Equivalence between Orthocomplemented Quantales and Complete Orthomodular Lattices.

Kohei Kishida¹, Soroush Rafiee Rad², **Joshua Sack**³, Shengyang Zhong⁴

¹ Dalhousie University
 ² University of Bayreuth
 ³ California State University Long Beach
 ⁴ Peking University

SYCO 4, Chapman University, May 23, 2019

Hilbert spaces are popular for reasoning about quantum theory, but in many ways extraneous (quantum states are one-dimensional subspaces, abstracting away individual vectors)

Different simpler quantum structures highlight different aspects of quantum reasoning

- Complete orthomodular lattice: ortholattice of testable properties
 - gives a *static* perspective
- Orthomodular dynamic algebra: quantale of quantum actions enriched with an orthogonality operator gives *dynamic* perspective

Hilbert spaces are popular for reasoning about quantum theory, but in many ways extraneous (quantum states are one-dimensional subspaces, abstracting away individual vectors)

Different simpler quantum structures highlight different aspects of quantum reasoning

- Complete orthomodular lattice: ortholattice of testable properties gives a *static* perspective
- Orthomodular dynamic algebra: quantale of quantum actions enriched with an orthogonality operator gives *dynamic* perspective

Hilbert spaces are popular for reasoning about quantum theory, but in many ways extraneous (quantum states are one-dimensional subspaces, abstracting away individual vectors)

Different simpler quantum structures highlight different aspects of quantum reasoning

- Complete orthomodular lattice: ortholattice of testable properties gives a *static* perspective
- Orthomodular dynamic algebra: quantale of quantum actions enriched with an orthogonality operator gives *dynamic* perspective

Hilbert spaces are popular for reasoning about quantum theory, but in many ways extraneous (quantum states are one-dimensional subspaces, abstracting away individual vectors)

Different simpler quantum structures highlight different aspects of quantum reasoning

- Complete orthomodular lattice: ortholattice of testable properties gives a *static* perspective
- Orthomodular dynamic algebra: quantale of quantum actions enriched with an orthogonality operator gives *dynamic* perspective

A complete orthomodular lattice

A structure $(L, \leq, -^{\perp})$ such that

- (L, \leq) is a complete lattice (has arbitrary joins)
- \perp is a lattice orthocomplement:
 - \perp is a complement: $a \wedge a^{\perp} = O$ and $a \vee a^{\perp} = I$.
 - \perp is involutive: $(a^{\perp})^{\perp} = a$
 - \perp is order reversing: $a \leq b$ implies $b^{\perp} \leq a^{\perp}$.
- orthomodular (weakened distributivity) law holds: q ≤ p implies p ∧ (p[⊥] ∨ q) = q.

Example (Hilbert lattice)

closed subspaces of a Hilbert space.

The points of lattice are quantum testable properties.

What about dynamics?

Sasaki hook and projection

Given testable properties p, q

• $f^p(q) \stackrel{\text{def}}{=} p^{\perp} \lor (p \land q)$ (hook) The precondition of a projection onto p resulting in q

•
$$f_p(q) \stackrel{\text{def}}{=} p \land (p^{\perp} \lor q)$$
 (projection)
The result of projecting q onto p

Definition

A quantale ("quantum locale") is a tuple (Q, \sqsubseteq, \cdot) , such that

- (Q, \sqsubseteq) is sup-lattice (complete lattice)
- $\bullet~({\it Q},\cdot\,)$ is a monoid satisfying the following distributive laws

$$a \cdot \bigsqcup S = \bigsqcup \{a \cdot b \mid b \in S\}$$
 $\bigsqcup S \cdot a = \bigsqcup \{b \cdot a \mid b \in S\}$

Perspective

Quantales relate to operator algebras: the points of a quantale can be thought of as operators on a Hilbert space.

Temporal meaning from monoidal composition

 $a \cdot b$ read "a after b" (quantum observables are not commutative)

An application: dynamics acting on states

- Q a quantale (a set with certain algebraic structure)
 Elements of Q: nondeterministic "actions" or "observations"
- M module over Q
 Elements of M: nondeterministic "states" or "processes"
- $\star : Q \times M \to M$

"action" of quantale Q on module M

Abramsky & Vickers. Quantales, observational logic and process semantics. MSCS 1993.

