Duality for Algebras of the Connected Planar Wiring Diagrams Operad

Owen Biesel

Carleton College obiesel@carleton.edu

May 23, 2019

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

Combining Resistance

 \cong

<ロ> (日) (日) (日) (日) (日)

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

Combining Resistance

 \cong

<ロ> (日) (日) (日) (日) (日)

May 23, 2019

Conductance is Inverse Resistance

$$G = 1/R$$

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

∃ 990

Combining Conductance

May 23, 2019

- 2

<ロ> (日) (日) (日) (日) (日)

Combining Maximum Flow Rates

May 23, 2019

Э

(ロ) (部) (目) (日) (日)

Combining Minimum Path Lengths

Duality for Planar Wiring Diagrams

 → May 23, 2019

3

(日)

Series and parallel formulas

	Series	Parallel
Resistance	$R_1 + R_2$	$(R_1^{-1} + R_2^{-1})^{-1}$
Conductance	$(G_1^{-1}+G_2^{-1})^{-1}$	$G_1 + G_2$
Max Flow Rate	$\min(F_1,F_2)$	$F_1 + F_2$
Min Path Length	$D_{1} + D_{2}$	$\min(D_1, D_2)$

May 23, 2019

э.

(日) (周) (日) (日)

Series and parallel connections are dual

Not quite the usual "dual graph."

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

Connected circular planar graphs

Placing the dual vertices

Placing the dual edges

May 23, 2019

The dual graph

-May 23, 2019

3 ∃ ≥

Dual Connected Circular Planar Graphs

Duality for Planar Wiring Diagrams

Resistance and conductance are "dual"

Max flow rate and min path length are "dual"

Main theorem

Theorem (B.—, 2019)

- (Connected circular planar) graphs form an algebra of the operad Plan of "connected planar wiring diagrams."
- "Max flow rate," "min path length," "effective resistance," and "effective conductance" are all morphisms between Plan-algebras.
- Plan has a duality automorphism giving every algebra a "dual" algebra.
- The algebra of graphs is isomorphic to its dual algebra, and the isomorphism sends a graph to its dual graph.
- The dual of the "max flow rate" morphism is "min path length," and the dual of "effective resistance" is "effective conductance."

イロト イポト イヨト イヨト 二日

Gluing together circular planar graphs

Duality for Planar Wiring Diagrams

Gluing with a planar wiring diagram

A connected planar wiring diagram

This is a *morphism* in the operad \mathcal{P} lan of connected planar wiring diagrams.

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

Series and parallel wiring diagrams

Duality for Planar Wiring Diagrams

The operad of connected planar wiring diagrams

Definition (B.-, 2019)

The (symmetric, coloured) operad *Plan*:

• objects are circularly ordered finite sets (X, θ) .

The operad of connected planar wiring diagrams

Definition (continued)

morphisms from (X₁, θ₁),..., (X_n, θ_n) to (Y, φ) are planar wiring diagrams with the X_i on the inside and Y on the outside:

Every "cable" has ≤ 1 element of *Y*.

Every "face" has ≤ 1 arc of outer circle.

Lemma: This really does define an operad!

Plan has:

- A forgetful map to Spivak's operad of all wiring diagrams. *Plan* inherits several algebras from there, like flows and potentials. However, Spivak's operad does not have a duality automorphism.
- An inclusion map to Jones's "planar algebras" operad. *Plan* inherits its duality automorphism Jones's "1-click" automorphism, but Jones's operad has too many morphisms for circular planar graphs to be an algebra.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Plan-algebras

A \mathcal{P} lan-algebra \mathcal{A} assigns:

- to each circularly ordered set (X, θ) a set $\mathcal{A}(X, \theta)$, and
- to each morphism $(X_1, \theta_1), \ldots, (X_n, \theta_n) o (Y, \varphi)$ a function

$$\prod_{i=1}^n \mathcal{A}(X_i,\theta_i) \to \mathcal{A}(Y,\varphi).$$

These describe *what* may be inserted into the slots of a wiring diagram and *how* they glue together.

$$\mathcal{P}$$
lan $\stackrel{\mathcal{A}}{\longrightarrow} Op(\mathsf{Set})$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example \mathcal{P} lan algebras: \mathcal{G} and $\mathcal{G}_{(0,\infty)}$

- G(X, θ) = set of connected circular planar graphs with boundary vertices (X, θ).
- $\mathcal{G}_{(0,\infty)}(X,\theta)$: same, but with edges weighted by positive real numbers.

