# Nominal PROPs

# Samuel Balco – Alexander Kurz University of Leicester – Chapman University

23rd of May 2019

- 1. Partially Monoidal Categories
- 2. A Calculus of Simultaneous Substitutions
- 3. Internal Monoidal Categories
- 5. Nominal PROPs
- 5. Equivalence of PROPs and nominal PROPs
- 6. Conclusion

Monoidal categories are models of resources

In some models partiality arises naturally

Example: Memory allocation

Example: Simultaneous substitutions

# 2-Dimensional Calculus of Simultaneous Substitutions

horizontal/sequential composition:  $[a \mapsto b]; [b \mapsto c] = [a \mapsto c]$ 

vertical/parallel composition:  $[a \mapsto b] \oplus [c \mapsto d] = [a \mapsto b, c \mapsto d]$ 

 $\oplus$  is partial since the following is not allowed:  $[a \mapsto b] \oplus [a \mapsto c]$ 

semantics: functions  $f : \{a, c\} \rightarrow \{b, d\}$ 

# Semantics of Simultaneous Substitutions

The category  $n\mathbb{F}$  of finite subsets of a countably infinite set  $\mathcal{N}$  of 'names' or 'variables'.

 $n\mathbb{F}$  is equivalent to the category  $\mathbb{F}$  of finite cardinals with all functions.



So why do we care of representing  $n\mathbb{F}$  as opposed to  $\mathbb{F}$ ?

- Syntax is not invariant under isomorphism, see variables vs de Bruin indices in  $\lambda$ -calculus.
- nF has more structure, namely that of a **nominal category**, and this structure is not preserved by the equivalence.
- in other words:  $\mathbb{F} - \rightarrow n\mathbb{F}$  is not an internal functor in the category Nom of **nominal sets**.

What is the relevant structure of  $n\mathbb{F}$  ?

It is an **internal monoidal category** in (Nom, 1, \*) where \* is the so-called separated product of nominal sets.

To make this precise we need to show that we can extend the monoidal operation

 $*:\mathsf{Nom}\times\mathsf{Nom}\to\mathsf{Nom}$ 

to an operation

```
*: \mathsf{Cat}(\mathsf{Nom}) \times \mathsf{Cat}(\mathsf{Nom}) \to \mathsf{Cat}(\mathsf{Nom})
```

on internal categories in Nom.

In the following we generalise from Nom to  $\mathcal{V}$  and only assume that  $(\mathcal{V}, I, \otimes)$  is a monoidal category with finite limits in which *I* is the terminal object.

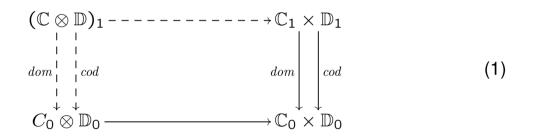
### **Internal Monoidal Categories**

pull back the internal category

 $(\mathbb{C}_1 \times \mathbb{D}_1, \mathbb{C}_0 \times \mathbb{D}_0)$ 

along

 $\mathbb{C}_0\otimes\mathbb{D}_0\to\mathbb{C}_0\times\mathbb{D}_0$ 



Lifting  $\mathbb{C}_0 \otimes \mathbb{D}_0 \to \mathbb{C}_0 \times \mathbb{D}_0$  to  $\mathbb{C} \otimes \mathbb{D} \to \mathbb{C} \times \mathbb{D}$  has a universal property Lemma 1: The forgetful functor  $Cat(\mathcal{V}) \to \mathcal{V}$  is a fibration. Where:  $Cat(\mathcal{V})$  is the category of internal catgories in  $\mathcal{V}$ . But we need more, namely that

 $\mathbb{C}_0 \otimes \mathbb{D}_0 \to \mathbb{C}_0 \times \mathbb{D}_0 \qquad \text{and} \qquad \mathbb{C} \otimes \mathbb{D} \to \mathbb{C} \times \mathbb{D}$ 

are natural transformations.

Hence, we extend the previous lemma to functor categories:

**Lemma 2:** If  $P : \mathcal{E} \to \mathcal{B}$  is a fibration, then  $P^{\mathcal{A}} : \mathcal{E}^{\mathcal{A}} \to \mathcal{B}^{\mathcal{A}}$  is a fibration.

**Theorem:** Let  $(\mathcal{V}, 1, \otimes)$  be a (symmetric) monoidal category with finite limits in which the monoidal unit is the terminal object.  $(Cat(\mathcal{V}), 1, \otimes)$  inherits from  $(\mathcal{V}, 1, \otimes)$  the structure of a (symmetric) monoidal category with finite limits in which the monoidal unit is the terminal object,

**Definition:** A strict internal monoidal category  $\mathbb{C}$  is a monoid  $(\mathbb{C}, \emptyset, \odot)$  in  $(Cat(\mathcal{V}), 1, \otimes)$ .

