PRELIMINARIES	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00

BISIMULATION MAPS IN PRESHEAF CATEGORIES

Harsh Beohar¹ and Sebastian Küpper²

¹University of Duisburg-Essen

harsh.beohar@uni-due.de

²FernUniversität in Hagen

sebastian.kuepper@fernuni-hagen.de

Figure: Mathematical Modelling (Cuijpers 2004).

Figure: Mathematical Modelling (Cuijpers 2004).

Figure: Mathematical Modelling (Cuijpers 2004).

Objectives

- Find an "abstract" semantic universe to study behaviour of dynamical systems.
- What is refinement of behaviour?
- Can we study bisimulations in an abstract way?

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
IN THIS TALK			

• Presheaves as semantic models of dynamical system.

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
IN THIS TALK			

- Presheaves as semantic models of dynamical system.
 - Behaviour is given by collection of executions.
 - A presheaf records executions of a system.

Preliminaries	SIMPLIFICATION	(BI)SIMULATION	Conclusion
0000	000	000	00
IN THIS TALK			

- Presheaves as semantic models of dynamical system.
 - Behaviour is given by collection of executions.
 - A presheaf records executions of a system.
- Refinement of behaviour (simulation) as presheaf morphism.

Preliminaries	Simplification	(BI) SIMULATION	Conclusion
0000	000	000	00
IN THIS TALK			

- Presheaves as semantic models of dynamical system.
 - Behaviour is given by collection of executions.
 - A presheaf records executions of a system.
- Refinement of behaviour (simulation) as presheaf morphism.
- Bisimulation maps are special presheaf morphisms.

Preliminaries	SIMPLIFICATION	(BI)SIMULATION	Conclusion
0000	000	000	00
IN THIS TALK			

- Presheaves as semantic models of dynamical system.
 - Behaviour is given by collection of executions.
 - A presheaf records executions of a system.
- Refinement of behaviour (simulation) as presheaf morphism.
- Bisimulation maps are special presheaf morphisms.

$\mathbf{PSh}(A^{\star})$	strong bisimulation
$\mathbf{PSh}(A^{\infty})$	∀-fair bisimulation
$\mathbf{PSh}(A_{\overline{\tau}}^{\star})$	branching bisimulation

Recall that

- A^{\star} is the poset of finite words.
- A^{ω} is the poset of infinite words.

•
$$A^{\infty} = A^{\star} \cup A^{\omega}$$

PRELIMINARIES
0000

(BI) SIMULATION

DYNAMICAL SYSTEM

Behaviour is some *observable* phenomena that evolve over *time*.

PRELIMINARIES	SIMPLIFICATION	(BI) SIMULATION	Conclusion
•000	000	000	00

DYNAMICAL SYSTEM

Behaviour is some *observable* phenomena that evolve over *time*.

Time \mathbf{T} is modelled as a category; but today as a *poset* (\mathbf{T}, \preceq) .

(BI) SIMULATION

DYNAMICAL SYSTEM

Behaviour is some *observable* phenomena that evolve over *time*.

Time \mathbf{T} is modelled as a category; but today as a *poset* (\mathbf{T}, \preceq) .

WHAT ABOUT OBSERVATION?

The existence of a hypothetical 'observer' \mathcal{O} .

• For each $t \in \mathbf{T}$, $\mathcal{O}(t)$ is a set of 'plausible' observations.

(BI) SIMULATION

DYNAMICAL SYSTEM

Behaviour is some *observable* phenomena that evolve over *time*.

Time \mathbf{T} is modelled as a category; but today as a *poset* (\mathbf{T}, \preceq) .

WHAT ABOUT OBSERVATION?

The existence of a hypothetical 'observer' \mathcal{O} .

- For each $t \in \mathbf{T}$, $\mathcal{O}(t)$ is a set of 'plausible' observations.
- Earlier observations can be deduced from the later observations, i.e.,

for $t \leq t'$ there is a 'restriction' $\mathcal{O}(t) \xleftarrow{t} \mathcal{O}(t')$ intuition: if x is observed at t' then $x \cdot t$ was observed at t.

Preliminaries	Simplification	(BI) SIMULATION	Conclusion
0000	000	000	00

The restriction \cdot satisfies the following axioms:

- if t = t' then $t \cdot t$ is an identity on $\mathcal{O}(t)$.
- **2** if $t_1 \leq t_2 \leq t_3$ then the triangle commutes:

IN HINDSIGHT

 \mathcal{O} is a presheaf, i.e., a functor $\mathbf{T}^{op} \longrightarrow \mathbf{Set}$.

