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Graphical calculi and completeness

The graphical calculus for PROPs models circuit computation.

Finite presentations of different fragments of computing are studied.

Complete presentation is a strict †-symmetric monoidal faithful functor.

For quantum computing: ZX-calculus, ZH-calculus, ZW-calculus.

For reversible computing: CNOT and TOF.
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The category CNOT

Consider the PROP generated by cnot, |1〉, 〈1|:
The controlled not gate, cnot, takes bits:

|b1, b2〉 7→ |b1, b1 ⊕ b2〉

cnot is drawn as:

|1〉 is preparing 1 and 〈1| is postselecting 1:

The not gate and |0〉, 〈0| are derived:

:= := :=

This category has a finite, complete presentation in terms of circuit identities,
CNOT [CCS18]:
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The identities of CNOT
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The category TOF

Consider the PROP generated by tof, |1〉, 〈1|:
The Toffoli gate, tof, takes bits:

|b1, b2, b3〉 7→ |b1, b1 · b2 ⊕ b1〉

tof is drawn as:

|1〉 is preparing 1 and 〈1| is postselecting 1:

The cnot gate is derived:

:=

This category has a finite, complete presentation, TOF [CC19]:
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The identities of TOF
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The identities of TOF
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Both CNOT and TOF have concrete equivalent categories.
In particular they are discrete inverse categories.

That means that they have a total copying map generated by:

:= and :=
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Frobenius algebras

A Frobenius algebra is a monoid-comonoid pair:

= = = =

= =

Satisfying the Frobenius law:

= =
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Frobenius algebras

A Frobenius algebra is commutative if:

= =

And special if:

=

Connected components of Frobenius algebras can be uniquely represented
by spiders:

...
... =

...
...

· · · =
...

...
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Frobenius algebras are bases in FdHilb

Theorem ([CPV13])

Orthonormal bases {|i〉}i∈B in FdHilb are in one-to-one correspondence with
special, commutative †-Frobenius algebras:∑

i∈B

|i〉
∑
i∈B

|i〉〈i, i|
∑
i∈B

〈i|
∑
i∈B

|i, i〉〈i|

Therefore, we can consider the Frobenius algebras associated to the
eigenbasis of quantum observables.
For example, consider the Hermetian matrices:

X :=

[
0 1
1 0

]
Z :=

[
1 0
0 −1

]
X and Z have spectra:

X+ = |+〉 = 1/
√

2(|0〉+ |1〉) X− = |−〉 = 1/
√

2(|0〉 − |1〉)

Z+ = |0〉, Z− = |1〉
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ZXπ

The phase-free ZX-calculus, ZXπ, [DP13] is the PROP generated by the Z
Frobenius algebra and Hadamard gate:

The Hadamard gate is a self-inverse change of basis matrix so that:

X+H = Z+H X−H = Z−H Z+H = X+H Z−H = X−H

The Frobenius algebra for X is therefore given by conjugation.

:= :=

:= :=
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ZXπ

ZXπ has a finite presentation:

The first identity is that the axioms of a special †-Frobenius algebra hold for Z .

The Frobenius algebras associated to the Z and X observables are strongly
complimentary.

They form a Hopf algebra up to an invertible scalar:

This corresponds to the bases being mutually unbiased [CD11].
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CNOT + H

Consider the extension of CNOT with the Hadamard gate (and
√

2):
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ZXπ → CNOT + H

Consider G : ZXπ → CNOT + H, sending:

7→ 7→
√

2

7→ 7→
√

2

7→ 7→
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CNOT + H → ZXπ

Consider F : CNOT + H → ZXπ, sending:

7→ 7→

7→
π

7→
π

√
2 7→ 7→
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CNOT is isomorphic to ZXπ

Proposition

F : CNOT + H → ZXπ and G : ZXπ → CNOT + H are †-preserving
symmetric monoidal functors.

Theorem

F : CNOT + H → ZXπ and G : ZXπ → CNOT + H are inverses.

This implies that CNOT + H is complete...

Theorem ([DP13])

ZXπ is complete for real stabilizer circuits.

We can also remove the scalar
√

2 by being careful.
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G7−→

√
2

√
2

= · · · =
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Stabilizer circuits and universality

There is a caveat:

Theorem ([Got98])

Stabilizer circuits can be simulated in polynomial time on a classical
probabilistic computer.

However,

Theorem ([Aha03])

The Toffoli and Hadamard gates, together are an approximately universal
gate set for quantum computing.
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Is there a presentation in terms of the Toffoli gate and H?

∼

But

6∼
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The Toffoli gate in ZXπ

The Toffoli gate has the following representation in ZXπ [NW18]:

=
π π

However, the Triangle has the following representation in CNOT + H [Vil18]:

=
√

2
√

2
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The ZH-calculus

The controlled-Z gate can be represented with Toffoli gate and Hadamard:

:=

In the ZH calculus controlled Z -gates are given by:

...

Axiom [H.F] of CNOT + H generalizes to Toffoli gates:

[H.F’] =

Question: Is this enough to be complete?Cole Comfort Circuit Relations for Real Stabilizers: Towards TOF + H
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