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Linear logic

Usual Implication

Linear Logic

AXB=14 B
C(A, B) ~ L(1A, B)

A proof is linear when it uses only once its hypothesis A.
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Usual implication
Linear implication
Linear Logic

Exponential
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Linear logic

Linear Logic

A=B=14 -B
C®(A, B) ~ L(1A, B)

A focus on linearity
» Higher-Order is about Seely’s isomoprhism.

IA®!B ~ (A x B)

> Classicality is about a linear involutive negation :

A+l ~ A

A~ A"
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Exponential as Distributions

> Distributions with compact support are elements of C>°(R™,R)’, seen as
generalisations of functions with compact support:

¢f¢9€C°°(Rn,R)’—>/fg-

\ Théorie des distributions, Schwartz, 1947.
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» In a classical and Smooth model of Differential Linear Logic, the
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Exponential as Distributions

> Distributions with compact support are elements of C>°(R™,R)’, seen as
generalisations of functions with compact support:

¢f¢9€C°°(Rn,R)’—*/fg-

\ Théorie des distributions, Schwartz, 1947.

» In a classical and Smooth model of Differential Linear Logic, the
exponential is a space of distributions with compact support.
IA—1l=A= 1
L(E,R) ~C>(E,R)
(IE)" ~C>(E,R)
|E ~C>(E,R)

» Seely’s isomorphism corresponds to the Kernel theorem:
C®(E,R)QC>®(F,R) ~C®(E x F,R)
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Just a glimpse at Differential Linear Logic

A,B:= A® B|1|AS B|L|A® B|0|A x B|T|!A|!A

Exponential rules of DILL

FT,74,74 P FT, A
Fr74 ¢ FT.74 FT.74 ¢
T4, FAA F FT,A
FT,A, A ¢ F14 Fr,i4 ¢

@ Normal functors, power series and A-calculus. Girard, APAL(1988)

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

FI, AL FAA
FT, 74+ d FAA B
A linear proof is in particular non- From a non-linear proof we can ex-
linear. tract a linear proof
faC”(R,R)

(56

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

FT,0: AL p FAv: A i
FD,0: 74T A (f = Do(f)(v)) : 1A
A linear proof is in particular non- From a non-linear proof we can ex-
linear. tract a linear proof
faC™(R,R)

(56

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

FT,0: AL
FT,0: 74+

A linear proof is in particular non-
linear.

Cut-elimination:
FTv:!A _ A AL
Fria ¢ Fa 74l
FT.A cut

FAwv: A

d
A (f = Do(f)(v)) : 1A
From a non-linear proof we can ex-
tract a linear proof

FT,A I—A,Al
T A cut

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

FT,0: AL FAv: A _

FT, 074t FA(f = Do(f)(v)) : 14
A linear proof is in particular non- From a non-linear proof we can ex-
linear. tract a linear proof

Cut-elimination:
FT,bv: A _ I—A,K:AJ-

FT,Do()@) 14 ¢ FA2:74%
T A cut

FT,vu: A FAZ: AL ;
FT,A, Do(O)(z) = l(z) :R=L "

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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The computational content of differentiation
Historically, resource sensitive syntax and discrete semantics

> Quantitative semantics : f =" f,

» Probabilistic Programming and Taylor formulas : M =" M,

[Ehrhard, Pagani, Tasson, Vaux, Manzonetto ...]

Differentiation in Computer Science can have a different flavour :

» Numerical Analysis and functional analysis

» Ordinary and Partial Differential Equations

Solution of steady heal squation

el Ve
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The computational content of differentiation

Historically, resource sensitive syntax and discrete semantics
> Quantitative semantics : f =" f,
» Probabilistic Programming and Taylor formulas : M =" M,
[Ehrhard, Pagani, Tasson, Vaux, Manzonetto ...]

Differentiation in Computer Science can have a different flavour :
» Numerical Analysis and functional analysis

» Ordinary and Partial Differential Equations

Can we match the requirement of models of LL with the intuitions

of physics 7
(YES, we can.)
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Smooth and classical models
of Differential Linear Logic

What’s the good category in which we interpret formulas 7
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Smoothness and Duality

Smoothness

Spaces : E is a locally convex and Haussdorf topological vector space.
Functions: f € C*°(R™,R) is infinitely and everywhere differentiable.

