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Linear logic

Linear Logic

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

Usual Implication

A proof is linear when it uses only once its hypothesis A.
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Linear logic

Linear Logic

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

Usual implication

Linear implication

Exponential

A proof is linear when it uses only once its hypothesis A.
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Linear logic

Linear Logic

A ⇒ B = ! A ( B
C∞(A,B) ' L(!A,B)

A focus on linearity
I Higher-Order is about Seely’s isomoprhism.

!A⊗̂!B ' !(A×B)

I Classicality is about a linear involutive negation :

A⊥⊥ ' A A ' A′′
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Exponential as Distributions

I Distributions with compact support are elements of C∞(Rn,R)′, seen as
generalisations of functions with compact support:

φf : g ∈ C∞(Rn,R) 7→
∫
fg.

Théorie des distributions, Schwartz, 1947.

I In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of distributions with compact support.

!A( ⊥ = A⇒ ⊥
L(!E,R) ' C∞(E,R)
(!E)′′ ' C∞(E,R)′

!E ' C∞(E,R)′

I Seely’s isomorphism corresponds to the Kernel theorem:

C∞(E,R)′⊗̃C∞(F,R)′ ' C∞(E × F,R)′
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Just a glimpse at Differential Linear Logic

A,B := A⊗B|1|A`B|⊥|A⊕B|0|A×B|>|!A|!A

Exponential rules of DiLL0

` Γ, ?A, ?A
c

` Γ, ?A
` Γ w
` Γ, ?A

` Γ, A
d` Γ, ?A

` Γ, !A, ` ∆, !A
c̄` Γ,∆, !A

`
w̄` !A

` Γ, A
d̄` Γ, !A

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

` Γ, A⊥
d

` Γ, ?A⊥
` ∆, A

d̄` ∆, !A

A linear proof is in particular non-
linear.

From a non-linear proof we can ex-
tract a linear proof

f ∈ C∞(R,R)

d(f)(0)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

` Γ, ` : A⊥
d

` Γ, ` : ?A⊥
` ∆, v : A

d̄` ∆, (f 7→ D0(f)(v)) : !A

A linear proof is in particular non-
linear.

From a non-linear proof we can ex-
tract a linear proof

f ∈ C∞(R,R)

d(f)(0)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)

Marie Kerjean (Inria Bretagne) Differentiating proofs for programs 6 / 29



Differential Linear Logic

` Γ, ` : A⊥
d

` Γ, ` : ?A⊥
` ∆, v : A

d̄` ∆, (f 7→ D0(f)(v)) : !A

A linear proof is in particular non-
linear.

From a non-linear proof we can ex-
tract a linear proof

Cut-elimination:

` Γ, v : !A
d̄` Γ, !A

` ∆, A⊥
d

` ∆, ?A⊥
cut` Γ,∆

 ` Γ, A ` ∆, A⊥
cut

Γ,∆

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

` Γ, ` : A⊥
d

` Γ, ` : ?A⊥
` ∆, v : A

d̄` ∆, (f 7→ D0(f)(v)) : !A

A linear proof is in particular non-
linear.

From a non-linear proof we can ex-
tract a linear proof

Cut-elimination:

` Γ, v : A
d̄` Γ, D0( )(v) : !A

` ∆, ` : A⊥
d

` ∆, ` : ?A⊥
cut

Γ,∆

 
` Γ, v : A ` ∆, ` : A⊥

cut` Γ,∆, D0(`)(x) = `(x) : R = ⊥

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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The computational content of differentiation
Historically, resource sensitive syntax and discrete semantics

I Quantitative semantics : f =
∑
n fn

I Probabilistic Programming and Taylor formulas : M =
∑
nMn

[Ehrhard, Pagani, Tasson, Vaux, Manzonetto ...]

Differentiation in Computer Science can have a different flavour :

I Numerical Analysis and functional analysis

I Ordinary and Partial Differential Equations
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Historically, resource sensitive syntax and discrete semantics

I Quantitative semantics : f =
∑
n fn

I Probabilistic Programming and Taylor formulas : M =
∑
nMn

[Ehrhard, Pagani, Tasson, Vaux, Manzonetto ...]

Differentiation in Computer Science can have a different flavour :

I Numerical Analysis and functional analysis

I Ordinary and Partial Differential Equations

Can we match the requirement of models of LL with the intuitions
of physics ?

(YES, we can.)
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Smooth and classical models
of Differential Linear Logic

What’s the good category in which we interpret formulas ?
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Smoothness and Duality

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

The two requirements works as opposite forces .

X A cartesian closed category with smooth functions.

 Completeness, and a dual topology fine enough.