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
Example			

LABELLED TRANSITION SYSTEM (LTS)

• LTS is a triple (X, A, \rightarrow) , where $\rightarrow \subseteq X \times A \times X$ is often called the transition relation.

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
Example			

LABELLED TRANSITION SYSTEM (LTS)

- LTS is a triple (X, A, \rightarrow) , where $\rightarrow \subseteq X \times A \times X$ is often called the transition relation.
- T is the set of natural numbers $\mathbb N$ ordered by \leq .

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
Example			

LABELLED TRANSITION SYSTEM (LTS)

- LTS is a triple (X, A, \rightarrow) , where $\rightarrow \subseteq X \times A \times X$ is often called the transition relation.
- ${f T}$ is the set of natural numbers ${\Bbb N}$ ordered by \leq .
- For a given alphabet A, we define a presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$:

$$\mathcal{A}(n) = \{ \sigma \in A^{\star} \mid |\sigma| = n \}$$
 (for every $n \in \mathbb{N}$),

together with the restriction on \mathcal{A} given by

$$\sigma \cdot n = \sigma|_n$$
 (for every $\sigma \in \mathcal{A}(n')$ and $n \leq n'$).

PRELIMINARIES	SIMPLIFICATION	(BI) SIMULATION	Conclusion
000●	000	000	00
TOWARDS A	FORMAL DEFIN	NITION	

For a fixed \mathbf{T} and $\mathcal{O}\in\mathbf{PSh}(\mathbf{T}),$ a dynamical system describes:

- What are the *runs* (aka trajectories/executions) of the system?
- What is the observation associated with each run?

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
TOWARDS A	FORMAL DEFIN	UTION	

For a fixed \mathbf{T} and $\mathcal{O} \in \mathbf{PSh}(\mathbf{T})$, a dynamical system describes:

- What are the runs (aka trajectories/executions) of the system?
 - Model the set of runs itself as a presheaf $F \in \mathbf{PSh}(\mathbf{T})$.
- What is the observation associated with each run?

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
000●	000	000	00
TOWARDS	FORMAL DEFIN	UTION	

For a fixed \mathbf{T} and $\mathcal{O}\in\mathbf{PSh}(\mathbf{T}),$ a dynamical system describes:

- What are the *runs* (aka trajectories/executions) of the system?
 - Model the set of runs itself as a presheaf $F \in \mathbf{PSh}(\mathbf{T})$.
- What is the observation associated with each run?
 - Model as a presheaf map, i.e., a family $F(t) \xrightarrow{\alpha_t} \mathcal{O}(t)$

$$\begin{array}{cccc} t' & F(t') & \xrightarrow{\alpha_{t'}} & \mathcal{O}(t') \\ & & & & \\ \uparrow & & & & & \\ t & & F(t) & \xrightarrow{\alpha_t} & \mathcal{O}(t) \end{array}$$

PRELIMINARIES	SIMPLIFICATION	(BI) SIMULATION	Conclusion
000●	000	000	00
TOWARDS	FORMAL DEFIN	UTION	

For a fixed \mathbf{T} and $\mathcal{O} \in \mathbf{PSh}(\mathbf{T})$, a dynamical system describes:

- What are the *runs* (aka trajectories/executions) of the system?
 - Model the set of runs itself as a presheaf $F \in \mathbf{PSh}(\mathbf{T})$.
- What is the observation associated with each run?
 - Model as a presheaf map, i.e., a family $F(t) \xrightarrow{\alpha_t} \mathcal{O}(t)$

$$\begin{array}{cccc} t' & F(t') & \xrightarrow{\alpha_{t'}} & \mathcal{O}(t') \\ & & & & \\ \uparrow & & & -\cdot t & & \\ t & & F(t) & \xrightarrow{\alpha_t} & \mathcal{O}(t) \end{array}$$

CATEGORICAL DEFINITION

Dynamical systems are objects in $\mathbf{PSh}(\mathbf{T})/\mathcal{O}.$

Preliminaries	Simplification	(BI) SIMULATION	Conclusion
0000	•00	000	00
'CONCEPTUAL'	SIMPLIFICATION		

IDEA

Time can be made inherent with observation.

DEFINITION (CATEGORY OF ELEMENTS)

Given a presheaf $F \in \mathbf{PSh}(\mathbf{T})$, define $\mathbb{E}(F)$

• Elements are tuples (x, t) with $x \in F(t)$ and $t \in \mathbf{T}$.

•
$$(x,t) \preceq (x',t') \iff t \preceq t' \land x' \cdot t = x.$$

Theorem

For any $F \in \mathbf{PSh}(\mathbf{T})$ we have $\mathbf{PSh}(\mathbf{T})/F \cong \mathbf{PSh}(\mathbb{E}(F))$.

