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Introduction

§ In fault-tolerant quantum computing, Clifford gates are cheap.

§ But to achieve universal QC we need other gates.

§ Most commonly T “ RZ pπ{4q.

§ T gates are far more expensive than Clifford gates.

§ So:
Optimizing fault tolerant QC means optimizing T-count.
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Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:
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ñ By making T gates adjacent, we can decrease T count.
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Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as

U |xy “ e i
π
4
gpxq |f1pxq, . . . , fnpxqy

where x P Zn
2 is a binary vector,

g : Zn
2 Ñ Z8 is a polynomial and

fi : Zn
2 Ñ Z2 are Z2-linear functions.

ñ Using this translation, we can make interesting simplifications

=
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(but optimal T-count finding still seems to be in NP)
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ZX-diagrams

§ ZX-diagrams consist of two types of maps

§ Z-spiders α

..
.

..
. :“ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0|` e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

§ X-spiders α
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. :“ |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

§ By wiring these together, we can make arbitrary linear maps
between qubits. For instance:

H “ “ -π2 -π2 -π2 T “ π
4

CNOT “ CZ “

But also: GHZ = T magic state = π
4
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ZX-calculus
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§ Write your circuit as a ZX-diagram.

§ Apply rewrite rules to simplify it.

§ Turn the resulting diagram back into a circuit.
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Example
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Local complementation and pivoting
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Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:
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§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders



Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders



Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders



Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders



Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders



Clifford example

Recall the example Clifford diagram:
π
2

π

π
2

π
2

π
2

π
2

π
2

This can be reduced by the described procedure to:

π

π

π

π
2

π

π
2

π



Clifford example

Recall the example Clifford diagram:
π
2

π

π
2

π
2

π
2

π
2

π
2

This can be reduced by the described procedure to:

π

π

π

π
2

π

π
2

π



Clifford+T example

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Question: How do we turn this into a circuit.
Answer: We use the fact that it has a gFlow.
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gFlow

Informally, a gFlow associates an ‘arrow of time’ with a graph.
Circuits have a gFlow.

Proposition

Local complementation and pivoting preserve gFlow

Theorem
There is an efficient procedure that transforms a ZX-diagram with
a gFlow into a circuit.
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§ We indeed have a circuit-to-circuit simplification procedure
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§ It reduces Clifford circuits to a quasi normal-form.

§ But: T gates never get removed by lcomp and pivoting.
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To do significant T-count optimization, we need to do better.
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Final step: phase gadget fusion

Whenever phase gadgets have the same set of neighbours, they
can fuse:

α

=

β α β

=

α β

=

α β

=

α ` β α ` β

=



Spider fusion + Local complementation + Pivoting
+ Gadgetization + Gadget fusion

=
State-of-the-art T-count optimization
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The good news: We have ‘heuristics’ that always seem to work.
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The Takeaway:
The ZX-calculus is very useful for
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§ Why does our circuit extraction work?
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Thank you for your attention