Baltag and Smets introduce a Quantum dynamic algebra: A quantale augmented with an orthogonality operator \sim

Baltag and Smets. Complete Axiomatizations for Quantum Actions. International Journal of Theoretical Physics, 2005.

We modify their definition to ensure categorical equivalences with complete orthomodular lattices.

A quantum dynamic algebra is a type of generalized dynamic algebra.

Definition (Generalized dynamic algebra)

A Genaralized dynamic algebra is a tuple $\mathfrak{Q} = (Q, \bigsqcup, \cdot, \sim)$, such that

• Q is a set of quantum actions (typically infinite)

•
$$\sqcup : \mathcal{P}(Q) \to Q$$
 (for choice)

- $\cdot: Q \times Q \rightarrow Q$ (for sequential observation or action)
- $\sim : Q \rightarrow Q$ (similar to an orthocomplement)

Generalized dynamic algebra concepts

Given a generalized dynamic algebra $\mathfrak{Q} = (Q, \bigsqcup, \cdot, \sim)$ $(x \bigsqcup y)$ iff $(x \sqcup y = y)$

Potential lattice of "projectors" inside \mathfrak{Q} :

$$\begin{array}{lll} \mathcal{P}_{\mathfrak{Q}} & \stackrel{\text{def}}{=} & \{\sim x \mid x \in Q\} \\ \bigvee X & \stackrel{\text{def}}{=} & \sim \sim \bigsqcup X & \text{for all } X \subseteq \mathcal{P}_{\mathfrak{Q}} \\ \bigwedge X & \stackrel{\text{def}}{=} & \sim \bigsqcup \sim X & \text{for all } X \subseteq \mathcal{P}_{\mathfrak{Q}} \\ A \preceq B & \Leftrightarrow & A \land B = A & \text{for all } A, B \in \mathcal{P}_{\mathfrak{Q}} \end{array}$$

Observed action and equivalence:

$$\begin{bmatrix} \mathbf{x}^{\neg} & \stackrel{\text{def}}{=} & \lambda y. \sim \sim (x \cdot y) \\ x \equiv y & \leftrightarrow & \lceil x^{\neg}(p) = \lceil y^{\neg}(p) \text{ for all } p \in \mathcal{P}_{\mathfrak{Q}} \end{bmatrix}$$

Potential "atoms" of \mathfrak{Q} built from $\mathcal{P}_{\mathfrak{Q}}$.

• $\mathcal{T}_{\mathfrak{Q}}$ is the smallest superset of $\mathcal{P}_{\mathfrak{Q}}$ closed under composition

Concrete example: a Hilbert space realization

 \mathcal{H} - Hilbert space

 $\mathcal{P}_{\mathcal{H}}$ - the set of singleton sets of projectors P_A onto closed linear subspaces A.

Example

$\mathfrak{Q} = (\mathcal{Q}, igsqcup, \cdot, \sim)$, where

- $Q = \mathcal{P}(\mathcal{T}_{\mathcal{H}})$ where $\mathcal{T}_{\mathcal{H}}$ is the smallest superset of $\mathcal{P}_{\mathcal{H}}$ closed under composition. (An element of Q is a set)
- [] is just the union operation (union of sets of functions, not unions of functions)
- is defined by A ⋅ B = {a ∘ b | a ∈ A, b ∈ B} (function composition of each pair of functions)

• ~ is defined by
$$\sim A = \{P_{B^{\perp}}\}$$
 where $B = Im(\bigcup_{a \in A} a)$.

Quantale inside our Hilbert space realization

The Hilbert space realization satisfies:

- (Q, \sqsubseteq, \cdot) is a quantale:
 - (Q, \sqsubseteq) is a complete lattice
 - (Q, \cdot) is a monoid, where

$$a \cdot \bigsqcup S = \bigsqcup \{a \cdot b \mid b \in S\}$$
$$\bigsqcup S \cdot a = \bigsqcup \{b \cdot a \mid b \in S\}$$

•
$$\mathcal{P}_{\mathfrak{Q}} = \mathcal{P}_{\mathcal{H}}$$

•
$$\mathcal{T}_{\mathfrak{Q}} = \mathcal{T}_{\mathcal{H}}.$$

(P_D, ≤, ~) is a Hilbert lattice, and hence a complete orthomodular lattice.

