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In this talk...

Presheaves as semantic models of dynamical system.

Behaviour is given by collection of executions.
A presheaf records executions of a system.

Re�nement of behaviour (simulation) as presheaf morphism.

Bisimulation maps are special presheaf morphisms.

PSh(A?) strong bisimulation
PSh(A∞) ∀-fair bisimulation
PSh(A?τ̄ ) branching bisimulation

Recall that

A? is the poset of �nite words.

Aω is the poset of in�nite words.

A∞ = A? ∪Aω.
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Dynamical system

Behaviour is some observable phenomena that evolve over time.

Time T is modelled as a category; but today as a poset (T,�).

What about observation?

The existence of a hypothetical `observer' O.

For each t ∈ T, O(t) is a set of `plausible' observations.

Earlier observations can be deduced from the later

observations, i.e.,

for t � t′ there is a `restriction' O(t) �
_·t O(t′)

intuition: if x is observed at t′ then x · t was observed at t.
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The restriction · satis�es the following axioms:

1 if t = t′ then _ · t is an identity on O(t).

2 if t1 � t2 � t3 then the triangle commutes:

O(t2)

O(t1) �
_ · t1

�
_
· t 1

O(t3)
�

_
· t

2

In hindsight

O is a presheaf, i.e., a functor Top - Set.
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Example

Labelled transition system (LTS)

LTS is a triple (X,A,→), where →⊆ X ×A×X is often
called the transition relation.

T is the set of natural numbers N ordered by ≤.
For a given alphabet A, we de�ne a presheaf A ∈ PSh(N):

A(n) = {σ ∈ A? | |σ| = n} (for every n ∈ N),

together with the restriction on A given by

σ · n = σ|n (for every σ ∈ A(n′) and n ≤ n′).
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Towards a formal definition

Intuitively

For a �xed T and O ∈ PSh(T), a dynamical system describes:

What are the runs (aka trajectories/executions) of the system?

� Model the set of runs itself as a presheaf F ∈ PSh(T).

What is the observation associated with each run?

� Model as a presheaf map, i.e., a family F (t)
αt- O(t)

t′ F (t′)
αt′- O(t′)

�

t F (t)

_ · t

? αt- O(t)

_ · t

?

Categorical definition

Dynamical systems are objects in PSh(T)/O.
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`Conceptual' Simplification

Idea

Time can be made inherent with observation.

Definition (Category of Elements)

Given a presheaf F ∈ PSh(T), de�ne E(F )

Elements are tuples (x, t) with x ∈ F (t) and t ∈ T.

(x, t) � (x′, t′) ⇐⇒ t � t′ ∧ x′ · t = x.

Theorem

For any F ∈ PSh(T) we have PSh(T)/F ∼= PSh(E(F )).
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Application

Recall the presheaf A ∈ PSh(N) induced by an alphabet A.

1 Elements are (σ, n) with σ ∈ A(n).

2 (σ, n) � (σ′, n′) ⇐⇒ n ≤ n′ ∧ σ′ · n = σ.

Clearly, E(A) ∼=

A?. Thus, presheaves over A? are suitable for
LTSs (cf. Winskel and his colleagues). I.e.,

(X,A,→) ∈ LTS
J_K- JXK ∈ PSh(A?).

JXK(ε) =

{
{ε 7→ xi} | i ∈ {1, 2, 3, 4}

}

JXK(a) =

{
{ε 7→ x1, a 7→ x2},

{ε 7→ x1, a 7→ x3}
}

JXK(abc) =

{
{ε 7→ x1, a 7→ x2, ab 7→ x4, abc 7→ x1},

{ε 7→ x1, a 7→ x3, ab 7→ x4, abc 7→ x1}
}

x1

x2 x3

x4

a

b

a

c

b
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Semantics of LTSs

Objects

Given an LTS (X,A,→), then we de�ne JXK ∈ PSh(A?):

JXK(σ) =
{
↓ σ p- X | ∀σ′,a

(
σ′a � σ =⇒ p(σ′)

a−→ p(σ′a)
)}

p · σ = p|↓σ
(
for any σ � σ′ and p ∈ JXK(σ′)

)
.

Morphisms?

Given two LTSs (X,A,→), (Y,A,→) and a function X
f- Y ,

then we have a family of functions (for σ ∈ A?):

JXK(σ)
JfKσ- JY K(σ)

p 7→ f ◦ p

When is JfK a presheaf map?
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Simulation maps

Theorem (Winskel et al.)

Given a simulation function X
f- Y , i.e.,

∀x,x′,a x
a−→ x′ =⇒ f(x)

a−→ f(x′),

then JfK is a presheaf map, i.e., the following square commutes

JXK(σ′)
JfKσ′ - JY K(σ′)

(for σ � σ′)

JXK(σ)

_ · σ

? JfKσ - JY K(σ)

_ · σ

?

