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Motivation

Classical differential geometry

Everything is defined in terms of the ring R.

1. Every manifold is locally Rn

2. Tangent vectors: equivalence classes of curves R → M.

Synthetic Differential Geometry (SDG)

Still the case.

1. R has infinitesimals D = [d : R|d2 = 0].

2. Must satsify Kock-Lawvere axiom:
ν : R × R → [D,R] := (a, b) 7→ λd .ad + b
is an iso

3. Tangent vectors are D → M.



Tangent Categories

Definition (Rosický, Cockett-Cruttwell)

Abstract setting for differential geometry: only the behaviour of
the tangent bundle is axiomatized.

I No ring object.

I Tangent vector addition - but no tangent vector subtraction.

This captures examples from computer science:

I REL: differential structure, no subtraction or ring of scalars.

I The classifying category for the ∂ − λ calculus.

Modular: Add a structure and see how it fits:

I A class of “submersions”: display tangent categories

I Solutions to ODEs: curve objects



Goal

Sort out “what does a scalar rig look like in a tangent category”

I What universal properties should it satisfy?

I Does it make “calculus” better behaved?

Result: The Kock-Lawvere axiom without infinitesimals.

Tangent categories are enriched categories - extend those results.

I Embed a tangent category into one with a scalar unit.

I Show that differential objects are (enriched) sketchable.



Tangent Categories

A tangent category is a category X equipped with an endofunctor
T on X and natural transformations

p : T ⇒ id , 0 : id ⇒ T ,+ : T p×pT ⇒ T , ` : T ⇒ T 2, c : T 2 ⇒ T 2

All pullback powers of p exist and are preserved by T
(pM ,+M , 0M) is an additive bundle
(`, 0), (c , id) are additive.

` is universal: T (M)p×pT (M) T 2(M) T (M)
µ T (p)

pp0

(where µ = 〈π0`, π10〉T (+).)
c is a symmetry cc = id and T (c)cT (c) = cT (c)c
Symmetric cosemigroup: `c = `, `T (`) = `` and cT (c)` = T (`)c



Differential Objects

Definition
(V , σV , ξV ) is a commutative monoid object such that.

1. Biproduct in CMon

V V

T (V )

V V

λ p̂

p0

2. Compatible addition
V 1

T (V ) V

!V

0V ξ

p̂

T2V V × V

T (V ) V

+V

(p̂π0,p̂π1)

σV

p̂

3. Compatible lift:
TV T 2V

V TV

p̂

l

p̂

p̂



Differential objects ii

Theorem (Cockett and Cruttwell)

The full subcategory of differential objects is cartesian differential
category.

Set ν = (λ× 0)T (σV )

The derivative:

V × V W

T (V ) T (W )

D[f ]

ν

T (f )

p̂

Linear in V :

T (V × X ) T (W )

V × X W

T (f )

f

λV×0X λW

Note: λ is universal V T (V ) Vλ
p

!ξ



Linear Classifier

Under a very mild assumption, we can add a universal ring object
to a tangent category.

Definition (Blute-Cockett-Seeley)

A Scalar Unit is a differential object with a point 1 Ru

with the universal property that for all

V W

V × R

f

〈1,u〉
∃!f̂ linear in R

f (multi)-linear in V ⇒ f̂ is (multi)-linear in V



Consequences of a Linear Point Classifier

I The unit object is a commutative rig R.

R R

R × R

〈1,u〉 ·

I Every differential object is an R-module.

V V

V × R

〈1,u〉 ·

I Every linear map preserves the R-module action (persistence).



Rewriting the lift

Every R-module has the map λR :

V V × R T (V × R) T (V )
〈1,u〉 0×λ T (·)

In SDG: v 7→ λd .vd .

Lemma
For a differential object,λR satisfies the equalizer

V T (V ) V
λRV

p

!ξ

so λV = λRV .

Corollary

Homogenous morphisms of differential objects are linear.



KL-Modules

Set νT := V × V T (V )× T (V ) T (V )
λR×0 T (σ)

Definition (Kock-Lawvere R-module)

V is a KL-module if there is an R-module map p̂ making

((λR × 0)T (σ))−1 = 〈p̂, pV 〉

I The category of KL-modules is equivalent to the category of
differential objects.

I In a locally presentable tangent category, KL-modules is a full
reflective subcategory of R-modules.

I If X has negatives, then KL-modules are a completion of
R-modules.



New Questions

The notion of a scalar unit allows one to use the simpler definition
of KL-modules.

If R is a ring, KL-modules are a completion of R-modules - is there
a sketch of KL-modules?

Move to enriched category theory.
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Weil Algebras, Microlinear Weil Spaces

Definition (The category Weil)

The full subcategory of π : W → R in unital RAlg/R so that:

I ker(π) is a nilpotent ideal

I U(W ) = Rn.

e.g. the dual numbers R[x ]/x2

A Microlinear Weil Space is a presheaf Weil→ Set preserving
connected limits. Call the category of microlinear weil spaces E .

Theorem
The category of microlinear weil spaces is

I Locally finitely presentable

I A coherently closed tangent category

I Has a scalar unit R = [y(R[x ]/x2), y(R[x ]/x2)]



Microlinear Weil Spaces

Recall that in a E-category C
I Power: E(w , C(X ,Y )) ∼= C(X ,w t Y )

I Copower: E(w • X ,Y ) ∼= E(w , C(X ,Y ))

Theorem (Garner, Leung)

A tangent category is equivalently a category enriched in E with
powers by representables.

T (X ) := y(R[x ]/x2) t X

Observation
The tangent bundle is now a weighted limit.



Units in Presheaf Categories

Theorem
The enriched Yoneda embedding preserves differential objects.

Theorem
The enriched presheaf category of a tangent category has a
representable unit:

1 • R ∼= [1 • y(x2), 1 • y(x2)]

Observation
Every differential objects is a KL-module in the presheaf category.



KL-modules as sketches

Define the E-sketch KLMod.

I Objects: n ∈ N
I Hom-Objects: [n,m] = Rn×m

I Composition: Matrix multiplication

I Powers on objects: y(R[x ]/x2) t n := 2n, and fix:

I 0n : 1→ Rn×2n picks out the matrix

[
0
I

]
I pn : 1→ R2n×n picks out

[
0 I

]
We derive:

I λn picks out

[
I
0

]
I p̂ picks out

[
I 0

]
(I = n × n identity matrix)

I Powers on homs: ∆n,m : Rn×m → R2n×2m
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Conclusions and Future Work

We used the notion of a scalar unit to simplify Differential Objects
and find a E-sketch.

Opens the door for sketch theory to be applied in tangent
categories

I Gabriel-Ulmer duality: a free KL-module construction?

I Differential Bundles

I Involution Algebroids a sketch for Lie theory (Joint work with
Matthew Burke)

Sketches can be interpreted as Abstract Data Types

I E-sketches as ∂-ADTs in differential programming?
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