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Motivation



Motivating examples

Primary:

▷ universal Turing machines

▷ universal spin models

▷ universal neural networks

Others:

▷ universal grammar

▷ NP-completeness

▷ generating sets (universal gate set, . . . )

▷ weak limits

▷ dense subsets

▷ universals in philosophy

▷ . . .
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Goals of the framework

▷ Capture examples of universality

▷ Properties of universality

▷ trivial vs. non-trivial
▷ necessary conditions for universality

▷ Relation to undecidability



Universal Turing machine



Spin system

▷ Spin d.o.f. Σ for each vertex

▷ A hypergraph, edges ∼ local interactions

▷ Hamiltonian ΣV → R as a sum of local coupling terms

2D Ising spin model with fields has Σ = Z2 and interaction lattice:
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Spin system simulation

Every spin system can be simulated on a 2D Ising one [De16].



The set-up (simulators)



Ambient category

D is gs-monoidal, an SMC with A → A⊗ A and A → I such that

= =

= =



Intrinsic behavior structure

T ∈ D things Turing machines spin systems

C ∈ D contexts input strings spin configurations

B ∈ D behaviors output strings energies

%B relation = =

T C

B

eval

f % g if, for all a : I → A,

eval

f

eval

g

a a

%B
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A simulator

sT sC

T C

P C

P ∈ D programs

sT : P → T compiler

sC : P ⊗ C → C context reduction

Example (trivial simulator)

sT = sC =

Example (singleton simulator for TM)

sT
u

= sC = ⟨ , ⟩
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Deterministic subcategory

In D•, every f : A → B satisfies

f f
=

f

B B B B

A A

f =

A A

Morphisms in D• are called deterministic.
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Universality



Reductions and universality

Definition

A lax reduction r∗ : s → s ′ from simulator s to s ′ is a
r ∈ D•(P ′,P) such that

% s ′

T C

P ′ C

T C

s

P ′ C

r

Definition

Simulator s is universal if there is a lax reduction s → id to the
trivial simulator.
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Examples (universal simulators)

▷ Trivial simulator

▷ Singleton simulator for a universal TM

▷ 2D Ising spin model with fields

▷ Dense subset (e.g. T = R× R+, P = Q× R+)

▷ A generating set (T = tuples, C = formulas)

▷ Weak limit (T = cones,%B = cone factorization, P = C = I )
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Relation to undecidability



Lawvere’s Fixed Point Theorem

Definition

eval is weakly point surjective if for every f : C → B

eval

t

=

C

B

f

C

B

∃ t ∈ D•(I ,T )

Theorem

Let%B be equality, eval be w.p.s., and s : C ⊗ C → T ⊗ C be a
universal simulator. Then every g : B → B has a fixed point.

We show that eval ◦ s is w.p.s. and use (a stronger version of)
Lawvere’s Fixed Point Theorem [La69].
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Undecidability from universality

Theorem

Let%B be equality, eval be w.p.s., and s : C ⊗ C → T ⊗ C be a
universal simulator. Then every g : B → B has a fixed point.

universal s + fixed-point-free g =⇒ ‘undecidability’



Hierarchy of universal simulators



Simulator morphisms

7→

q

s

T C

P C

T C

s

P ′ C

r

= s ′

T C

P ′ C

r is deterministic =⇒ sequential composition

We also require that (s ′ is universal) =⇒ (s is universal).
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Processings

q

C

%

T C

TC

T C

T PP

q

C

T C

TP

=

P T C

qCqT

CT



Strength of simulators

Definition

s ′ is a stronger simulator than s, written s ′ ≥ s, if there exists a
morphism s → s ′.

Theorem

The singleton simulator su for a universal TM is strictly stronger
than the trivial simulator.

▷ su ≥ id uses that ∃ right-invertible reduction.

