Plotkin 000 Algebra to the Rescue

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Don't try this at home: No-Go Theorems for Distributive Laws

Maaike Zwart & Dan Marsden

University of Oxford

27 March 2018

Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Overview

Introduction

Intro

- Monads
- Distributive laws

• Previously broken distributive laws

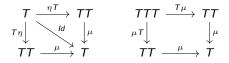
- Plotkin's counterexample
- General No-Go theorems: the algebraic approach
 - Generalized Plotkin
 - And more...
- Results

Plotkir 000 Algebra to the Rescue

Results

Monads

A monad is a triple $\langle T, \eta, \mu \rangle$, with T an endofunctor and $\eta: 1 \Rightarrow T$, $\mu: TT \Rightarrow T$ natural transformations, such that:

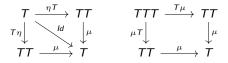


Plotkin 000 Algebra to the Rescue

Results

Monads

A monad is a triple $\langle T, \eta, \mu \rangle$, with T an endofunctor and $\eta: 1 \Rightarrow T$, $\mu: TT \Rightarrow T$ natural transformations, such that:



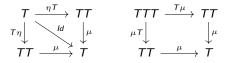
- List: *L*
 - L(X) set of all finite lists.
 - $\eta_X(x) = [x]$
 - μ_X concatenation.

Plotkin 000 Algebra to the Rescue

Results

Monads

A monad is a triple $\langle T, \eta, \mu \rangle$, with T an endofunctor and $\eta: 1 \Rightarrow T$, $\mu: TT \Rightarrow T$ natural transformations, such that:



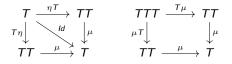
- List: *L*
 - L(X) set of all finite lists.
 - $\eta_X(x) = [x]$
 - μ_X concatenation.
- Powerset P
 - P(X) set of all subsets.
 - $\eta_X(x) = \{x\}$
 - μ_X union.

Plotkin 000 Algebra to the Rescue

Results

Monads

A monad is a triple $\langle T, \eta, \mu \rangle$, with T an endofunctor and $\eta: 1 \Rightarrow T$, $\mu: TT \Rightarrow T$ natural transformations, such that:



- List: *L*
 - L(X) set of all finite lists.
 - $\eta_X(x) = [x]$
 - μ_X concatenation.
- Powerset P
 - P(X) set of all subsets.
 - $\eta_X(x) = \{x\}$
 - μ_X union.

- Distribution D
 - *D*(*X*) set of all probability distributions.

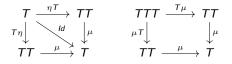
- $\eta_X(x)$ point distribution.
- μ_X weighted average.

Plotkin 000 Algebra to the Rescue

Results

Monads

A monad is a triple $\langle T, \eta, \mu \rangle$, with T an endofunctor and $\eta: 1 \Rightarrow T$, $\mu: TT \Rightarrow T$ natural transformations, such that:



- List: *L*
 - L(X) set of all finite lists.
 - $\eta_X(x) = [x]$
 - μ_X concatenation.
- Powerset P
 - P(X) set of all subsets.
 - $\eta_X(x) = \{x\}$
 - μ_X union.

• Distribution D

. . .

• *D*(*X*) set of all probability distributions.

- $\eta_X(x)$ point distribution.
- μ_X weighted average.
- More examples: Multiset, Exception, Reader, Writer,

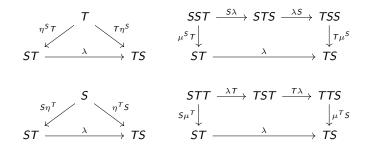
Results

Composing Monads with Distributive Laws

We can compose monads with the help of a distributive law - Beck 1969

$$\langle TS, \eta^T \eta^S, \mu^T \mu^S \cdot T \lambda S \rangle$$

Where $\lambda : ST \rightarrow TS$ is a natural transformation satisfying the following axioms.



Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Examples

There is a distributive law $LP \Rightarrow PL$. It works like the famous 'times over plus' distributivity:

$$(a + b) * c = a * b + a * c$$

 $[\{a, b\}, \{c\}] \mapsto \{[a, c], [b, c]\}$

Many more work like this: $MM \Rightarrow MM$, $LM \Rightarrow ML$, $MP \Rightarrow PM$, ...

