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Networks can very often be viewed as sets equipped or ‘decorated’ with
extra structure...
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For example,
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An open network is a network with prescribed inputs and outputs.
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An easy example to have in mind is the example of open graphs:
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An easy example to have in mind is the example of open graphs:

€5 €4
i o
{%} —> es () «—
€2 €1

The overall shape of this diagram resembles that of a cospan:
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Brendan Fong has developed a theory of decorated cospans which is well
suited for describing ‘open’ networks.
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Theorem (B. Fong)

Let A be a category with finite colimits and F: A — Set a symmetric lax
monoidal functor. Then there exists a category FCospan which has:
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Brendan Fong has developed a theory of decorated cospans which is well
suited for describing ‘open’ networks.

Theorem (B. Fong)

Let A be a category with finite colimits and F: A — Set a symmetric lax
monoidal functor. Then there exists a category FCospan which has:

e objects as those of A and

e morphisms as isomorphism classes of F-decorated cospans,
where an F-decorated cospan is given by a pair:
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Theorem (B. Fong continued)

Two F-decorated cospans are in the same isomorphism class if the
following diagrams commute:

| /i\ | /F(c)
NN

F(c")

F(f)
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Theorem (B. Fong continued)
To compose two morphisms:

31—i>01;32 az;CZLae,
d1 € F(C1) dg € F(Cg)

we take the pushout in A:
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Theorem (B. Fong continued)
To compose two morphisms:

a1—’>c1éa2 azl—>C2La3

d1 € F(C1) dg € F(Cg)

we take the pushout in A:

dy xd. beyq.c F
diod: 1 S, F(c1) x F(c2) BELECN F(ci + c2) ﬂ F(cy 42, ¢2)
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For example, if we let F: Set — Set be the symmetric lax monoidal functor
that assigns to a set N the (large) set of all graph structures having N as
its set of vertices:

F(N) ={E N}
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For an example of this example, if we take N = {ny, no, n3} to be a three
element set, then some elements of the (large) set F(N) are given by:
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For an example of this example, if we take N = {ny, no, n3} to be a three
element set, then some elements of the (large) set F(N) are given by:

e1 €1

M, = J2 no T~ N
QX 0

L N

meHm d € F(N)
2

n n n n:
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ns ns

ds € F(N) ds € F(N)
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One defect of this framework lies in what constitutes an isomorphism
class:
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One defect of this framework lies in what constitutes an isomorphism

o A
NP

F(c’)

The triangle on the right is in Set and commutes on the nose.
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One defect of this framework lies in what constitutes an isomorphism

o AT
NP

F(c’)
The triangle on the right is in Set and commutes on the nose.

This means that a decoration d € F(c) together with a bijection f: ¢ — ¢’
determines what the decoration d’ € F(c’) must be.
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In the context of open graphs, the following two open graphs would be in
the same isomorphism class:
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But the following two open graphs would not be in the same isomorphism

class:

o
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One remedy to this is to instead use ‘structured cospans’.
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Theorem (Baez, C.)

Let A be a category with finite coproducts, X a category with finite colimits
and L : A — X a finite coproduct preserving functor. Then there exists a
category | Csp(X) which has:
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Theorem (Baez, C. continued)

Two structured cospans are in the same isomorphism class if the
following diagram commutes:
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Theorem (Baez, C. continued)
To compose two morphisms:

L(a) —15 x <% L(a) L(a) >y <L L(as)

we take the pushout in X:
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In the context of open graphs, we take L: Set — Graph to be the discrete
graph functor which assigns to a set N the edgeless graph with vertex set
N.
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In the context of open graphs, we take L: Set — Graph to be the discrete
graph functor which assigns to a set N the edgeless graph with vertex set
N.

Both Set and Graph have finite colimits and L is a left adjoint, so we get
the following:
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Corollary

Let L: Set — Graph be the discrete graph functor. Then there exists a
category | Csp(Graph) which has:

e sets as objects and

e isomorphism classes of open graphs as morphisms.
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Corollary

Let L: Set — Graph be the discrete graph functor. Then there exists a
category | Csp(Graph) which has:

e sets as objects and
e isomorphism classes of open graphs as morphisms.

