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Context

Hilbert spaces are popular for reasoning about quantum theory, but
in many ways extraneous
(quantum states are one-dimensional subspaces, abstracting away
individual vectors)

Different simpler quantum structures highlight different aspects of
quantum reasoning

Complete orthomodular lattice: ortholattice of testable
properties
gives a static perspective

Orthomodular dynamic algebra: quantale of quantum actions
enriched with an orthogonality operator
gives dynamic perspective

A categorical equivalence between these structures clarifies how
these perspectives are related.

2



Context

Hilbert spaces are popular for reasoning about quantum theory, but
in many ways extraneous
(quantum states are one-dimensional subspaces, abstracting away
individual vectors)

Different simpler quantum structures highlight different aspects of
quantum reasoning

Complete orthomodular lattice: ortholattice of testable
properties
gives a static perspective

Orthomodular dynamic algebra: quantale of quantum actions
enriched with an orthogonality operator
gives dynamic perspective

A categorical equivalence between these structures clarifies how
these perspectives are related.

2



Context

Hilbert spaces are popular for reasoning about quantum theory, but
in many ways extraneous
(quantum states are one-dimensional subspaces, abstracting away
individual vectors)

Different simpler quantum structures highlight different aspects of
quantum reasoning

Complete orthomodular lattice: ortholattice of testable
properties
gives a static perspective

Orthomodular dynamic algebra: quantale of quantum actions
enriched with an orthogonality operator
gives dynamic perspective

A categorical equivalence between these structures clarifies how
these perspectives are related.

2



Context

Hilbert spaces are popular for reasoning about quantum theory, but
in many ways extraneous
(quantum states are one-dimensional subspaces, abstracting away
individual vectors)

Different simpler quantum structures highlight different aspects of
quantum reasoning

Complete orthomodular lattice: ortholattice of testable
properties
gives a static perspective

Orthomodular dynamic algebra: quantale of quantum actions
enriched with an orthogonality operator
gives dynamic perspective

A categorical equivalence between these structures clarifies how
these perspectives are related.

2



Complete orthomodular lattice

A complete orthomodular lattice

A structure (L,≤,−⊥) such that

(L,≤) is a complete lattice (has arbitrary joins)

⊥ is a lattice orthocomplement:

⊥ is a complement: a ∧ a⊥ = O and a ∨ a⊥ = I .
⊥ is involutive: (a⊥)⊥ = a
⊥ is order reversing: a ≤ b implies b⊥ ≤ a⊥.

orthomodular (weakened distributivity) law holds: q ≤ p
implies p ∧ (p⊥ ∨ q) = q.

Example (Hilbert lattice)

closed subspaces of a Hilbert space.

The points of lattice are quantum testable properties.
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Temporal structure of a complete orthomodular lattice

What about dynamics?

Sasaki hook and projection

Given testable properties p, q

f p(q)
def
= p⊥ ∨ (p ∧ q) (hook)

The precondition of a projection onto p resulting in q

fp(q)
def
= p ∧ (p⊥ ∨ q) (projection)

The result of projecting q onto p

4



Quantales: giving dynamics higher status

Definition

A quantale (“quantum locale”) is a tuple (Q,v, · ), such that

(Q,v) is sup-lattice (complete lattice)

(Q, · ) is a monoid satisfying the following distributive laws

a ·
⊔

S =
⊔
{a · b | b ∈ S}

⊔
S · a =

⊔
{b · a | b ∈ S}

Perspective

Quantales relate to operator algebras: the points of a quantale can
be thought of as operators on a Hilbert space.

Temporal meaning from monoidal composition

a · b read “a after b” (quantum observables are not commutative)
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An application: dynamics acting on states

Q - a quantale (a set with certain algebraic structure)
Elements of Q: nondeterministic “actions” or “observations”

M - module over Q
Elements of M: nondeterministic “states” or “processes”

? : Q ×M → M
“action” of quantale Q on module M

Abramsky & Vickers. Quantales, observational logic and process

semantics. MSCS 1993.
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Quantum dynamic algebra

Baltag and Smets introduce a Quantum dynamic algebra: A
quantale augmented with an orthogonality operator ∼

Baltag and Smets. Complete Axiomatizations for Quantum Actions.

