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Combining Resistance

R1 R2

∼=

R1 + R2

R1

R2

∼=

R1R2

R1 + R2
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Combining Resistance

R1 R2

∼=

R1 + R2

R1

R2
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Conductance is Inverse Resistance

G = 1/R

R = 2Ω

resistance

 

G = 0.5℧

conductance
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Combining Conductance

G1 G2

∼=

(

1

G1
+

1

G2

)−1

G1

G2

∼=

G1 + G2
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Combining Maximum Flow Rates

F1
F2

∼=

min(F1,F2)

F1

F2

∼=
F1 + F2
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Combining Minimum Path Lengths

D1 D2 ∼=
D1 + D2

D1

D2

∼=
min(D1,D2)
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Series and parallel formulas

Series Parallel

Resistance R1 + R2 (R−1
1 + R−1

2 )−1

Conductance (G−1
1 + G−1

2 )−1 G1 + G2

Max Flow Rate min(F1,F2) F1 + F2

Min Path Length D1 + D2 min(D1,D2)
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Series and parallel connections are dual

Not quite the usual “dual graph.”

Owen Biesel (Carleton) Duality for Planar Wiring Diagrams May 23, 2019



Connected circular planar graphs
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Placing the dual vertices
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Placing the dual edges
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The dual graph
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Dual Connected Circular Planar Graphs
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Resistance and conductance are “dual”

4Ω
1Ω 4Ω

3Ω 1Ω

1Ω

Resistances

Effective resistance =
157

29
Ω

4℧

1℧

3℧

1℧

4℧

1℧

Conductances

Effective conductance =
157

29
℧
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Max flow rate and min path length are “dual”

4
1 4

3 1

1

Max flow rates

Overall max flow rate = 3

4

1

3

1

4

1

Edge lengths

Min path length = 3
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Main theorem

Theorem (B.—, 2019)

(Connected circular planar) graphs form an algebra of the operad
Plan of “connected planar wiring diagrams.”

“Max flow rate,” “min path length,” “effective resistance,” and
“effective conductance” are all morphisms between Plan-algebras.

Plan has a duality automorphism giving every algebra a “dual”
algebra.

The algebra of graphs is isomorphic to its dual algebra, and the
isomorphism sends a graph to its dual graph.

The dual of the “max flow rate” morphism is “min path length,” and
the dual of “effective resistance” is “effective conductance.”
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Gluing together circular planar graphs

 

?
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Gluing with a planar wiring diagram

=
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A connected planar wiring diagram

This is a morphism in the operad Plan of connected planar wiring
diagrams.
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Series and parallel wiring diagrams

Series Parallel
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The operad of connected planar wiring diagrams

Definition (B.—, 2019)

The (symmetric, coloured) operad Plan:

objects are circularly ordered finite sets (X , θ).

X x

θ(x)
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The operad of connected planar wiring diagrams

Definition (continued)

morphisms from (X1, θ1), . . . , (Xn, θn) to (Y , ϕ) are planar wiring
diagrams with the Xi on the inside and Y on the outside:

X1 X2

X3

Y

Every “cable” has ≤ 1
element of Y .

Every “face” has ≤ 1
arc of outer circle.

Lemma: This really does define an operad!
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Relationships to other operads

Plan has:

A forgetful map to Spivak’s operad of all wiring diagrams. Plan
inherits several algebras from there, like flows and potentials.
However, Spivak’s operad does not have a duality automorphism.

An inclusion map to Jones’s “planar algebras” operad. Plan inherits
its duality automorphism Jones’s “1-click” automorphism, but Jones’s
operad has too many morphisms for circular planar graphs to be an
algebra.
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Plan-algebras

A Plan-algebra A assigns:

to each circularly ordered set (X , θ) a set A(X , θ), and

to each morphism (X1, θ1), . . . , (Xn, θn) → (Y , ϕ) a function

n
∏

i=1

A(Xi , θi ) → A(Y , ϕ).

These describe what may be inserted into the slots of a wiring diagram
and how they glue together.

Plan
A
−→Op(Set)
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Example Plan algebras: G and G(0,∞)

G(X , θ) = set of connected circular planar graphs with boundary
vertices (X , θ).

G(0,∞)(X , θ): same, but with edges weighted by positive real numbers.

Lemma: G is generated by the single element

satisfying a single relation. That makes it easy to describe algebra
morphisms out of G!
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Example Plan algebra: Π

Π(X , θ) = set of planar (noncrossing) partitions of (X , θ).

=

Owen Biesel (Carleton) Duality for Planar Wiring Diagrams May 23, 2019



Example Plan-algebra: potential sets

A potential on (X , θ) is a function X → R up to overall additive
constant:

X 2

1
0

−2
4

= X 102

101
100

98
104

V(X , θ) is the set of potentials on X .
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Gluing compatible potentials

1

−1

2

0

4

1

2

3

0
2
1 4

1

= ?
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Gluing compatible potentials

1

−1

2

0

3

0

1

2

0
2
1 4

1

=

3

2

1
41

−1

1
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Gluing potential sets

Not all potentials can be glued, so V is only a relational Plan-algebra.
But

P(V) : (X , θ) 7→ the set of subsets of V(X , θ)

is an actual Plan-algebra!

