
PyZX:
Quantum circuit optimization using

the ZX-calculus

Aleks Kissinger

aleks@cs.ru.nl

John van de Wetering

john@vdwetering.name

Institute for Computing and Information Sciences
Radboud University Nijmegen

December 17, 2018

Introduction

§ In fault-tolerant quantum computing, Clifford gates are cheap.

§ But to achieve universal QC we need other gates.

§ Most commonly T “ RZ pπ{4q.

§ T gates are far more expensive than Clifford gates.

§ So:
Optimizing fault tolerant QC means optimizing T-count.

Introduction

§ In fault-tolerant quantum computing, Clifford gates are cheap.

§ But to achieve universal QC we need other gates.

§ Most commonly T “ RZ pπ{4q.

§ T gates are far more expensive than Clifford gates.

§ So:
Optimizing fault tolerant QC means optimizing T-count.

Introduction

§ In fault-tolerant quantum computing, Clifford gates are cheap.

§ But to achieve universal QC we need other gates.

§ Most commonly T “ RZ pπ{4q.

§ T gates are far more expensive than Clifford gates.

§ So:
Optimizing fault tolerant QC means optimizing T-count.

Introduction

§ In fault-tolerant quantum computing, Clifford gates are cheap.

§ But to achieve universal QC we need other gates.

§ Most commonly T “ RZ pπ{4q.

§ T gates are far more expensive than Clifford gates.

§ So:
Optimizing fault tolerant QC means optimizing T-count.

Introduction

§ In fault-tolerant quantum computing, Clifford gates are cheap.

§ But to achieve universal QC we need other gates.

§ Most commonly T “ RZ pπ{4q.

§ T gates are far more expensive than Clifford gates.

§ So:
Optimizing fault tolerant QC means optimizing T-count.

T-count optimization

Finding optimal T-count is NP-hard,
so we need heuristics.

Existing heuristics fall basically in two categories.

T-count optimization

Finding optimal T-count is NP-hard,
so we need heuristics.

Existing heuristics fall basically in two categories.

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

T T = S

T: T =

ñ By making T gates adjacent, we can decrease T count.

T
=

+

T

+

T
=

+ +T T+ +T

And loads more...

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

T T = S

T: T =

ñ By making T gates adjacent, we can decrease T count.

T
=

+

T

+

T
=

+ +T T+ +T

And loads more...

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

T T = S

T: T =

ñ By making T gates adjacent, we can decrease T count.

T
=

+

T

+

T
=

+ +T T+ +T

And loads more...

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

T T = S

T: T =

ñ By making T gates adjacent, we can decrease T count.

T
=

+

T

+

T
=

+ +T T+ +T

And loads more...

Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as

U |xy “ e i
π
4
gpxq |f1pxq, . . . , fnpxqy

where x P Zn
2 is a binary vector,

g : Zn
2 Ñ Z8 is a polynomial and

fi : Zn
2 Ñ Z2 are Z2-linear functions.

ñ Using this translation, we can make interesting simplifications

=
+ +T

+ +T

+ +ST T

(but optimal T-count finding still seems to be in NP)

Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as

U |xy “ e i
π
4
gpxq |f1pxq, . . . , fnpxqy

where x P Zn
2 is a binary vector,

g : Zn
2 Ñ Z8 is a polynomial and

fi : Zn
2 Ñ Z2 are Z2-linear functions.

ñ Using this translation, we can make interesting simplifications

=
+ +T

+ +T

+ +ST T

(but optimal T-count finding still seems to be in NP)

Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as

U |xy “ e i
π
4
gpxq |f1pxq, . . . , fnpxqy

where x P Zn
2 is a binary vector,

g : Zn
2 Ñ Z8 is a polynomial and

fi : Zn
2 Ñ Z2 are Z2-linear functions.

ñ Using this translation, we can make interesting simplifications

=
+ +T

+ +T

+ +ST T

(but optimal T-count finding still seems to be in NP)

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:

These methods never stray from the circuit model

Enter the ZX-calculus

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:

These methods never stray from the circuit model

Enter the ZX-calculus

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:

These methods never stray from the circuit model

Enter the ZX-calculus

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:

These methods never stray from the circuit model

Enter the ZX-calculus

ZX-diagrams

§ ZX-diagrams consist of two types of maps

§ Z-spiders α

..
.

..
. :“ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0|` e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

§ X-spiders α

..
.

..
. :“ |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

§ By wiring these together, we can make arbitrary linear maps
between qubits. For instance:

H “ “ -π2 -π2 -π2 T “ π
4

CNOT “ CZ “

But also: GHZ = T magic state = π
4

ZX-diagrams

§ ZX-diagrams consist of two types of maps

§ Z-spiders α

..
.

..
. :“ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0|` e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

§ X-spiders α

..
.