International Journal of Theoretical Physics, 2005.

We modify their definition to ensure categorical equivalences with
complete orthomodular lattices.
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Generalized dynamic algebra

A quantum dynamic algebra is a type of generalized dynamic
algebra.

Definition (Generalized dynamic algebra)

A Genaralized dynamic algebra is a tuple Q = (Q,
⊔
, ·,∼), such

that

Q is a set of quantum actions (typically infinite)⊔
: P(Q)→ Q (for choice),

· : Q × Q → Q (for sequential observation or action)

∼ : Q → Q (similar to an orthocomplement)
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Generalized dynamic algebra concepts

Given a generalized dynamic algebra Q = (Q,
⊔
, ·,∼)

(x v y) iff (x t y = y)

Potential lattice of “projectors” inside Q:

PQ
def
= {∼x | x ∈ Q}∨

X
def
= ∼∼

⊔
X for all X ⊆ PQ∧

X
def
= ∼

⊔
∼X for all X ⊆ PQ

A � B ⇔ A ∧ B = A for all A,B ∈ PQ

Observed action and equivalence:

pxq
def
= λy .∼∼(x · y)

x ≡ y ↔ pxq(p) = pyq(p)for all p ∈ PQ

Potential “atoms” of Q built from PQ.

TQ is the smallest superset of PQ closed under composition
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Concrete example: a Hilbert space realization

H - Hilbert space
PH - the set of singleton sets of projectors PA onto closed linear
subspaces A.

Example

Q = (Q,
⊔
, ·,∼), where

Q = P(TH) where TH is the smallest superset of PH closed
under composition. (An element of Q is a set)⊔

is just the union operation
(union of sets of functions, not unions of functions)

· is defined by A · B = {a ◦ b | a ∈ A, b ∈ B}
(function composition of each pair of functions)

∼ is defined by ∼A = {PB⊥} where B = Im(
⋃

a∈A a).
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Quantale inside our Hilbert space realization

The Hilbert space realization satisfies:

(Q,v, · ) is a quantale:

(Q,v) is a complete lattice
(Q, ·) is a monoid, where

a ·
⊔

S =
⊔
{a · b | b ∈ S}⊔

S · a =
⊔
{b · a | b ∈ S}

PQ = PH
TQ = TH.

(PQ,�,∼) is a Hilbert lattice, and hence a complete
orthomodular lattice.

The orthogonality operator ∼ is not a lattice orthocompletent for
the quantale lattice, but for the induced lattice (PQ,�,∼).
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Orthomodular dynamic algebra (ODA)

A generalized dynamic algebra Q = (Q,
⊔
, ·,∼) is an orthomodular

dynamic algebra if for all p, q ∈ PQ, x , y ∈ TQ, and X ,Y ⊆ TQ:

1 (Q,v, ·) is a quantale and
⊔

is its arbitrary join.

2 (PQ,�,∼) is a complete orthomodular lattice

3 Q is generated from PQ by · and
⊔

(minimality)
(ensures Q does not have too many elements.)

4 x = y iff x ≡ y (completeness)
(ensures distinct behavior of distinct elements.)

