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Background

I The ZX-calculus proposed by Coecke and Duncan is a
quantum diagram reasoning system presented by diagrams
as generators and rewriting rules of diagrams as relations.

I Completeness of the ZX-calculus means any equality that can
be derived using matrices can also be derived by rewriting ZX
diagrams.

I There are quite a few completeness results for the
ZX-calculus. We only introduce our own results here.
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Generators of the ZX-calculus

R(n,m)
Z ,α : n → m
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X ,α : n → m
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H : 1→ 1 H σ : 2→ 2

I : 1→ 1 e : 0→ 0 ·

·
·
·

·

·

· ··

·

·

·
·

·

·

·

Ca : 0→ 2 Cu : 2→ 0

L : 1→ 1 λ T : 1→ 1

Table: Generators of qubit ZX-calculus

where m, n ∈ N, α ∈ [0, 2π), λ ≥ 0, and e represents an empty diagram.



Structural rules of the ZX-calculus
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Non-structural rules of the ZX-calculus
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π
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·
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··
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= (IV)

Figure: Non-structural ZX-calculus rules, where α, β ∈ [0, 2π).

Note that all the rules enumerated in Figures 1 still hold when they are
flipped upside-down. Due to the rule (H) and (H2), the rules in Figure 1
have a property that they still hold when the colours green and red
swapped.



Non-structural rules of the ZX-calculus
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π (TR6) = (TR8)

=

π

π H (TR9) = (TR12)

λ

λ
=

λ
α α

α

(TR13′)
αλ1

βλ2
=
λ

γ
(AD′)

1 = (L3) =
λ1

λ2
λ1 · λ2 (L4)

Figure: Extended ZX-calculus rules, where λ, λ1, λ2 ≥ 0, α, β, γ ∈ [0, 2π); in (AD′),
λe iγ = λ1e iβ + λ2e iα.The upside-down version of these rules still hold.



Standard interpretation of the ZX-calculus in Qubit
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Standard interpretation of the ZX-calculus
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������������ = (
1 0
0 1

)
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�������
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1
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0
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(
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)
,

������ ������ = (
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)
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������λ������ = (
1 0
0 λ

)
.

~D1 ⊗ D2� = ~D1� ⊗ ~D2�, ~D1 ◦ D2� = ~D1� ◦ ~D2�,



ZX-calculus as a quantum diagram reasoning system

I Definition
The ZX-calculus is called sound if for any two diagrams D1 and D2,
ZX ` D1 = D2 must imply that ~D1� = ~D2�.

I Definition
The ZX-calculus is called universal if for any linear map L , there
must exist a diagram D in the ZX-calculus such that ~D� = L .

I Definition
The ZX-calculus is called complete if for any two diagrams D1 and
D2, ~D1� = ~D2� must imply that ZX ` D1 = D2.
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Completeness of the ZX-calculus

Theorem (Ng & Wang)
This version of ZX-calculus is complete for the entire pure qubit
quantum mechanics.



Generators of the Clifford+T ZX-calculus
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Table: Generators of the Clifford+T ZX-calculus

where m, n ∈ N, α ∈ { kπ4 |k = 0, 1, · · · , 7}, 0 6 λ ∈ Z[1
2 ].



Non-structural rules of the Clifford+T ZX-calculus
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Figure: Traditional-style ZXC+T -calculus rules, where α, β ∈ { kπ4 |k = 0, 1, · · · , 7}.
The upside-down version and colour swapped version of these rules still hold.



Non-structural rules of the Clifford+T ZX-calculus
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Figure: ZXC+T -calculus rules with triangle and λ box, where
0 6 λ, λ1, λ2 ∈ Z[

1
2 ], α ∈ {

kπ
4 |k = 0, 1, · · · , 7}, α ≡ β ≡ γ (mod π) in (AD′). The

upside-down version of these rules still hold.



Completeness of the Clifford+T ZX-calculus

Theorem (Ng & Wang)
This version of ZX-calculus is complete for the Clifford+T quantum
mechanics.



Efficiency of complete ZX rules

I Given a complete set of ZX rules, we may need exponentially
many steps in some particular situation when applying these
rules.

I How to single out useful ZX rules is essential for application of
the ZX-calculus.
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Basic quantum gates in ZX

Z =

(
1 0
0 −1

)
7→ π X =

(
0 1
1 0

)
7→ π

S =

(
1 0
0 i

)
7→

π
2 T =

(
1 0
0 e i π4

)
7→

π
4

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 7→ H

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 7→



Complete Circuit Templates
Theorem ( Selinger and Bian, 2015)
The following 17 equations are complete for 2-qubit Clifford+T
circuits:
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Complete Circuit Templates
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Complete Circuit Templates
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Complete Circuit Templates
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Rules of ZX-calculus for 2-qubit Clifford+T Quantum
Circuits

= α+β
β...

......

...

α
...

...

(S1) = = (S2)

= (S3) = (B1) = (B2)

H

π
2

π
2

π
2

= (EU)

...

...

α α

...

H

HH

... H
= (H)

π

α

=

π

-α
(K2)

γ1

=
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Figure: where α, β ∈ [0, 2π). The exact formula for the rule (P) is given in (18), but
we only need to know that the (P) rule hold and to use the property that if
α1 = γ1, then α2 = γ2, and if α1 = −γ1, then α2 = π+ γ2.