Conversely, a presheaf map JfK implies that f is a simulation map.
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Bisimulation maps

Definition

A map F
f- G ∈ PSh(C) is a bisimulation i� for every

commutative square with a mono P ⊂ g- Q (each gC is injective)
and maps m,n

Q
n
- G

P

g

∪

6

m
- F

f

6

there exists a map Q
k- F such that the two triangles commute.
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Bisimulation maps
Theorem (Complete refinement)

Every bisimulation map F
f- G ∈ PSh(C) is a retract, i.e.,

F

G
idG

-

g

-

G

f
-

Theorem

Given a simulation function X
f- Y , then JfK is a bisimulation

map in PSh(A?) i� the function f is a surjection satisfying:

∀x∈X,y∈Y
(
f(x)

a−→ y =⇒ ∃x′∈X (x
a−→ x′ ∧ f(x′) = y)

)
.
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Concluding remarks

Presheaves are suitable for modelling runs of dynamical
systems. To de�ne semantics to a category of models M:

Fix a notion of time T and observer O ∈ PSh(T).
Simplify using the category of elements E(O).

De�ne a `semantics' functor M
J_K- PSh(E(O)).

Presheaves morphisms encodes re�nement of behaviour.

Bisimulation maps:

PSh(A?) strong bisimulation
PSh(A∞) ∀-fair bisimulation
PSh(A?τ̄ ) branching bisimulation

Future work: presheaf semantics of hybrid systems.
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Thank You
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Fairness

Syntax

(X,A,→,FairX) where FairX is a predicate on in�nite
executions.

An in�nite execution ↓ σ p- X ∪ {Ω} with σ ∈ Aω s.t.

� ∀σ′,a

(
σ′a � σ =⇒ p(σ′)

a−→ p(σ′a)
)
.

� p(σ) = Ω.

Semantics

Time:

T = N ∪ {∞} s.t. ∀n∈N n ≤ ∞.

Observation:

O(n) = A(n) (for n ∈ N) and O(∞) = Aω.

Just like earlier, we have E(O) ∼= A∞.
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executions.

An in�nite execution ↓ σ p- X ∪ {Ω} with σ ∈ Aω s.t.

� ∀σ′,a

(
σ′a � σ =⇒ p(σ′)

a−→ p(σ′a)
)
.

� p(σ) = Ω.

Semantics

Time: T = N ∪ {∞} s.t. ∀n∈N n ≤ ∞.

Observation: O(n) = A(n) (for n ∈ N) and O(∞) = Aω.

Just like earlier, we have E(O) ∼= A∞.
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Fairness

Syntax
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executions.
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Just like earlier, we have E(O) ∼= A∞.
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Fair simulation maps

Definition

Given a function X
f- Y , then a chaos preserving extension

X ∪ {Ω} fΩ- Y ∪ {Ω} (

i.e., fΩ(x) = f(x) for x ∈ X and fΩ(Ω) = Ω

)
of f is a fair simulation i�

1 ∀x,x′,a x
a−→ x′ =⇒ f(x)

a−→ f(x′).

2 ∀p∈FairX fΩ ◦ p ∈ FairY .

Henceforth, we do not distinguish fΩ, f .
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Definition

Given a function X
f- Y , then a chaos preserving extension

X ∪ {Ω} fΩ- Y ∪ {Ω} (i.e., fΩ(x) = f(x) for x ∈ X and fΩ(Ω) = Ω)
of f is a fair simulation i�
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a−→ x′ =⇒ f(x)
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2 ∀p∈FairX fΩ ◦ p ∈ FairY .
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Fair simulation maps

Definition

Given a function X
f- Y , then a chaos preserving extension

X ∪ {Ω} fΩ- Y ∪ {Ω} (i.e., fΩ(x) = f(x) for x ∈ X and fΩ(Ω) = Ω)
of f is a fair simulation i�

1 ∀x,x′,a x
a−→ x′ =⇒ f(x)

a−→ f(x′).

2 ∀p∈FairX fΩ ◦ p ∈ FairY .

Henceforth, we do not distinguish fΩ, f .

Theorem

Given a fair simulation function X
f- Y then JXK

JfK- JY K is a

presheaf map in PSh(A∞), where JXK(σ) is the set of fair

executions whose trace is σ ∈ A∞.
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Fair bisimulation maps

Definition

A fair bisimulation X ∪ {Ω} f- Y ∪ {Ω} is a fair simulation s.t.

1 f is surjective and ∀x∈X,y∈Y
(
f(x)

a−→y =⇒ ∃x′∈X (x
a−→x′∧f(x′)=y)

)
.

2 for any increasing sequence of �nite executions (pi)i∈N:

f ◦
⊔
i∈N

pi ≈
⊔
i∈N

f ◦ pi.
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)
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⊔
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Fair bisimulation maps

Definition

A fair bisimulation X ∪ {Ω} f- Y ∪ {Ω} is a fair simulation s.t.