PRELIMINARIES	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00

Application

Recall the presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$ induced by an alphabet A.

• Elements are
$$(\sigma, n)$$
 with $\sigma \in \mathcal{A}(n)$.

$$(\sigma, n) \preceq (\sigma', n') \iff n \le n' \land \sigma' \cdot n = \sigma.$$

Clearly, $\mathbb{E}(\mathcal{A})\cong$

PRELIMINARIE	5
0000	

(BI) SIMULATION

Conclusion 00

Application

Recall the presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$ induced by an alphabet A.

• Elements are (σ, n) with $\sigma \in \mathcal{A}(n)$.

$$\label{eq:static_states} {\it \textcircled{O}} \ (\sigma,n) \preceq (\sigma',n') \iff n \le n' \wedge \sigma' \cdot n = \sigma.$$

Clearly, $\mathbb{E}(\mathcal{A}) \cong A^*$. Thus, presheaves over A^* are suitable for LTSs (cf. Winskel and his colleagues). I.e.,

$$(X,A,\rightarrow)\in \mathbf{LTS} \xrightarrow{\mathbb{I}_{-}\mathbb{I}} \llbracket X \rrbracket \in \mathbf{PSh}(A^{\star}).$$

PRELIMINARIE	S
0000	

(BI) SIMULATION

Conclusion 00

Application

Recall the presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$ induced by an alphabet A.

• Elements are
$$(\sigma, n)$$
 with $\sigma \in \mathcal{A}(n)$

$$\label{eq:static_states} {\it \textcircled{O}} \ (\sigma,n) \preceq (\sigma',n') \iff n \le n' \wedge \sigma' \cdot n = \sigma.$$

Clearly, $\mathbb{E}(\mathcal{A}) \cong A^*$. Thus, presheaves over A^* are suitable for LTSs (cf. Winskel and his colleagues). I.e.,

$$(X, A, \to) \in \mathbf{LTS} \xrightarrow{\llbracket _ \rrbracket} \llbracket X \rrbracket \in \mathbf{PSh}(A^{\star}).$$

 $\llbracket X \rrbracket (\varepsilon) =$ $\llbracket X \rrbracket (a) =$

 $[\![X]\!](abc) =$

Prelim	INARIES
0000	

(BI) SIMULATION

Conclusion 00

Application

Recall the presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$ induced by an alphabet A.

• Elements are
$$(\sigma, n)$$
 with $\sigma \in \mathcal{A}(n)$

$$\label{eq:static} {\it O} (\sigma,n) \preceq (\sigma',n') \iff n \le n' \wedge \sigma' \cdot n = \sigma.$$

Clearly, $\mathbb{E}(\mathcal{A}) \cong A^*$. Thus, presheaves over A^* are suitable for LTSs (cf. Winskel and his colleagues). I.e.,

$$(X, A, \to) \in \mathbf{LTS} \xrightarrow{\llbracket _ \rrbracket} \llbracket X \rrbracket \in \mathbf{PSh}(A^{\star}).$$

$$\llbracket X \rrbracket(\varepsilon) = \left\{ \{ \varepsilon \mapsto x_i \} \mid i \in \{1, 2, 3, 4\} \right\}$$
$$\llbracket X \rrbracket(a) =$$

 $\llbracket X \rrbracket (abc) =$

Prelim	INARIES
0000	

(BI) SIMULATION 000

Conclusion 00

APPLICATION

Recall the presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$ induced by an alphabet A.

• Elements are (σ, n) with $\sigma \in \mathcal{A}(n)$.

$$\label{eq:static_states} {\bf 0} \ (\sigma,n) \preceq (\sigma',n') \iff n \le n' \wedge \sigma' \cdot n = \sigma.$$

Clearly, $\mathbb{E}(\mathcal{A}) \cong A^*$. Thus, presheaves over A^* are suitable for LTSs (cf. Winskel and his colleagues). I.e.,

$$(X, A, \to) \in \mathbf{LTS} \xrightarrow{\llbracket _ \rrbracket} \llbracket X \rrbracket \in \mathbf{PSh}(A^{\star}).$$

$$\llbracket X \rrbracket(\varepsilon) = \left\{ \{ \varepsilon \mapsto x_i \} \mid i \in \{1, 2, 3, 4 \} \\ \llbracket X \rrbracket(a) = \left\{ \{ \varepsilon \mapsto x_1, a \mapsto x_2 \}, \\ \{ \varepsilon \mapsto x_1, a \mapsto x_3 \} \right\}$$

 $[\![X]\!](abc) =$

PRELIMINARIES	3
0000	

(BI) SIMULATION

Application

Recall the presheaf $\mathcal{A} \in \mathbf{PSh}(\mathbb{N})$ induced by an alphabet A.

