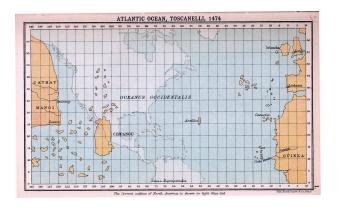
Categorical Probability: Results and Challenges

Tobias Fritz

May 2019

What this talk is (not)



Categorical probability is like finding the sea route to India:

- → Many possible routes to be explored without a coherent overall map.
- ▶ We may end up discovering something totally different than India!

A (not so) random sample of contributors

?

Bill Lawvere

Michèle Giry

Prakash Panangaden

Bart Jacobs

Paolo Perrone

Sharwin Rezagholi

David Spivak

Motivation

- ▷ Category theory has been hugely successful in algebraic geometry, algebraic topology, and theoretical computer science.
- ▷ Contemporary research in these fields can hardly even be conceived of without categorical machinery.
- ▷ Can and should we expect similar success in other areas?
- ▷ A case in point: probability theory!

Motivation

A structural treatment can help us achieve:

- ▷ Improved conceptual clarity.
- ▷ Greater generality due to higher abstraction.
- ▶ Therefore applicability in a range of contexts instead of only one.

For example, let $\mathtt{Sh}(\mathbb{IR})$ be the category of sheaves on the poset of compact intervals in $\mathbb{R}.$

Conjecture (with David Spivak)

A probability space internal to $\mathtt{Sh}(\mathrm{IR})$ is the same thing as an external stochastic process.

Suitably structural results on probability would therefore immediately give results on stochastic processes.

But first, what is probability theory?

- ightharpoonup Fundamental insight: probability is volume! \Rightarrow Measure theory.
- ▷ Central themes:
 - ▶ Random variables and their distributions.
 - ▶ Theorems involving infinitely many variables.

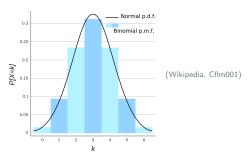
An example statement:

Central limit theorem

Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. random variables with $\mathbf{E}[X_n]=\mu$ and $\mathrm{V}[X_n]=\sigma$. Then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right) \stackrel{n\to\infty}{\longrightarrow} N(0,\sigma).$$

converges in distribution.



Structures in categorical probability

Probability monad:

- ▷ probability measures
- ▷ pushforward of measures
- \triangleright point measures δ_x
- ▷ averaging of measures

Eilenberg-Moore category:

- ▶ integration
- ▷ stochastic dominance
- ▶ martingales

Kleisli category:

- ▷ stochastic maps
- ▷ (conditional) independence
- ▷ statistics

- ▷ A probability monad lives on a category of sets or spaces.
- ▶ Most basic: the convex combinations monad on Set, where

$$DX := \left\{ \sum_{i} c_i \delta_{x_i} \mid c_i \geq 0, \sum_{i} c_i = 1 \right\}$$

is the set of finitely supported probability measures on X.

 $\triangleright p \in DX$ is a "random element" of X. For example a fair coin,

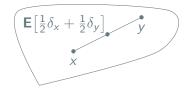
$$\frac{1}{2}\delta_{\rm heads} + \frac{1}{2}\delta_{\rm tails} \quad \in \quad {\it D}\left(\{{\rm heads, tails}\}\right)$$

▶ Functoriality $Df: DX \rightarrow DY$ takes **pushforward measures**: applying a function to a random element of X produces a random element of Y.

- ightharpoonup The unit X o DX assigns to every $x \in X$ the point mass δ_x at x.
- ightharpoonup The multiplication DDX o DX computes the expected distribution,

$$\sum_{i} c_{i} \left(\sum_{j} d_{ij} \delta_{x_{ij}} \right) \longmapsto \sum_{i,j} c_{i} d_{ij} \delta_{x_{ij}}$$

▷ Algebras $\mathbf{E}: DA \to A$ are "convex spaces" in which every $p \in DA$ has a designated **barycenter** or **expectation value** $\mathbf{E}[p] \in A$.



