A Framework for Universality Across Disciplines

Tomáš Gonda

Joint work with: Sebastian Stengele, Tobias Reinhart, Gemma De las Cuevas

8 September 2022

References

- G. De las Cuevas and T. S. Cubitt [De16], Simple universal models capture all classical spin physics. Science 351:1180-1183 (2016).
- F. W. Lawvere [La69], Diagonal arguments and cartesian closed categories. Lecture Notes in Mathematics 92:134-145 (1969).
- D. Pavlovic and M. Yahia [Pa18], Monoidal computer III: A coalgebraic view of computability and complexity. International Workshop on Coalgebraic Methods in Computer Science 167-189 (2018).

Motivation

Motivating examples

Primary:

- v universal Turing machines
- v universal spin models
- universal neural networks

Motivating examples

Primary:

- v universal Turing machines
- v universal spin models
- v universal neural networks

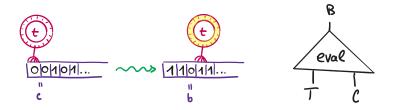
Others:

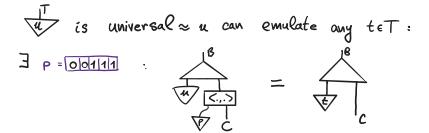
- o universal grammar
- NP-completeness
- \triangleright generating sets (universal gate set, ...)
- \triangleright weak limits
- \triangleright dense subsets
- universals in philosophy
- ▷ ...

Goals of the framework

- Capture examples of universality
- Properties of universality
 - ▷ trivial vs. non-trivial
 - $\,\triangleright\,$ necessary conditions for universality
- Relation to undecidability

Universal Turing machine





Spin system

- $\triangleright~$ Spin d.o.f. Σ for each vertex
- $\triangleright\,$ A hypergraph, edges \sim local interactions

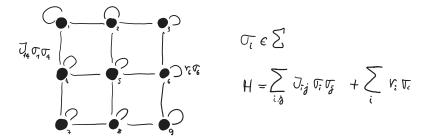
Spin system

- $\triangleright~$ Spin d.o.f. Σ for each vertex
- $\triangleright\,$ A hypergraph, edges \sim local interactions
- $\,\triangleright\,$ Hamiltonian $\Sigma^V \to \mathbb{R}$ as a sum of local coupling terms

Spin system

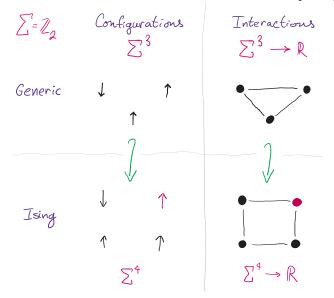
- $\triangleright~$ Spin d.o.f. Σ for each vertex
- $\triangleright\,$ A hypergraph, edges \sim local interactions
- \triangleright Hamiltonian $\Sigma^V
 ightarrow \mathbb{R}$ as a sum of local coupling terms

2D Ising spin model with fields has $\Sigma=\mathbb{Z}_2$ and interaction lattice:



Spin system simulation

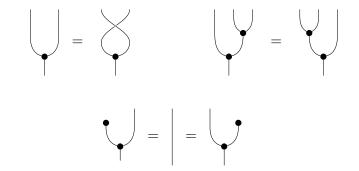
Every spin system can be simulated on a 2D Ising one [De16].



The set-up (simulators)

Ambient category

D is **gs-monoidal**, an SMC with $A \rightarrow A \otimes A$ and $A \rightarrow I$ such that



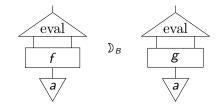
Intrinsic behavior structure

$T \in D$	things	Turing machines	spin systems
$\mathcal{C}\inD$	contexts	input strings	spin configurations
$B\inD$	behaviors	output strings	energies
\mathbb{D}_B	relation	=	=