The two requirements works as opposite forces .

v A cartesian closed category with smooth functions.

~~ Completeness, and a dual topology fine enough.

v/ Interpreting (E+)* ~ E without an orthogonality:

~ Reflexivity : E ~ E” and a dual topology coarse enough.
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What’s not working

A space of (non necessarily linear) functions between finite dimensional spaces
is not finite dimensional.

dim C°(R™,R™) = oc.
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What’s not working

A space of (non necessarily linear) functions between finite dimensional spaces
is not finite dimensional.

dim C°(R™,R™) = oc.
We can’t restrict ourselves to finite dimensional spaces.
The tentative to have a normed space of analytic functions fails (Girard’s
Coherent Banach spaces).
We want to use power series.
For polarity reasons, we want the supremum norm on spaces of power series.

But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

vVvyyvyYVvYyy

This is why Coherent Banach spaces don’t work.
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We can’t restrict ourselves to normed spaces.




MLL in ToPVECT

It’s a mess.

Duality is not an orthogonality in general :
> It depends of the topology Ej, Ey, E;,, E;, on the dual.
» It is typically not preserved by ®.

» It is in the canonical case not an orthogonality : Eg is not reflexive.

Monoidal closedness does not extends easily to the topological case :

» Many possible topologies on ®: ®g, ®z, ®e.

> [,B(E ®p F, G) ~ EB(E,EB(F, G))
< ”Grothendieck probleme des topologies”.
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Topological models of DiLL

[Ehr02] [Ehr05] [DEOS)

countable bases

C*(R™,R) is not finite dimensional

of vector spaces

Nuclear
Fréchet
Nuclear
Reflexive

Nuclear
Quasicomplete
Quasibarreled

Reflexive anc complete :
e.g. C(R™,R)

Coherent Banach spaces [Gir99]
a norm is too restrictive




Fréchet and DF spaces

» Fréchet : metrizable complete spaces.

(DF) is Fréchet.

> (DF)-spaces : such that the dual of a Fréchet is (DF) and the dual of a
Fréchet-spaces

DF-spaces

Marie Kerjean (Inria Bretagne)




decreasing ...] functions.

Nuclear spaces

A polarized model of Smooth differential Linear Logic
Typical Nuclear Fréchet spaces are spaces of [smooth, holomorphic, rapidly
Fréchet spaces

R’IL

C*(R", R)

DF-spaces

Marie Kerjean (Inria Bretagne)

IR" = C>(R", R’
And more : 1 is the completion ~~ Chiralities [Mellies].




What we can get from semantics

» Higher-Order : how do we construct C*°(C*°(R", R), R).

» Partial Differentiation Equations : Distribution theory allows to generalize
the interaction between linearity and non-linearity to the interaction
between thesolutions and the parameters to a differential equation.

~> interactions between theorical computer science and applied mathematics.
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A Logical account
for Linear Partial Differential Equations
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Linear functions as solutions to a Differential equation

Slogan : From Linearity/Non-linearity to Solutions/Parameter of a
differential equation.

f €C>®(A,R) is linear iff Vz, f(z) = Do(f)(x)
iff 3g € C>=(R™,R), f = dg
pe A" ~A iff I elA Dy(¢) =1
pelpA iff W elA,D(p)=1
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Linear functions as solutions to a Differential equation

Slogan : From Linearity/Non-linearity to Solutions/Parameter of a
differential equation.
f €C®(A,R) is linear iff Vx, f(z) = Do(f)(z)
iff 3g € C>=(R™,R), f = dg
peA'~A ff W elA Dy(¢) =1
o elpA iff F e !A,D(0) = ¢

CZ, E/,%CM(E,R)/, d{'E—>E"
"¢ =evy = ¢poDy=(f — eve(Do(f)) Y=Y

As L(E,R) = Do(C=(B, R)):

i {(DO(COC(E,]R)))’ — C*(E,R), i {C”(E,]R)’ — (Do(C>*(E,R))

¢ ¢o Dy Y = Ypy(c=(ER)




Dereliction and co-dereliction, again.

d: (DO(COC(E’ R)))I - COO(Ea ]R)l’ . Coo(EvR)l - (DO(COO(E7 R))I
. ¢ ¢oly ' Y = Y| py(c=(BR)

C*(E,R) — (D(C™(E,R))

o [oermRy SecmRy
b ¢ poD b

Another exponential is possible
IpE := D™H((C*(E,R)') C (CZ(E,R))’

The exponential is the space of solutions to a differential equation.

