ ∈ B, a V -arrow lifting

B(FE ,B ′)
ΦE ,B′−−−→

∐
E ′∈F−1(B′)

E(E ,E ′)

and satisfying identity and
composition requirements.

E

B

E E ′

FE B ′
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Co-history!

Weak submetries are enriched lenses (Callum Reader)

For V = [0,∞] ordered downward (Lawvere metric spaces):

dY
(
f (x), y ′) = inf

x ′∈f −1(y)
d(x , x ′).

In terms of open balls,

f
(
BX (x , r)

)
= BY

(
f (x), r

)
for all x ∈ X r ∈ R. In geometry,
this is called a weak submetry.

X

Y

x x ′

f (x) y ′
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