Integration: the Eilenberg-Moore side

- \triangleright Let A be an Eilenberg-Moore algebra, e.g. $A = \mathbb{R}$.
- \triangleright Then for $p \in DX$ and a random variable $f : X \to A$,

$$\int_X f \, dp := \mathbf{E}[(Df)(p)].$$

 \triangleright For $g: Y \rightarrow X$ and $q \in DY$, the **change of variables** formula

$$\int_{Y} (f \circ g) dq = \int_{X} f d(Dg)(q)$$

then holds by functoriality, $D(f \circ g) = D(f) \circ D(g)$.

Measure theory without measure theory

Basic idea

A probability measure on X is an idealized version of a **finite sample**: elements (x_1, \ldots, x_n) of X representing the uniform distribution $\frac{1}{n} \sum_i \delta_{x_i}$.

All constructions and proofs with probability measures should be reducible to constructions and proofs with finite samples.

We construct a probability monad which implements this idea and makes it precise.

Let CMet be the category where

- \triangleright objects (X, d_X) are complete metric spaces,
- ightharpoonup morphisms $f:(X,d_X)\to (Y,d_Y)$ are **short maps**,

$$d_Y(f(x), f(x')) \le d_X(x, x').$$

 \triangleright For $S \in \texttt{FinSet}$, we have the **power functor**

$$\mathtt{CMet} \longrightarrow \mathtt{CMet}, \qquad X \longmapsto X^S.$$

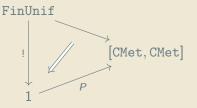
- \triangleright We have isomorphisms $X^1 \cong X$ and $X^{S \times T} \cong (X^S)^T$.

$$\texttt{FinUnif} \longrightarrow [\texttt{CMet}, \texttt{CMet}].$$

▶ Here, FinUnif ⊆ FinSet is the subcategory of nonempty sets and functions with uniform fibres.

Theorem (with Paolo Perrone, arXiv:1712.05363)

There is a left Kan extension



in the 2-category of symmetric monoidal categories and lax monoidal functors, where ${\cal P}$ is a probability monad such that

 $PX = \{ \text{Radon measures on } X \text{ with finite first moment} \}.$

This reduces (parts of) measure and probability to combinatorics!

Categories of stochastic maps: the Kleisli side

Let C be a symmetric strict monoidal category where each object carries a distinguished **commutative comonoid**:

We think of this structure as providing copy and delete operations.

Definition

C is a **category with comonoids** if these comonoids are compatible with the monoidal structure, and deletion is natural,

This makes C into a **semicartesian** monoidal category: we have natural maps

$$X \otimes Y \longrightarrow X, \qquad X \otimes Y \longrightarrow Y$$

which are abstract versions of **marginalization**, when composed with $p: I \to X \otimes Y$.

Example

Let FinStoch be the category of finite sets, where morphisms $f: X \to Y$ are **stochastic matrices** $(f_{xy})_{x \in X, y \in Y}$,

$$f_{xy} \ge 0,$$

$$\sum_{v} f_{xy} = 1,$$

- \triangleright f_{xy} is the probability that the output is y given the input x.
- \triangleright We also write f(y|x).
- Composition of morphisms is given by the Chapman−Kolomogorov equation,

$$(g \circ f)(z|x) := \sum_{y} g(z|y) f(y|x).$$

> The monoidal structure is

$$(g \otimes f)(y, z|w, x) := g(y|w)f(z|x),$$

with canonical symmetry isomorphism.

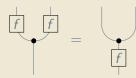
$$\delta(x_1, x_2 | x) = \begin{cases} 1 & \text{if } x_1 = x_2 = x, \\ 0 & \text{otherwise.} \end{cases}$$

▶ With this, FinStoch is a category with comonoids.

