Compositionality in Recursive Neural Networks

Martha Lewis

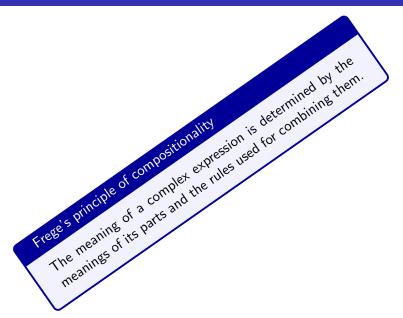
ILLC University of Amsterdam

SYCO3, March 2019 Oxford, UK

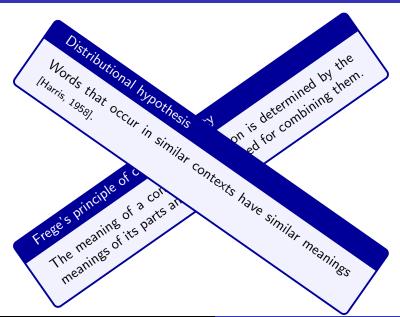
Outline

- Compositional distributional semantics
- Pregroup grammars and how to map to vector spaces
- Recursive neural networks (TreeRNNs)
- Mapping pregroup grammars to TreeRNNs
- Implications

Compositional Distributional Semantics



Compositional Distributional Semantics



Symbolic Structure

 A pregroup algebra is a partially ordered monoid, where each element p has a left and a right adjoint such that:

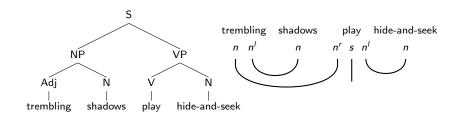
$$p \cdot p^r \le 1 \le p^r \cdot p$$
 $p^l \cdot p \le 1 \le p \cdot p^l$

- Elements of the pregroup are basic (atomic) grammatical types, e.g. $\mathcal{B} = \{n, s\}$.
- Atomic grammatical types can be combined to form types of higher order (e.g. $n \cdot n^l$ or $n^r \cdot s \cdot n^l$)
- A sentence $w_1w_2...w_n$ (with word w_i to be of type t_i) is grammatical whenever:

$$t_1 \cdot t_2 \cdot \ldots \cdot t_n \leq s$$

Pregroup derivation: example

$$p \cdot p^r \le 1 \le p^r \cdot p$$
 $p' \cdot p \le 1 \le p \cdot p'$



$$n \cdot n^{l} \cdot n \cdot n^{r} \cdot s \cdot n^{l} \cdot n \leq n \cdot 1 \cdot n^{r} \cdot s \cdot 1$$

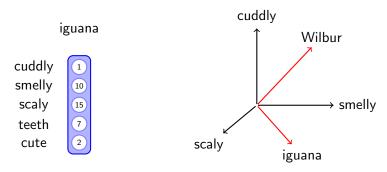
$$= n \cdot n^{r} \cdot s$$

$$\leq 1 \cdot s$$

$$= s$$

Distributional Semantics

- Words are represented as vectors
- Entries of the vector represent how often the target word co-occurs with the context word



Similarity is given by cosine distance:

$$sim(v, w) = cos(\theta_{v, w}) = \frac{\langle v, w \rangle}{||v||||w||}$$

The role of compositionality

Compositional distributional models

We can produce a sentence vector by composing the vectors of the words in that sentence.

$$\overrightarrow{s} = f(\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n})$$

Three generic classes of CDMs:

- Vector mixture models [Mitchell and Lapata (2010)]
- Tensor-based models [Coecke, Sadrzadeh, Clark (2010); Baroni and Zamparelli (2010)]
- Neural models [Socher et al. (2012); Kalchbrenner et al. (2014)]

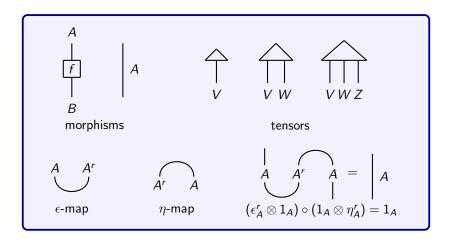
A multi-linear model

The grammatical type of a word defines the vector space in which the word lives:

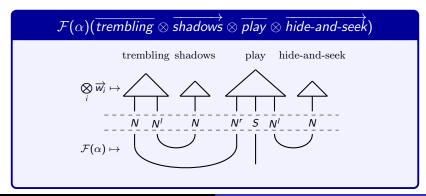
- Nouns are vectors in N;
- adjectives are linear maps $N \to N$, i.e elements in $N \otimes N$;
- intransitive verbs are linear maps $N \to S$, i.e. elements in $N \otimes S$;
- transitive verbs are bi-linear maps $N \otimes N \to S$, i.e. elements of $N \otimes S \otimes N$;
- The composition operation is tensor contraction, i.e. elimination of matching dimensions by application of inner product.