**Example:** The category  $n\mathbb{F}$  of finite subsets of a set  $\mathcal{N}$  of names is an internal monoidal category in (Nom, 1, \*), where

 $*:\mathsf{Cat}(\mathsf{Nom})\times\mathsf{Cat}(\mathsf{Nom})\to\mathsf{Cat}(\mathsf{Nom})$ 

 $\uplus:n\mathbb{F}*n\mathbb{F}\to n\mathbb{F}$ 

 $n\mathbb{F}*n\mathbb{F}$  has objects: pairs of disjoint sets

arrows: pairs of functions with disjoint domains and disjoint codomains

 $\uplus \text{ is disjoint union, partial wrt to } n\mathbb{F}\times n\mathbb{F} \to n\mathbb{F} \text{ but total wrt } n\mathbb{F}*n\mathbb{F} \to n\mathbb{F}$ 

**Definition:** A nominal PROP is strict internal monoidal category in (Nom, 1, \*) which has finite subsets of  $\mathcal{N}$  as objects (supported by themselves) and all bijections as arrows. A morphism of nominal PROPs is an internal strict monoidal functor that preserves bijections.

#### **Definition/Proposition:** For any PROP S, there is an nPROP

 $NOM(\mathcal{S})$ 

that has for all arrows  $f : \underline{n} \to \underline{m}$  of S, and for all lists  $a = [a_1, \ldots a_n]$  and  $b = [b_1, \ldots b_m]$  arrows  $[a \rangle f \langle b]$ . These arrows are subject to equations

$$[\mathbf{a}\rangle f; g\langle \mathbf{c}] = [\mathbf{a}\rangle f\langle \mathbf{b}]; [\mathbf{b}\rangle g\langle \mathbf{c}]$$
(NOM-1)

$$[a + c \rangle f \oplus g \langle b + d] = [a \rangle f \langle b] \uplus [c \rangle g \langle d]$$
(NOM-2)

$$[\mathbf{a}\rangle id\langle \mathbf{b}] = [\mathbf{a}|\mathbf{b}]$$
 (NOM-3)

$$[a\rangle \langle b|b'\rangle; f\langle c] = [a|b]; [b'\rangle f\langle c]$$
 (NOM-4)

 $[a\rangle f; \langle b|b'\rangle \langle c] = [a\rangle f\langle b]; [b'|c]$ (NOM-5)

#### **Definition/Proposition:** For any nPROP $\mathcal{T}$ there is a PROP

 $ORD(\mathcal{T})$ 

that has for all arrows  $f : A \to B$  of  $\mathcal{T}$ , and for all lists  $a = [a_1, \ldots a_n]$  and  $b = [b_1, \ldots b_m]$  arrows  $\langle a ] f[b \rangle$ . These arrows are subject to equations

$$\langle \boldsymbol{a} ] f; g [\boldsymbol{c} \rangle = \langle \boldsymbol{a} ] f [\boldsymbol{b} \rangle; \langle \boldsymbol{b} ] g [\boldsymbol{c} \rangle$$
 (ORD-1)

$$\langle a_f + a_g ] f \uplus g [ b_f + b_g \rangle = \langle a_f ] f [ b_f \rangle \oplus \langle a_g ] g [ b_g \rangle$$
 (ORD-2)

$$\langle \boldsymbol{a} ] id [\boldsymbol{a} \rangle = id$$
 (ORD-3)

$$\langle a] [a'|b]; f [c\rangle = \langle a|a'\rangle; \langle b] f [c\rangle$$
 (ORD-4)

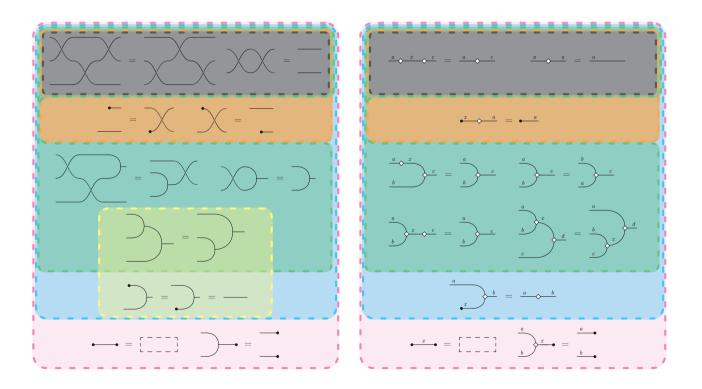
$$\langle a ] f; [b|c] [c'\rangle = \langle a ] f [b\rangle; \langle c|c'\rangle$$
 (ORD-5)

# Equivalence of PROPs and nominal PROPs, cont'd

**Theorem:** The categories PROP and nPROP are equivalent.

**Remark:** The interesting part of the proof is to show how commutativity of  $\uplus$  in nPROPs and naturality of symmetries in PROPs correspond to each other.

# Equivalence of PROPs and nominal PROPs, cont'd



# Equivalence of PROPs and nominal PROPs, cont'd