• Elements are (σ, n) with $\sigma \in \mathcal{A}(n)$.

$$\label{eq:static_states} {\it \textcircled{O}} \ (\sigma,n) \preceq (\sigma',n') \iff n \le n' \wedge \sigma' \cdot n = \sigma.$$

Clearly, $\mathbb{E}(\mathcal{A}) \cong A^*$. Thus, presheaves over A^* are suitable for LTSs (cf. Winskel and his colleagues). I.e.,

$$(X, A, \to) \in \mathbf{LTS} \xrightarrow{\llbracket _ \rrbracket} \llbracket X \rrbracket \in \mathbf{PSh}(A^{\star}).$$

$$\begin{split} \llbracket X \rrbracket(\varepsilon) &= \left\{ \{\varepsilon \mapsto x_i\} \mid i \in \{1, 2, 3, 4\} \right\} \\ \llbracket X \rrbracket(a) &= \left\{ \{\varepsilon \mapsto x_1, a \mapsto x_2\}, \\ \{\varepsilon \mapsto x_1, a \mapsto x_3\} \right\} \\ \llbracket X \rrbracket(abc) &= \left\{ \{\varepsilon \mapsto x_1, a \mapsto x_2, ab \mapsto x_4, abc \mapsto x_1\}, \\ \{\varepsilon \mapsto x_1, a \mapsto x_3, ab \mapsto x_4, abc \mapsto x_1\} \right\} \end{split}$$

 x_3

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
SEMANTICS OF	LTSs		

Objects

Given an LTS (X, A, \rightarrow) , then we define $\llbracket X \rrbracket \in \mathbf{PSh}(A^{\star})$:

$$\llbracket X \rrbracket(\sigma) = \left\{ \downarrow \sigma \xrightarrow{p} X \mid \forall_{\sigma',a} \left(\sigma'a \preceq \sigma \implies p(\sigma') \xrightarrow{a} p(\sigma'a) \right) \right\}$$
$$p \cdot \sigma = p|_{\downarrow\sigma} \quad \text{(for any } \sigma \preceq \sigma' \text{ and } p \in \llbracket X \rrbracket(\sigma') \text{)}.$$

Morphisms?

Given two LTSs $(X, A, \rightarrow), (Y, A, \rightarrow)$ and a function $X \xrightarrow{f} Y$, then we have a family of functions (for $\sigma \in A^*$):

$$\llbracket X \rrbracket(\sigma) \xrightarrow{\llbracket f \rrbracket_{\sigma}} \llbracket Y \rrbracket(\sigma)$$

Preliminaries	Simplification	(B1) SIMULATION	Conclusion
0000	000	000	00
SEMANTICS OF	LTSs		

OBJECTS

Given an LTS (X, A, \rightarrow) , then we define $\llbracket X \rrbracket \in \mathbf{PSh}(A^{\star})$:

$$\llbracket X \rrbracket(\sigma) = \left\{ \downarrow \sigma \xrightarrow{p} X \mid \forall_{\sigma',a} \left(\sigma'a \preceq \sigma \implies p(\sigma') \xrightarrow{a} p(\sigma'a) \right) \right\}$$
$$p \cdot \sigma = p|_{\downarrow\sigma} \quad \text{(for any } \sigma \preceq \sigma' \text{ and } p \in \llbracket X \rrbracket(\sigma') \text{)}.$$

Morphisms?

Given two LTSs $(X, A, \rightarrow), (Y, A, \rightarrow)$ and a function $X \xrightarrow{f} Y$, then we have a family of functions (for $\sigma \in A^*$):

$$\llbracket X \rrbracket(\sigma) \xrightarrow{\llbracket f \rrbracket_{\sigma}} \llbracket Y \rrbracket(\sigma) \qquad p \mapsto f \circ p$$

When is $\llbracket f \rrbracket$ a presheaf map?

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	●00	00
SIMULATION M	APS		

THEOREM (WINSKEL ET AL.)