5
⊔
X =

⊔
Y iff X = Y (atomicity)

6 ppq(q) = fp(q) (i.e. ∼∼(p · q) = p ∧ (∼p ∨ q)) (Sasaki
projection)
(connects monoidal to orthomodular lattice dynamics)

7 pxq(y) = pxq(∼∼y) (composition)
(pxq acting on Q is fully determined by its action on PQ)
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Category of Complete Orthomodular Lattices

Let L be the category with

Object: Complete orthomodular lattices

Morphisms: Ortholattice isomorphisms:

Bijections k preserving order and orthocomplementation:

p ≤1 q if and only if k(p) ≤2 k(q)
k(p⊥1) = (k(p))⊥2 .
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Category of Orthomodular Dynamic Algebras

Let Q be the category with

Objects: Orthomodular dynamic algebras

Morphisms: Functions θ : Q→ R satisfying:

θ preserves ·,
⊔

.

The restriction of θ to PQ (the image of Q under ∼) is on
ortholattice isomorphism (hence maps PQ to PR)
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Categorical equivalence

Definition (Categorical Equivalence)

An equivalence between categories L and Q is a pair of covariant
functors

(F : L→ Q,U : Q→ L)

such that

1 there is a natural isomorphism η : 1Q → F ◦U
2 there is a natural isomorphism τ : 1L → U ◦ F
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Translation F : L→ Q from lattice to algebra

on objects

Let L = (L,≤,−⊥) be a complete orthomodular lattice. Define

FT = smallest set containing {fp | p ∈ L},
closed under composition

Q = P(FT )

A · B = {f ◦ g | f ∈ A, g ∈ B}
∼A = f∨{a(I )|a∈A}, (where I =

∧
∅ is the top element)

Then F(L) = (Q, ·,∼)

on morphisms

If k : L1 → L2 is a morphism (ortholattice isomorphism), then
F (k) : A→ {k ◦ a ◦ k−1 | a ∈ A} conjugates every element of
input A by k .
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A useful property: preservation of projectors

If p ∈ L1, then k ◦ fp ◦ k−1 = fk(p).

Proof.

For b ∈ L2,

ψk(fp)(b) = k ◦ fp ◦ k−1(b)

= k(p ∧ (p⊥ ∨ k−1(b)))

= k(p) ∧ ((k(p))⊥ ∨ b)

= fk(p)(b)
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Translation U : Q→ L from algebra to lattice

on objects

U maps an ODA to the orthomodular lattice it induces:
U(Q) = (PQ,�,∼).

on morphisms

U maps each morphism to its restriction to PQ: if ζ : Q1 → Q2,
then U(ζ) = ζ|PQ

.
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The functors F ◦U and U ◦ F

The elements of (F ◦U)(Q) are

{{fa1 ◦ · · · ◦ fan | a1 · · · · · an ∈ X , n ∈ N} | X ⊆ TQ}

If ζ : Q1 → Q2 is a Q-morphism, then

(F ◦U)(ζ)({fa1 ◦ · · · ◦ fan | a1 · · · · · an ∈ X , n ∈ N})
={fζ(a1) ◦ · · · ◦ fζ(an) | a1 · · · · · an ∈ X , n ∈ N}.

The elements of (U ◦ F)(L)

{{fp} | p ∈ L}

If k : L1 → L2 is a L-morphism, then

(F ◦U)(k)({fp}) = {fk(p)}
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The natural isomorphisms

η : 1Q → F ◦U
Let Q be an ODA. Then

ηQ : (
⊔
i∈I

ai ,1 · · · · · ai ,ni )) 7→ {fai,1 ◦ · · · ◦ fai,ni }i∈I .

τ : 1Lb
→ U ◦ F

Let L be a lattice in L, then

τL : a 7→ {fa}
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Conclusion and future work

Connect quantales to quantum structures: Showed what
conditions can be placed on a complemented quantale
(orthomodular dynamic algebra) to be categorically equivalent
to a complete orthomodular lattice.

Future work: is this the right definition of an ODA?

Can weaker morphisms be used?
Rather then sets of functions, consider relations instead

Future work: involve unitary operations

Future work: establish a clearer connection to operator
algebras

Future work: develop modules for ODA’s to act upon

Future work: develop a logic on ODA’s and compare it to
logics on lattices they are equivalent to.

Thank you!
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