Send a collection of potential sets to the set of potentials obtained by
gluing compatible members.
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Min path length: G(0,∞) → P(V)

Weights on a graph  distances  potential set:

D
 {(a, b) ∈ R

2 | |a − b| ≤ D}

Owen Biesel (Carleton) Duality for Planar Wiring Diagrams May 23, 2019



Min path length: G(0,∞) → P(V)

D1
D2

D3

 {(a, b) ∈ R
2 | ∃x ∈ R such that

|a − x | ≤ D1, |x − b| ≤ D2, |x − b| ≤ D3}

= {(a, b) ∈ R
2 | |a − b| ≤ D1 +min(D2,D3)}

“Min path length” is an algebra morphism G(0,∞) → P(V)!
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Example Plan-algebras: Flow Sets

The algebra P(F) of flow sets: A flow on (X , θ) is a sum-zero
function X → R:

X 3

0.5
−1

−2
−0.5

F(X , θ) =the set of flows on X .
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Gluing compatible flows

−1

−1

−1

3

0

−2

1

1

−1
1
1 −2

1

=

0

1

2
−21

−1

−1
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Gluing flow sets

Not all flows can be glued, so F is only a relational Plan-algebra.
But

P(F) : (X , θ) 7→ the set of subsets of F(X , θ)

is an actual Plan-algebra!

Send a collection of flow sets to the set of flows obtained by gluing
compatible members.
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Max flow rate: G(0,∞) → P(F)

Weights on a graph  possible flows:

F
 {(a,−a) ∈ R

2 | |a| ≤ F}
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Max flow rate: G(0,∞) → P(F)

F1 F2

F3
 {(a, b) ∈ R

2 | ∃x , y , z ∈ R such that

|x | ≤ F1, |y | ≤ F2, |z | ≤ F3,

x = a, y + z = b, x + y + z = 0}

= {(a,−a) ∈ R
2 | |a| ≤ min(F1,F2 + F3)}

“Max flow rate” is a Plan-algebra morphism G(0,∞) → P(F)!
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Resistance: G(0,∞) → P(V × F)

Weights on a graph  voltage-current relationships:

R
 

{([

V1

V2

]

,

[

I
−I

])

∈ R
2 × R

2

∣

∣

∣

∣

(V1 − V2) = IR

}

In general, send a weighted graph to the set of pairs (boundary voltages,
induced boundary currents). “Effective resistance” is a Plan-algebra
morphism G(0,∞) → P(V × F)!
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Duality automorphism of Plan

Plan has a “duality” automorphism

∗ : Plan → Plan

Compose with any algebra A : Plan → Op(Set) to get a “dual” algebra

A∗ : Plan
∗

−→Plan
A
−→Op(Set).

A∗∗ ∼= A.
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Duality automorphism of Plan: on objects

∗ : X  X ∗

∗ : Y  Y ∗
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Duality automorphism of Plan: on morphisms
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Duality automorphism of Plan: on morphisms
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Duality automorphism of Plan: on morphisms
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Duality automorphism of Plan: on morphisms
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Series and parallel wiring diagrams are dual
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Dual of G is G

G is isomorphic to its own dual: the isomorphism sends a graph to its dual.

 

The same holds for G(0,∞).

Owen Biesel (Carleton) Duality for Planar Wiring Diagrams May 23, 2019



Dual of V is F

Theorem (B.—, 2019)

The dual of the algebra of potentials is the algebra of flows: V∗ ∼= F .

Take successive differences of potential values to obtain a flow:

X 102

102
101

105
103

potential

 X ∗

0

−1

4

−2
−1

flow

Corollary: P(V)∗ ∼= P(F) and P(V × F)∗ ∼= P(V × F) as well.
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Dual of min path length is max flow rate

Theorem (B.—, 2019)

The dual of the “min path length” morphism is the “max flow rate”
morphism: the square

G∗
(0,∞)

∼= G(0,∞)

(min path length)∗ ↓ ↓ (max flow)
P(V)∗ ∼= P(F)

commutes.
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Dual of min path length is max flow rate

Proof sketch: only have to check for single weighted edges!

D
↔ D

  

{(a,−a) : |a| ≤ D} =
{(a, b) | |a − b| ≤ D} ↔ {(a − b, b − a) : |a − b| ≤ D}
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Dual of resistance is conductance

Theorem (B.—, 2019)

The dual of the “effective resistance” morphism is “effective 1/resistance”:
the square

G∗
(0,∞)

∼= G(0,∞)

(effective resistance)∗ ↓ ↓ (effective resistance)
P(V × F)∗ ∼= P(V × F)

commutes, where the isomorphism G∗

(0,∞)
∼= G(0,∞) dualizes the graph and

inverts the edge weights.
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Dual of resistance is conductance

Proof sketch:

R
 

{([

V1

V2

]

,

[

I
−I

]) ∣

∣

∣

∣

(V1 − V2) = IR

}

↔

{([

c + I
c

]

,

[

V1 − V2

V2 − V1

])
∣

∣

∣

∣

(V1 − V2) = IR

}

=

1/R  

{([

V ′
1

V ′
2

]

,

[

I ′

−I ′

])
∣

∣

∣

∣

(V ′
1 − V ′

2) = I ′/R

}
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Thank you!
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