
1/32

Differential Categories, Recurrent Neural
Networks, and Machine Learning

Shin-ya Katsumata and David Sprunger*
National Institute of Informatics, Tokyo

SYCO 4
Chapman University

May 23, 2019



2/32

Outline

1 Feedforward neural networks

2 Recurrent neural networks

3 Cartesian differential categories

4 Stateful computations / functions

5 Lifting Cartesian differential structure to stateful functions



3/32

Overview of neural networks

A neural network is a function with two types of arguments, data
inputs and parameters. Data come from the environment,
parameters are controlled by us. As a string diagram:

φparameters: θ ∈ Rk
output: y ∈ Rm

data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
θ∗

has a desired property. Usually, this means

minimizing inaccuracy, as measured by

φ
θ∗

x̂i E

ŷi

R

where 〈x̂i, ŷi〉 : 1→ Rn+m are given input-output pairs and
E : Rm × Rm → R is a given error function.



3/32

Overview of neural networks

A neural network is a function with two types of arguments, data
inputs and parameters. Data come from the environment,
parameters are controlled by us. As a string diagram:

φparameters: θ ∈ Rk
output: y ∈ Rm

data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
θ∗

has a desired property.

Usually, this means

minimizing inaccuracy, as measured by

φ
θ∗

x̂i E

ŷi

R

where 〈x̂i, ŷi〉 : 1→ Rn+m are given input-output pairs and
E : Rm × Rm → R is a given error function.



3/32

Overview of neural networks

A neural network is a function with two types of arguments, data
inputs and parameters. Data come from the environment,
parameters are controlled by us. As a string diagram:

φparameters: θ ∈ Rk
output: y ∈ Rm

data inputs: x ∈ Rn

Training a neural network means finding θ∗ : 1→ Rk so that

φ
θ∗

has a desired property. Usually, this means

minimizing inaccuracy, as measured by

φ
θ∗

x̂i E

ŷi

R

where 〈x̂i, ŷi〉 : 1→ Rn+m are given input-output pairs and
E : Rm × Rm → R is a given error function.



4/32

Overview of neural networks

Gradient-based training algorithms utilize the insight that the
gradient of this function:

φ

x̂i E

ŷi

Rk

R

tells us how to modify θ in order to decrease the error quickest.

Backpropagation is an algorithm that finds gradients (or
derivatives) of functions f : Rn → Rm, and is often used due to its
performance when n� m.

Backprop generates a hint about which direction to change θ, but
the trainer determines how this hint is used.



4/32

Overview of neural networks

Gradient-based training algorithms utilize the insight that the
gradient of this function:

φ

x̂i E

ŷi

Rk

R

tells us how to modify θ in order to decrease the error quickest.

Backpropagation is an algorithm that finds gradients (or
derivatives) of functions f : Rn → Rm, and is often used due to its
performance when n� m.

Backprop generates a hint about which direction to change θ, but
the trainer determines how this hint is used.



4/32

Overview of neural networks

Gradient-based training algorithms utilize the insight that the
gradient of this function:

φ

x̂i E

ŷi

Rk

R

tells us how to modify θ in order to decrease the error quickest.

Backpropagation is an algorithm that finds gradients (or
derivatives) of functions f : Rn → Rm, and is often used due to its
performance when n� m.

Backprop generates a hint about which direction to change θ, but
the trainer determines how this hint is used.



5/32

Outline

1 Feedforward neural networks

2 Recurrent neural networks

3 Cartesian differential categories

4 Stateful computations / functions

5 Lifting Cartesian differential structure to stateful functions



6/32

Recurrent neural networks

Recurrent neural networks (RNNs) are able to process
variable-length inputs using state, which is stored in registers:

ψ
i

x y
Ψ :

A common semantics of RNNs uses the unrollings of the network:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2



6/32

Recurrent neural networks

Recurrent neural networks (RNNs) are able to process
variable-length inputs using state, which is stored in registers:

ψ
i

x y
Ψ :

A common semantics of RNNs uses the unrollings of the network:

U0Ψ : ψi

U1Ψ : ψi

ψ

U2Ψ : ψi

ψ
ψ

x0

x0

x0
x1
x2

x1

y0

y1

y2



7/32

Backpropagation through time

Infinite-dimensional derivatives for sequence-to-sequence functions
must be approximated to be computationally useful.

Backpropagation through time (BPTT): Whenever the derivative
of Ψ is needed at an input of length k + 1, the derivative of UkΨ
is used instead.

This is a good way to generate hints, but it opens some questions:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Did we lose the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common, so their derivatives
should as well. Is there a more compact representation for the
derivative of Ψ than a sequence of functions?



7/32

Backpropagation through time

Infinite-dimensional derivatives for sequence-to-sequence functions
must be approximated to be computationally useful.

