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Partially Monoidal Categories

Monoidal categories are models of resources

In some models partiality arises naturally

Example: Memory allocation

Example: Simultaneous substitutions



2-Dimensional Calculus of Simultaneous Substitutions

horizontal/sequential composition: [a7→b] ; [b 7→c] = [a7→c]

vertical/parallel composition: [a 7→b]⊕ [c7→d] = [a7→b, c 7→d]

⊕ is partial since the following is not allowed: [a7→b]⊕ [a7→c]

semantics: functions f : {a, c} → {b, d}



Semantics of Simultaneous Substitutions
The category nF of finite subsets of a countably infinite set N of ‘names’ or
‘variables’.

nF is equivalent to the category F of finite cardinals with all functions.

nF ** Fjj

So why do we care of representing nF as opposed to F?

• Syntax is not invariant under isomorphism, see variables vs de Bruin
indices in λ-calculus.

• nF has more structure, namely that of a nominal category, and this
structure is not preserved by the equivalence.

• in other words: F // nF is not an internal functor in the category Nom

of nominal sets.



Internal Monoidal Categories

What is the relevant structure of nF ?

It is an internal monoidal category in (Nom,1, ∗) where ∗ is the so-called
separated product of nominal sets.

To make this precise we need to show that we can extend the monoidal
operation

∗ : Nom× Nom→ Nom

to an operation

∗ : Cat(Nom)× Cat(Nom)→ Cat(Nom)

on internal categories in Nom.

In the following we generalise from Nom to V and only assume that (V, I,⊗) is
a monoidal category with finite limits in which I is the terminal object.



Internal Monoidal Categories
pull back the internal category

(C1 × D1,C0 × D0)

along

C0 ⊗ D0 → C0 × D0

(C⊗ D)1 //

dom

��

cod

��

C1 × D1

dom

��

cod

��

C0 ⊗ D0 // C0 × D0

(1)

Lifting C0 ⊗ D0 → C0 × D0 to C⊗ D→ C× D has a universal property

Lemma 1: The forgetful functor Cat(V)→ V is a fibration.

Where: Cat(V) is the category of internal catgories in V.



Internal Monoidal Categories, cont’d

But we need more, namely that

C0 ⊗ D0 → C0 × D0 and C⊗ D→ C× D

are natural transformations.

Hence, we extend the previous lemma to functor categories:

Lemma 2: If P : E → B is a fibration, then PA : EA → BA is a fibration.

Theorem: Let (V,1,⊗) be a (symmetric) monoidal category with finite limits in
which the monoidal unit is the terminal object. (Cat(V),1,⊗) inherits from
(V,1,⊗) the structure of a (symmetric) monoidal category with finite limits in
which the monoidal unit is the terminal object,



Internal Monoidal Categories, cont’d

Definition: A strict internal monoidal category C is a monoid (C,∅,�) in
(Cat(V),1,⊗).

Example: The category nF of finite subsets of a set N of names is an internal
monoidal category in (Nom,1, ∗), where

∗ : Cat(Nom)× Cat(Nom)→ Cat(Nom)

] : nF ∗ nF→ nF

nF ∗ nF has objects: pairs of disjoint sets

arrows: pairs of functions with disjoint domains and disjoint codomains

] is disjoint union, partial wrt to nF× nF→ nF but total wrt nF ∗ nF→ nF



Nominal PROPs

Definition: A nominal PROP is strict internal monoidal category in (Nom,1, ∗)
which has finite subsets of N as objects (supported by themselves) and all
bijections as arrows. A morphism of nominal PROPs is an internal strict
monoidal functor that preserves bijections.



Equivalence of PROPs and nominal PROPs

Definition/Proposition: For any PROP S, there is an nPROP

NOM (S)

that has for all arrows f : n→ m of S, and for all lists a = [a1, . . . an] and
b = [b1, . . . bm] arrows [a〉f〈b]. These arrows are subject to equations

[a〉f ; g〈c] = [a〉f〈b] ; [b〉g〈c] (NOM-1)

[a++ c〉f ⊕ g〈b++ d] = [a〉f〈b] ] [c〉g〈d] (NOM-2)

[a〉id〈b] = [a|b] (NOM-3)

[a〉 〈b|b′〉 ; f 〈c] = [a|b] ; [b′〉f〈c] (NOM-4)

[a〉 f ; 〈b|b′〉 〈c] = [a〉f〈b] ; [b′|c] (NOM-5)



Equivalence of PROPs and nominal PROPs, cont’d

Definition/Proposition: For any nPROP T there is a PROP

ORD(T )

that has for all arrows f : A→ B of T , and for all lists a = [a1, . . . an] and
b = [b1, . . . bm] arrows 〈a]f [b〉. These arrows are subject to equations

〈a] f ; g [c〉 = 〈a] f [b〉 ; 〈b] g [c〉 (ORD-1)

〈af ++ ag] f ] g [bf ++ bg〉 = 〈af ] f [bf〉 ⊕ 〈ag] g [bg〉 (ORD-2)

〈a] id [a〉 = id (ORD-3)

〈a] [a′|b] ; f [c〉 = 〈a|a′〉 ; 〈b] f [c〉 (ORD-4)

〈a] f ; [b|c] [c′〉 = 〈a] f [b〉 ; 〈c|c′〉 (ORD-5)



Equivalence of PROPs and nominal PROPs, cont’d

Theorem: The categories PROP and nPROP are equivalent.

Remark: The interesting part of the proof is to show how commutativity of ] in
nPROPs and naturality of symmetries in PROPs correspond to each other.



Equivalence of PROPs and nominal PROPs, cont’d
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