The orthogonality operator \sim is not a lattice orthocompletent for the quantale lattice, but for the induced lattice ($\mathcal{P}_{\mathfrak{Q}}, \preceq, \sim$).

・ロン ・雪 と ・ ヨ と ・

Э

Orthomodular dynamic algebra (ODA)

A generalized dynamic algebra $\mathfrak{Q} = (Q, \bigsqcup, \cdot, \sim)$ is an orthomodular dynamic algebra if for all $p, q \in \mathcal{P}_{\mathfrak{Q}}$, $x, y \in \mathcal{T}_{\mathfrak{Q}}$, and $X, Y \subseteq \mathcal{T}_{\mathfrak{Q}}$:

• (Q, \sqsubseteq, \cdot) is a quantale and \bigsqcup is its arbitrary join.

 $\textcircled{0} (\mathcal{P}_{\mathfrak{Q}}, \preceq, \sim) \text{ is a complete orthomodular lattice}$

- Q is generated from P_Ω by · and ∐ (minimality) (ensures Q does not have too many elements.)
- x = y iff x = y (completeness) (ensures distinct behavior of distinct elements.)

• $\lceil p \rceil(q) = f_p(q)$ (i.e. $\sim \sim (p \cdot q) = p \land (\sim p \lor q)$) (Sasaki projection)

(connects monoidal to orthomodular lattice dynamics)

• $\lceil x \rceil(y) = \lceil x \rceil(\sim \sim y)$ (composition) ($\lceil x \rceil$ acting on Q is fully determined by its action on $\mathcal{P}_{\mathfrak{Q}}$) Let ${\mathbb L}$ be the category with

Object: Complete orthomodular lattices

Morphisms: Ortholattice isomorphisms:

Bijections k preserving order and orthocomplementation:

(ロ) (同) (E) (E) (E)

•
$$p \leq_1 q$$
 if and only if $k(p) \leq_2 k(q)$

•
$$k(p^{\perp_1}) = (k(p))^{\perp_2}$$

Let \mathbb{Q} be the category with

Objects: Orthomodular dynamic algebras

Morphisms: Functions $\theta : \mathfrak{Q} \to \mathfrak{R}$ satisfying:

- θ preserves \cdot , \square .
- The restriction of θ to P_Ω (the image of Q under ~) is on ortholattice isomorphism (hence maps P_Ω to P_ℜ)

Definition (Categorical Equivalence)

An equivalence between categories $\mathbb L$ and $\mathbb Q$ is a pair of covariant functors

$$(F:\mathbb{L}\to\mathbb{Q},U:\mathbb{Q}\to\mathbb{L})$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

such that

- $\textcircled{0} \quad \text{there is a natural isomorphism } \eta: 1_{\mathbb{Q}} \to \mathbf{F} \circ \mathbf{U}$
- 2 there is a natural isomorphism $\tau: 1_{\mathbb{L}} \to {\bf U} \circ {\bf F}$

Translation $\mathbf{F} : \mathbb{L} \to \mathbb{Q}$ from lattice to algebra

on objects

Let $\mathcal{L} = (L, \leq, -^{\perp})$ be a complete orthomodular lattice. Define

$$\mathcal{F}_{\mathcal{T}} = \text{smallest set containing } \{f_p \mid p \in L\},$$

closed under composition
$$\mathcal{Q} = \mathcal{P}(\mathcal{F}_{\mathcal{T}})$$

$$A \cdot B = \{f \circ g \mid f \in A, g \in B\}$$

$$\sim A = f_{\bigvee\{a(I) \mid a \in A\}}, \quad (\text{where } I = \bigwedge \emptyset \text{ is the top element})$$

Then $\mathbf{F}(\mathcal{L}) = (\mathcal{Q}, \cdot, \sim)$

on morphisms

Т

If $k : \mathcal{L}_1 \to \mathcal{L}_2$ is a morphism (ortholattice isomorphism), then $F(k) : A \to \{k \circ a \circ k^{-1} \mid a \in A\}$ conjugates every element of input A by k.

A useful property: preservation of projectors

If
$$p \in L_1$$
, then $k \circ f_p \circ k^{-1} = f_{k(p)}$.

Proof.

For $b \in L_2$,

$$egin{aligned} \psi_k(f_p)(b) &= k\circ f_p\circ k^{-1}(b)\ &= k(p\wedge (p^\perp\vee k^{-1}(b)))\ &= k(p)\wedge ((k(p))^\perp\vee b)\ &= f_{k(p)}(b) \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Translation $\boldsymbol{\mathsf{U}}:\mathbb{Q}\to\mathbb{L}$ from algebra to lattice

on objects

U maps an ODA to the orthomodular lattice it induces: $\mathbf{U}(\mathfrak{Q}) = (\mathcal{P}_{\mathfrak{Q}}, \preceq, \sim).$

on morphisms

U maps each morphism to its restriction to $\mathcal{P}_{\mathfrak{Q}}$: if $\zeta : \mathfrak{Q}_1 \to \mathfrak{Q}_2$, then $U(\zeta) = \zeta|_{\mathcal{P}_{\mathfrak{Q}}}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

The functors $\mathbf{F} \circ \mathbf{U}$ and $\mathbf{U} \circ \mathbf{F}$

The elements of $(\mathbf{F} \circ \mathbf{U})(\mathfrak{Q})$ are $\{\{f_{a_1} \circ \cdots \circ f_{a_n} \mid a_1 \cdots a_n \in X, n \in \mathbb{N}\} \mid X \subseteq \mathcal{T}_{\mathfrak{Q}}\}$ If $\zeta : \mathfrak{Q}_1 \to \mathfrak{Q}_2$ is a Q-morphism, then $(\mathbf{F} \circ \mathbf{U})(\zeta)(\{f_{a_1} \circ \cdots \circ f_{a_n} \mid a_1 \cdots a_n \in X, n \in \mathbb{N}\})$ $=\{f_{\zeta(a_1)} \circ \cdots \circ f_{\zeta(a_n)} \mid a_1 \cdots a_n \in X, n \in \mathbb{N}\}.$ The elements of $(\mathbf{U} \circ \mathbf{F})(\mathfrak{L})$

 $\{\{f_p\}\mid p\in L\}$

If $k: \mathfrak{L}_1
ightarrow \mathfrak{L}_2$ is a \mathbb{L} -morphism, then

 $(\mathbf{F} \circ \mathbf{U})(k)(\{f_p\}) = \{f_{k(p)}\}$

$\eta: 1_{\mathbb{Q}} ightarrow \mathsf{F} \circ \mathsf{U}$

Let \mathfrak{Q} be an ODA. Then

$$\eta_{\mathfrak{Q}}: (\bigsqcup_{i \in I} a_{i,1} \cdots a_{i,n_i})) \mapsto \{f_{a_{i,1}} \circ \cdots \circ f_{a_{i,n_i}}\}_{i \in I}.$$

$$\begin{split} \tau: \mathbf{1}_{\mathbb{L}_b} &\to \mathsf{U} \circ \mathsf{F} \\ \text{Let } \mathfrak{L} \text{ be a lattice in } \mathbb{L}, \text{ then} \\ \\ \tau_{\mathfrak{L}}: \mathsf{a} \mapsto \{f_{\mathsf{a}}\} \end{split}$$

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Conclusion and future work

- Connect quantales to quantum structures: Showed what conditions can be placed on a complemented quantale (orthomodular dynamic algebra) to be categorically equivalent to a complete orthomodular lattice.
- Future work: is this the right definition of an ODA?
 - Can weaker morphisms be used?
 - Rather then sets of functions, consider relations instead
- Future work: involve unitary operations
- Future work: establish a clearer connection to operator algebras
- Future work: develop modules for ODA's to act upon
- Future work: develop a logic on ODA's and compare it to logics on lattices they are equivalent to.

THANK YOU!

(ロ) (四) (三) (三) (三) (三) (○) (○)

Conclusion and future work

- Connect quantales to quantum structures: Showed what conditions can be placed on a complemented quantale (orthomodular dynamic algebra) to be categorically equivalent to a complete orthomodular lattice.
- Future work: is this the right definition of an ODA?
 - Can weaker morphisms be used?
 - Rather then sets of functions, consider relations instead
- Future work: involve unitary operations
- Future work: establish a clearer connection to operator algebras
- Future work: develop modules for ODA's to act upon
- Future work: develop a logic on ODA's and compare it to logics on lattices they are equivalent to.

THANK YOU!

(ロ) (四) (三) (三) (三) (三) (○) (○)