Lemma: ${\mathcal G}$ is generated by the single element

satisfying a single relation. That makes it easy to describe algebra morphisms out of \mathcal{G} !

- 3

Example \mathcal{P} lan algebra: Π

Duality for Planar Wiring Diagrams

Example *Plan*-algebra: potential sets

A *potential* on (X, θ) is a function X → ℝ up to overall additive constant:

 $\mathcal{V}(X,\theta)$ is the set of potentials on X.

Gluing compatible potentials

Duality for Planar Wiring Diagrams

Gluing compatible potentials

Duality for Planar Wiring Diagrams

Not all potentials can be glued, so ${\mathcal V}$ is only a relational ${\mathcal P}\!{lan}\text{-algebra}.$ But

 $\mathcal{P}(\mathcal{V}): (X, \theta) \mapsto$ the set of subsets of $\mathcal{V}(X, \theta)$

is an actual *Plan*-algebra!

Send a collection of potential sets to the set of potentials obtained by gluing compatible members.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

= 900

Min path length: $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{V})$

Weights on a graph \rightsquigarrow distances \rightsquigarrow potential set:

$$\{(a,b)\in\mathbb{R}^2\mid |a-b|\leq D\}$$

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

Min path length: $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{V})$

$$\{\begin{array}{c} D_1 \\ D_2 \\ D_3 \end{array} \leftrightarrow \{(a,b) \in \mathbb{R}^2 \mid \exists x \in \mathbb{R} \text{ such that} \\ |a-x| \leq D_1, |x-b| \leq D_2, |x-b| \leq D_3 \} \\ = \{(a,b) \in \mathbb{R}^2 \mid |a-b| \leq D_1 + \min(D_2,D_3)\} \}$$

"Min path length" is an algebra morphism $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{V})!$

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Example *Plan*-algebras: Flow Sets

The algebra P(F) of *flow sets*: A *flow* on (X, θ) is a sum-zero function X → ℝ:

 $\mathcal{F}(X,\theta)$ = the set of flows on X.

Gluing compatible flows

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

Not all flows can be glued, so ${\mathcal F}$ is only a $\textit{relational \mathcal{P}lan-algebra}.$ But

 $\mathcal{P}(\mathcal{F}): (X, \theta) \mapsto$ the set of subsets of $\mathcal{F}(X, \theta)$

is an actual *Plan*-algebra!

Send a collection of flow sets to the set of flows obtained by gluing compatible members.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○◇

Max flow rate: $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{F})$

Weights on a graph \rightsquigarrow possible flows:

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

Max flow rate: $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{F})$

$$\{F_1 \ F_2 \ F_3 \ \neq \{(a,b) \in \mathbb{R}^2 \mid \exists x, y, z \in \mathbb{R} \text{ such that} \\ |x| \le F_1, \ |y| \le F_2, \ |z| \le F_3, \\ x = a, \ y + z = b, \ x + y + z = 0\} \\ = \{(a,-a) \in \mathbb{R}^2 \mid |a| \le \min(F_1,F_2 + F_3)\}$$

"Max flow rate" is a \mathcal{P} lan-algebra morphism $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{F})!$

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

May 23, 2019

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Resistance: $\mathcal{G}_{(0,\infty)} \to \mathcal{P}(\mathcal{V} \times \mathcal{F})$

Weights on a graph \rightsquigarrow voltage-current relationships:

$$\left\{ \begin{array}{c} R \\ \hline \\ V_2 \end{array} \right\} \rightsquigarrow \left\{ \left(\begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, \begin{bmatrix} I \\ -I \end{bmatrix} \right) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid (V_1 - V_2) = IR \right\}$$

In general, send a weighted graph to the set of pairs (boundary voltages, induced boundary currents). "Effective resistance" is a *Plan*-algebra morphism $\mathcal{G}_{(0,\infty)} \rightarrow \mathcal{P}(\mathcal{V} \times \mathcal{F})!$