Intrinsic behavior structure

$T \in D$	things	Turing machines	spin systems
$C\in D$	contexts	input strings	spin configurations
$B\inD$	behaviors	output strings	energies
\mathbb{D}_B	relation	=	=

$$f \supset g$$
 if, for all $a: I \rightarrow A$,

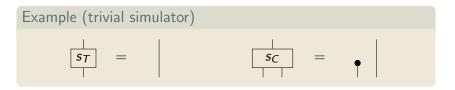


A simulator

 $P \in D$ programs $s_T : P \to T$ compiler $s_C : P \otimes C \to C$ context reduction

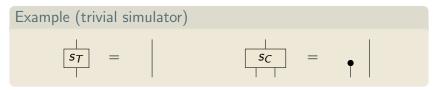
A simulator

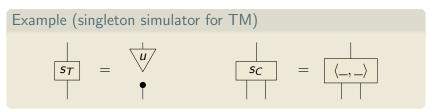
 $P \in D$ programs $s_T \colon P \to T$ compiler $s_C \colon P \otimes C \to C$ context reduction



A simulator

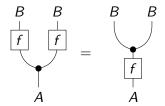
 $P \in D$ programs $s_T \colon P \to T$ compiler $s_C \colon P \otimes C \to C$ context reduction





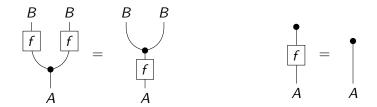
Deterministic subcategory

In D[•], every $f: A \rightarrow B$ satisfies



Deterministic subcategory

In D[•], every $f: A \rightarrow B$ satisfies



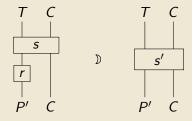
Morphisms in D[•] are called **deterministic**.

Universality

Reductions and universality

Definition

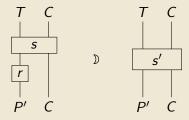
A lax reduction $r^* : s \to s'$ from simulator s to s' is a $r \in D^{\bullet}(P', P)$ such that



Reductions and universality

Definition

A lax reduction $r^* : s \to s'$ from simulator s to s' is a $r \in D^{\bullet}(P', P)$ such that



Definition

Simulator s is **universal** if there is a lax reduction $s \rightarrow id$ to the trivial simulator.

> Trivial simulator

Singleton simulator for a universal TM

- > Trivial simulator
- ▷ Singleton simulator for a universal TM
- ▷ 2D Ising spin model with fields

- > Trivial simulator
- $\triangleright\,$ Singleton simulator for a universal TM
- ▷ 2D Ising spin model with fields
- \triangleright Dense subset (e.g. $T = \mathbb{R} \times \mathbb{R}_+$, $P = \mathbb{Q} \times \mathbb{R}_+$)

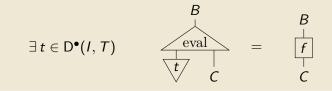
- > Trivial simulator
- $\triangleright~$ Singleton simulator for a universal TM
- ▷ 2D Ising spin model with fields
- \triangleright Dense subset (e.g. $T = \mathbb{R} \times \mathbb{R}_+$, $P = \mathbb{Q} \times \mathbb{R}_+$)
- \triangleright A generating set (T =tuples, C =formulas)

- > Trivial simulator
- \triangleright Singleton simulator for a universal TM
- ▷ 2D Ising spin model with fields
- \triangleright Dense subset (e.g. $T = \mathbb{R} \times \mathbb{R}_+$, $P = \mathbb{Q} \times \mathbb{R}_+$)
- \triangleright A generating set (T =tuples, C =formulas)
- \triangleright Weak limit (T = cones, $\mathbb{D}_B = \text{cone factorization}$, P = C = I)

Relation to undecidability

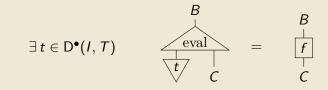
Lawvere's Fixed Point Theorem

Definition eval is weakly point surjective if for every $f: C \rightarrow B$



Lawvere's Fixed Point Theorem

Definition eval is weakly point surjective if for every $f: C \rightarrow B$



Theorem

Let \mathbb{D}_B be equality, eval be w.p.s., and $s: C \otimes C \to T \otimes C$ be a universal simulator. Then every $g: B \to B$ has a fixed point.

