A comonadic view of simulation and quantum resources

Samson Abramsky, Rui Soares Barbosa, Martti Karvonen, Shane Mansfield

Overview of the talk

- Crash course on contextuality
- What are we trying to formalize?
- Free operations on empirical models. Free transformations.
- Simulations.
- Equivalence of the viewpoints
- No-cloning
- Further topics

Measurement scenarios

A measurement scenario $\mathbf{X} = \langle X, \Sigma, O \rangle$:

► X a finite set of measurements

Σ is a simplicial complex on X, whose faces are called the measurement contexts.

O = (O_x)_{x∈X} specifies for each measurement x ∈ X a finite non-empty set of possible outcomes O_x;

Note: X and each O_x finite.

Events and distributions

Let $\langle X, \Sigma, O \rangle$ be a scenario. For any $U \subseteq X$, we write

$$\mathcal{E}_O(U) := \prod_{x \in U} O_x$$

for the set of assignments of outcomes to each measurement in the set U. When U is a valid context, this is be the set of possible joint outcomes for the measurements UFor any set Y, let D(Y) denote the set of finitely supported probability distributions over Y

Empirical models

An empirical model e: (X, Σ, O) is a family (e_σ)_{σ∈Σ} where e_σ is a distribution over the available joint outcomes, i.e.

$$e_{\sigma} \in \mathsf{D} \circ \mathcal{E}_{\mathcal{O}}(\sigma) = \mathsf{D}\left(\prod_{x \in \sigma} \mathcal{O}_{x}\right)$$

We assume (generalized) no-signalling, i.e. that marginal distributions are well-defined: for any σ, τ ∈ Σ with τ ⊆ σ, it holds that

$$e_{ au}=e_{\sigma}|_{ au}={\sf D}\circ {\mathcal E}(au\subseteq \sigma)(e_{\sigma})$$
 ;

concretely, for any $t\in \mathcal{E}(au)$,

$$e_{\tau}(t) = \sum_{s \in \mathcal{E}(\sigma), s|_{ au} = t} e_{\sigma}(s) \; .$$

Contextuality

• Contextuality: Is there a joint distribution d on $\mathcal{E}_O(X)$ such that $d|_{\sigma} = e_{\sigma}$ for each $\sigma \in \Sigma$?

Strong contextuality: Is there a joint outcome s ∈ C_O(X) consistent with e?

Non-contextual fraction NCF(e) ∈ [0, 1]: what fraction of e is non-contextual? CF(e) = 1 − NCF(e)

Examples

Bell:

	(0,0)	(0,1)	(1,0)	(1, 1)
(x_0, y_0)	1/2	0	0	1/2
(x_0, y_1)	3/8	1/8	1/8	3/8
(x_1, y_0)	3/8	1/8	1/8	3/8
(x_1, y_1)	1/8	3/8	3/8	1/8

Examples

PR box:

	(0,0)	(0, 1)	(1,0)	(1,1)
(x_0, y_0)	1/2	0	0	1/2
(x_0, y_1)	1/2	0	0	1/2
(x_1, y_0)	1/2	0	0	1/2
(x_1, y_1)	0	1/2	1/2	0

Towards morphisms

A bunch of mathematical objects has been defined, but what are the morphisms?

Given e: (X, Σ, O) and d: (Y, Θ, P), a morphism d → e is a way of transforming d to e using free operations.

► Alternatively: a morphism d → e is a way of simulating e using d.

Examples from the literature

 Any two-outcome bipartite box can be simulated with PR boxes (Barrett-Pironio).

An explicit two-outcome three-partite box that cannot be simulated with PR boxes (Barrett-Pironio).

 No finite set of bipartite boxes can simulate all of them (Dupuis et al).

Free operations

We have

Zero model z: the unique empirical model on the empty measurement scenario

$$\langle \emptyset, \Delta_0 = \{\emptyset\}, ()
angle$$
 .

Singleton model u: the unique empirical model on the one-outcome one measurement scenario

$$\langle \mathbf{1} = \{\star\}, \Delta_1 = \{\emptyset, \mathbf{1}\}, (\mathcal{O}_{\star} = \mathbf{1})
angle$$
 .

Probabilistic mixing: Given empirical models e and d in ⟨X,Σ, O⟩ and λ ∈ [0,1], the model e +_λ d : ⟨X,Σ, O⟩ is given by the mixture λe + (1 − λ)d

Free operations

Tensor: Let e : (X, Σ, O) and d : (Y, Θ, P) be empirical models. Then

$$e \otimes d : \langle X \sqcup Y, \Sigma * \Theta, (O_x)_{x \in X} \cup (P_y)_{y \in Y} \rangle$$

represents running *e* and *d* independently and in parallel. Here $\Sigma * \Theta := \{ \sigma \cup \theta | \sigma \in \Sigma, \theta \in \Theta \}.$

Coarse-graining: given e : (X, Σ, O) and a family of functions h = (h_x: O_x → O'_x)_{x∈X}, get a coarse-grained model

$$e/h:\langle X,\Sigma,O'\rangle$$

Measurement translation: given e : (X, Σ, O) and a simplicial map f: Σ' → Σ, the model f*e : (X', Σ', O) is defined by pulling e back along the map f.