Intro

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Examples

There is a distributive law $LP \Rightarrow PL$. It works like the famous 'times over plus' distributivity:

$$(a + b) * c = a * b + a * c$$

 $[\{a, b\}, \{c\}] \mapsto \{[a, c], [b, c]\}$

Many more work like this: $MM \Rightarrow MM$, $LM \Rightarrow ML$, $MP \Rightarrow PM$, ...

Some general results:

Intro

- If T is a commutative monad, and S a monad defined by linear equations, then there is a distributive law $ST \Rightarrow TS$. Manes and Mulry 2007.
- There are variations on the above theorem for affine and relevant monads Dahlqvist, Parlant and Silva 2018.

Plotkin 000 Algebra to the Rescue $_{\rm OOOO}$

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

All that glisters is not gold

Algebra to the Rescue 0000

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

All that glisters is not gold

Results

All that glisters is not gold

Distributive laws are often quite intuitive, like times over plus. However...

• We thought we had a distributive law $DD \Rightarrow DD$.

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

All that glisters is not gold

Distributive laws are often quite intuitive, like times over plus. However...

We thought we had a distributive law DD ⇒ DD.
 But we made a mistake, which was hard to spot.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

All that glisters is not gold

- We thought we had a distributive law DD ⇒ DD.
 But we made a mistake, which was hard to spot.
- We are not alone.
 - Several examples of mistakes in the literature.
 - According to Bonsangue, Hansen, Kurz, and Rot: "It can be rather difficult to prove the defining axioms of a distributive law."

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

All that glisters is not gold

- We thought we had a distributive law DD ⇒ DD.
 But we made a mistake, which was hard to spot.
- We are not alone.
 - Several examples of mistakes in the literature.
 - According to Bonsangue, Hansen, Kurz, and Rot: "It can be rather difficult to prove the defining axioms of a distributive law."
- What to do now? Is there a distributive law at all?

All that glisters is not gold

- We thought we had a distributive law DD ⇒ DD.
 But we made a mistake, which was hard to spot.
- We are not alone.
 - Several examples of mistakes in the literature.
 - According to Bonsangue, Hansen, Kurz, and Rot: "It can be rather difficult to prove the defining axioms of a distributive law."
- What to do now? Is there a distributive law at all?
- Our goal: to find general principles that tell us when no distributive law exists.

Plotkin 000 Algebra to the Rescue

Results

Previous Results

- No distributive law $DP \Rightarrow PD$ Plotkin / Varacca and Winskel 2005
- No distributive law $PD \Rightarrow DP$ Varacca 2003, without proof
- No monad structure on PD Dahlqvist and Neves 2018
- No monad structure on *PP* Klin and Salamanca 2018
- No distributive law $TP \Rightarrow PT$, with T satisfying some technical conditions. Klin and Salamanca 2018

Plotkin 000 Algebra to the Rescue

Results

Previous Results

- No distributive law $DP \Rightarrow PD$ Plotkin / Varacca and Winskel 2005
- No distributive law $PD \Rightarrow DP$ Varacca 2003, without proof
- No monad structure on PD Dahlqvist and Neves 2018
- No monad structure on *PP* Klin and Salamanca 2018
- No distributive law $TP \Rightarrow PT$, with T satisfying some technical conditions. Klin and Salamanca 2018

What is so special about powerset?

Plotkin 000 Algebra to the Rescue

Results

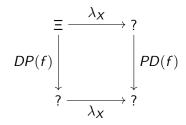
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



Plotkin

Algebra to the Rescue

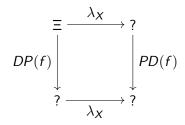
Results

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



 Cleverly choose functions so that on the bottom row, the unit laws can be applied:

$$f(a) = a$$
 $f(c) = a$
 $f(b) = b$ $f(d) = b$

Plotkin 000 Algebra to the Rescue

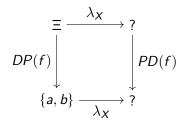
Results

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



 Cleverly choose functions so that on the bottom row, the unit laws can be applied:

$$f(a) = a$$
 $f(c) = a$
 $f(b) = b$ $f(d) = b$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Plotkin

Algebra to the Rescue

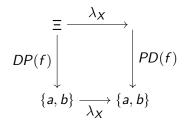
Results

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



 Cleverly choose functions so that on the bottom row, the unit laws can be applied:

$$f(a) = a$$
 $f(c) = a$
 $f(b) = b$ $f(d) = b$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Plotkin