Now, two open graphs are in the same isomorphism class if there exists
an isomorphism of graphs «: Gy — G» making the following diagram

commute:
G1

RN

L(Ng) e~ L(Np)

Nl

Go
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Here, a: Gy — Gy is an isomorphism of graphs which is a pair of
bijections (f, g) making the following squares commute:

S
G = E_ N
|
S
)
GZ — E/ N/
~—_ 7
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And now, the following two open graphs are in the same isomorphism

class.
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What if we don’t want to work with isomorphism classes of structured
cospans but rather actual structured cospans?
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What if we don’t want to work with isomorphism classes of structured
cospans but rather actual structured cospans?

You might be thinking that we should then use a bicategory... and we could
do this.

But instead, we're going to use a ‘double category’!
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A double category has figures like this:
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A double category has figures like this:

>

M
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We have objects, here denoted as A, B, C and D.
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A double category has figures like this:

A-Y.pB
fl J a Jg
CLD

We have objects, here denoted as A, B, C and D.

Vertical 1-morphisms between objects, here denoted as f and g.
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Also, horizontal 1-cells between objects, here denoted as M and N,
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A double category has figures like this:

A-Y.pB
fl J a Jg
CLD

We have objects, here denoted as A, B, C and D.
Vertical 1-morphisms between objects, here denoted as f and g.
Also, horizontal 1-cells between objects, here denoted as M and N,

and morphisms between horizontal 1-cells, called 2-morphisms, here
denoted as a.
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These 2-morphisms can be composed both vertically and horizontally.

B E
g gl Jh
D F

lzf lz

O«

= &=

c—Ysp D F
Tl
G—2-H I J
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These 2-morphisms can be composed both vertically and horizontally.

B E
g gl Jh
D F

lzf lz

O«

= &=

|2

c D D F
Tl duh
G—2-H I J

(v0B)(« 0f) = (ad’) o (B5)
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Theorem (Baez, C.)

Let A be a category with finite coproducts, X a category with finite colimits
and L : A — X a finite coproduct preserving functor.
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Theorem (Baez, C.)

Let A be a category with finite coproducts, X a category with finite colimits
and L : A — X a finite coproduct preserving functor. Then there exists a
symmetric monoidal double category | Csp(X) which has:

e objects as those of A,
e vertical 1-morphisms as morphisms of A,

e horizontal 1-cells given by structured cospans which are cospans
in X of the form:

and
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Theorem (Baez, C. continued)
2-morphisms as maps of cospans in X given by commutative
diagrams of the form: _
L(a) — x <2 L(a)

L(f)l “l lL(g)

2 ’

L(b) — sy <& L(b)
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Theorem (Baez, C. continued)
2-morphisms as maps of cospans in X given by commutative
diagrams of the form: _
L(a) — x <2 L(a)

L(f)l “J lL(g)

i’

L(b) sy <2 L(b)

The horizontal composite of two 2-morphisms: '
L(a) — x <2 L(b) L(b) —>y <= L(c)

L(f)l QJ lL(g) L(g)l ﬂl lL(h)
it o 4 0,

L(a') =5 x' «— L(b) L(b') =25y < L(c)
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Theorem (Baez, C. continued)

2-morphisms as maps of cospans in X given by commutative
diagrams of the form: _
L(a) — x <2 L(a)

L(f)l CVJ lL(g)

i’

L(b) sy <2 L(b)

The horizontal composite of two 2-morphisms:

L(a) s x <2 L(b) L(b) —25y <2 L(c)
L(f)l GJ lL(g) L(g)l ﬁl lL(h)
iy, o b oY o
L(a’") — x’ «— L(b") L(b") — y «— L(c)
Jyi J
is given by L(a) S x +Lp) Y P L(c)

