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What is this talk about?

Apply techniques from synthetic differential geometry 
and tangent categories to understand internal homs in
differential programming



This is a wiggalump
Right, we’re gonna learn wiggalumps real quick like.



Is this a wiggalump?



How about this?
Is this a wiggalump?



Is this a wiggalump?



Is this a wiggalump?
Okay, what’s a wiggalump?



Learning via programs

Deep mind beats 
grandmaster SCII 
player.



Learning via differentiable programs

• Differentiable neural computers:
• Solve deep hard tasks

• Solve tasks that were believed beyond “computers”

• Make use of recurrent neural networks

• Need a derivative, as in calculus?



Learning via differentiable programs

• Backpropagation uses the chain rule to push errors backwards in a 
simple neural network.
• Treat a neural network 

as a function of the weights

• Take the derivative

of the error function 

and use the chain rule 

to pass error backwards



• But for recurrent networks, it’s a bit less straightforward.

• How do you take the derivative over a looping construct?

Learning via differentiable programs



Differential 
Programming

a la Plotkin

• A generalization of 
differential neural computers

• Arbitrary programs with 
control structures etc

• Encode smooth functions 
as programs

• The derivative can be 
applied to programs



Today: Differential programming with tangent 
categories and SDG

Differential
Programming

Join restriction
Tangent categories

SDG



If-then-else

Can be problematic:

Commandment: Guards 
should be continuous.

Should be open and 
disjoint



Join Restriction Categories

• Join restriction categories allow packaging up partiality into a 
categorical framework.

• Allows expressing domain of definition and detecting disjointness of domains

• Both if-then-else and while require partiality

• Allows expressing iteration using the join of disjoint domains
• This is the trace of a coproduct in the idempotent splitting.





In fact the above structure 
forms a differential join 
restriction category.
• All Faa di Bruno formulae 

for higher order chain rules 
hold.

In fact the above category is the category of differential objects of a 
Cartesian join restriction tangent category.



Join Restriction Tangent Categories

• Join restriction categories have all Weil1 prolongations.



Adding function spaces: SDG

• Idea: Use techniques from algebraic geometry

• Augment Smooth manifolds to have function spaces

• And formal tangent bundles of infinitesimal curves

• Well adapted:

• Full and faithful, and `commutes with construction of manifolds.’



Partial map category of a well adapted model

Maps are spans with 
the left leg monic:

• This gives a join restriction category.

• However, there is an issue with microlinearity or 
“good objects.”
• The good objects are not a join restriction tangent 

category.



Partial map category of a well adapted model

Maps are spans with 
the left leg etale
monic:

• This gives a join restriction category.
• The good objects are not a join restriction tangent category.

Etale partial maps a 
well adapted model, 
model differential 
programming



Etale Monics

Formal Étale maps have the 
right lifting property for all 

Properties:
• Closed to composition;
• Stable under pullback
• Formal \'etale monics are
• Downclosed to microlinearity
• Closed to joins or pushouts of 

matching diagrams:



Application: Sequence spaces and codata
• The Dubuc topos has a natural numbers object.

• Microlinear spaces are an exponential ideal.

• is microlinear when V is.
• inhabitants are defined by the universal property of NNOs.
• behave as sequences (so we can do RNNs).

• Total smooth functions between manifolds are microlinear, so we have a 
functional language with `total currying’

• We now know how to do more general codata and comonads for tangent 
categories.
• Data is still a bit hard.
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