Algebra to the Rescue

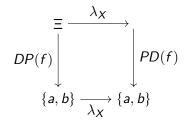
Results

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



 Cleverly choose functions so that on the bottom row, the unit laws can be applied:

$$f(a) = a$$
 $f(c) = a$
 $f(b) = b$ $f(d) = b$

 Take an inverse image to learn fact about λ(Ξ):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Plotkin

Algebra to the Rescue

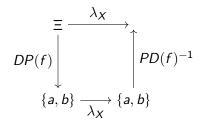
Results

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



 Cleverly choose functions so that on the bottom row, the unit laws can be applied:

$$f(a) = a$$
 $f(c) = a$
 $f(b) = b$ $f(d) = b$

 Take an inverse image to learn fact about λ(Ξ):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Plotkin

Algebra to the Rescue

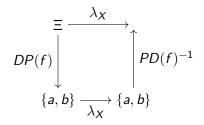
Results

Plotkin's Proof

Main idea is to chase a specially chosen element:

$$\Xi = \{a, b\} + \frac{1}{2} \{c, d\} \in DP(X)$$

round the naturality diagram:



 Cleverly choose functions so that on the bottom row, the unit laws can be applied:

$$f(a) = a$$
 $f(c) = a$
 $f(b) = b$ $f(d) = b$

- Take an inverse image to learn fact about λ(Ξ):
- 3 facts together get contradiction.

Plotkin 000 Algebra to the Rescue

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Analysing the Proof

What is so special about Powerset?

- "Going down": idempotence, commutativity.
- "Going up": easy to take inverse image.

Plotkin 000 Algebra to the Rescue

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Analysing the Proof

What is so special about Powerset?

- "Going down": idempotence, commutativity.
- "Going up": easy to take inverse image.

Plotkin 000 Algebra to the Rescue

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Analysing the Proof

What is so special about Powerset?

- "Going down": idempotence, commutativity.
- "Going up": easy to take inverse image.

Idea: try an algebraic perspective!

Plotkir

Algebra to the Rescue

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A Quick Reminder

- Algebraic theory:
 - Signature Σ and a set of variables give *terms*.
 - Axioms *E* and equational logic give equivalence of terms.

Plotkir

Algebra to the Rescue

Results

A Quick Reminder

• Algebraic theory:

- Signature Σ and a set of variables give *terms*.
- Axioms *E* and equational logic give equivalence of terms.

Theory of complete semilattices: $\Sigma = \{\bot^{(0)}, \lor^{(2)}\}$

$\perp \lor x = x$	(left unit)
$x \lor \bot = x$	(right unit)
$x \lor y = y \lor x$	(commutativity)
$x \lor x = x$	(idempotence)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Plotkir

Algebra to the Rescue

Results

A Quick Reminder

• Algebraic theory:

- Signature Σ and a set of variables give *terms*.
- Axioms *E* and equational logic give equivalence of terms.

Theory of complete semilattices: $\Sigma = \{\bot^{(0)}, \lor^{(2)}\}$

$\perp \lor x = x$	(left unit)
$x \lor \bot = x$	(right unit)
$x \lor y = y \lor x$	(commutativity)
$x \lor x = x$	(idempotence)

 Monads arise from free/forgetful adjunction between Set and category of (Σ, E)-algebras.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

No-Go theorems algebraically, how does it work?

• Need equivalent of distributive law: composite theory.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

No-Go theorems algebraically, how does it work?

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

No-Go theorems algebraically, how does it work?

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.

No-Go theorems algebraically, how does it work?

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.
- How to get general no-go theorem:

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.
- How to get general no-go theorem:
 - Proof by contradiction, so assume a composite theory exists.

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.
- How to get general no-go theorem:
 - Proof by contradiction, so assume a composite theory exists.
 - Start with a clever term 'out of order', a \mathbb{V} -term of \mathbb{P} -terms: $v(p(a, b), p(c, d)) = p'[v'_{x'}/x'].$

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.
- How to get general no-go theorem:
 - Proof by contradiction, so assume a composite theory exists.
 - Start with a clever term 'out of order', a \mathbb{V} -term of \mathbb{P} -terms: $v(p(a, b), p(c, d)) = p'[v'_{x'}/x'].$
 - Bring the $\mathbb V\text{-}\mathsf{part}$ or the $\mathbb P\text{-}\mathsf{part}$ of chosen term to a variable.