X Interpreting (E⊥)⊥ ' E without an orthogonality:

 Reflexivity : E ' E′′, and a dual topology coarse enough.

.
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What’s not working

A space of (non necessarily linear) functions between finite dimensional spaces
is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails (Girard’s
Coherent Banach spaces).

I We want to use power series.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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MLL in TopVect

It’s a mess.

Duality is not an orthogonality in general :

I It depends of the topology E′β , E′c, E
′
w, E′µ on the dual.

I It is typically not preserved by ⊗.

I It is in the canonical case not an orthogonality : E′β is not reflexive.

Monoidal closedness does not extends easily to the topological case :

I Many possible topologies on ⊗: ⊗β , ⊗π, ⊗ε.
I LB(E ⊗B F,G) ' LB(E,LB(F,G))
⇔ ”Grothendieck problème des topologies”.
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Topological models of DiLL

[Ehr02] [Ehr05] [DE08]

countable bases

of vector spaces

Coherent Banach spaces [Gir99]

a norm is too restrictive

Reflexive anc complete :

e.g. C∞(Rn,R)

C∞(Rn,R) is not finite dimensional
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Fréchet and DF spaces

I Fréchet : metrizable complete spaces.

I (DF)-spaces : such that the dual of a Fréchet is (DF) and the dual of a
(DF) is Fréchet.

Fréchet-spaces DF-spaces

Rn EE′

P ⊗QM `N

( )′

( )′

These spaces are in general not reflexive.
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A polarized model of Smooth differential Linear Logic

Typical Nuclear Fréchet spaces are spaces of [smooth, holomorphic, rapidly

decreasing ...] functions.

Fréchet spaces

C∞(Rn, R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces

Rn

And more : ↑ is the completion  Chiralities [Mellies].
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What we can get from semantics

I Higher-Order : how do we construct C∞(C∞(Rn,R),R).

I Partial Differentiation Equations : Distribution theory allows to generalize
the interaction between linearity and non-linearity to the interaction
between thesolutions and the parameters to a differential equation.

 interactions between theorical computer science and applied mathematics.
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A Logical account
for Linear Partial Differential Equations
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Linear functions as solutions to a Differential equation

Slogan : From Linearity/Non-linearity to Solutions/Parameter of a
differential equation.

f ∈ C∞(A,R) is linear iff ∀x, f(x) = D0(f)(x)
iff ∃g ∈ C∞(Rn,R), f = d̄g

φ ∈ A′′ ' A iff ∃ψ ∈ !A,D0(φ) = ψ
φ ∈ !DA iff ∃ψ ∈ !A,D(φ) = ψ

d̄ :

{
E′′ → C∞(E,R)′,

φ = evx 7→ φ ◦D0 = (f 7→ evx(D0(f))
d :

{
!E → E′′

ψ 7→ ψ|E′

As L(E,R) = D0(C∞(E,R)):

d̄ :

{
(D0(C∞(E,R)))′ → C∞(E,R)′,

φ 7→ φ ◦D0

d :

{
C∞(E,R)′ → (D0(C∞(E,R))′

ψ 7→ ψ|D0(C∞(E,R)
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Dereliction and co-dereliction, again.

d̄ :

{
(D0(C∞(E,R)))′ → C∞(E,R)′,

φ 7→ φ ◦D0

d :

{
C∞(E,R)′ → (D0(C∞(E,R))′

ψ 7→ ψ|D0(C∞(E,R)

d̄D :

{
(D(C∞(E,R))′ → C∞(E,R)′

φ 7→ φ ◦D
dD :

C
∞(E,R)′ → (D(C∞(E,R))′

ψ 7→ ψ|D(C∞(E,R))

Another exponential is possible

!DE := D−1((C∞(E,R)′) ⊂ (C∞c (E,R))′

The exponential is the space of solutions to a differential equation.

I !D0
E := E′′ ' E.

I !IdE := !E = C∞(E,R)′.
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Linear Partial Differential Equations with constant
coefficient
Consider D a LPDO with constant coefficients:

D =
∑

α,|α|≤n

aα
∂α

∂xα
.

The heat equation in R2

∂2u
∂x2 − ∂u

∂t = 0
u(x, y, 0) = f(x, y)

Theorem (Malgrange 1956)

For any D LPDOcc, there is ED ∈ C∞c (R× Rn,R)′ such that :

D(ED) = δ0

and thus : output D(ED ∗ φ) = φ input
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D-DiLL

DiLL

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ, A
d` Γ, ?A

` Γ
w̄` Γ, !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ, x : A
d̄` Γ, D0( )(x)!A

D −DiLL
` Γ wD

` Γ,
∫
D : ?DA

` Γ, f : ?A, g : ?DA
c

` Γ, f.g : ?DA

` Γ, f : ?DA
dD` Γ, f ∗ ED : ?A

` w̄D` ED : !DA

` Γ, φ : !A ` ∆, ψ : !DA
c̄D` Γ,∆, φ ∗ ψ : !DA

` Γ, ψ : !DA
d̄D` Γ, Dψ : !A

A deterministic cut-elimination.