L(f)l “+L(g)ﬂl lL(h)
Jyi! Jyo,

L(a') —> X' +ip) Y «— L(c).
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Theorem (Baez, C. continued)

Monoidal structure:
L(ar) 5 x1 <& L(by) L(a) -5 xt & L(b))
L(f)l wl lL(g) ® L(f’)l a'l lL(g')
L(a) —> Xe <~ L(b2) L(a) —> X —— L(b3)

2 2

i -+ ¢—1 + 0o ¢—1
Liar+a]) —" 0t O by 4o

= L(f+f’)l a—|—a’l lL(ngg’)

L(ag+ay) —————> xe+ x5« L(b2+ b))
(i + i5)$™" (02 + 04)¢™"
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We could also address the defect with decorated cospans more directly by
instead of using a functor F: A — Set, using a pseudofunctor F: A — Cat.
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Given a category A with finite colimits and a symmetric lax monoidal
pseudofunctor F: A — Cat, there exists a symmetric monoidal double
category FCsp which has:

e objects as those of A,
e vertical 1-morphisms as morphisms of A,
e horizontal 1-cells as F-decorated cospans, which are again pairs:
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Theorem (Baez, Vasilakopoulou, C. continued)
e 2-morphisms given by maps of cospans in A:

a——>c«——b g F(c)
g f h 1 lF(f)
l l l N
&~ b F(o)
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Theorem (Baez, Vasilakopoulou, C. continued)
2-morphisms given by maps of cospans in A:

a—sce p y F(c)
g9 f 1 L| F(f)
a/ s C’ ¢ b/ F(Cl)

together with a 2-morphism ¢ which can be viewed as a morphism
t: F(f)(d) » d

in F(c’).
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In the context of open graphs:
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In the context of open graphs:
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In the context of open graphs

€5

€4
€3 @
() Lhy ()
NS Y
i o
. O,

the morphism ¢: F(f)(d) — d’ is the map of edges.
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Christina Vasilakopoulou has recently discovered the conditions under
which structured cospans and decorated cospans are the same!
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Christina Vasilakopoulou has recently discovered the conditions under
which structured cospans and decorated cospans are the same!

Theorem (Baez, Vasilakopoulou, C.)

Given a finitely cocomplete category A and a symmetric lax monoidal
pseudofunctor F: A — Cat, if each category F(a) is also finitely
cocomplete, then there is an equivalence of symmetric monoidal double
categories

LCsp(f F) ~ FCsp.
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Christina Vasilakopoulou has recently discovered the conditions under
which structured cospans and decorated cospans are the same!

Theorem (Baez, Vasilakopoulou, C.)

Given a finitely cocomplete category A and a symmetric lax monoidal
pseudofunctor F: A — Cat, if each category F(a) is also finitely
cocomplete, then there is an equivalence of symmetric monoidal double
categories

LCsp(f F) ~ FCsp.

v

The functor L used to obtain the structured cospans double category is left
adjoint to the Grothendieck construction of the pseudofunctor F:

R: [F—A.
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We’ve used the framework of structured cospans to create syntax
categories for black box functors.

ohn Baez and Kenny Courser (University of Cal May 22, 2019 32/34



We've used the framework of structured cospans to create syntax
categories for black box functors.

There exists a left adjoint L : FinSet — Circ which we can use to obtain a
symmetric monoidal category

L Csp(Circ)

of finite sets and open electrical circuits.
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We’ve used the framework of structured cospans to create syntax
categories for black box functors.

There exists a left adjoint L : FinSet — Circ which we can use to obtain a
symmetric monoidal category

L Csp(Circ)

of finite sets and open electrical circuits.

/ 1/2

inputs

From this, we can obtain a black box functor

m: ;| Csp(Circ) — Rel.
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And likewise for open Petri nets.

a b
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=

4
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@

L: Set — Petri

m: | Csp(Petri) — Rel.
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For more, see my thesis on Dr. Baez’s website:

https://tinyurl.com/courser-thesis
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