Given a simulation function $X \xrightarrow{f} Y$, i.e.,

$$\forall_{x,x',a} \ x \xrightarrow{a} x' \implies f(x) \xrightarrow{a} f(x'),$$

then $[\![f]\!]$ is a presheaf map, i.e., the following square commutes

$$\begin{split} \llbracket X \rrbracket(\sigma') & \xrightarrow{\llbracket f \rrbracket_{\sigma'}} & \llbracket Y \rrbracket(\sigma') \\ & - \cdot \sigma \middle| & & \downarrow_{-} \cdot \sigma \text{ (for } \sigma \preceq \sigma') \\ & \llbracket X \rrbracket(\sigma) & \xrightarrow{\llbracket f \rrbracket_{\sigma}} & \llbracket Y \rrbracket(\sigma) \end{split}$$

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	●00	00
SIMULATION M	APS		

THEOREM (WINSKEL ET AL.)

Given a simulation function $X \xrightarrow{f} Y$, i.e.,

$$\forall_{x,x',a} \ x \xrightarrow{a} x' \implies f(x) \xrightarrow{a} f(x'),$$

then $[\![f]\!]$ is a presheaf map, i.e., the following square commutes

Conversely, a presheaf map $\llbracket f \rrbracket$ implies that f is a simulation map.

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
RISIMULAT.	ίον μαρς		

DEFINITION

A map $F \xrightarrow{f} G \in \mathbf{PSh}(\mathbf{C})$ is a *bisimulation* iff for every commutative square with a mono $P \xrightarrow{g} Q$ (each g_C is injective) and maps m, n

Preliminaries	SIMPLIFICATION	(BI) SIMULATION	Conclusion
0000	000	000	00
RISIMULAT.	ίον μαρς		

DEFINITION

A map $F \xrightarrow{f} G \in \mathbf{PSh}(\mathbf{C})$ is a *bisimulation* iff for every commutative square with a mono $P \xrightarrow{g} Q$ (each g_C is injective) and maps m, n

there exists a map $Q \xrightarrow{k} F$ such that the two triangles commute.

Preliminaries 0000 SIMPLIFICATION

(BI) SIMULATION 00● Conclusion 00

BISIMULATION MAPS

THEOREM (COMPLETE REFINEMENT)

Every bisimulation map $F \xrightarrow{f} G \in \mathbf{PSh}(\mathbf{C})$ is a retract, i.e.,

Preliminaries 0000 SIMPLIFICATION

(BI) SIMULATION 00● Conclusion 00

BISIMULATION MAPS

THEOREM (COMPLETE REFINEMENT)

Every bisimulation map $F \xrightarrow{f} G \in \mathbf{PSh}(\mathbf{C})$ is a retract, i.e.,

Theorem

Given a simulation function $X \xrightarrow{f} Y$, then $\llbracket f \rrbracket$ is a bisimulation map in $\mathbf{PSh}(A^*)$ iff the function f is a surjection satisfying:

$$\forall_{x \in X, y \in Y} \left(f(x) \xrightarrow{a} y \implies \exists_{x' \in X} \left(x \xrightarrow{a} x' \land f(x') = y \right) \right).$$

- Presheaves are suitable for modelling runs of dynamical systems. To define semantics to a category of models M:
 - Fix a notion of time \mathbf{T} and observer $\mathcal{O} \in \mathbf{PSh}(\mathbf{T})$.
 - Simplify using the category of elements $\mathbb{E}(\mathcal{O}).$
 - Define a 'semantics' functor $\mathbf{M} \xrightarrow{\mathbb{I}_{-}\mathbb{I}} \mathbf{PSh}(\mathbb{E}(\mathcal{O}))$.
- Presheaves morphisms encodes refinement of behaviour.
- Bisimulation maps:

$\mathbf{PSh}(A^{\star})$	strong bisimulation
$\mathbf{PSh}(A^{\infty})$	∀-fair bisimulation
$\mathbf{PSh}(A^{\star}_{\bar{\tau}})$	branching bisimulation

• Future work: presheaf semantics of hybrid systems.

Preliminaries	Simplification	(BI) SIMULATION	Conclusion
0000	000	000	00

Thank You

Syntax

- $(X, A, \rightarrow, \operatorname{Fair}_X)$ where Fair_X is a predicate on infinite executions.
- An infinite execution $\downarrow \sigma \xrightarrow{p} X \cup \{\Omega\}$ with $\sigma \in A^{\omega}$ s.t.

$$\begin{array}{l} - \ \forall_{\sigma',a} \ \left(\sigma'a \preceq \sigma \implies p(\sigma') \xrightarrow{a} p(\sigma'a) \right). \\ - \ p(\sigma) = \Omega. \end{array}$$

$\operatorname{Semantics}$

- Time:
- Observation:

Syntax

- $(X, A, \rightarrow, \operatorname{Fair}_X)$ where Fair_X is a predicate on infinite executions.
- An infinite execution $\downarrow \sigma \xrightarrow{p} X \cup \{\Omega\}$ with $\sigma \in A^{\omega}$ s.t.