Details of the (P) rule
Theorem
For α1, β1, γ1 ∈ (0, 2π) we have:

γ1

=

α2α1

β1 β2

γ2

with


α2 = arg z + arg z1

β2 = 2 arg(| zz1
|+ i)

γ2 = arg z − arg z1

(18)

where:
z = cos β1

2 cos α1+γ1
2 + i sin β1

2 cos α1−γ1
2

z1 = cos β1
2 sin α1+γ1

2 − i sin β1
2 sin α1−γ1

2

So if α1 = γ1, then α2 = γ2, and if α1 = −γ1, then α2 = π+ γ2.



Example of Application of (P) Rule
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Example of Application of (P) Rule
First we have A =
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Example of Application of (P) Rule
Since e i −π4 e i π4 = 1, we could let γ = α+ π. Also note that

π
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Example of Application of (P) Rule
Finally, A2 =
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=
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=
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=
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=
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Completeness of the ZX-calculus

Theorem (Coecke & Wang)
This version of ZX-calculus is complete for the 2-qubit quantum
circuits.



Quantum Boolean Circuits

I A Control-NOT gate (CNOT) gate (also called n-bit Toffoli
gate) is denoted by [t ,C], where t is an integer and C is a
finite set of integers (t < C). |xt〉 is called a target bit and |xk 〉

is called a control bit if k ∈ C.

I A quantum Boolean circuit of size M over qubits |x1〉, ..., |xN〉 is
a sequence of CNOT gates [t1,C1] · · · [ti ,Ci] · · · [tM ,CM] where
1 ≤ ti ≤ N and Ci ⊆ {1, ...,N}.

I A quantum Boolean circuit is said to be proper to compute a
Boolean function f(x1, · · · , xn) iff (i) The initial state
S0 = |a1〉 |a2〉 · · ·

∣∣∣an+1
〉
|0〉 · · · |0〉, (ii) The final state

SM = |a1〉 |a2〉 · · ·
∣∣∣an+1 ⊕ f(x1, · · · , xn)

〉
|0〉 · · · |0〉.

Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation Rules
for Designing CNOT-based Quantum Circuits., 2002.
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A Picture of Quantum Boolean Circuit

Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation Rules
for Designing CNOT-based Quantum Circuits., 2002.



Transformation Rules in Quantum Boolean Circuits
Letting ε represent the ‘identity’ gate and ⇐⇒ represent a
transformation, the transformation rule set is given as follows:

(1) [t1,C1] ⇐⇒ ε

(2) [t1,C1] · [t2,C2] ⇐⇒ [t2,C2] · [t1,C1]

(3) [t1,C1] · [t2,C2] ⇐⇒ [t2,C2] · [t1,C1] · [t1,C1 ∪ C2 − {t2}] if t1 < C2 and
t2 ∈ C1

(4) [t1,C1] · [t2,C2] ⇐⇒ [t2,C1 ∪ C2 − {t1}] · [t2,C2] · [t1,C1] if t1 ∈ C2 and
t2 < C1

(5) [t1, {c1}] · [t2,C2 ∪ {c1}] ⇐⇒ [t1, {c1}] · [t1, {c1}] · [t2,C2 ∪ {t1}] if
t1 > n + 1 and there is no CNOTt1 before [t1, {c1}]

(6) [t ,C] ⇐⇒ ε if there is an integer i such that i ∈ C, i > n + 1, and there
is no CNOTi before [t ,C]
Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation Rules for
Designing CNOT-based Quantum Circuits., 2002.



Completeness for Quantum Boolean Circuits

Theorem
Let S1 and S2 be any equivalent proper quantum Boolean circuits.
Then there exists a sequence of transformation rules which
transforms S1 to S2.

Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation Rules
for Designing CNOT-based Quantum Circuits., 2002.



Generators of the ZX-calculus for Quantum Boolean
Circuits

Z (n,m)
α : n → m

m

n
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α
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α : n → m

m

n

α
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Cu : 2→ 0 Ca : 0→ 2

σ : 2→ 2 e : 0→ 0

. .. . .

.. . . .

.

.

.
.
.
.

where m, n ∈ N, α ∈ {0, π}.



ZX-calculus Rules for Quantum Boolean Circuits
...

α+β

...

==
...

α
...

...

β

...
· · ·
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α+β
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α α
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α
α α

(B2)

= (B3)

= (T1)
π

= (T2)

π

π

= (T3)
π

=
π

(T4)

where α ∈ {0, π}.



ZX-calculus Rules for Quantum Boolean Circuits

-1-1
=

-1

(A1)

= (A2)

=
-1 -1

-1 (A3)

where α ∈ {0, π}.



Inverse of the Triangle
Note that, in combination, rules (S1) and (T3) imply that

=π

π

=
π

π

so we may define the inverse of the ‘triangle’ diagram T : 1→ 1 as

π

π
:=

-1
.

Then

-1 =
-1

= .



Toffoli Gate in ZX
Now the ZX-diagram for a Toffoli (CNOT) gate is simply

n

-1

...

.

Especially in the n = 0 and n = 1 cases, this representation
reduces to the NOT gate and the standard CNOT gate, as
expected:

π ,



Completeness of the ZX-calculus for Quantum Boolean
Circuits

Theorem (Coecke, Munson, Wang)
All the rules from (1) to (6) can be derived from the above ZX rules
for quantum Boolean circuits, i.e., the ZX-calculus is complete for
the quantum Boolean circuits.



Example of Derivation
(1) [t1,C1] ⇐⇒ ε



Further work

I Generalise the completeness result of the ZX-calculus from
qubit to qudit for arbitrary dimension d.

I Achieve a complete axiomatization of the ZX-calculus with
mixed dimensions.

I Efficient ZX rules for Benchmark quantum circuits.
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Thank you!
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