We show that $eval \circ s$ is w.p.s. and use (a stronger version of) Lawvere's Fixed Point Theorem [La69].

Undecidability from universality

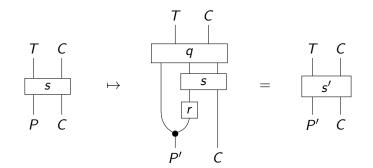
Theorem

Let \mathbb{D}_B be equality, eval be w.p.s., and $s: C \otimes C \to T \otimes C$ be a universal simulator. Then every $g: B \to B$ has a fixed point.

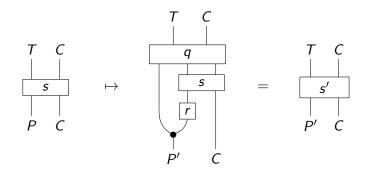
universal s + fixed-point-free $g \implies$ 'undecidability'

Hierarchy of universal simulators

Simulator morphisms

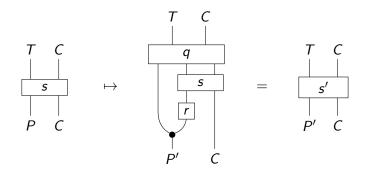


Simulator morphisms



r is deterministic \implies sequential composition

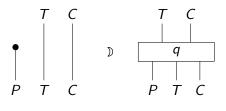
Simulator morphisms

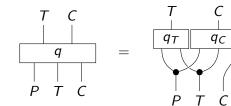


r is deterministic \implies sequential composition

We also require that $(s' \text{ is universal}) \implies (s \text{ is universal})$.

Processings





Definition

s' is a **stronger** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Definition

s' is a **stronger** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Theorem

The singleton simulator s_u for a universal TM is strictly stronger than the trivial simulator.

Definition

s' is a **stronger** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Theorem

The singleton simulator s_u for a universal TM is strictly stronger than the trivial simulator.

▷ $s_u \ge$ id uses that \exists right-invertible reduction.

Definition

s' is a **stronger** simulator than s, written $s' \ge s$, if there exists a morphism $s \rightarrow s'$.

Theorem

The singleton simulator s_u for a universal TM is strictly stronger than the trivial simulator.

- ▷ $s_u \ge$ id uses that \exists right-invertible reduction.
- $\triangleright \ {\it s}_{\it u} \not\leq {\it id} \ {\it because} \ \exists \ t, \ t' \colon {\it I} \to {\it T} \ {\it such} \ {\it that}$

$$\triangleright$$
 t can be separated from t' and

 $\triangleright \ s_T(r(t)) = s_T(r(t')).$

Conclusions

Summary

- > Abstract notion of universality with many instances
- \triangleright Morphisms of simulators \rightarrow non-trivial universality
- Connection to Lawvere's Fixed Point Theorem

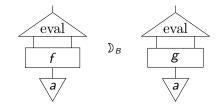
Outlook

- > Necessary conditions for universality monotone observables
- > Additional strengthenings of universality
- More constructive connection undecidability and trade-offs
- Comparing different instances of the framework

Intrinsic behavior structure

$T \in D$	things	Turing machines	spin systems
$C\in D$	contexts	input strings	spin configurations
$B\inD$	behaviors	output strings	energies
\mathbb{D}_B	relation	=	=

$$f \supset g$$
 if, for all $a: I \rightarrow A$,

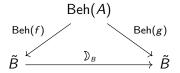


Extrinsic behavior structure

Definition

A **behavior structure** is a faithful, strong monoidal functor Beh: $D \rightarrow Set$ and a preorder \mathcal{D}_B on $\tilde{B} := Beh(T \times C)$.

Given $f, g: A \rightarrow T \times C$, f behaviorally subsumes g if



commutes in Rel.

This defines \mathbb{D} on any $D(A, T \times C)$.