$$\begin{array}{l} - \forall_{\sigma',a} \left(\sigma'a \preceq \sigma \implies p(\sigma') \xrightarrow{a} p(\sigma'a) \right) . \\ - p(\sigma) = \Omega. \end{array}$$

SEMANTICS

- Time: $\mathbf{T} = \mathbb{N} \cup \{\infty\}$ s.t. $\forall_{n \in \mathbb{N}} \ n \leq \infty$.
- Observation:

Syntax

- $(X, A, \rightarrow, \operatorname{Fair}_X)$ where Fair_X is a predicate on infinite executions.
- An infinite execution $\downarrow \sigma \xrightarrow{p} X \cup \{\Omega\}$ with $\sigma \in A^{\omega}$ s.t.

$$\begin{array}{l} - \forall_{\sigma',a} \left(\sigma'a \preceq \sigma \implies p(\sigma') \xrightarrow{a} p(\sigma'a) \right) \\ - p(\sigma) = \Omega. \end{array}$$

SEMANTICS

- Time: $\mathbf{T} = \mathbb{N} \cup \{\infty\}$ s.t. $\forall_{n \in \mathbb{N}} n \leq \infty$.
- Observation: $\mathcal{O}(n) = \mathcal{A}(n)$ (for $n \in \mathbb{N}$) and $\mathcal{O}(\infty) = A^{\omega}$.

Syntax

- $(X, A, \rightarrow, \operatorname{Fair}_X)$ where Fair_X is a predicate on infinite executions.
- An infinite execution $\downarrow \sigma \xrightarrow{p} X \cup \{\Omega\}$ with $\sigma \in A^{\omega}$ s.t.

$$\begin{array}{l} - \forall_{\sigma',a} \left(\sigma'a \preceq \sigma \implies p(\sigma') \xrightarrow{a} p(\sigma'a) \right) \\ - p(\sigma) = \Omega. \end{array}$$

SEMANTICS

- Time: $\mathbf{T} = \mathbb{N} \cup \{\infty\}$ s.t. $\forall_{n \in \mathbb{N}} n \leq \infty$.
- Observation: $\mathcal{O}(n) = \mathcal{A}(n)$ (for $n \in \mathbb{N}$) and $\mathcal{O}(\infty) = A^{\omega}$.

Just like earlier, we have $\mathbb{E}(\mathcal{O}) \cong A^{\infty}$.

DEFINITION

Given a function $X \xrightarrow{f} Y$, then a chaos preserving extension $X \cup \{\Omega\} \xrightarrow{f_{\Omega}} Y \cup \{\Omega\}$ () of f is a fair simulation iff $\forall_{x,x',a} x \xrightarrow{a} x' \implies f(x) \xrightarrow{a} f(x').$ $\forall_{p \in \mathsf{Fair}_X} f_{\Omega} \circ p \in \mathsf{Fair}_Y.$ Henceforth, we do not distinguish f_{Ω}, f .

DEFINITION

Given a function $X \xrightarrow{f} Y$, then a chaos preserving extension $X \cup \{\Omega\} \xrightarrow{f_\Omega} Y \cup \{\Omega\}$ (i.e., $f_\Omega(x) = f(x)$ for $x \in X$ and $f_\Omega(\Omega) = \Omega$) of f is a fair simulation iff $\forall_{x,x',a} x \xrightarrow{a} x' \implies f(x) \xrightarrow{a} f(x')$. $\forall_{p \in \mathsf{Fair}_X} f_\Omega \circ p \in \mathsf{Fair}_Y$. Henceforth, we do not distinguish f_Ω, f .

44/38

DEFINITION

Given a function $X \xrightarrow{f} Y$, then a chaos preserving extension $X \cup \{\Omega\} \xrightarrow{f_{\Omega}} Y \cup \{\Omega\}$ (i.e., $f_{\Omega}(x) = f(x)$ for $x \in X$ and $f_{\Omega}(\Omega) = \Omega$) of f is a fair simulation iff $\forall_{x,x',a} x \xrightarrow{a} x' \implies f(x) \xrightarrow{a} f(x').$

Henceforth, we do not distinguish f_{Ω}, f .

$$a \subset x \xrightarrow{a} x' \xrightarrow{\uparrow} y \supset a$$

Definition

Given a function $X \xrightarrow{f} Y$, then a chaos preserving extension $X \cup \{\Omega\} \xrightarrow{f_{\Omega}} Y \cup \{\Omega\}$ (i.e., $f_{\Omega}(x) = f(x)$ for $x \in X$ and $f_{\Omega}(\Omega) = \Omega$) of f is a fair simulation iff $\forall_{x,x',a} x \xrightarrow{a} x' \implies f(x) \xrightarrow{a} f(x')$. $\forall_{p \in \operatorname{Fair}_X} f_{\Omega} \circ p \in \operatorname{Fair}_Y$.

