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Hilbert spaces are popular for reasoning about quantum theory, but
in many ways extraneous

(quantum states are one-dimensional subspaces, abstracting away
individual vectors)

Different simpler quantum structures highlight different aspects of
quantum reasoning

@ Complete orthomodular lattice: ortholattice of testable
properties
gives a static perspective

@ Orthomodular dynamic algebra: quantale of quantum actions
enriched with an orthogonality operator
gives dynamic perspective

A categorical equivalence between these structures clarifies how
these perspectives are related.




Complete orthomodular lattice
A complete orthomodular lattice

A structure (L, <, —1) such that

o (L, <) is a complete lattice (has arbitrary joins)

@ | is a lattice orthocomplement:
o | is a complement: aAat =0 andaVat =1.
o L isinvolutive: (at)t =a
e | is order reversing: a < b implies b <al

@ orthomodular (weakened distributivity) law holds: g < p

implies p A (p* V q) = q.

Example (Hilbert lattice)

closed subspaces of a Hilbert space.

The points of lattice are quantum testable properties.



Temporal structure of a complete orthomodular lattice

What about dynamics?

Sasaki hook and projection

Given testable properties p, g
def

o fP(q) = p* V (p A q) (hook)

The precondition of a projection onto p resulting in g
o f5(q) = pA(p* V q) (projection)

The result of projecting g onto p




Quantales: giving dynamics higher status

A quantale (“quantum locale”) is a tuple (Q,C,-), such that

e (Q,C) is sup-lattice (complete lattice)
e (Q,-) is a monoid satisfying the following distributive laws

a-| |S=||{a-p|be S} | |S-a=| |[{b-a|be S}

Perspective

Quantales relate to operator algebras: the points of a quantale can
be thought of as operators on a Hilbert space.

Temporal meaning from monoidal composition

a- b read “a after b” (quantum observables are not commutative)




An application: dynamics acting on states

e @ - a quantale (a set with certain algebraic structure)
Elements of @: nondeterministic “actions” or “observations”
@ M - module over @
Elements of M: nondeterministic “states” or “processes”
e x:QxM-—-M
“action” of quantale @ on module M

Abramsky & Vickers. Quantales, observational logic and process
semantics. MSCS 1993. J




Quantum dynamic algebra

Baltag and Smets introduce a Quantum dynamic algebra: A
quantale augmented with an orthogonality operator ~

Baltag and Smets. Complete Axiomatizations for Quantum Actions.
International Journal of Theoretical Physics, 2005. J

We modify their definition to ensure categorical equivalences with
complete orthomodular lattices.



Generalized dynamic algebra

A quantum dynamic algebra is a type of generalized dynamic
algebra.

Definition (Generalized dynamic algebra)

A Genaralized dynamic algebra is a tuple Q = (Q,| |, -, ~), such
that

@ Q is a set of quantum actions (typically infinite)
o | |:P(Q)— Q (for choice),

@ - : Q x Q@ — Q (for sequential observation or action)

@ ~: Q — Q (similar to an orthocomplement)




Generalized dynamic algebra concepts

Given a generalized dynamic algebra Q = (Q, | |,-,~)
(xEy)iff (xUy =)

Potential lattice of “projectors” inside £Q:

Pa £ {~x|xeQ}
VX = ~~X for all X C Pg
AX  E ~l~X for all X C Py

A<B & AANB=A for all A, B € Pq

Observed action and equivalence:
Fx™ « Ay.~~(x - y)
x=y <« "x7(p)="y (p)for all p € Py

Potential “atoms” of £ built from Pq.

@ 75 is the smallest superset of Py closed under composition
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Concrete example: a Hilbert space realization

‘H - Hilbert space
Py - the set of singleton sets of projectors P4 onto closed linear
subspaces A.

Example
Q=(Q,|],-,~), where

@ Q = P(T3) where Ty is the smallest superset of Py closed
under composition. (An element of Q is a set)

@ || is just the union operation
(union of sets of functions, not unions of functions)

o -isdefined by A-B={aob|ac A bec B}
(function composition of each pair of functions)

o ~ is defined by ~A = {Pg.} where B = Im({J,c4 ).




Quantale inside our Hilbert space realization

The Hilbert space realization satisfies:
e (Q,C,) is a quantale:
e (Q,C) is a complete lattice
e (Q,) is a monoid, where

a-| |S=| [{a-b|be S}
| |S-a=| [{b-albe S}

0 Py ="Py

o 7?3 = TH.

o (Pq, =X, ~) is a Hilbert lattice, and hence a complete
orthomodular lattice.

