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Introduction

How do we integrate syntax and semantics?

object type
morphism term

∗ 2-morphism rewrite ∗
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Operational semantics

algebraic theories : denotational semantics

(ab)c = a(bc)

enriched theories : operational semantics
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Lawvere theories

Th(Mon)

type M monoid

operations m : M2 → M multiplication
e : 1 → M identity

equations

M3 M2

M2 M2 M M2

1×M M M M× 1
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Enriched theories

Th(PsMon)

type M pseudomonoid

operations ⊗ : M2 → M multiplication
I : 1 → M identity

rewrites

M3 M2

M2 M2 M M2

1×M M M M× 1

⇓ α

⇓ λ ρ ⇓

equations pentagon, triangle identities



Enriched Lawvere
Theories

for Operational
Semantics

John C. Baez
Christian Williams

Introduction

theories

Lawvere theories

enriched theories

enrichment

enriched categories

enriched products

enriched theories

V-theories

examples

change of
semantics

change of base

preserving theories

applications

combinators

change of base

Conclusion

Enriched categories

Let V be monoidal. A V-enriched category has hom-objects
in V; composition and identity are morphisms in V, as are the
components of a V-functor and a V-natural transformation:

V-category C(a, b) ∈ V

V-functor Fab : C(a, b)→ D(F (a),F (b)) ∈ V

V-transformation ϕa : 1V → D(F (a),G (a)) ∈ V.

These form the 2-category VCat.
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Our enriching category

Let V be a cartesian closed category:

V(a× b, c) ∼= V(a, [b, c]).

Then V ∈ VCat.

Let V ∈ CCCfc(1), meaning assume and choose:

nV :=
∑
n

1V.

Let NV := {nV|n ∈ N} ⊂full V

and AV := Nop
V – our “arities”.
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Enriched products

The V-product of (ai ) ∈ C is an object
∏

i ai ∈ C equipped
with a V-natural isomorphism

C(−,
∏

i ai )
∼=

∏
i C(−, ai ).

A V-functor F : C→ D preserves V-products if the
“projections” induce a V-natural isomorphism:

D(−,F (
∏

i ai )) ∼=
∏

i D(−,F (ai )).

Let VCatfp be the 2-category of V-categories with finite
V-products and V-functors preserving them.
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Enriched Lawvere theories

Definition
A V-theory is a V-category T ∈ VCatfp whose objects are
finite V-products of a distinguished object.

A morphism of V-theories is a V-functor
F : T→ T′ ∈ VCatfp. These and V-natural transformations
form the 2-category of V-theories, VLaw.
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Enriched models

Definition
A context is a V-category C ∈ VCatfp.
A model of T is a V-functor

µ : T→ C ∈ VCatfp.

The category of models is Mod(T,C) := VCatfp(T,C).
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Example: monoidal categories

Let V = Cat.
Th(PsMon)

type M pseudomonoid

operations ⊗ : M2 → M multiplication
I : 1 → M identity

rewrites

M3 M2

M2 M2 M M2

1×M M M M× 1

⇓ α

⇓ λ ρ ⇓

equations pentagon, triangle identities



Enriched Lawvere
Theories

for Operational
Semantics

John C. Baez
Christian Williams

Introduction

theories

Lawvere theories

enriched theories

enrichment

enriched categories

enriched products

enriched theories

V-theories

examples

change of
semantics

change of base

preserving theories

applications

combinators

change of base

Conclusion

Example: cartesian object

Let V = Cat.
Th(Cart)

type X cartesian object

operations m : X2 → X product
e : 1→ X terminal element

rewrites 4 : idX =⇒ m ◦ ∆X unit of m ` ∆X

π : ∆X ◦m =⇒ idX2 counit of m ` ∆X

> : idX =⇒ e ◦ !X unit of e `!X
ε : !X ◦ e =⇒ id1 counit of e `!X

equations triangle identities
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Change of base

Let F : V→W preserve finite products, and C ∈ VCat.

Then F induces a change of base:

F∗(C)(a, b) := F (C(a, b)).

This gives a 2-functor

F∗ : VCat→WCat.

Enrichment provides semantics, so change of base should
preserve theories to be a change of semantics.
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Preservation of theories

Theorem
Let F : V→W ∈ CCCfc(1).
Then F is a change of semantics:

F∗ preserves theories. For every V-theory τV : AV → T,

τW := AW
∼−→ F∗(AV)

F∗(τV)−−−−→ F∗(T) is a W-theory.

F∗ preserves models. For every model µ : T→ C,

F∗(µ) : F∗(T)→ F∗(C) is a model of (F∗(T), τW).
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Change of semantics

There is a “spectrum” of semantics:

Gph

a

Cat

a

Pos
a

Set

FC

UG

FP

UC

FS

UP

FC∗ maps small-step to big-step operational semantics.
FP∗ maps big-step to full-step operational semantics.
FS∗ maps full-step to denotational semantics.
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The theory of SKI

Th(SKI)

type t

terms S : 1→ t
K : 1→ t
I : 1→ t
(− −) : t2 → t

rewrites σ : (((S a) b) c) ⇒ ((a c) (b c))
κ : ((K a) b) ⇒ a
ι : (I a) ⇒ a
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A model of Th(SKI)

A Gph-product preserving Gph-functor µ : Th(SKI)→ Gph
yields a graph µ(t) of SKI-terms:

1 ∼= µ(1) µ(t) µ(t2) ∼= µ(t)2.
µ(S) µ((− −))

The rewrites are transferred by the enrichment of µ:

µ1,t : Th(SKI)(1, t)→ Gph(1, µ(t)).
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The free model of SKI

The syntax and semantics of the SKI combinator calculus
are given by the free model

µGphSKI := Th(SKI)(1,−) : Th(SKI)→ Gph.

The graph µGphSKI (t) is the transition system which represents
the small-step operational semantics of the SKI-calculus:

(µ(a)→ µ(b) ∈ µGphSKI (t)) ⇐⇒ (a⇒ b ∈ Th(SKI)(1, t)).
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Change of semantics

FC : Gph→ Cat preserves products, hence gives a change of
semantics from small-step to big-step operational semantics:

(((S K ) (I K )) S)

(((S K ) K ) S) ((K S) ((I K ) S))

((K S) (K S)) S .

σι

σι
ισ κσ

κσι

κισ
σ ι

κ

κ

FP : Cat→ Pos gives full-step (Hasse diagram), and
FS : Pos→ Set gives denotational semantics, collapsing the
connected component to a point.
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Conclusion

Enriched theories give a way to unify the structure and
behavior of formal languages.

Enriching in category-like structures reifies operational
semantics by incorporating rewrites between terms.

Cartesian functors between enriching categories induce
change-of-semantics functors between categories of models.
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