Henceforth, we do not distinguish f_{Ω}, f .

Theorem

Given a fair simulation function $X \xrightarrow{f} Y$ then $\llbracket X \rrbracket \xrightarrow{\llbracket f \rrbracket} \llbracket Y \rrbracket$ is a presheaf map in $\mathbf{PSh}(A^{\infty})$, where $\llbracket X \rrbracket(\sigma)$ is the set of fair executions whose trace is $\sigma \in A^{\infty}$.

DEFINITION

- A fair bisimulation $X \cup \{\Omega\} \xrightarrow{f} Y \cup \{\Omega\}$ is a fair simulation s.t.
 - $\label{eq:fissurjective and } f \text{ is surjective and } \forall_{x \in X, y \in Y} \ \left(f(x) \xrightarrow{a} y \Longrightarrow \exists_{x' \in X} \ (x \xrightarrow{a} x' \wedge f(x') = y) \right).$
 - 2 for any increasing sequence of finite executions $(p_i)_{i \in \mathbb{N}}$:

$$f \circ \bigsqcup_{i \in \mathbb{N}} p_i \approx \bigsqcup_{i \in \mathbb{N}} f \circ p_i.$$

DEFINITION

- A fair bisimulation $X \cup \{\Omega\} \xrightarrow{f} Y \cup \{\Omega\}$ is a fair simulation s.t.
 - $\label{eq:fissurjective and } f \text{ is surjective and } \forall_{x \in X, y \in Y} \ \left(f(x) \xrightarrow{a} y \Longrightarrow \exists_{x' \in X} \ (x \xrightarrow{a} x' \wedge f(x') = y) \right).$
 - 2 for any increasing sequence of finite executions $(p_i)_{i\in\mathbb{N}}$:

$$f \circ \bigsqcup_{i \in \mathbb{N}} p_i \approx \bigsqcup_{i \in \mathbb{N}} f \circ p_i.$$

$$a \subset x \xrightarrow{a} x' \xrightarrow{\uparrow} y \gtrsim a$$

DEFINITION

- A fair bisimulation $X \cup \{\Omega\} \xrightarrow{f} Y \cup \{\Omega\}$ is a fair simulation s.t.
 - $\label{eq:fissurjective and } f \text{ is surjective and } \forall_{x \in X, y \in Y} \ \left(f(x) \xrightarrow{a} y \Longrightarrow \exists_{x' \in X} \ (x \xrightarrow{a} x' \wedge f(x') = y) \right).$
 - 2 for any increasing sequence of finite executions $(p_i)_{i\in\mathbb{N}}$:

$$f \circ \bigsqcup_{i \in \mathbb{N}} p_i \approx \bigsqcup_{i \in \mathbb{N}} f \circ p_i$$

$$a \subset x \xrightarrow{a} x' \xrightarrow{\gamma} y \supset a$$

There is a sequence p_0, p_1, p_2, \cdots

DEFINITION

- A fair bisimulation $X \cup \{\Omega\} \xrightarrow{f} Y \cup \{\Omega\}$ is a fair simulation s.t.
 - $\begin{tabular}{ll} \label{eq:fisher} & \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} \end{tabular} f(x) & \end{tabular} \\ \end{tabular} f(x) & \end{tabular} \\ \begin{tabular}{ll} \end{tabular} f(x) & \end{tabular} \\ \end{tabular} f(x) & \end{tabular} f(x) & \end{tabular} \\ \end{tabular} f(x) & \end{tabular} \\ \end{tabular} f(x) & \end{tabular} \\ \end{tabular} f(x) & \end{tabular} f(x) &$
 - 2 for any increasing sequence of finite executions $(p_i)_{i\in\mathbb{N}}$:

$$f \circ \bigsqcup_{i \in \mathbb{N}} p_i \approx \bigsqcup_{i \in \mathbb{N}} f \circ p_i.$$

$$a \subset x \xrightarrow{a} x' \xrightarrow{\gamma} y \supset a$$

There is a sequence p_0, p_1, p_2, \cdots such that $\bigsqcup_{i \in \mathbb{N}} f \circ p_i$ exists; however $\bigsqcup_{i \in \mathbb{N}} p_i$ does not exists.