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.
- How to get general no-go theorem:
 - Proof by contradiction, so assume a composite theory exists.
 - Start with a clever term 'out of order', a \mathbb{V} -term of \mathbb{P} -terms: $v(p(a, b), p(c, d)) = p'[v'_{x'}/x'].$
 - Bring the $\mathbb V\text{-part}$ or the $\mathbb P\text{-part}$ of chosen term to a variable.
 - Using substitutions + idempotence.

- Need equivalent of distributive law: composite theory.
 - Idea: Use terms of $\mathbb V$ as variables for the terms of $\mathbb P.$
 - That is, all terms are equal to a P-term of V-terms: p[v_x/x], without introducing any 'extra' equalities.
 - Theorem (Piróg and Staton): There is a distributive law $VP \Rightarrow PV$ iff there exits a composite theory.
- How to get general no-go theorem:
 - Proof by contradiction, so assume a composite theory exists.
 - Start with a clever term 'out of order', a \mathbb{V} -term of \mathbb{P} -terms: $v(p(a, b), p(c, d)) = p'[v'_{x'}/x'].$
 - Bring the $\mathbb V\text{-part}$ or the $\mathbb P\text{-part}$ of chosen term to a variable.
 - Using substitutions + idempotence.
 - Need additional assumptions about variables to get useful conclusions.

Plotkin 000 Algebra to the Rescue 0000

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalised Plotkin Theorem

Theorem (Generalised Plotkin)

Let \mathbb{P} and \mathbb{V} be algebraic theories such that:

Algebra to the Rescue 0000

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalised Plotkin Theorem

Theorem (Generalised Plotkin)

Let \mathbb{P} and \mathbb{V} be algebraic theories such that:

1. \mathbb{P} has a binary term p which is commutative and idempotent.

Results

Generalised Plotkin Theorem

Theorem (Generalised Plotkin)

Let \mathbb{P} and \mathbb{V} be algebraic theories such that:

- 1. \mathbb{P} has a binary term p which is commutative and idempotent.
- 2. In addition, p is such that if $p(x_1, x_2) = p'$ then $\# \operatorname{var}(p') \leq 2$

Algebra to the Rescue 0000

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalised Plotkin Theorem

Theorem (Generalised Plotkin)

Let \mathbb{P} and \mathbb{V} be algebraic theories such that:

- 1. \mathbb{P} has a binary term p which is commutative and idempotent.
- 2. In addition, p is such that if $p(x_1, x_2) = p'$ then $\# \operatorname{var}(p') \leq 2$
- 3. \mathbb{V} has a binary term v which is idempotent.

Algebra to the Rescue 0000

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalised Plotkin Theorem

Theorem (Generalised Plotkin)

Let $\mathbb P$ and $\mathbb V$ be algebraic theories such that:

- 1. \mathbb{P} has a binary term p which is commutative and idempotent.
- 2. In addition, p is such that if $p(x_1, x_2) = p'$ then $\# \operatorname{var}(p') \leq 2$
- 3. \mathbb{V} has a binary term v which is idempotent.
- 4. In addition, v is such that if $v(y_1, y_2) = v'$ then $\# var(v') \ge 2$

Algebra to the Rescue 0000

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalised Plotkin Theorem

Theorem (Generalised Plotkin)

Let \mathbb{P} and \mathbb{V} be algebraic theories such that:

- 1. \mathbb{P} has a binary term p which is commutative and idempotent.
- 2. In addition, p is such that if $p(x_1, x_2) = p'$ then $\# \operatorname{var}(p') \leq 2$
- 3. \mathbb{V} has a binary term v which is idempotent.
- 4. In addition, v is such that if $v(y_1, y_2) = v'$ then $\# var(v') \ge 2$
- 5. For all v' in \mathbb{V} , if v' = y then $var(v') = \{y\}$

Plotkin 000 Algebra to the Rescue 000 \bullet

Results

Can we have more of these please?

What is so special about...

Plotkin 000 Algebra to the Rescue 000 \bullet

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can we have more of these please?

What is so special about... idempotence?

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can we have more of these please?

What is so special about... idempotence? It reduces terms to a variable in a controlled way.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Can we have more of these please?

What is so special about... idempotence? It reduces terms to a variable in a controlled way. Unitality axioms do this too!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Can we have more of these please?

What is so special about... idempotence?

It reduces terms to a variable in a controlled way.

Unitality axioms do this too!

