Autonomization of monoidal categories

Antonin Delpeuch

March 28, 2019 SYCO 3

1 Pregroup grammars and compositional semantics

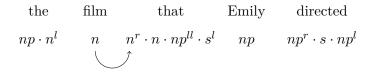
2 Free yourselves from the strings of tensors!

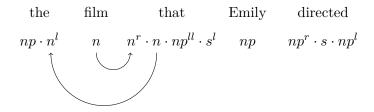
Examples of applications

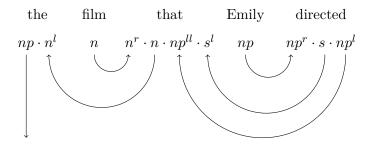
Outline

1 Pregroup grammars and compositional semantics

the	film	that	Emily	directed
$np\cdot n^l$	n	$n^r \cdot n \cdot np^{ll} \cdot s^l$	np	$np^r \cdot s \cdot np^l$







Autonomous (or rigid) categories

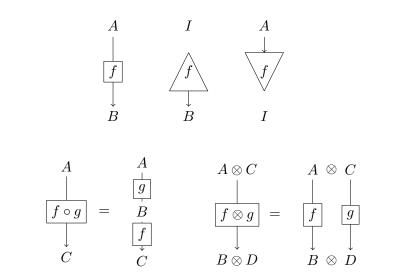
• Objects (= types)

- are closed under $_ \otimes _$ (product of types), $_^l$ and $_^r$ (adjoints).
- contain basic types, and I, neutral for \otimes .
- Arrows (= type reductions) between two objects
 - can be composed with \circ (sequential composition) and \otimes (parallel composition) ;
 - contain $1_A : A \to A$ (identity of A) and

$\epsilon^l: A^l \otimes A \to I$	$\epsilon^r:A\otimes A^r\to I$
$\eta^l: I \to A \otimes A^l$	$\eta^r: I \to A^r \otimes A$

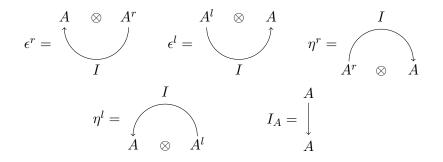
and such that some equations hold.

Representation

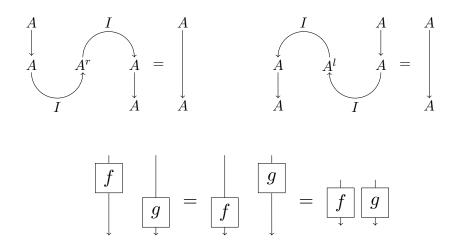


Pregroup grammars and compositional semantics

ϵ and η



Some equalities

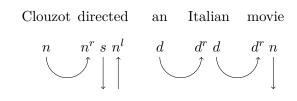


Pregroup grammars and compositional semantics

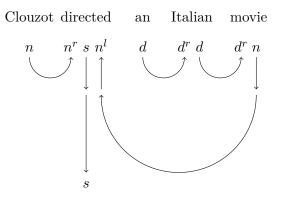
Pregroup reductions as arrows

Clouzot directed an Italian movie $n \quad n^r s n^l \quad d \quad d^r d \quad d^r n$

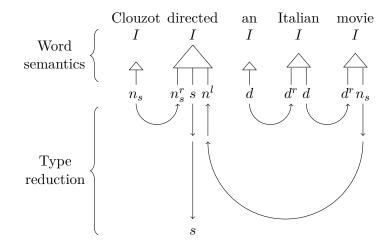
Pregroup reductions as arrows



Pregroup reductions as arrows



Compositional semantics



Motto: Type reduction \circ Word meanings = Sentence meaning

Α.	Del	lpeu	ch
----	-----	------	----

Distributional Compositional Categorial model

DisCoCat (Coecke, Sadrzadeh, and Clark, 2011) : use (Vect, \otimes , I), finite dimensional vector spaces over \mathbb{R} and linear maps between them.

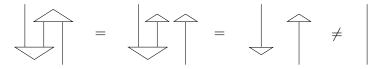
Distributional Compositional Categorial model

DisCoCat (Coecke, Sadrzadeh, and Clark, 2011) : use (Vect, \otimes , I), finite dimensional vector spaces over \mathbb{R} and linear maps between them.

The dimension of a word representation is **exponential** in the length of the grammatical type.

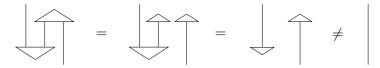
Why should we use the tensor product?

The direct sum \oplus is cartesian, so it cannot have cups and caps:



Why should we use the tensor product?

The direct sum \oplus is cartesian, so it cannot have cups and caps:



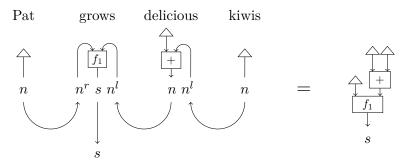
General belief in the community: "sticking with the categorical framework [...] forces us to stay within the world of linear maps" (Wijnholds and Sadrzadeh, 2018).

Outline

2 Free yourselves from the strings of tensors!

Just cheat and be free!

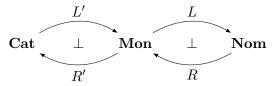
Our semantic category does not need to have caps and cups: we can **freely add them**.



Trick: caps and cups can be eliminated in any sentence representation.

Constructing free autonomous categories

- Preller and Lambek (2007) construct the free autonomous category generated by a category.
- We need to start from a monoidal category instead. We factorize their construction:



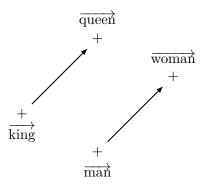
Outline

2 Free yourselves from the strings of tensors!

Examples of applications

Additive models

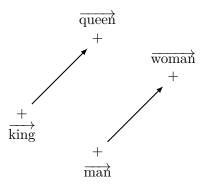
Observation by Mikolov et al. (2013):



So, it tempting to define $\operatorname{royal}(x) = x + \overline{queen} - \overline{woman}$.

Additive models

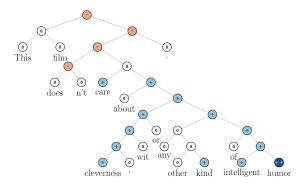
Observation by Mikolov et al. (2013):



So, it tempting to define $\operatorname{royal}(x) = x + \overline{queen} - \overline{woman}$. That is **forbidden** in $(\operatorname{Vect}, \otimes, I)!$

Convolutional neural networks

Socher et al. (2013) combine vectors following a Chomskyian tree:



Lewis (2019) translates this approach to the categorical model, in $(\mathbf{Vect}, \otimes, I)$.

Examples of applications