DEFINITION

- A fair bisimulation $X \cup \{\Omega\} \xrightarrow{f} Y \cup \{\Omega\}$ is a fair simulation s.t.
 - $\bullet \ f \text{ is surjective and } \forall_{x \in X, y \in Y} \ \left(f(x) \xrightarrow{a} y \Longrightarrow \exists_{x' \in X} \ (x \xrightarrow{a} x' \land f(x') = y) \right).$
 - 2 for any increasing sequence of finite executions $(p_i)_{i\in\mathbb{N}}$:

$$f \circ \bigsqcup_{i \in \mathbb{N}} p_i \approx \bigsqcup_{i \in \mathbb{N}} f \circ p_i.$$

Theorem

A fair simulation function f is a fair bisimulation if, and only if, the underlying map $\llbracket f \rrbracket$ is a bisimulation map in $\mathbf{PSh}(A^{\infty})$.

DEFINITION

- A fair bisimulation $X \cup \{\Omega\} \xrightarrow{f} Y \cup \{\Omega\}$ is a fair simulation s.t.
 - $\bullet \ f \text{ is surjective and } \forall_{x \in X, y \in Y} \ \left(f(x) \xrightarrow{a} y \Longrightarrow \exists_{x' \in X} \ (x \xrightarrow{a} x' \land f(x') = y) \right).$
 - 2 for any increasing sequence of finite executions $(p_i)_{i\in\mathbb{N}}$:

$$f \circ \bigsqcup_{i \in \mathbb{N}} p_i \approx \bigsqcup_{i \in \mathbb{N}} f \circ p_i.$$

Theorem

Two states x and x' are related by a \forall -fair bisimulation relation iff there is a fair bisimulation function f such that f(x) = f(x').

\forall -fair bisimulation relation

DEFINITION

A \forall -fair bisimulation on $(X, A, \rightarrow, \mathsf{Fair}_X)$ is an equivalence relation $\mathcal{R} \subseteq X \times X$ satisfying the following transfer properties:

Here, $p =_{\mathcal{R}} q \iff \mathsf{dom}(q) = \mathsf{dom}(p) \land \forall_{\sigma \in \mathsf{dom}(p) \cap A^{\star}} p(\sigma) \mathcal{R}q(\sigma).$

Theorem

Two states x and x' are related by a \forall -fair bisimulation relation iff there is a fair bisimulation function f such that f(x) = f(x').

\forall -fair bisimulation relation

DEFINITION

A \forall -fair bisimulation on $(X, A, \rightarrow, \mathsf{Fair}_X)$ is an equivalence relation $\mathcal{R} \subseteq X \times X$ satisfying the following transfer properties:

Here, $p =_{\mathcal{R}} q \iff \mathsf{dom}(q) = \mathsf{dom}(p) \land \forall_{\sigma \in \mathsf{dom}(p) \cap A^{\star}} p(\sigma) \mathcal{R}q(\sigma).$

Remark

Every \forall -fair bisimulation relation is an equivalence (only symmetric requirement is assumed in the temporal logic literature) is not superfluous because these *relations are not closed under union and relational composition*.

000000

FUTURE WORK

Finding models for process theories

Syntax

Figure: Mathematical Modelling (Cuijpers 2004).

FUTURE WORK

 \bullet For any geometric theory ${\mathbb T}$ there is a classifying topos ${\bf B}({\mathbb T})$:

 $\mathsf{Geom}(\mathbf{E}, \mathbf{B}(\mathbb{T})) \cong \mathbb{T}\text{-}\mathsf{mod}(\mathbf{E}).$

- There is a universal model living in $U \in \mathbb{T}$ -mod $(\mathbf{B}(\mathbb{T}))$.
- If $\mathbb{T} = \mathbb{T}_{\mathsf{BSP}}$, then $U = (\mathcal{C}(\mathsf{BSP})/\vdash, [0]_{\vdash}, [1]_{\vdash}, +_{\vdash}, \cdots)$.
- In process algebra, 'term model' means $(\mathcal{C}(\mathsf{BSP})/ \Leftrightarrow, [0]_{\Leftrightarrow}, [1]_{\Leftrightarrow}, +_{\Leftrightarrow}, \cdots)$ isomorphic to U.

x + y = y + x	A1	x + 0 = x	A6
(x + y) + z = x + (y + z)	A2	$0 \cdot x = 0$	A7
x + x = x	A3	$x \cdot 1 = x$	A8
$(x+y) \cdot z = x \cdot z + y \cdot z$	A4	$1 \cdot x = x$	A9
$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	A5	$a.x \cdot y = a.(x \cdot y)$	A10

Figure: Basic Sequential Processes (cf. Baeten et al. 2010)