Deterministic morphisms

Definition

A morphism $f: X \to Y$ is **deterministic** if the comonoids are natural with respect to f,



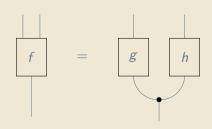
- > The deterministic morphisms form a cartesian monoidal subcategory.
- \triangleright In FinStoch, the deterministic morphisms are the stochastic matrices with entries in $\{0,1\}$, i.e. the actual functions. They form a copy of FinSet.

Conditional independence

Categories with comonoids support several notions of conditional independence, including:

Definition

A morphism $f: A \to X \otimes Y$ displays the conditional independence $X \perp Y \mid\mid A$ if there are $g: A \to X$ and $h: A \to Y$ such that



One can derive the usual properties of conditional independence purely formally.

Almost surely

Definition

Given $p:\Theta\to X$, morphisms $f,g:X\to Y$ are **equal** p-almost surely if

Deliver concepts relativize similarly to almost surely concepts.

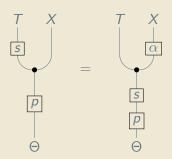
Proposition

If gf = id, then g is f-almost surely deterministic.

Sufficient statistics

Definition

- \triangleright A **statistical model** is a morphism $p:\Theta\to X$.
- \triangleright A **statistic** for *p* is a deterministic split epimorphism $s: X \to T$.
- \triangleright A statistic is **sufficient** if there is a splitting $\alpha: T \to X$ such that



Axiom

Suppose that gf = id. Then

- This holds in FinStoch.
- Now there is a completely formal version of a classical result of statistics:

Fisher-Neyman factorization theorem (preliminary)

If the axiom holds, a statistic $s: X \to T$ is sufficient for $p: \Theta \to X$ if and only if there is a splitting $\alpha: T \to X$ with $\alpha sp = p$.

Other preliminary results

Let $p: \Theta \to X$ be a statistical model.

We have abstract versions of other classical theorems of statistics:

Basu's theorem

A complete sufficient statistic for p is independent of any ancillary statistic.

Bahadur's theorem

If a minimal sufficient statistic exists, then a complete sufficient statistic is minimal sufficient.

A challenge: zero-one laws

Kolmogorov's and Hewitt-Savage's zero-one law

Let

- $\triangleright (X_n)_{n\in\mathbb{N}}$ be a sequence of random variables,
- \triangleright A an event which is a function of the (X_n) , and
- ightharpoonup independent of $(X_n)_{n\in F}$ for any finite $F\subseteq \mathbb{N}$ (Kolmogorov), **or**
- \triangleright invariant under finite permutation of the (X_n) (Hewitt–Savage).

Then $p(A) \in \{0, 1\}.$

▶ A categorical reformulation and proof in a suitable class of categories with colimits may now be within reach.

A challenge: concentration of measure

Concentration of measure is the phenomenon that

- \triangleright if A is a set with $p(A) \ge 1/2$ in a metric probability space,
- \triangleright then the ε -neighbourhood A_{ε} satisfies $p(A_{\varepsilon}) \approx 1$.

Theorem (Lévy)

On the n-sphere S^n ,

$$p(A) \ge 1 - \sqrt{\frac{\pi}{8}} e^{-\frac{\varepsilon^2 n}{2}} \approx 1.$$

Law of large numbers

Let $(X_n)_{n\in\mathbb{N}}$ be an i.i.d. sequence with $\mathbf{E}[X_n] = \mu$. Then

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| > \varepsilon\right] = 0.$$

Summary

- ➤ Categorical probability is currently like finding the sea route to India: several approaches with unclear relation.
- ▷ This talk has sketched a biased sample of approaches.
- ▷ It seems useful to distinguish:
 - \triangleright Eilenberg–Moore category \Rightarrow integration and its properties.
 - ightharpoonup Kleisli category \Rightarrow conditional independence, statistics.
- A clearer overall picture may emerge once we have further concrete results.
- ▶ The biggest challenge is to recover the specific analytical theorems of probability, such as the central limit theorem.