The orthogonality operator ~ is not a lattice orthocompletent for
the quantale lattice, but for the induced lattice (Pq, <, ~).
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Orthomodular dynamic algebra (ODA)

A generalized dynamic algebra Q = (Q,| ], -, ~) is an orthomodular
dynamic algebra if for all p,q € Pq, x,y € Tq, and X, Y C Tq:

O (Q,LC,-) is a quantale and | | is its arbitrary join.
Q@ (Pq,=,~) is a complete orthomodular lattice

@ Q is generated from Pgq by - and | | (minimality)
(ensures @ does not have too many elements.)

Q x =y iff x = y (completeness)
(ensures distinct behavior of distinct elements.)
Q@ || X =|]Y iff X =Y (atomicity)
Q@ "p(q) = fp(q) (i.e. ~~(p-q) = pA(~pV q)) (Sasaki
projection)
(connects monoidal to orthomodular lattice dynamics)
@ "x(y) ="x"(~~y) (composition)
("x7 acting on Q is fully determined by its action on Pq)
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Category of Complete Orthomodular Lattices

Let I be the category with

Object: Complete orthomodular lattices J

Morphisms: Ortholattice isomorphisms:
Bijections k preserving order and orthocomplementation:
o p <y qifand only if k(p) <2 k(q)
o k(p*) = (k(p))*2.
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Category of Orthomodular Dynamic Algebras

Let Q be the category with

Objects: Orthomodular dynamic algebras J

Morphisms: Functions 6 : Q — R satisfying:
@ 0 preserves -, | |.

@ The restriction of 6 to Py (the image of @ under ~) is on
ortholattice isomorphism (hence maps Py to Pyx)
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Categorical equivalence

Definition (Categorical Equivalence)
An equivalence between categories I and QQ is a pair of covariant
functors
(F:L-QU:Q—1L)
such that
© there is a natural isomorphism 77 : 1g = Fo U
@ there is a natural isomorphism 7 : 1, - UoF
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Translation F : L. — Q from lattice to algebra

Let £ = (L, <,—") be a complete orthomodular lattice. Define

F1 = smallest set containing {f, | p € L},
closed under composition
Q = P(Fr)
A-B = {fog|feAgeB}
~A = fya(1))acay,  (where | = /\@ is the top element)

Then F(£) =(Q,,~)

If k: £L1 — L5 is a morphism (ortholattice isomorphism), then
F(k): A— {koaok™|ac A} conjugates every element of
input A by k.




A useful property: preservation of projectors

If p € Ly, then ko fyo k™t = fi(y).

For b € L,

Ur(fo)(b) = ko f 0 k~*(b)
= k(p A (p"V k7Y(b)))
= k(p) A ((k(p))" V b)
= fi(p)() 0
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Translation U : Q — L from algebra to lattice

U maps an ODA to the orthomodular lattice it induces:
U(Q) = (Pa, =, ~)

| \

on morphisms
U maps each morphism to its restriction to Py: if ( : Q1 — 2>,
then U(C) = (lp,-

N




The functors FoU and Uo F

The elements of (F o U)(Q) are
{{fayo---0ofy, |a1-----a, e X,neN} | X CTq}
If : Q1 — Q> is a Q-morphism, then

(FoU)(Q)({fay0---0fs, |ar -+ an € X,n €N})
:{f—g(al)o..-ofc(an) | ap - an€X7nEN}.

The elements of (U o F)(£)

{f} [pe L}

If k:£1 — £5 is a L-morphism, then

(FoU)(K)({%}) = {fup}
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The natural isomorphisms

Let 9Q be an ODA. Then

na : (|_| ajg al',ni)) — {fai,l 0---0 faf,ni}iel'
i€l

Let £ be a lattice in L, then

1o a {fa}
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Conclusion and future work

@ Connect quantales to quantum structures: Showed what
conditions can be placed on a complemented quantale
(orthomodular dynamic algebra) to be categorically equivalent
to a complete orthomodular lattice.

@ Future work: is this the right definition of an ODA?

o Can weaker morphisms be used?
o Rather then sets of functions, consider relations instead

@ Future work: involve unitary operations

@ Future work: establish a clearer connection to operator
algebras

@ Future work: develop modules for ODA's to act upon

@ Future work: develop a logic on ODA’s and compare it to
logics on lattices they are equivalent to.
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THANK YOU!
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