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Overview of neural networks

A neural network is a function with two types of arguments, data
inputs and parameters. Data come from the environment,
parameters are controlled by us. As a string diagram:

φparameters: θ ∈ Rk
output: y ∈ Rm

data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
θ∗

has a desired property. Usually, this means

minimizing inaccuracy, as measured by

φ
θ∗

x̂i E

ŷi

R

where 〈x̂i, ŷi〉 : 1→ Rn+m are given input-output pairs and
E : Rm × Rm → R is a given error function.
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Overview of neural networks

Gradient-based training algorithms utilize the insight that the
gradient of this function:

φ

x̂i E

ŷi

Rk

R

tells us how to modify θ in order to decrease the error quickest.

Backpropagation is an algorithm that finds gradients (or
derivatives) of functions f : Rn → Rm, and is often used due to its
performance when n� m.

Backprop generates a hint about which direction to change θ, but
the trainer determines how this hint is used.
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Recurrent neural networks

Recurrent neural networks (RNNs) are able to process
variable-length inputs using state, which is stored in registers:

ψ
i

x y
Ψ :

A common semantics of RNNs uses the unrollings of the network:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2
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Backpropagation through time

Infinite-dimensional derivatives for sequence-to-sequence functions
must be approximated to be computationally useful.

Backpropagation through time (BPTT): Whenever the derivative
of Ψ is needed at an input of length k + 1, the derivative of UkΨ
is used instead.

This is a good way to generate hints, but it opens some questions:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Did we lose the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common, so their derivatives
should as well. Is there a more compact representation for the
derivative of Ψ than a sequence of functions?
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Understanding BPTT with category theory

The project: start in a category with some notion of derivative,
add a mechanism for state, and extend the original notion of
differentiation to the stateful setting.

Two main parts:
1 Adding state to computations

1 Relatively common, back to Katis, Sabadini, & Walters ‘97
2 Digital circuits—Ghica & Jung, ‘16
3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

2 Differentiation for stateful computations

1 Not so common
2 Cartesian differential categories—Blute, Cockett, Seely ‘09
3 (Backprop as Functor—Fong, Spivak, Tuyéras, ‘17)
4 (Simple Essence of Automatic Differentiation—Elliott ‘18)
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Cartesian differential categories [Blute, Cockett, Seely ’09]

A Cartesian differential category has a differential operation on
morphisms sending f : X → Y to Df : X ×X → Y , satisfying
seven axioms:

CD1. Ds =
s

for s ∈ {idX , σX,Y , !X ,∆X , 0X ,+X}.

CD2. Df
0

=
0

CD3. Df
+

= Df

Df
+

CD4. D( =
f

Df
Dgf g )

CD5. =
Dg

Df
D(

f

g
)



11/32

Cartesian differential category axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
maps between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.
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Differentiating the unrollings of a simple RNN

D( =)ψi Dψ
i

0

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ
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D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

This suggests a hypothesis:

D∗ ,ψ
i

D∗ψ
ψ

0

i
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Stateful computations

Let (C,×, 1) be a strict Cartesian
category, whose morphisms we
think of as stateless functions. A
stateful sequence computation
looks like this:

Ψ0X0 Y0

S0

S1

1 1

1

...

··i

Ψ1X1 Y1

S2
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(This is a sequence of 2-cells in a
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a restriction on the first 2-cell.)
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Stateful functions

Two computation sequences might have different state spaces and
still compute the same function. For example:

1 1

1

...

X0 X0

X1 X1

1

1

1

1 1

1

...

··i

X0 X0

X1 X1

S

S

S
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Stateful functions

The nth truncation of a computation sequence is the morphism of
the vertical composite of the first n+ 1 steps:

X0 Y0

...

Xn Yn

...
...

× ×

× ×

ψ0

i

ψn

Definition

Two computation sequences are extensionally equivalent means
they have the same nth truncation for all n ∈ N. A stateful
(sequence) function is an extensional equivalence class of
computation sequences.
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Stateful functions

Definition

If C is a strict Cartesian category, then its stateful sequence
extension is a category St(C) where

objects are infinite sequences of objects in C and

morphisms are stateful functions Ψ : X→ Y.
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Example computation sequences

Here is i as a computation
sequence:

1 1

1

...

··i

X

XX

X

XX

X
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Example computation sequences

Here is × as a

computation sequence:

1 1

1

...

×

×

X ×X X ×X

1

1

1

X ×X X ×X

1 1

1

...

×

×

··1

X X

X

X X

X

X
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Example computation sequences

Here is × as a

computation sequence:

1 1

1

...

×

×

X ×X X ×X

1

1

1

X ×X X ×X

Here is × 1 as a

computation sequence:

1 1

1

...

×

×

··1

X X

X

X X

X

X
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Delayed trace

This loop-with-delay-gate is a trace-like operation.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

It satisfies most of the the trace axioms but misses two: yanking
and dinaturality. For regular trace, those are

= f
g

f
g=
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Dinaturality → retiming

f
ig

f
g(i)g=

1 1

1

...

f
g

··g(i)

f
g

1 1

1

...

f
g

··

=

f
g

i
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Yanking → delay

i i
=

1 1

1

...

··i1 1

1

...

··

=

i
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Differentiation for stateful functions

Let C be Cartesian differential with differential operator D. The
following is a Cartesian differential operator on St(C):

ψX Y

S

S′

1

1

1 i

...

D∗ =

1

1

1 0 i

Dψ

ψ

S S

X

X

Y

S′S′ ...



26/32

D∗ is a Cartesian differential operator

Proof idea. For CD2: Df
0

=
0

1

1

1 0 i

Dφ

φ

0

X

Y

...
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D∗ is a Cartesian differential operator

Proof idea. For CD2: Df
0

=
0

1

1

1 0 i

Dφ

φ

0

0 •

X

Y

?? ...

1

1

1 0 i

φ

0 •

X

Y

•0 ...

0

0

=
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D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

...

φ

i

Dψ

ψ

0 j

=

Dφ
Dψ

φ

0 i0 j

φ ψ

...
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Differentiating RNNs

ψX Y

S

S′

1

1

1 i

...

D∗ =

1

1

1 0 i

Dψ

ψ

S S

X

X

Y

S′S′ ...

D∗ ,ψ
i

D∗ψ
ψ

0

i

S=S’

Theorem (D∗ matches BPTT)

The unrolling of D∗(i, [ψ]) is the component-wise application of D
to the unrolling of (i, [ψ]) (after a zipping morphism).
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Future directions

Several obstacles prevent us from applying these ideas in practice
right away:

1 Use non-smooth, partly differentiable, or partial functions?

2 Can we get a transpose?

3 Better ways to represent non-mutable state?

There are some questions related to the theory that we would like
to understand better:

1 Categorical properties of St(−)?

2 Bisimulations and extensional equality?

3 D∗ and infinite-dimensional derivatives?

4 Basic results for delayed trace categories?

5 Other data shapes (trees, distributions, . . . )?
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Summary

1 St(−) preserves Cartesian differential category structure.

2 This notion of differentiation is connected to BPTT.

3 Cartesian differential categories are a useful tool for organizing
unusual derivatives.

4 Machine learning needs compositional thinkers.
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Thanks!
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