..
. :“ |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

§ By wiring these together, we can make arbitrary linear maps
between qubits. For instance:

H “ “ -π2 -π2 -π2 T “ π
4

CNOT “ CZ “

But also: GHZ = T magic state = π
4

ZX-diagrams

§ ZX-diagrams consist of two types of maps

§ Z-spiders α

..
.

..
. :“ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0|` e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

§ X-spiders α

..
.

..
. :“ |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

§ By wiring these together, we can make arbitrary linear maps
between qubits. For instance:

H “ “ -π2 -π2 -π2 T “ π
4

CNOT “ CZ “

But also: GHZ = T magic state = π
4

ZX-calculus

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

p-1qaα“
aπ

aπ

aπ α

..
.

..
.

aπ aπ

..
.

aπ
α “

..
.

aπ

aπ

α

..
.“ α

..
.

“

“

“

α, β P r0, 2πs, a P t0, 1u

Circuit optimization with the ZX-calculus

§ Write your circuit as a ZX-diagram.

§ Apply rewrite rules to simplify it.

§ Turn the resulting diagram back into a circuit.

Circuit optimization with the ZX-calculus

§ Write your circuit as a ZX-diagram.

§ Apply rewrite rules to simplify it.

§ Turn the resulting diagram back into a circuit.

Circuit optimization with the ZX-calculus

§ Write your circuit as a ZX-diagram.

§ Apply rewrite rules to simplify it.

§ Turn the resulting diagram back into a circuit.

First steps: graph-like ZX-diagrams

§ First turn all X-spiders into Z-spiders:

α

..
.

..
. α

..
.

..
.=

§ Cancel all double Hadamards: “ .

§ Fuse all adjacent spiders.

§ Cancel parallel connections:

α β
... ... = α ...β

...α β= α ...β
...=

§ Use new notation:

:“

First steps: graph-like ZX-diagrams

§ First turn all X-spiders into Z-spiders:

α

..
.

..
. α

..
.

..
.=

§ Cancel all double Hadamards: “ .

§ Fuse all adjacent spiders.

§ Cancel parallel connections:

α β
... ... = α ...β

...α β= α ...β
...=

§ Use new notation:

:“

First steps: graph-like ZX-diagrams

§ First turn all X-spiders into Z-spiders:

α

..
.

..
. α

..
.

..
.=

§ Cancel all double Hadamards: “ .

§ Fuse all adjacent spiders.

§ Cancel parallel connections:

α β
... ... = α ...β

...α β= α ...β
...=

§ Use new notation:

:“

First steps: graph-like ZX-diagrams

§ First turn all X-spiders into Z-spiders:

α

..
.

..
. α

..
.

..
.=

§ Cancel all double Hadamards: “ .

§ Fuse all adjacent spiders.

§ Cancel parallel connections:

α β
... ... = α ...β

...α β= α ...β
...=

§ Use new notation:

:“

First steps: graph-like ZX-diagrams

§ First turn all X-spiders into Z-spiders:

α

..
.

..
. α

..
.

..
.=

§ Cancel all double Hadamards: “ .

§ Fuse all adjacent spiders.

§ Cancel parallel connections:

α β
... ... = α ...β

...α β= α ...β
...=

§ Use new notation:

:“

Example

α

γ “ γ

α

γ“

α

γ

α

“

γ

α

“ γ

α

“

More involved example

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

=

π
2

π

π
2

π
2

π
2

π
2

π
2

We call these diagrams graph-like.
To simplify these diagrams, we want to remove as many interior

vertices as possible.

More involved example

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

=

π
2

π

π
2

π
2

π
2

π
2

π
2

We call these diagrams graph-like.

To simplify these diagrams, we want to remove as many interior
vertices as possible.

More involved example

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

=

π
2

π

π
2

π
2

π
2

π
2

π
2

We call these diagrams graph-like.
To simplify these diagrams, we want to remove as many interior

vertices as possible.

Local complementation and pivoting

˘π
2

α1 αn

...... ...
“

...
α1¯

π
2

...
αn¯

π
2

α2

...

αń 1

...

α2¯
π
2

...
αń 1¯

π
2

...

...

jπ
α1

“
αn

β1

βn

γ1

γn

kπ

...

...

...
αn ` kπ

βn ` pj ` k ` 1qπ

...
β1 ` pj ` k ` 1qπ

γ1 ` jπα1 ` kπ
......

γn ` jπ

...

...

...

...

...

...

...

...
...

...

...

...

Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders

Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders

Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders

Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders

Simplification so far

§ Convert diagram into graph-like diagram.

§ Remove all internal ˘π{2 spiders by local complementation.

§ Remove all connected internal aπ spiders by pivoting.

§ Remove internal aπ spider connected to boundary by unfusing
and pivoting:

jπ

α1

“

αn

α

...
...

... ...

˚ jπ

α1 αn...
...

