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Why Graphs?

e string diagrams as syntax for monoidal categories
— we can draw pictures!

e want a combinatorial representation to reason about them

e use (some form of) graphs and their morphisms

Remark
here: vertices represent generators, edges represent wires

TP~ R
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Why Plane Graphs?

graphs are (V, E), it's all sets

drawings contain information about the surface as well

in SMC the surface doesn't matter:

DOC -

other monoidal theories may require non-trivial topology

example: string diagrams for quantum processes
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What are Surface Embeddings?

Plane graph embeddings
= drawing in the plane (or on the sphere)

‘ T

A graph is planar if it has a plane embedding

(similarly for higher genus surfaces)

we work at the level of embedding of a graph
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Representing Graph Embeddings

Rotation Systems fix order of edges around vertices

'
E) ‘
Theorem

Rotation systems uniquely determine a graph embedding.

QOur Plan

construct a category of graphs, then add rotation information
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An Example of DPO Rewriting

given: rewrite rule
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An Example of DPO Rewriting

given: rewrite rule as span with common boundary in the middle

& <-
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An Example of DPO Rewriting

given: matching of the LHS within a graph

=
L
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An Example of DPO Rewriting

construct: context graph by pushout complement

G v-®
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An Example of DPO Rewriting

construct: final graph by pushout

LG
e Je [
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DPO Rewriting

B R

gjim

+— G\ L —— G[R/L]

e rewrite rules are L = R, with common boundary B
e double-pushout diagram, all maps are embeddings

e need: pushouts, pushout complements, notion of embedding

6/20



DPO Rewriting

L+~——B
[, |
G+— G\

L

rewrite rules are L = R, with common boundary B

double-pushout diagram, all maps are embeddings

need: pushouts, pushout complements, notion of embedding

C = G\ L: context with a hole
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DPO Rewriting

N—™

C +——
A
<

Q) — —

rewrite rules are L = R, with common boundary B

double-pushout diagram, all maps are embeddings

need: pushouts, pushout complements, notion of embedding

C = G\ L: context with a hole
L= G\ C: LHS with a “hole"
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Category of Graphs

We start from the standard category of graphs:
e graphs are E :s§ %
t

e morphisms are pairs of edge map fg and vertex map fy s.t.

E_",p E_"t, p

sl ls’ ti lt’

V —— V/ V —— V/
fV fV

Disclaimer
(Almost) all graphs are drawn undirected in this presentation.
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Open Graphs

e have to encode inputs and outputs of the diagrams

e different approaches: open graphs, representative vertices,
cospans

e morphisms for open graphs don't preserve the surface:
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Boundary Vertices

o

e attach input and output edges to this region item represent
the outside with a boundary vertex

e identify the “outside” of a graph

This provides:
e total graphs

e strategy to deal with the outside, and any holes in a graph
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Requirements for Graph Morphisms
e vertex map needs to be partial

)
<) —
e cannot be injective on edges
9
) —

How to define graph embeddings?
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Flags

\

_»®

connection points between vertices and their incident edges,
pairs (v, e)

flag map (fg, f/) partial map induced by graph map

characterise morphisms/embeddings on the flag map

example: flag injectivity
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Flag Surjectivity

Starting with the condition for standard graph morphisms
(V,E) = (V' E'):

What about vertices with no edges attached?

e — O
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Flag Surjectivity

Condition on vertices, by considering the preimage:

<

v v
=) [+
p(E) U p(e

What about vertices where fy is undefined?

O— )
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Flag Surjectivity

Flag surjectivity = lax commutation of the square:

4 Y4
s‘ll > ls’*l
/
PE) s PIE)
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Graphs with Circles

Objects are total graphs, as defined above

Morphisms are (fg, fi/) where
e fg is total

e the flag map is surjective
(no increase of flags at a vertex)

Graph embeddings are

e flag injective (no decrease of flags at a vertex)

It's a category!
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Rewriting for Graphs with Circles

Define rewriting for a specific case

Boundary Graph
boundary vertex and dual boundary vertex, connected by edges:

& O

?
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Partitioning Spans

partition a graph into two (connected) parts: context and subgraph

?
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%\LQ
[

?

15/20



Partitioning Spans

partition a graph into two (connected) parts: context and subgraph

?

)2
Pk

o L

?

Theorem
Pushouts of partitioning spans exist, and all morphisms in the
pushout square are embeddings.
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Boundary Embeddings

for constructing pushout complements which give rise to
partitioning spans

16/20



Boundary Embeddings

for constructing pushout complements which give rise to

partitioning spans
0

) -2

ot
Lot

Theorem
Pushout complements of boundary embeddings exist
and are unique (up to degeneracies).
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The Same Example of DPO Rewriting

Remember this example?

G v-&

\l/m c J/n

v &g &
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The Same Example of DPO Rewriting

Let's add some boundary regions . ..

LA



The Same Example of DPO Rewriting

...and use their representative vertices
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Category of Rotation Systems

obj: graphs + cyclic ordering of flags for all vertices

arr: same as graphs + order preservation condition

Example
V f\/ V/ V fV V/
FIJ, Z J{tlfl tfli 2 J’th
/ : !
Theorem

Pushouts and pushout complements are the same as in the
underlying category of graphs.
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Let's talk about Loops!

problem: construct a pushout complement of a loop

19/20



Let's talk about Loops!

problem: construct a pushout complement of a loop

Y

N
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Q

Q

has a plane solution
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Let's talk about Loops!

problem: construct a pushout complement of a loop

N

)~

C

b

has a plane solution
and a non-plane solution

C

Q

)

)

Q
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Summary

e fix inputs and outputs to control topology — boundary vertices!
e restrict your rewrite rules to meaningful cases

e category of graphs with circles extendable to rotation systems
Future Thoughts

e How about surface-embedded loops?

e How about multiple boundary vertices?

THANK YOU FOR YOUR ATTENTION!
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Appendix: Examples

Valid morphisms:

S
OO e O
NP Vo V;_'l:;\/ v
Embeddings:
e &



Appendix: Non-Examples

These aren’t morphisms in the category:
e e
o —0
N eive V'

QIU e >e /
£ _— e
2

N
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Appendix: Definition Graphs with Circles

A morphism f : G — G’ between two graphs with circles consists of two (partial)
functions fiy : V — V’ as above, and f4 : A — A’, satisfying the conditions listed
below. Note that any such fj factors as four maps,

fEZE—>EI oniE—>O/
fOE:O—)EI fo:O—>O’

The following conditions must be satisfied:
e f4:A— A is total;
e the component for : O — E’ is the empty function;
e the pair (fy, fg) forms a flag surjection between the underlying graphs.

If, additionally, the following three conditions are satisfied, we call the morphism an
embedding:

e fy:V — V/is injective;
e the component fp is injective;
e the pair (fy, fg) forms a flag bijection between the underlying graphs.



Appendix: Two regions on a sphere




