Regular Monoidal Languages

Matt Earnshaw¹ j.w.w. Paweł Sobociński¹

¹Tallinn University of Technology, Estonia

SYCO 9, Como September 2022

Regular languages with pictures

$$\vdash -a - b - -$$

Fact: any regular language can be pictured in this way.

Bottom-up tree languages with pictures What about multiple wires on the left?

$$t - f - [] - = = - +$$

Fact: any bottom-up regular tree language can be pictured in this way.

Top-down tree languages with pictures What about multiple wires on the right?

$$\vdash$$
 $-$:: $_$ $-$ [] $-$ f $-$ t

Fact: any top-down regular tree language can be pictured in this way.

Regular monoidal languages

What about multiple wires on the left and right?

How to define these pictures formally?

Monoidal graphs

A monoidal graph is a pair of functions $s, t : E \Longrightarrow V^*$.

A monoidal graph generates a free pro.

When *single-sorted*, *s* and *t* give natural numbers: *arity* and *coarity*.

Morphism of monoidal graphs is a pair of functions $E \rightarrow E', V \rightarrow V'$ commuting with s and t.

All of our monoidal graphs will be finite.

Regular monoidal grammars and languages

Gives a subset of $\mathscr{F}\Gamma(0,0)$, the $0 \to 0$ diagrams that can be built.

$$\begin{array}{c} & & \\ & &$$

Definition

The subsets so definable are *regular monoidal languages*.

Non-deterministic monoidal automata

Definition $\Delta = (V, \Delta_{\Gamma})$

- V, finite set
- Γ, monoidal alphabet

$$\blacktriangleright \ \Delta_{\Gamma} = \{ V^{\operatorname{ar}(\gamma)} \xrightarrow{\Delta_{\gamma}} \mathscr{P}(V^{\operatorname{coar}(\gamma)}) \}_{\gamma \in E_{\Gamma}},$$

set of transition relations

String diagrams $0 \to 0$ map to a $V^0 \to \mathscr{P}(V^0)$ (accept/reject).

By restricting Γ we recover:

- Ordinary non-deterministic automata
- Top-down n.d. tree automata
- Bottom-up n.d. tree automata

The problem of determinization

Challenge

Characterize the deterministically recognizable RMLs.

Partial answers:

- convex automata
- necessary property of deterministic language
- categorical invariant of language

Partial answer I: Convex automata

A monoidal automaton is convex if its transition relations are convex.

Theorem

Convex automata can be determinized, by an analogue of the powerset construction. E.g. word automata and bottom-up tree automata.

Partial answer I: Convex automata

A monoidal automaton is convex if its transition relations are convex.

Theorem

Convex automata can be determinized, by an analogue of the powerset construction. E.g. word automata and bottom-up tree automata.

Partial answer II: Causal closure

Causal histories recombinable via equations in cartesian restriction categories

Theorem: Deterministically recognizable RMLs are causally closed.

Partial answer III: Syntactic pro

 $\gamma \equiv_L \delta$ if $C[\gamma] \in L \iff C[\delta] \in L$, for all contexts C

Theorem

If L is an RML then its syntactic pro has finite homsets.

Theorem

If the syntactic pro of an RML has cartesian restriction category structure, then the language is deterministically recognizable.

Future work

Completely characterize deterministic recognizability

- Embeddings of word languages
- Diagrammatics for pushdown and Zielonka automata, transducers, etc.
- Context-free monoidal languages via a monoidal multicategory of contexts

Thanks for your attention.