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What this talk is (not)

Categorical probability is like finding the sea route to India:

. Many possible routes to be explored without a coherent overall map.

. We may end up discovering something totally different than India!
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Michèle Giry Prakash Panangaden Bart Jacobs

Paolo Perrone Sharwin Rezagholi David Spivak



Motivation

. Category theory has been hugely successful in algebraic geometry,
algebraic topology, and theoretical computer science.

. Contemporary research in these fields can hardly even be conceived of
without categorical machinery.

. Can and should we expect similar success in other areas?

. A case in point: probability theory!



Motivation

A structural treatment can help us achieve:

. Improved conceptual clarity.

. Greater generality due to higher abstraction.

. Therefore applicability in a range of contexts instead of only one.



For example, let Sh(IR) be the category of sheaves on the poset of
compact intervals in R.

Conjecture (with David Spivak)

A probability space internal to Sh(IR) is the same thing as an external
stochastic process.

Suitably structural results on probability would therefore immediately give
results on stochastic processes.



But first, what is probability theory?

. The study of randomness.

. Fundamental insight: probability is volume! ⇒ Measure theory.

. Central themes:

. Random variables and their distributions.

. Theorems involving infinitely many variables.

. Conditioning and Bayes’ rule.



An example statement:

Central limit theorem

Let (Xn)n∈N be i.i.d. random variables with E[Xn] = µ and V[Xn] = σ.
Then

√
n

(
1

n

n∑
i=1

Xi − µ

)
n→∞−→ N(0, σ).

converges in distribution.

(Wikipedia, Cflm001)



Structures in categorical probability

Probability monad:

. probability measures

. pushforward of measures

. point measures δx

. averaging of measures

Eilenberg–Moore category:

. integration

. stochastic dominance

. martingales

Kleisli category:

. stochastic maps

. (conditional) independence

. statistics



. A probability monad lives on a category of sets or spaces.

. Most basic: the convex combinations monad on Set, where

DX :=

{∑
i

ciδxi

∣∣∣∣ ci ≥ 0,
∑
i

ci = 1

}

is the set of finitely supported probability measures on X .

. p ∈ DX is a “random element” of X . For example a fair coin,

1

2
δheads +

1

2
δtails ∈ D ({heads, tails})

. Functoriality Df : DX → DY takes pushforward measures:
applying a function to a random element of X produces a random
element of Y .



. The unit X → DX assigns to every x ∈ X the point mass δx at x .

. The multiplication DDX → DX computes the expected distribution,

∑
i

ci

∑
j

dijδxij

 7−→ ∑
i ,j

cidijδxij

. Algebras E : DA→ A are “convex spaces” in which every p ∈ DA has
a designated barycenter or expectation value E[p] ∈ A.

x

yE
[

1
2δx + 1

2δy
]



Integration: the Eilenberg–Moore side

. Let A be an Eilenberg–Moore algebra, e.g. A = R.

. Then for p ∈ DX and a random variable f : X → A,∫
X
f dp := E[(Df )(p)].

. For g : Y → X and q ∈ DY , the change of variables formula∫
Y

(f ◦ g) dq =

∫
X
f d(Dg)(q)

then holds by functoriality, D(f ◦ g) = D(f ) ◦ D(g).



Measure theory without measure theory

Basic idea

A probability measure on X is an idealized version of a finite sample:
elements (x1, . . . , xn) of X representing the uniform distribution 1

n

∑
i δxi .

All constructions and proofs with probability measures should be reducible
to constructions and proofs with finite samples.

We construct a probability monad which implements this idea and makes
it precise.

Let CMet be the category where

. objects (X , dX ) are complete metric spaces,

. morphisms f : (X , dX )→ (Y , dY ) are short maps,

dY (f (x), f (x ′)) ≤ dX (x , x ′).



. For S ∈ FinSet, we have the power functor

CMet −→ CMet, X 7−→ X S .

. We have isomorphisms X 1 ∼= X and X S×T ∼= (X S)T .

. These make the power functors into a graded monad on CMet,
which is a lax monoidal functor

FinUnif −→ [CMet, CMet].

. Here, FinUnif ⊆ FinSet is the subcategory of nonempty sets and
functions with uniform fibres.



Theorem (with Paolo Perrone, arXiv:1712.05363)

There is a left Kan extension

FinUnif

[CMet, CMet]

1

!

P

in the 2-category of symmetric monoidal categories and lax monoidal
functors, where P is a probability monad such that

PX = {Radon measures on X with finite first moment}.