▷ su ̸≤ id because ∃ t, t ′ : I → T such that

▷ t can be separated from t ′ and

▷ sT (r(t)) = sT (r(t
′)).
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Conclusions



Summary

▷ Abstract notion of universality with many instances

▷ Morphisms of simulators → non-trivial universality

▷ Connection to Lawvere’s Fixed Point Theorem



Outlook

▷ Necessary conditions for universality - monotone observables

▷ Additional strengthenings of universality

▷ More constructive connection undecidability and trade-offs

▷ Comparing different instances of the framework



Intrinsic behavior structure

T ∈ D things Turing machines spin systems

C ∈ D contexts input strings spin configurations
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Extrinsic behavior structure

Definition

A behavior structure is a faithful, strong monoidal functor
Beh: D → Set and a preorder%B on B̃ := Beh(T × C ).

Given f , g : A → T × C , f behaviorally subsumes g if

Beh(A)

B̃ B̃

Beh(f ) Beh(g)

%B

commutes in Rel.

This defines% on any D(A,T × C ).



Turing machines

Definition

A Turing category is a cartesian restriction category with a
distinguished Turing object T and morphisms τX ,Y : T × X → Y
for any pair of objects X ,Y such that for any f : Z ×X → Y there
exists a unique h : Z → T satisfying τ ◦ (h × idX ) = f .

Example (Simulators of Turing machines)

Σ is a finite alphabet and Σ∗ = ∪n≥0Σ
n its Kleene star. T is given

by the set of Turing machines. Further objects are C = Σ∗ = B
and finite products thereof. Morphisms are partial computable
maps. There is a pairing function ⟨ , ⟩ : C × C → C .
The relation%B is equality among strings and eval is given by τC ,C .



Spin models

▷ T = P = set of spin systems specified by size, interaction
hypergraph, couplings, and fields.

▷ C = spin configurations in Σ∗

▷ B = energies (e.g. Q+)

▷ sT takes a generic spin system t to a (larger) Ising system.

▷ sC encodes its configurations into those of sT (t) via flag spins.



Dense subset

▷ T = R× R+, i.e. points and precisions

▷ C = I , the singleton set

▷ B = P(R) with%B the subset inclusion

▷ eval maps (t, δ) to the open ball of radius δ centered at t.

▷ P = Q× R+ and sT is the inclusion into T

▷ The reduction r : T → P maps (t, δ) to
(
q(t,δ), δ 2

)



Generating family (of a group)

▷ T = P = G ∗ are families of group elements

▷ C consists of formulas G k → G , e.g.

(g , h) 7→ hg−1h2

▷ B = G with%B the equality

▷ eval evaluates formulas on families with enough elements.



Generating family (of a group)

▷ sT discards P and returns the generating family (ei )i∈I

▷ For each g , we have a formula fg : G
I → G with

g

G
=

fg

e1 e2 . . .

▷ sC acts by mapping the pair of a family (gj) and a formula
f : G k → G to

f

G

. . .

GI

fg1

GI

fgk



Weak limits

▷ T = B = the set of cones over a given diagram F : J → C

▷ C = I , the singleton set

▷ eval = idT

▷ ψ%B ϕ if ϕ factors through ψ.

▷ P = I and sT is the weak limit of F .

▷ Can be generalized to scenarios when limF doesn’t exist by
using other P.



Monoidal computer
Specify a family of universal evaluators [Pa18]

={}

B

P C

eval

s
T C

for fixed P, every C ∈ D, and a corresponding w.p.s. eval and a
universal simulator s.

Plus there are (deterministic) partial evaluators relating them:

[]

{}

B

P CC ′

= {}

B

P CC ′



Morphism composition

Given two morphisms (r∗1 , q1∗) : s → s1 and (r∗2 , q2∗) : s1 → s2 of
simulators, we define the sequential composition

(r∗2 , q2∗) ◦ (r∗1 , q1∗) : s → s2

to be the morphism whose processing is given by the map

q2

T C

P2 C

r2

q1

T

with reduction given by (r1 ◦ r2)∗.



Necessary conditions for universality
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