Backpropagation through time (BPTT): Whenever the derivative
of Ψ is needed at an input of length k + 1, the derivative of UkΨ
is used instead.

This is a good way to generate hints, but it opens some questions:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Did we lose the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common, so their derivatives
should as well. Is there a more compact representation for the
derivative of Ψ than a sequence of functions?



7/32

Backpropagation through time

Infinite-dimensional derivatives for sequence-to-sequence functions
must be approximated to be computationally useful.

Backpropagation through time (BPTT): Whenever the derivative
of Ψ is needed at an input of length k + 1, the derivative of UkΨ
is used instead.

This is a good way to generate hints, but it opens some questions:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Did we lose the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common, so their derivatives
should as well. Is there a more compact representation for the
derivative of Ψ than a sequence of functions?



7/32

Backpropagation through time

Infinite-dimensional derivatives for sequence-to-sequence functions
must be approximated to be computationally useful.

Backpropagation through time (BPTT): Whenever the derivative
of Ψ is needed at an input of length k + 1, the derivative of UkΨ
is used instead.

This is a good way to generate hints, but it opens some questions:

1 Uk(Ψ ◦Φ) 6= UkΨ ◦ UkΦ. Did we lose the chain rule? What
properties of derivatives hold for BPTT?

2 UkΨ and Uk+1Ψ have a lot in common, so their derivatives
should as well. Is there a more compact representation for the
derivative of Ψ than a sequence of functions?



8/32

Understanding BPTT with category theory

The project: start in a category with some notion of derivative,
add a mechanism for state, and extend the original notion of
differentiation to the stateful setting.

Two main parts:
1 Adding state to computations

1 Relatively common, back to Katis, Sabadini, & Walters ‘97
2 Digital circuits—Ghica & Jung, ‘16
3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

2 Differentiation for stateful computations

1 Not so common
2 Cartesian differential categories—Blute, Cockett, Seely ‘09
3 (Backprop as Functor—Fong, Spivak, Tuyéras, ‘17)
4 (Simple Essence of Automatic Differentiation—Elliott ‘18)



8/32

Understanding BPTT with category theory

The project: start in a category with some notion of derivative,
add a mechanism for state, and extend the original notion of
differentiation to the stateful setting.

Two main parts:
1 Adding state to computations

1 Relatively common, back to Katis, Sabadini, & Walters ‘97
2 Digital circuits—Ghica & Jung, ‘16
3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

2 Differentiation for stateful computations

1 Not so common
2 Cartesian differential categories—Blute, Cockett, Seely ‘09
3 (Backprop as Functor—Fong, Spivak, Tuyéras, ‘17)
4 (Simple Essence of Automatic Differentiation—Elliott ‘18)



8/32

Understanding BPTT with category theory

The project: start in a category with some notion of derivative,
add a mechanism for state, and extend the original notion of
differentiation to the stateful setting.

Two main parts:
1 Adding state to computations

1 Relatively common, back to Katis, Sabadini, & Walters ‘97
2 Digital circuits—Ghica & Jung, ‘16
3 Signal flow graphs—Bonchi, Sobociński, & Zanasi, ‘14

2 Differentiation for stateful computations
1 Not so common
2 Cartesian differential categories—Blute, Cockett, Seely ‘09
3 (Backprop as Functor—Fong, Spivak, Tuyéras, ‘17)
4 (Simple Essence of Automatic Differentiation—Elliott ‘18)



9/32

Outline

1 Feedforward neural networks

2 Recurrent neural networks

3 Cartesian differential categories

4 Stateful computations / functions

5 Lifting Cartesian differential structure to stateful functions



10/32

Cartesian differential categories [Blute, Cockett, Seely ’09]

A Cartesian differential category has a differential operation on
morphisms sending f : X → Y to Df : X ×X → Y , satisfying
seven axioms:

CD1. Ds =
s

for s ∈ {idX , σX,Y , !X ,∆X , 0X ,+X}.

CD2. Df
0

=
0

CD3. Df
+

= Df

Df
+

CD4. D( =
f

Df
Dgf g )

CD5. =
Dg

Df
D(

f

g
)



11/32

Cartesian differential category axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
maps between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.



11/32

Cartesian differential category axioms, continued

CD6. DDf0 = Df

CD7. DDf = DDf

Example

Objects of the category Euc∞ are Rn for n ∈ N, maps are smooth
maps between them. Euc∞ is a Cartesian differential category
with the (curried) Jacobian sending f : Rn → Rm to
Df : (∆x, x) 7→ Jf |x ×∆x.



