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Motivating examples

Primary:
> universal Turing machines
> universal spin models

> universal neural networks

Others:
> universal grammar
NP-completeness
generating sets (universal gate set, ...)
weak limits
dense subsets

universals in philosophy
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Goals of the framework

> Capture examples of universality

> Properties of universality

> trivial vs. non-trivial
> necessary conditions for universality

> Relation to undecidability



Universal Turing machine
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Spin system

> Spin d.o.f. X for each vertex

> A hypergraph, edges ~ local interactions
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Spin system

> Spin d.o.f. X for each vertex
> A hypergraph, edges ~ local interactions
> Hamiltonian ¥V — R as a sum of local coupling terms

2D Ising spin model with fields has ¥ = Z, and interaction lattice:




Spin system simulation

Every spin system can be simulated on a 2D Ising one [Del6].
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The set-up (simulators)



Ambient category

D is gs-monoidal, an SMC with A -+ A® A and A — [ such that
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Intrinsic behavior structure

TeDb things Turing machines
CcebD contexts input strings
BeD behaviors output strings
Vs relation =
B

PN

spin systems
spin configurations
energies



Intrinsic behavior structure

TeDb things Turing machines spin systems
cebD contexts input strings spin configurations
BeD behaviors output strings energies

Vs relation = =

fygif, forall a: I — A,



A simulator

PeD programs
st:P—>T compiler

sc: P® C — C context reduction
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PeD programs
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A simulator
C
PeD programs

T
st:P—>T compiler
P C

sc: P® C — C context reduction

Example (trivial simulator)

Example (singleton simulator for TM)
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Deterministic subcategory

In D®, every f: A — B satisfies
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Deterministic subcategory

In D®, every f: A — B satisfies

Morphisms in D® are called deterministic.






Reductions and universality

Definition
A lax reduction r*: s — s’ from simulator s to s’ is a
r € D*(P’, P) such that

T C T C




Reductions and universality

Definition
A lax reduction r*: s — s’ from simulator s to s’ is a
r € D*(P’, P) such that

T C T C

Definition
Simulator s is universal if there is a lax reduction s — id to the
trivial simulator.
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Examples (universal simulators)

> Trivial simulator
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Singleton simulator for a universal TM
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2D Ising spin model with fields
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Examples (universal simulators)

> Trivial simulator

v

Singleton simulator for a universal TM

v

2D Ising spin model with fields

v

Dense subset (e.g. T=R xRy, P=Q x Ry)

v

A generating set (T = tuples, C = formulas)

> Weak limit (T = cones, Dg = cone factorization, P = C = /)



Relation to undecidability



Lawvere's Fixed Point Theorem

Definition
eval is weakly point surjective if for every f: C — B
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Lawvere's Fixed Point Theorem

Definition
eval is weakly point surjective if for every f: C — B

B
3teD*(I,T) @L =
VA
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Theorem

Let g be equality, eval be w.p.s., ands: CR C — T ® C be a
universal simulator. Then every g: B — B has a fixed point.

We show that eval o s is w.p.s. and use (a stronger version of)
Lawvere's Fixed Point Theorem [La69].



Undecidability from universality

Theorem

Let D be equality, eval be w.p.s., ands: C® C - T ® C be a
universal simulator. Then every g: B — B has a fixed point.

universal s + fixed-point-free g = ‘undecidability’



Hierarchy of universal simulators



Simulator morphisms




Simulator morphisms

T C
-
P C

r is deterministic = sequential composition



Simulator morphisms

T C T C
(5] = = s
P C P C

r is deterministic = sequential composition

We also require that (s is universal) = (s is universal).



Processings

T C T C
)
pT C P T C



Strength of simulators

Definition
s’ is a stronger simulator than s, written s’ > s, if there exists a
morphism s — s'.
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Strength of simulators

Definition
s’ is a stronger simulator than s, written s’ > s, if there exists a
morphism s — s'.

Theorem
The singleton simulator s, for a universal TM is strictly stronger
than the trivial simulator.

> s, > id uses that 3 right-invertible reduction.

> s, £ id because 3t,t': | — T such that

> t can be separated from t’ and

> sr(r(t)) = st(r(t)).






Summary

> Abstract notion of universality with many instances
> Morphisms of simulators — non-trivial universality

> Connection to Lawvere's Fixed Point Theorem



Outlook

> Necessary conditions for universality - monotone observables
> Additional strengthenings of universality
> More constructive connection undecidability and trade-offs

> Comparing different instances of the framework



Intrinsic behavior structure

TeDb things Turing machines spin systems
cebD contexts input strings spin configurations
BeD behaviors output strings energies

Vs relation = =

fygif, forall a: I — A,



Extrinsic behavior structure

Definition
A behavior structure is a faithful, strong monoidal functor
Beh: D — Set and a preorder Dz on B := Beh(T x C).

Given f,g: A— T x C, f behaviorally subsumes g if

Beh(A)

Bery ﬁ(g)
B De B

commutes in Rel.

This defines » on any D(A, T x C).



Turing machines

Definition

A Turing category is a cartesian restriction category with a
distinguished Turing object T and morphisms 7x y: T X X =Y
for any pair of objects X, Y such that for any f: Z x X — Y there
exists a unique h: Z — T satisfying 7 o (h x idx) = f.

Example (Simulators of Turing machines)

2 is a finite alphabet and >* = U,>oX" its Kleene star. T is given
by the set of Turing machines. Further objects are C =¥* = B
and finite products thereof. Morphisms are partial computable
maps. There is a pairing function (_, _): C x C — C.

The relation Dg is equality among strings and eval is given by 7¢ c.



Spin models

> T = P = set of spin systems specified by size, interaction
hypergraph, couplings, and fields.

C = spin configurations in *

v

> B = energies (e.g. Q)
> st takes a generic spin system t to a (larger) Ising system.

sc encodes its configurations into those of st (t) via flag spins.

v



Dense subset

> T =R xR, i.e. points and precisions
> C =1, the singleton set

> B = P(R) with Dg the subset inclusion

v

eval maps (t,d) to the open ball of radius ¢ centered at t.

v

P =Q x Ry and st is the inclusion into T

> The reduction r: T — P maps (t,0) to (q(t75),5/2)



Generating family (of a group)

> T = P = G* are families of group elements
> C consists of formulas G¥ — G, e.g.

(g h) = hg~h?
> B = G with ) the equality

> eval evaluates formulas on families with enough elements.



Generating family (of a group)

> st discards P and returns the generating family (&;)icz

> For each g, we have a formula f,: G — G with

G |

AR

> sc acts by mapping the pair of a family (gj) and a formula
f: Gk - G to




Weak limits

T = B = the set of cones over a given diagram F: J — C

v

> C =1, the singleton set

> eval = idt

> 1 Dg ¢ if ¢ factors through .

> P =1 and st is the weak limit of F.

> Can be generalized to scenarios when lim F doesn’t exist by
using other P.



Monoidal computer
Specify a family of universal evaluators [Pal8]

i .
{} = T C
T =

for fixed P, every C € D, and a corresponding w.p.s. eval and a
universal simulator s.

Plus there are (deterministic) partial evaluators relating them:




Morphism composition

Given two morphisms (r{, g1,): s — s1 and (13, g2,): s1 — sz of
simulators, we define the sequential composition

(r§7q2*) © (r]>_k7q1*): S — S

to be the morphism whose processing is given by the map

P, T C

with reduction given by (r o r2)*.



Necessary conditions for universality
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