Free operations

Given a simplicial complex Σ and a face $\sigma \in \Sigma$, the link of σ in Σ is the subcomplex of Σ whose faces are

$$\mathsf{lk}_{\sigma}\Sigma := \{\tau \in \Sigma \mid \sigma \cap \tau = \emptyset, \sigma \cup \tau \in \Sigma\} \ .$$

Conditioning on a measurement: Give e : (X, Σ, O), x ∈ X and a family of measurements (y_o)_{o∈Ox} with y_o ∈ Vert(lk_xΣ). Consider a new measurement x?(y_o)_{o∈Ox}, abbreviated x?y. Get

$$e[x?y]: \langle X \cup \{x?y\}, \Sigma[x?y], O[x?y \mapsto O_{x?y}] \rangle$$

that results from adding x?y to e.

Summary of operations

The operations generate terms

$$\mathsf{Terms} \ni t := a \in \mathsf{Var} \mid z \mid u \mid f^*t \mid t/h$$
$$\mid t +_{\lambda} t \mid t \otimes t \mid t[x?y]$$

typed by measurement scenarios.

Morphisms as free transformations

Proposition

A term without variables always represents a noncontextual empirical model. Conversely, every noncontextual empirical model can be represented by a term without variables.

Can *d* be transformed to *e*?

Formally: is there a typed term $a : \mathbf{Y} \vdash t : \mathbf{X}$ such that t[d/a] = e?

Morphisms as simulations

- Think of a measurement scenario as a concrete experimental setup, where for each measurement there is a grad student responsible for it.
- The grad student responsible for measuring x ∈ X, should have instructions which measurement π(x) ∈ Y to use instead.
- Given a result for those measurements, should be able to determine the outcome to output.
- The outcome statistics should be identical to those of e.

Dependencies on multiple measurements and stochastic processing added as a comonadic effect.

Deterministic morphisms

Definition

Let $\mathbf{X} = \langle X, \Sigma, O \rangle$ and $\mathbf{Y} = \langle Y, \Theta, P \rangle$ be measurement scenarios. A *deterministic morphism* $\langle \pi, h \rangle \colon \mathbf{Y} \longrightarrow \mathbf{X}$ consists of:

- a simplicial map $\pi \colon \Sigma \longrightarrow \Theta$;
- ► a natural transformation $h: \mathcal{E}_P \circ \pi \longrightarrow \mathcal{E}_O$; equivalently, a family of maps $h_x: P_{\pi(x)} \longrightarrow O_x$ for each $x \in X$.

Let $e: \mathbf{X}$ and $d: \mathbf{Y}$ be empirical models. A *deterministic simulation* $\langle \pi, h \rangle: d \longrightarrow e$ is a deterministic morphism $\langle \pi, h \rangle: \mathbf{Y} \longrightarrow \mathbf{X}$ that takes d to e.

Example simulation

If
$$h = (h_x \colon O_x \longrightarrow O'_x)_{x \in X}$$
, can coarse-grain e to get e/h .

There is a deterministic simulation $e \rightarrow e/h$:

If you need to measure $x \in X$ for e/h, just measure $x \in X$ in the experiment *e* and apply *h* to the outcome.

Beyond deterministic maps

 Deterministic morphisms aren't enough: a deterministic model can't simulate (deterministically) a coinflip

Need classical (shared) correlations

Moreover, to simulate x ∈ X one might want to run a whole measurement protocol on ⟨Y, Θ, P⟩.

Definition

Let $\mathbf{X} = \langle X, \Sigma, O \rangle$ be a measurement scenario. We define recursively the *measurement protocol completion* MP(X) of X by

$$\mathsf{MP}(\mathbf{X}) ::= \emptyset \mid (x, f)$$

where $x \in X$ and $f: O_x \to MP(Ik_x\Sigma)$.

 $MP(\mathbf{X})$ can be given the structure of a measurement scenario, and if $e: \langle X, \Sigma, O \rangle$, can extend it to $MP(e): MP(\mathbf{X})$

General simulations

Definition

Given empirical models e and d, a simulation of e by d is a deterministic simulation $MP(d \otimes c) \rightarrow e$ for some noncontextual model c.

We denote the existence of a simulation of e by d as $d \rightsquigarrow e$, read "d simulates e".

Theorem

MP defines a comonoidal comonad on the category of empirical models.

Roughly: comultiplication MP(X) \rightarrow MP²(X) by "flattening", unit MP(X) \rightarrow X, and MP($X \otimes Y$) \rightarrow MP(X) \otimes MP(Y)

Theorem

Let $e : \mathbf{X}$ and $d : \mathbf{Y}$ be empirical models. Then $d \rightsquigarrow e$ if and only if there is a typed term $a : \mathbf{Y} \vdash t : \mathbf{X}$ such that $t[d/a] \simeq e$.

Proof.

(Sketch) If $d \rightsquigarrow e$, then e can be obtained from MP($d \otimes x$) by a combination of a coarse-graining and a measurement translation. There is a term representing x and MP can be built by repeated controlled measurements.

For the other direction, build a simulation $d \rightarrow t[d/a]$ inductively on the structure of t.

No-cloning

Theorem (No-cloning)

 $e \rightsquigarrow e \otimes e$ if and only if e is noncontextual.

Further questions

- Study the preorder induced by $d \rightsquigarrow e$.
- ▶ What can you simulate with arbitrarily many copies of *d*?
- The same for possibilistic empirical models. Connections to CSPs.
- Changing the free class of "free" models allows for more general simulations. What can be said about e.g. quantum simulations? Does the no-cloning result generalize?
- Comparison with other approaches to contextuality.

Further questions 2

Multipartite non-locality

Graded structure on the comonad?

MBQC?

Generating all empirical models?

Summary

Intraconversions of contextual resources formalized in terms of

free operations

These viewpoints agree and capture known examples

► A no-cloning result

Several avenues for further work