- \implies Many No-Go theorems:
 - P has idempotent term, V has idempotent term. (Plotkin)
 - *P* has idempotent term, *V* has term with units.
 - *P* has term with units, *V* has idempotent term.
 - P has term with units, V has term with units. (List monad!!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monads combinations we've seen before

Is there a distributive law of type RowoColumn \Rightarrow ColumnoRow?

Previous results:

	L	Μ	Ρ	D
L		Υ	Υ	
– M P		Υ	Υ	
Ρ			Ν	Ν
D			Ν	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monads combinations we've seen before

Is there a distributive law of type RowoColumn \Rightarrow ColumnoRow?

New results:

	L	Μ	Ρ	D
L	Ν	Υ	Υ	Ν
Μ	N	Υ	Υ	Ν
Ρ	N	Ν	Ν	Ν
D		Ν	Ν	Ν

Plotkir 000 Algebra to the Rescue $_{\rm OOOO}$

Results 000000

Extended Boom Hierarchy

		associative	commutative	idempotent
Tree	Tr	N	N	N
Idempotent tree	I	N	Ν	Y
Commutative tree	С	N	Y	Ν
Commutative Idempotent tree	CI	N	Y	Y
List	L	Y	Ν	Ν
Associative Idempotent tree	AI	Y	Ν	Y
Multiset	М	Y	Y	Ν
Powerset	Ρ	Y	Y	Y

Plotkir 000 Algebra to the Rescue

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Extended Boom Hierarchy

		associative	commutative	idempotent
Tree	Tr	N	Ν	N
Idempotent tree	I	N	Ν	Y
Commutative tree	С	N	Y	Ν
Commutative Idempotent tree	CI	N	Y	Y
List	L	Y	Ν	Ν
Associative Idempotent tree	AI	Y	Ν	Y
Multiset	М	Y	Y	Ν
Powerset	Ρ	Y	Y	Y

+ all non-empty-versions: without constants.

256 combinations of monads.

Is there a distributive law of type RowoColumn \Rightarrow ColumnoRow? Row and Column both without units:

	Tr ⁺	\mathbf{I}^+	C^+	CI^+	L^+	AI^+	M^+	P^+
Tr ⁺	Y						Y	Υ
I +		Ν		Ν		Ν		Ν
Tr ⁺ I ⁺ C ⁺ L ⁺ AI ⁺ M ⁺ P ⁺	Y		Y ?				Υ	Υ
CI^+		Ν		Ν		Ν		Ν
L^+	Y				Υ		Υ	Y
AI^+		Ν		Ν		Ν		Ν
M^+	Y						Υ	Y
P^+		Ν		Ν		Ν		Ν

Plotk

Algebra to the Rescue

Results

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

More Results

Is there a distributive law of type RowoColumn \Rightarrow ColumnoRow? Row with unit, Column without unit:

	Tr^+	\mathbf{I}^+	C^+	CI^+	L^+	AI^+	M^+	P^+
Tr	Y	Ν		Ν		Ν	Y	Υ
Ι		Ν		Ν		Ν		Ν
С	Y	Ν		Ν		Ν	Υ	Υ
CI		Ν		Ν		Ν		Ν
L	Y	Ν		Ν	Υ	Ν	Υ	Υ
AI		Ν		Ν		Ν		Ν
Μ	Y	Ν		Ν		Ν	Υ	Υ
Ρ		Ν		Ν		Ν		Ν

Plotkin

Algebra to the Rescue

Results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Even More Results

Is there a distributive law of type RowoColumn \Rightarrow ColumnoRow? Row without unit, Column with unit:

	Tr	Ι	С	CI	L	AI	Μ	Ρ
Tr ⁺							Υ	Υ
I +		Ν	Ν	Ν		Ν	Ν	Ν
C^+							Υ	Υ
C+ CI+		Ν	Ν	Ν		Ν	Ν	Ν
L^+							Υ	Υ
AI^+		Ν	Ν	Ν		Ν	Ν	Ν
M^+							Υ	Υ
P^+		Ν	Ν	Ν		Ν	Ν	Ν

Plotkin 000 Algebra to the Rescue

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Final slide with results

Is there a distributive law of type RowoColumn \Rightarrow ColumnoRow? Row and Column both have units:

						AI		
Tr	Ν	Ν	Ν	Ν	Ν	Ν	Υ	Υ
I	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
						Ν		
CI	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
L	Ν	Ν	Ν	Ν	Ν	Ν	Υ	Υ
						Ν		
Μ	Ν	Ν	Ν	Ν	Ν	Ν	Υ	Υ
Ρ	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν