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Q-Nets



There is a lot of work which has been done on Petri nets.

For comparison, if we search for the phrase ”Monoidal Categories”

Many people have a specific application in mind.
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Category theory is good at organizing mathematics.

Definition: A Petri net is a pair of functions of the following form

T N[S ]
s

t

where N : Set→ Set is the free commutative monoid monad which

sends a set X to N[X ] the free commutative monoid on X .
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Lawvere Theories

Definition: A Lawvere theory is category with finite products

generated by a single object 1. The objects can be thought of as

natural numbers n with product given by +.

These should be thought of as platonic ideals of algebraic gadgets.

Example: The Lawvere theory MON for monoids has morphisms

m : 2→ 1

e : 0→ 1

subject to associativity and unitality. A monoid is given by a

product preserving functor

F : MON→ Set
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We can replace N in the definition of Petri net with a different

monad. In 1963 Linton showed a correspondence between Lawvere

theories and finitary monads on Set.

Q MQ

R MR

f 7→ M f

MQX = the free model of Q on X
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Definition: Let Q-Net be the category where

• objects are Q-nets, i.e. pairs of functions of the form

T
t
//

s // MQS

• a morphism from the Q-net T
t
//

s // MQS to the Q-net

T ′
t′
//

s′ // MQS
′ is a pair of functions

(f : T → T ′, g : S → S ′) such that the following diagrams

commute:

T

f
��

s // MQS

MQg
��

T ′
s′
// MQS

′

T

f
��

t // MQS

MQg
��

T ′
t′
// MQS

′.
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Q-Net extends to a functor

(−)− Net: Law→ Cat

where Cat is the category of small categories and functors. We can

take the following diagram of Lawvere theories
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to get the following network of categories which allows us to

explore the relationships between different kinds of Q-nets.
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Many of these are familiar.

• PreNet is the category of pre-nets: Petri nets equipped with

an ordering on the input and output of each transition. These

are are useful for generating processes in a way which keeps

track of the identities of various tokens.

• Z-Net is the category of integer nets studied in [3] and [4].

These are useful for modeling the concept of credit and

borrowing.

• SemiLat-Net is the category of elementary net systems. These

are Petri nets which can have a maximum of one token in

each place. These are useful for modeling non-concurrent

processes.
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Generalized Semantics



Generalized Semantics

Petri nets are useful because they are a general language for

representing processes which can be performed in sequence and in

parallel. This can be summarized with following slogan:

Petri nets present free symmetric monoidal categories

Objects are given by possible markings and morphisms represent all

possible ways to shuffle the markings around using the transitions.
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Commutative monoidal categories

The devil is in the details.

Because Petri nets have a free commutative monoid of species,

they more naturally present commutative monoidal categories.

These are commutative monoid objects in Cat.

MorC ObC
s

t

Maclane’s coherence theorem doesn’t apply.

11



• In Petri Nets are Monoids Messeguer and Montanari

introduced the idea [1]. They construct a functor

Petri CMCfr

F

U

where CMC is the category of commutative monoidal

categories and CMCfr is the full subcategory of CMC whose

objects are commutative monoidal categories with a free

monoid of objects. The freeness of the objects of CMCfr is

chosen to match the free commutative monoid of places in a

Petri net.
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This wasn’t entirely satisfactory to the Petri net community. The

individual token philosophy vs. the collective token philosophy

The fix is to make the categories non-strictly commutative.
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There were a few attempts to generate non-commutative

symmetric monoidal categories from Petri nets. In 1994 Sassone

constructed a pseudofunctor between the category of Petri nets

and a category of non-strictly commutative symmetric monoidal

categories. [2]

With some help, we managed to obtain the following.

Petri CMC

F

U
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If the definition of Q-net is any good, there should be a similar

adjunction.

Theorem (JM)

For every Lawvere theory Q there is an adjunction

Q-Net Mod(Q,Cat)

FQ

UQ

where Mod(Q,Cat) is the category of models of Q in the category

of categories.
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For a Q-net

P = T
t
//

s // MQS

FQ(P) is the category where objects are given by MQS and where

morphisms are given by the free closure of T under the operations

of Q and composition.
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Proof: (sketch)

This adjunction can be factored into three parts.

Q-Net Q-Net∗ Mod(Q,Grph∗) Mod(Q,Cat)

AQ

A

Q

BQ

B

Q

CQ

C

Q

•
AQ a

A

Q : Q-Net→ Q-Net∗

is the adjunction whose left adjoint freely adds an identity

transition to every place.

•
BQ a

B

Q : Q-Net∗ → Mod(Q,Grph∗)

is the adjunction whose left adjoint freely closes the

transitions under the operations of Q.
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• The previous two adjunctions were constructed by hand.

However, CQ and

C

Q are constructed with abstraction. There

is a 2-functor

Mod(Q,−) : CATfp → CAT

where CAT is the 2-category of categories and CATfp is the

2-category of categories with finite products, finite product

preserving functors, and natural transformations. CQ and
C

Q

are given by hitting the adjunction

Grph∗ Cat

L

R

with Mod(Q,−). �
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We can put our network of Q-nets to use. All of these have the

collective token philosophy. To get a free category which has some

weak structure you should start with a Q-net which doesn’t already

have that property.

Petri

PreNet SMC SSMC

c-Net

FMON N
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There is an analogous situation for integer nets.

Z-Net

GRP-Net Mod(GRP,Cat) SCCC

e-Net

FGRP K

where SCCC is the category of strict symmetric monoidal

categories equipped with the structure of a group.
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Conclusion

Petri nets are inherently categorical. There are many more

opportunities for category theory to organize and understand the

thousands of papers written on them.

• New types of nets. (e.g. let Q to be the Lawvere theory for

R+ modules).

• Open Q-nets. Q-nets can be equipped with inputs and

outputs so systems can be designed in a compositional way.

This extends the work of [6].
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The end
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