Turing machines

Definition

A **Turing category** is a cartesian restriction category with a distinguished Turing object T and morphisms $\tau_{X,Y} : T \times X \to Y$ for any pair of objects X, Y such that for any $f : Z \times X \to Y$ there exists a unique $h: Z \to T$ satisfying $\tau \circ (h \times id_X) = f$.

Example (Simulators of Turing machines)

 Σ is a finite alphabet and $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ its Kleene star. T is given by the set of Turing machines. Further objects are $C = \Sigma^* = B$ and finite products thereof. Morphisms are partial computable maps. There is a pairing function $\langle _, _ \rangle \colon C \times C \to C$. The relation \mathcal{D}_B is equality among strings and eval is given by $\tau_{C,C}$.

Spin models

- ▷ T = P = set of spin systems specified by size, interaction hypergraph, couplings, and fields.
- $\triangleright \ C = \text{spin configurations in } \Sigma^*$
- $\triangleright B =$ energies (e.g. \mathbb{Q}_+)
- \triangleright s_T takes a generic spin system t to a (larger) lsing system.
- \triangleright s_C encodes its configurations into those of s_T(t) via flag spins.

Dense subset

- \triangleright $T = \mathbb{R} \times \mathbb{R}_+$, i.e. points and precisions
- $\triangleright C = I$, the singleton set
- $\triangleright B = \mathcal{P}(\mathbb{R})$ with \mathbb{D}_B the subset inclusion
- \triangleright eval maps (t, δ) to the open ball of radius δ centered at t.
- $\triangleright P = \mathbb{Q} \times \mathbb{R}_+$ and s_T is the inclusion into T
- \triangleright The reduction $r \colon T \to P$ maps (t, δ) to $(q_{(t,\delta)}, \delta/2)$

Generating family (of a group)

- \triangleright $T = P = G^*$ are families of group elements
- \triangleright *C* consists of formulas $G^k \rightarrow G$, e.g.

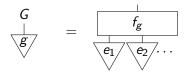
$$(g,h)\mapsto hg^{-1}h^2$$

- $\triangleright B = G$ with \mathbb{D}_B the equality
- \triangleright eval evaluates formulas on families with enough elements.

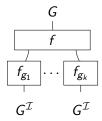
Generating family (of a group)

 \triangleright s_T discards P and returns the generating family $(e_i)_{i\in\mathcal{I}}$

 \triangleright For each g, we have a formula $f_g \colon G^\mathcal{I} \to G$ with



 $\triangleright \ s_C$ acts by mapping the pair of a family (g_j) and a formula $f: \ G^k \to G$ to

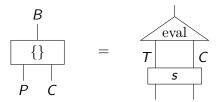


Weak limits

- $\triangleright \ T = B = \text{the set of cones over a given diagram } F : \mathsf{J} \to \mathsf{C}$
- $\triangleright C = I$, the singleton set
- \triangleright eval = id_T
- $\triangleright \psi \mathfrak{D}_{B} \phi$ if ϕ factors through ψ .
- \triangleright P = I and s_T is the weak limit of F.
- ▷ Can be generalized to scenarios when lim *F* doesn't exist by using other *P*.

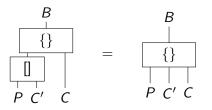
Monoidal computer

Specify a family of universal evaluators [Pa18]



for fixed *P*, every $C \in D$, and a corresponding w.p.s. eval and a universal simulator *s*.

Plus there are (deterministic) partial evaluators relating them:

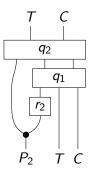


Morphism composition

Given two morphisms $(r_1^*, q_{1*}): s \to s_1$ and $(r_2^*, q_{2*}): s_1 \to s_2$ of simulators, we define the **sequential composition**

$$(r_2^*, q_{2*}) \circ (r_1^*, q_{1*})$$
: $s \rightarrow s_2$

to be the morphism whose processing is given by the map



with reduction given by $(r_1 \circ r_2)^*$.

Necessary conditions for universality