A Logical Account for LPDEs, K. LICS 2018.
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How to compute with higher-order distributions ?
joint work with JS Lemay.
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Finite dimensional vector spaces into E

For every linear continuous injective function f : Rn( E:

E ′f (Rn) := C∞(Rn)′

Higher-order distributions

E ′(E) := lim−→
f :Rn(E

E ′f (Rn)

directed under the inclusion maps defined as

Sf,g : E ′g(Rn)→ E ′f (Rm), φ 7→ (h 7→ φ(h ◦ ιn,m))

when f = g ◦ ιn,m.

functorial only on injective linear maps : no promotion.
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All about reflexivity

When E is reflexive, so is E ′(E).

Duality works well :
E ′(E) ' ( lim←−

f :Rn(E

Ef (Rn))′

but we still are in a polarized model.

A strong monoidal functor on isomorphisms

! :


Refliso → Refliso

E 7→ E ′(E)

` : E ( F 7→ !` ∈ E(F ′)

where !`(ff ) = f`◦f :Rn(F .
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Higher-order dereliction and co-dereliction

dE :

{
!(E)→ E′′ ' E
φ 7→ (` ∈ E′ 7→ φ((` ◦ f)f :Rn(E ∈ E(E))

d̄E :


E → !E ' (E(E))′

x 7→ (ff ∈ C∞f (Rn,R))f :Rn(E′ 7→ D0ff (f−1(x))

where f is injective such that x ∈ Im(f) .
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Computing in higher-dimension

!E = < δx, x ∈ E >

By Frölicher, as used by Blute, Ehrhard and Tasson.

That’s a discretisation scheme :
let’s embed numerical schemes into cut-elimination, through

compositionality.
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Conclusion

From mathematics to proof-theory and back.

Differential Equations

Polarization
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A coalgebraic structure on D

Weakening

w :!DE → R comes from t : E → {0}.

If E = Rn, define Rn′ another copy of E. Then

D(C∞(E,R))→ D(C∞(E × E,R))

= D(C∞(Rn × Rn
′
,R))

= D(C∞(E,R) ` C∞(Rn
′
,R))

= D(C∞(E,R)) ` C∞(Rn
′
,R)

Contraction
We thus have c :!DE →!E⊗!DE.
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What’s typable with D-DiLL

Consider D a Smooth Linear Partial Differential Operator : D :
C∞(E)→ C∞(E). D acts on E × E :

D̂ = (D ⊗ IdF )C∞(E × E,R)→ C∞(E × E,R)

Then Green’s function is the operator Kx,y :!E to!E such that :

Kx,y ◦ (D̂)′ = δx−y

` Γ, ?DE
⊥, ?E⊥

cD
`?DE

⊥
` ∆, ?DE

` w̄D`!DE cD`?D∆, !DE
cut` Γ,∆
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A closer look to Kernels

A answer to a well-known issue :

I Any k ∈ (Lp(µ⊗ η))′ gives rise to a compact operator
Tk : Lp(µ)→ Lp∗(η) ' (Lp(η))′ : Tk(f)(g) = k(f.g).

I This is not a surjection : if p = p∗ = 2, for Tk = Id one should have
k = δx−y, which is not a function.

I The above morphism k 7→ Tk is an isomorphism on spaces of distributions
spaces, generalizing Lp :

Kernel theorems

L(C∞(E,R)′, C∞(F,R)′′) ' C∞(E,R)′⊗̂C∞(F,R)′

' C∞(E × F,R)′

Tk 7→ Kx,y
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Nuclearity
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A closer look to Kernels

A answer to a well-known issue :

I Any k ∈ (Lp(µ⊗ η))′ gives rise to a compact operator
Tk : Lp(µ)→ Lp∗(η) ' (Lp(η))′ : Tk(f)(g) = k(f.g).

I This is not a surjection : if p = p∗ = 2, for Tk = Id one should have
k = δx−y, which is not a function.

I The above morphism k 7→ Tk is an isomorphism on spaces of distributions
spaces, generalizing Lp :

Kernel theorems

C∞(E,R)′⊗̂C∞(F,R)′ ' L(C∞(E,R)′, C∞(F,R)′′)
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Density
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