1 f is surjective and ∀x∈X,y∈Y
(
f(x)

a−→y =⇒ ∃x′∈X (x
a−→x′∧f(x′)=y)

)
.

2 for any increasing sequence of �nite executions (pi)i∈N:

f ◦
⊔
i∈N

pi ≈
⊔
i∈N

f ◦ pi.

x x′ ya
a

a

a

There is a sequence p0, p1, p2, · · ·
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Fair bisimulation maps

Definition

A fair bisimulation X ∪ {Ω} f- Y ∪ {Ω} is a fair simulation s.t.

1 f is surjective and ∀x∈X,y∈Y
(
f(x)

a−→y =⇒ ∃x′∈X (x
a−→x′∧f(x′)=y)

)
.

2 for any increasing sequence of �nite executions (pi)i∈N:

f ◦
⊔
i∈N

pi ≈
⊔
i∈N

f ◦ pi.

x x′ ya
a

a

a

There is a sequence p0, p1, p2, · · · such that
⊔
i∈N f ◦ pi exists;

however
⊔
i∈N pi does not exists.
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Fair bisimulation maps

Definition

A fair bisimulation X ∪ {Ω} f- Y ∪ {Ω} is a fair simulation s.t.

1 f is surjective and ∀x∈X,y∈Y
(
f(x)

a−→y =⇒ ∃x′∈X (x
a−→x′∧f(x′)=y)

)
.

2 for any increasing sequence of �nite executions (pi)i∈N:

f ◦
⊔
i∈N

pi ≈
⊔
i∈N

f ◦ pi.

Theorem

A fair simulation function f is a fair bisimulation if, and only if, the

underlying map JfK is a bisimulation map in PSh(A∞).
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Fair bisimulation maps

Definition

A fair bisimulation X ∪ {Ω} f- Y ∪ {Ω} is a fair simulation s.t.

1 f is surjective and ∀x∈X,y∈Y
(
f(x)

a−→y =⇒ ∃x′∈X (x
a−→x′∧f(x′)=y)

)
.

2 for any increasing sequence of �nite executions (pi)i∈N:

f ◦
⊔
i∈N

pi ≈
⊔
i∈N

f ◦ pi.

Theorem

Two states x and x′ are related by a ∀-fair bisimulation relation i�

there is a fair bisimulation function f such that f(x) = f(x′).
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∀-fair bisimulation relation

Definition

A ∀-fair bisimulation on (X,A,→,FairX) is an equivalence relation
R ⊆ X ×X satisfying the following transfer properties:

1 ∀x,y,x′,a
(
(x

a−→ x′ ∧ xRy) =⇒ ∃y′ (y
a−→ y′ ∧ x′Ry′)

)
, and

2 ∀p,q
(
(p =R q ∧ p ∈ FairX) =⇒ q ∈ FairX

)
.

Here, p =R q ⇐⇒ dom(q) = dom(p) ∧ ∀σ∈dom(p)∩A? p(σ)Rq(σ).

Theorem

Two states x and x′ are related by a ∀-fair bisimulation relation i�
there is a fair bisimulation function f such that f(x) = f(x′).
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∀-fair bisimulation relation

Definition

A ∀-fair bisimulation on (X,A,→,FairX) is an equivalence relation
R ⊆ X ×X satisfying the following transfer properties:

1 ∀x,y,x′,a
(
(x

a−→ x′ ∧ xRy) =⇒ ∃y′ (y
a−→ y′ ∧ x′Ry′)

)
, and

2 ∀p,q
(
(p =R q ∧ p ∈ FairX) =⇒ q ∈ FairX

)
.

Here, p =R q ⇐⇒ dom(q) = dom(p) ∧ ∀σ∈dom(p)∩A? p(σ)Rq(σ).

Remark

Every ∀-fair bisimulation relation is an equivalence (only symmetric
requirement is assumed in the temporal logic literature) is not
super�uous because these relations are not closed under union and

relational composition.
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Future work

Finding models for process theories

Syntactical
Description

Calculation
Rules

Semantical
Description

Theoretical
Notions

analysis

using

analysis

using

solution axiomatisation

Syntax

Semantics

Process
terms

Axioms
on Bisimulation

Transition
Systems

Bisimulation
Equivalence

Figure: Mathematical Modelling (Cuijpers 2004).
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Future Work

For any geometric theory T there is a classifying topos B(T):

Geom(E,B(T)) ∼= T-mod(E).

There is a universal model living in U ∈ T-mod(B(T)).

If T = TBSP, then U = (C(BSP)/ `, [0]`, [1]`,+`, · · · ).
In process algebra, `term model' means
(C(BSP)/ -, [0]-, [1]-,+-, · · · ) isomorphic to U .

Figure: Basic Sequential Processes (cf. Baeten et al. 2010)
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