12/32

Differentiating the unrollings of a simple RNN

D( =)ψi Dψ
i

0

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ



12/32

Differentiating the unrollings of a simple RNN

D( =)ψi Dψ
i

0

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ



12/32

Differentiating the unrollings of a simple RNN

D( =)ψi Dψ
i

0

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ



13/32

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

This suggests a hypothesis:

D∗ ,ψ
i

D∗ψ
ψ

0

i



13/32

D( =)
Dψ

i

0

ψi
ψ

ψ
Dψ

ψ

ψ
Dψ

This suggests a hypothesis:

D∗ ,ψ
i

D∗ψ
ψ

0

i



14/32

Outline

1 Feedforward neural networks

2 Recurrent neural networks

3 Cartesian differential categories

4 Stateful computations / functions

5 Lifting Cartesian differential structure to stateful functions



15/32

Stateful computations

Let (C,×, 1) be a strict Cartesian
category, whose morphisms we
think of as stateless functions. A
stateful sequence computation
looks like this:

Ψ0X0 Y0

S0

S1

1 1

1

...

··i

Ψ1X1 Y1

S2



15/32

Stateful computations

Let (C,×, 1) be a strict Cartesian
category, whose morphisms we
think of as stateless functions. A
stateful sequence computation
looks like this:

(This is a sequence of 2-cells in a
double category based on C, with
a restriction on the first 2-cell.)

Ψ0X0 Y0

S0

S1

1 1

1

...

··i

Ψ1X1 Y1

S2



16/32

Stateful functions

Two computation sequences might have different state spaces and
still compute the same function. For example:

1 1

1

...

X0 X0

X1 X1

1

1

1

1 1

1

...

··i

X0 X0

X1 X1

S

S

S



17/32

Stateful functions

The nth truncation of a computation sequence is the morphism of
the vertical composite of the first n+ 1 steps:

X0 Y0

...

Xn Yn

...
...

× ×

× ×

ψ0

i

ψn

Definition

Two computation sequences are extensionally equivalent means
they have the same nth truncation for all n ∈ N. A stateful
(sequence) function is an extensional equivalence class of
computation sequences.



18/32

Stateful functions

Definition

If C is a strict Cartesian category, then its stateful sequence
extension is a category St(C) where

objects are infinite sequences of objects in C and

morphisms are stateful functions Ψ : X→ Y.



19/32

Example computation sequences

Here is i as a computation
sequence:

1 1

1

...

··i

X

XX

X

XX

X



20/32

Example computation sequences

Here is × as a

computation sequence:

1 1

1

...

×

×

X ×X X ×X

1

1

1

X ×X X ×X

1 1

1

...

×

×

··1

X X

X

X X

X

X



20/32

Example computation sequences

Here is × as a

computation sequence:

1 1

1

...

×

×

X ×X X ×X

1

1

1

X ×X X ×X

Here is × 1 as a

computation sequence:

1 1

1

...

×

×

··1

X X

X

X X

X

X



21/32

Delayed trace

This loop-with-delay-gate is a trace-like operation.

ψ : S ×X → S × Y ψ

dtrSi (ψ) : X → Y ψ
i

It satisfies most of the the trace axioms but misses two: yanking
and dinaturality. For regular trace, those are

= f
g

f
g=



22/32

Dinaturality → retiming

f
ig

f
g(i)g=

1 1

1

...

f
g

··g(i)

f
g

1 1

1

...

f
g

··

=

f
g

i



23/32

Yanking → delay

i i
=

1 1

1

...

··i1 1

1

...

··

=

i



24/32

Outline

1 Feedforward neural networks

2 Recurrent neural networks

3 Cartesian differential categories

4 Stateful computations / functions

5 Lifting Cartesian differential structure to stateful functions



25/32

Differentiation for stateful functions

Let C be Cartesian differential with differential operator D. The
following is a Cartesian differential operator on St(C):

ψX Y

S

S′

1

1

1 i

...

D∗ =

1

1

1 0 i

Dψ

ψ

S S

X

X

Y

S′S′ ...



26/32

D∗ is a Cartesian differential operator

Proof idea. For CD2: Df
0

=
0

1

1

1 0 i

Dφ

φ

0

X

Y

...



26/32

D∗ is a Cartesian differential operator

Proof idea. For CD2: Df
0

=
0

1

1

1 0 i

Dφ

φ

0

X

Y

?? ...

0 •



26/32

D∗ is a Cartesian differential operator

Proof idea. For CD2: Df
0

=
0

1

1

1 0 i

Dφ

φ

0

0 •

X

Y

?? ...

1

1

1 0 i

φ

0 •

X

Y

•0 ...

0

0

=



27/32

D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

...

φ

i

Dψ

ψ

0 j

=

Dφ
Dψ

φ

0 i0 j

φ ψ

...



27/32

D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

F �

...

φ

i

Dψ

ψ

0 j

� � •

=

Dφ
Dψ

φ

0 i0 j

φ ψ

F �� •

...



27/32

D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

F �

...