» Ip,E:=E"~FE.
> ![dE =1F = COO(E, ]R)/
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Linear Partial Differential Equations with constant
coefficient
Consider D a LPDO with constant coefficients:

8(1
D= Z (La%.

alal<n

Solution of sleady heat equation

The heat equation in R?
u _ du _

022 ot

u(z,y,0) = f(z,y)

Theorem (Malgrange 1956)
For any D LPDOcc, there is Ep € C°(R x R™,R)’ such that :

D(Ep) = &

and thus : output D(Ep * ¢) = ¢ input

Marie Kerjean (Inria Bretagne)
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D-DiLL

DiLLL
S FT,?74,74 FT,A
FT,74 FT,74  © FT,74
kT FT,IA FAA FD,z:A4
FT,1A FT,A A ¢ FT, Do()(@)A %
D — DiLL
FT w FT,f:?24,9:7pA FT,f:A
FT,[D:?7pA FT,fg:7pA FT,f+Ep:74 °
- o FDg:lA  FAY:lpA FT,¢:1pA _
FEp:IpA FT,A, %9 :1pA P FT,Dy:1A 9P

A deterministic cut-elimination.

ﬁ A Logical Account for LPDEs, K. LICS 2018.
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How to compute with higher-order distributions ?
joint work with JS Lemay.
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Finite dimensional vector spaces into F

For every linear continuous injective function f : R™ — E:

EH(R™) := C®(R™)

Higher-order distributions

£(E) = lm EEY

directed under the inclusion maps defined as

Stg:EgRY) = EFR™), ¢ = (h = dp(hotnm))

when f = g oty m.

functorial only on injective linear maps :

no ])1‘()111()ti()]].
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All about reflexivity
When F is reflexive, so is £'(E). J

Duality works well :
E(E)~( lm &(R")

fR"—oF

but we still are in a polarized model.

A strong monoidal functor on isomorphisms

REFL;s, — REFL;g,
I E— &' (E)
(:E—oF—We&F)

where () = frof.rn—oF.
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Higher-order dereliction and co-dereliction

i (E) > E'"~FE
Pl o (te B o ¢((Co f)pmnp € E(E))

E—E~(E(E))
dp : § ©+> (fr € CFP(R™,R)) prn—opr = Dofy(f71(2))
where f is injective such that x € Im(f) .
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Computing in higher-dimension

'E =<0, x € F >

By Frolicher, as used by Blute, Ehrhard and Tasson.

That’s a discretisation scheme :
let’s embed numerical schemes into cut-elimination, through
compositionality.
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Conclusion

Polarization
From mathematics to proof-theory and back.

Differential Equations
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A coalgebraic structure on D

Weakening
w :!pE — R comes from ¢ : E — {0}. J

If E =R", define R™ another copy of E. Then

D(C®(E,R)) — D(C™(E x E,R))
D(C®(R" x R" | R))
D(C™®(E,R) 3 C*(R",R))
D(C*(E,R)) 3 C*(R",R)

Contraction
We thus have c:!pF —!EQ!pE. J
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What’s typable with D-DiLL

Consider D a Smooth Linear Partial Differential Operator : D :
C>®(E) - C®(E). Dactson Ex E :

D = (D®Idp)C™(E x E,R) — C®(E x E,R)

Then Green’s function is the operator K, , :!E tolE such that :

Ky o (D)/ =0y

Lo
FT2pEEY b AE FlpE P
7 L Y P

FT.A cut

Marie Kerjean (Inria Bretagne)



A closer look to Kernels

A answer to a well-known issue :

> Any k € (L,(1r®n))" gives rise to a compact operator
Ty = Lp(p) = L () = (Lp(n)" = Ti(f)(9) = k(f-9)-

» This is not a surjection : if p = p* = 2, for T, = Id one should have
k = 64—y, which is not a function.

» The above morphism k — T} is an isomorphism on spaces of distributions
spaces, generalizing L), :

Kernel theorems
L(C®(E,R)',C*(F,R)") ~ C*(E,R)®C>(F,R)

~ C®(E x F,RY
Tk — Km’y

o
8]
I
i
it
€
€
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