Coecke, Sadrzadeh, Clarke 2010

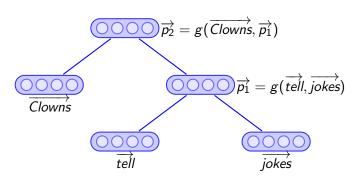
Diagrammatic calculus: Summary



Diagrammatic calculus: example



Recursive Neural Networks



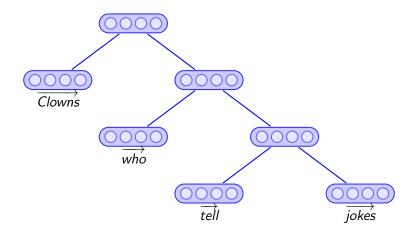
$$g_{RNN}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n :: (\overrightarrow{v_1}, \overrightarrow{v_2}) \mapsto f_1\left(M \cdot \begin{bmatrix}\overrightarrow{v_1}\\\overrightarrow{v_2}\end{bmatrix}\right)$$

 $g_{RNTN}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n :: (\overrightarrow{v_1}, \overrightarrow{v_2}) \mapsto g_{RNN}(\overrightarrow{v_1}, \overrightarrow{v_2}) + f_2(\overrightarrow{v_1}^\top \cdot T \cdot \overrightarrow{v_2})$

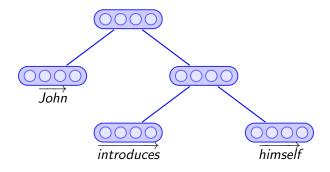
How compositional is this?

- Successful
- Some element of grammatical structure
- The compositionality function has to do everything
- Does that help us understand what's going on?

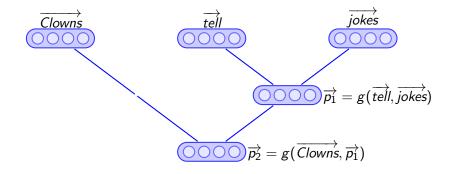
Information-routing words



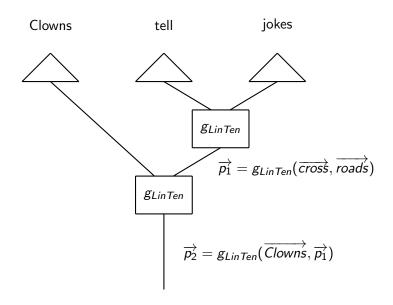
Information-routing words



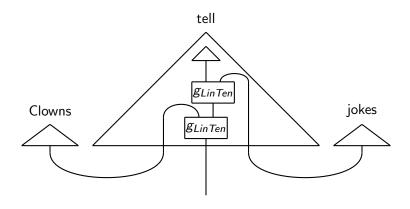
Can we map pregroup grammar onto TreeRNNs?



Can we map pregroup grammar onto TreeRNNs?



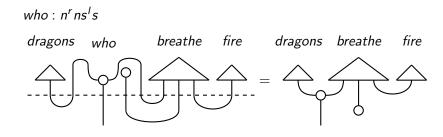
Can we map pregroup grammar onto TreeRNNs?



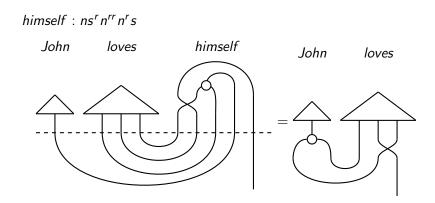
Why?

- Opens up more possibilities to use tools from formal semantics in computational linguistics.
- We can immediately see possibilities for building alternative networks - perhaps different compositionality functions for different parts of speech
- Decomposing the tensors for functional words into repeated applications of a compositionality function gives options for learning representations.

Why?



Why?



Experiments?

Not yet. But there are a number of avenues for exploration

- Examining performance of this kind of model with standard categorical compositional distributional models
- Different compositionality functions for different word types
- Testing the performance of TreeRNNs with formally analyzed information-routing words.
- Investigating the effects of switching between word types.
- Investigating meanings of logical words and quantifiers.
- Extending the analysis to other types of recurrent neural network such as long short-term memory networks or gated recurrent units.

Summary

- We have shown how to interpret a simplification of recursive neural networks within a formal semantics framework
- We can then analyze 'information routing' words such as pronouns as specific functions rather than as vectors
- This also provides a simplification of tensor-based vector composition architectures, reducing the number of high order tensors to be learnt, and making representations more flexible and reusable.
- Plenty of work to do on both the experimental and the theoretical side!

Thanks!

NWO Veni grant 'Metaphorical Meanings for Artificial Agents'

Category-Theoretic Background

- The category of pregroups Preg and the category of finite dimensional vector spaces FdVect are both compact closed
- This means that they share a structure, namely:
 - ullet Both have a tensor product \otimes with a unit 1
 - Both have adjoints A^r, A^l
 - Both have special morphisms

$$\epsilon^r : A \otimes A^r \to 1, \quad \epsilon^l : A^l \otimes A \to 1$$

 $\eta^r : 1 \to A^r \otimes A, \quad \eta^l : 1 \to A \otimes A^l$

- These morphisms interact in a certain way.
- In Preg:

$$p \cdot p^r \le 1 \le p^r \cdot p$$
 $p^l \cdot p \le 1 \le p \cdot p^l$

A functor from syntax to semantics

We define a functor $\mathcal{F}: \mathbf{Preg} \to \mathbf{FdVect}$ such that:

$$\begin{array}{rcl} \mathcal{F}(p) & = & P & \forall p \in \mathcal{B} \\ \mathcal{F}(1) & = & \mathbb{R} \\ \mathcal{F}(p \cdot q) & = & \mathcal{F}(p) \otimes \mathcal{F}(q) \\ \mathcal{F}(p^r) & = \mathcal{F}(p^l) & = & \mathcal{F}(p) \\ \mathcal{F}(p \leq q) & = & \mathcal{F}(p) \rightarrow \mathcal{F}(q) \\ \mathcal{F}(\epsilon^r) & = \mathcal{F}(\epsilon^l) & = & \text{inner product in } \mathbf{FdVect} \\ \mathcal{F}(\eta^r) & = \mathcal{F}(\eta^l) & = & \text{identity maps in } \mathbf{FdVect} \end{array}$$

[Kartsaklis, Sadrzadeh, Pulman and Coecke, 2016]

References I