This reduces (parts of) measure and probability to combinatorics!

https://arxiv.org/abs/1712.05363


Categories of stochastic maps: the Kleisli side

Let C be a symmetric strict monoidal category where each object carries a
distinguished commutative comonoid:

==

=

=

We think of this structure as providing copy and delete operations.



Definition

C is a category with comonoids if these comonoids are compatible with
the monoidal structure, and deletion is natural,

=f

This makes C into a semicartesian monoidal category: we have natural
maps

X ⊗ Y −→ X , X ⊗ Y −→ Y

which are abstract versions of marginalization, when composed with
p : I → X ⊗ Y .



Example

Let FinStoch be the category of finite sets, where morphisms f : X → Y
are stochastic matrices (fxy )x∈X , y∈Y ,

fxy ≥ 0,
∑
y

fxy = 1,

. fxy is the probability that the output is y given the input x .

. We also write f (y |x).

. Composition of morphisms is given by the Chapman–Kolomogorov
equation,

(g ◦ f )(z |x) :=
∑
y

g(z |y) f (y |x).



. The monoidal structure is

(g ⊗ f )(y , z |w , x) := g(y |w)f (z |x),

with canonical symmetry isomorphism.

. The copying operation is just copying,

δ(x1, x2|x) =

{
1 if x1 = x2 = x ,

0 otherwise.

. With this, FinStoch is a category with comonoids.



Deterministic morphisms

Definition

A morphism f : X → Y is deterministic if the comonoids are natural
with respect to f ,

f f
=

f

. The deterministic morphisms form a cartesian monoidal subcategory.

. In FinStoch, the deterministic morphisms are the stochastic matrices
with entries in {0, 1}, i.e. the actual functions. They form a copy of
FinSet.



Conditional independence

Categories with comonoids support several notions of conditional
independence, including:

Definition

A morphism f : A→ X ⊗ Y displays the conditional independence
X ⊥ Y ||A if there are g : A→ X and h : A→ Y such that

=f g h

One can derive the usual properties of conditional independence purely
formally.



Almost surely

Definition

Given p : Θ→ X , morphisms f , g : X → Y are equal p-almost surely if

p

f
=

p

g

. Other concepts relativize similarly to almost surely concepts.

Proposition

If gf = id, then g is f -almost surely deterministic.



Sufficient statistics

Definition

. A statistical model is a morphism p : Θ→ X .

. A statistic for p is a deterministic split epimorphism s : X → T .

. A statistic is sufficient if there is a splitting α : T → X such that

p

α

s

XT

p

s

XT

=

Θ Θ



Axiom

Suppose that gf = id. Then

g
=

f

f

. This holds in FinStoch.

. Now there is a completely formal version of a classical result of
statistics:

Fisher–Neyman factorization theorem (preliminary)

If the axiom holds, a statistic s : X → T is sufficient for p : Θ→ X if and
only if there is a splitting α : T → X with αsp = p.



Other preliminary results

Let p : Θ→ X be a statistical model.

We have abstract versions of other classical theorems of statistics:

Basu’s theorem

A complete sufficient statistic for p is independent of any ancillary statistic.

Bahadur’s theorem

If a minimal sufficient statistic exists, then a complete sufficient statistic is
minimal sufficient.



A challenge: zero-one laws

Kolmogorov’s and Hewitt–Savage’s zero-one law

Let

. (Xn)n∈N be a sequence of random variables,

. A an event which is a function of the (Xn), and

. independent of (Xn)n∈F for any finite F ⊆ N (Kolmogorov), or

. invariant under finite permutation of the (Xn) (Hewitt–Savage).

Then p(A) ∈ {0, 1}.

. A categorical reformulation and proof in a suitable class of categories
with colimits may now be within reach.



A challenge: concentration of measure
Concentration of measure is the phenomenon that

. if A is a set with p(A) ≥ 1/2 in a metric probability space,

. then the ε-neighbourhood Aε satisfies p(Aε) ≈ 1.

Theorem (Lévy)

On the n-sphere Sn,

p(A) ≥ 1−
√
π

8
e−

ε2n
2 ≈ 1.

Law of large numbers

Let (Xn)n∈N be an i.i.d. sequence with E[Xn] = µ. Then

lim
n→∞

P

[ ∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε

]
= 0.



Summary

. Categorical probability is currently like finding the sea route to India:
several approaches with unclear relation.

. This talk has sketched a biased sample of approaches.

. It seems useful to distinguish:

. Eilenberg–Moore category ⇒ integration and its properties.

. Kleisli category ⇒ conditional independence, statistics.

. A clearer overall picture may emerge once we have further concrete
results.

. The biggest challenge is to recover the specific analytical theorems of
probability, such as the central limit theorem.