φ

i

Dψ

ψ

0 j

� � •

=

Dφ
Dψ

φ

0 i0 j

φ ψ

F �� •

...

FF



27/32

D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

F �

...

φ

i

Dψ

ψ

0 j

� � •

=

Dφ
Dψ

φ

0 i0 j

φ ψ

F �� •

...

F � �F �



27/32

D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

F �

...

φ

i

Dψ

ψ

0 j

� � •

=

Dφ
Dψ

φ

0 i0 j

φ ψ

F �� •

...

F � � �F ��



27/32

D∗ is a Cartesian differential operator

Proof idea. For CD4:
D( =

f

Df
Dgf g )

0 i

Dφ

φ

F �

...

φ

i

Dψ

ψ

0 j

� � •

=

Dφ
Dψ

φ

0 i0 j

φ ψ

F �� •

...

F � � � •F �� •



28/32

Differentiating RNNs

ψX Y

S

S′

1

1

1 i

...

D∗ =

1

1

1 0 i

Dψ

ψ

S S

X

X

Y

S′S′ ...

D∗ ,ψ
i

D∗ψ
ψ

0

i

S=S’

Theorem (D∗ matches BPTT)

The unrolling of D∗(i, [ψ]) is the component-wise application of D
to the unrolling of (i, [ψ]) (after a zipping morphism).



28/32

Differentiating RNNs

ψX Y

S

S′

1

1

1 i

...

D∗ =

1

1

1 0 i

Dψ

ψ

S S

X

X

Y

S′S′ ...

D∗ ,ψ
i

D∗ψ
ψ

0

i

S=S’

Theorem (D∗ matches BPTT)

The unrolling of D∗(i, [ψ]) is the component-wise application of D
to the unrolling of (i, [ψ]) (after a zipping morphism).



29/32

Future directions

Several obstacles prevent us from applying these ideas in practice
right away:

1 Use non-smooth, partly differentiable, or partial functions?

2 Can we get a transpose?

3 Better ways to represent non-mutable state?

There are some questions related to the theory that we would like
to understand better:

1 Categorical properties of St(−)?

2 Bisimulations and extensional equality?

3 D∗ and infinite-dimensional derivatives?

4 Basic results for delayed trace categories?

5 Other data shapes (trees, distributions, . . . )?



29/32

Future directions

Several obstacles prevent us from applying these ideas in practice
right away:

1 Use non-smooth, partly differentiable, or partial functions?

2 Can we get a transpose?

3 Better ways to represent non-mutable state?

There are some questions related to the theory that we would like
to understand better:

1 Categorical properties of St(−)?

2 Bisimulations and extensional equality?

3 D∗ and infinite-dimensional derivatives?

4 Basic results for delayed trace categories?

5 Other data shapes (trees, distributions, . . . )?



30/32

Summary

1 St(−) preserves Cartesian differential category structure.

2 This notion of differentiation is connected to BPTT.

3 Cartesian differential categories are a useful tool for organizing
unusual derivatives.

4 Machine learning needs compositional thinkers.



30/32

Summary

1 St(−) preserves Cartesian differential category structure.

2 This notion of differentiation is connected to BPTT.

3 Cartesian differential categories are a useful tool for organizing
unusual derivatives.

4 Machine learning needs compositional thinkers.



30/32

Summary

1 St(−) preserves Cartesian differential category structure.

2 This notion of differentiation is connected to BPTT.

3 Cartesian differential categories are a useful tool for organizing
unusual derivatives.

4 Machine learning needs compositional thinkers.



31/32

Thanks!



32/32

References
R.F. Blute, J.R.B. Cockett, and R.A.G. Seely.
Cartesian differential categories.
Theory and Applications of Categories, 22(23):622–672, 2009.

F. Bonchi, P. Sobociński, and F. Zanasi.
A categorical semantics of signal flow graphs.
In CONCUR 2014, 2014.

C. Elliott.
The simple essence of automatic differentiation.
PACMPL, 2(ICFP):70:1–70:29, 2018.

B. Fong, D. Spivak, and R. Tuyéras.
Backprop as functor: A compositional perspective on supervised learning.
See arxiv.org/abs/1711.10455, 2017.

D.R. Ghica and A. Jung.
Categorical semantics of digital circuits.
FMCAD ’16, Austin, TX, 2016.

P. Katis, N. Sabadini, and R.F.C. Walters.
Bicategories of processes.
Journal of Pure and Applied Algebra, 115(2):141–178, Feb 1997.

David Sprunger and Shin-ya Katsumata.
Differentiable causal computations via delayed trace.
CoRR, abs/1903.01093, 2019.

arxiv.org/abs/1711.10455

	Feedforward neural networks
	Recurrent neural networks
	Cartesian differential categories
	Stateful computations / functions
	Lifting Cartesian differential structure to stateful functions