... ...

˚

α

˚ ˚

§ If the original diagram was Clifford, then the simplified
diagram has no internal spiders

Clifford example

Recall the example Clifford diagram:
π
2

π

π
2

π
2

π
2

π
2

π
2

This can be reduced by the described procedure to:

π

π

π

π
2

π

π
2

π

Clifford example

Recall the example Clifford diagram:
π
2

π

π
2

π
2

π
2

π
2

π
2

This can be reduced by the described procedure to:

π

π

π

π
2

π

π
2

π

Clifford+T example

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Question: How do we turn this into a circuit.
Answer: We use the fact that it has a gFlow.

Clifford+T example

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Question: How do we turn this into a circuit.

Answer: We use the fact that it has a gFlow.

Clifford+T example

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Question: How do we turn this into a circuit.
Answer: We use the fact that it has a gFlow.

gFlow

Informally, a gFlow associates an ‘arrow of time’ with a graph.
Circuits have a gFlow.

Proposition

Local complementation and pivoting preserve gFlow

Theorem
There is an efficient procedure that transforms a ZX-diagram with
a gFlow into a circuit.

gFlow

Informally, a gFlow associates an ‘arrow of time’ with a graph.
Circuits have a gFlow.

Proposition

Local complementation and pivoting preserve gFlow

Theorem
There is an efficient procedure that transforms a ZX-diagram with
a gFlow into a circuit.

gFlow

Informally, a gFlow associates an ‘arrow of time’ with a graph.
Circuits have a gFlow.

Proposition

Local complementation and pivoting preserve gFlow

Theorem
There is an efficient procedure that transforms a ZX-diagram with
a gFlow into a circuit.

The simplification procedure

§ We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

§ It reduces Clifford circuits to a quasi normal-form.

§ But: T gates never get removed by lcomp and pivoting.

§ So:
To do significant T-count optimization, we need to do better.

The simplification procedure

§ We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

§ It reduces Clifford circuits to a quasi normal-form.

§ But: T gates never get removed by lcomp and pivoting.

§ So:
To do significant T-count optimization, we need to do better.

The simplification procedure

§ We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

§ It reduces Clifford circuits to a quasi normal-form.

§ But: T gates never get removed by lcomp and pivoting.

§ So:
To do significant T-count optimization, we need to do better.

Gadgetization

We turn all non-Clifford spiders into phase gadgets:

α

...

=

...

α

gadget

This makes the base of the gadget available for pivoting.

Gadgetization

We turn all non-Clifford spiders into phase gadgets:

α

...

=

...

α

gadget

This makes the base of the gadget available for pivoting.

Example: Gadgetization and pivoting

After the first round of simplifications:

After gadgetization:

After pivots/lcomps:

Example: Gadgetization and pivoting

After the first round of simplifications:

After gadgetization:

After pivots/lcomps:

Example: Gadgetization and pivoting

After the first round of simplifications:

After gadgetization:

After pivots/lcomps:

Final step: phase gadget fusion

Whenever phase gadgets have the same set of neighbours, they
can fuse:

α

=

β α β

=

α β

=

α β

=

α ` β α ` β

=

Spider fusion + Local complementation + Pivoting
+ Gadgetization + Gadget fusion

=
State-of-the-art T-count optimization

Circuit extraction

Problem: We still need to get a circuit out of the diagram.

The good news: We have ‘heuristics’ that always seem to work.
The bad news: We don’t know why.

Circuit extraction

Problem: We still need to get a circuit out of the diagram.

The good news: We have ‘heuristics’ that always seem to work.

The bad news: We don’t know why.

Circuit extraction

Problem: We still need to get a circuit out of the diagram.

The good news: We have ‘heuristics’ that always seem to work.
The bad news: We don’t know why.

Demonstration of PyZX

Conclusion and future work

The Takeaway:
The ZX-calculus is very useful for

T-count optimization

Open problems:

§ Why does our circuit extraction work?

§ How to use phase-polynomial methods on ZX-diagrams?

§ Is the ZH-calculus useful?

Conclusion and future work

The Takeaway:
The ZX-calculus is very useful for

T-count optimization

Open problems:

§ Why does our circuit extraction work?

§ How to use phase-polynomial methods on ZX-diagrams?

§ Is the ZH-calculus useful?

Conclusion and future work

The Takeaway:
The ZX-calculus is very useful for

T-count optimization

Open problems:

§ Why does our circuit extraction work?

§ How to use phase-polynomial methods on ZX-diagrams?

§ Is the ZH-calculus useful?

Conclusion and future work

The Takeaway:
The ZX-calculus is very useful for

T-count optimization

Open problems:

§ Why does our circuit extraction work?

§ How to use phase-polynomial methods on ZX-diagrams?

§ Is the ZH-calculus useful?

Thank you for your attention