 $\mathcal{P}\!\textit{lan}$ has a "duality" automorphism

 $*:\mathcal{P}\!\textit{lan}\to\mathcal{P}\!\textit{lan}$

Compose with any algebra $\mathcal{A}:\mathcal{P}lan \to \mathcal{Op}(\mathsf{Set})$ to get a "dual" algebra

$$\mathcal{A}^*: \mathcal{P}lan \xrightarrow{*} \mathcal{P}lan \xrightarrow{\mathcal{A}} Op(\mathsf{Set}).$$

$$\mathcal{A}^{**} \cong \mathcal{A}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Duality automorphism of *Plan*: on objects

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

Series and parallel wiring diagrams are dual

Owen Biesel (Carleton)

Duality for Planar Wiring Diagrams

Dual of ${\mathcal G}$ is ${\mathcal G}$

 ${\cal G}$ is isomorphic to its own dual: the isomorphism sends a graph to its dual.

The same holds for $\mathcal{G}_{(0,\infty)}$.

Dual of ${\mathcal V}$ is ${\mathcal F}$

Theorem (B.—, 2019)

The dual of the algebra of potentials is the algebra of flows: $\mathcal{V}^* \cong \mathcal{F}$.

Take successive differences of potential values to obtain a flow:

 $\text{Corollary:} \ \mathcal{P}(\mathcal{V})^* \cong \mathcal{P}(\mathcal{F}) \text{ and } \mathcal{P}(\mathcal{V} \times \mathcal{F})^* \cong \mathcal{P}(\mathcal{V} \times \mathcal{F}) \text{ as well.}$

Dual of min path length is max flow rate

Theorem (B.—, 2019)

The dual of the "min path length" morphism is the "max flow rate" morphism: the square

$$(\textit{min path length})^* egin{array}{ccc} \mathcal{G}^*_{(0,\infty)} &\cong \mathcal{G}_{(0,\infty)} \ \downarrow & \downarrow & (max \textit{flow}) \ \mathcal{P}(\mathcal{V})^* &\cong \mathcal{P}(\mathcal{F}) \end{array}$$

commutes.

- 3

- 4 同 6 4 日 6 4 日 6

Dual of min path length is max flow rate

Proof sketch: only have to check for single weighted edges!

Theorem (B.—, 2019)

The dual of the "effective resistance" morphism is "effective 1/resistance": the square

$$\begin{array}{rcl} (effective \ resistance)^* & \stackrel{\mathcal{G}^*_{(0,\infty)}}{\downarrow} & \stackrel{\mathcal{G}_{(0,\infty)}}{\downarrow} & (effective \ resistance) \\ \mathcal{P}(\mathcal{V} \times \mathcal{F})^* & \cong & \mathcal{P}(\mathcal{V} \times \mathcal{F}) \end{array}$$

commutes, where the isomorphism $\mathcal{G}^*_{(0,\infty)}\cong \mathcal{G}_{(0,\infty)}$ dualizes the graph and inverts the edge weights.

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへの

Dual of resistance is conductance

Proof sketch:

$$\begin{array}{c} \begin{pmatrix} R \\ \hline \\ V_2 \end{pmatrix} & \rightsquigarrow & \left\{ \left(\begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, \begin{bmatrix} I \\ -I \end{bmatrix} \right) \mid (V_1 - V_2) = IR \right\} \\ & \leftrightarrow & \left\{ \left(\begin{bmatrix} c+I \\ c \end{bmatrix}, \begin{bmatrix} V_1 - V_2 \\ V_2 - V_1 \end{bmatrix} \right) \mid (V_1 - V_2) = IR \right\}$$

$$= \left\{ \left(\begin{bmatrix} V_1' \\ V_2' \end{bmatrix}, \begin{bmatrix} I' \\ -I' \end{bmatrix} \right) \mid (V_1' - V_2') = I'/R \right\}$$

Duality for Planar Wiring Diagrams

May 23, 2019

3

・ロト ・聞ト ・ヨト ・ヨト

Thank you!

Duality for Planar Wiring Diagrams

May 23, 2019

3

・ロト ・聞ト ・ヨト ・ヨト