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» In fault-tolerant quantum computing, Clifford gates are cheap.
» But to achieve universal QC we need other gates.

» Most commonly T = Rz(w/4).

» T gates are far more expensive than Clifford gates.

» So:
Optimizing fault tolerant QC means optimizing T-count.
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Finding optimal T-count is NP-hard,
so we need heuristics.

Existing heuristics fall basically in two categories.
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Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:
=
-
= By making T gates adjacent, we can decrease T count.
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And loads more...
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Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as
Ulx) = e 78X |f(x), ..., f(x))
where x € Z3 is a binary vector,

g : 25 — Zg is a polynomial and
fi : Z§ — Zo are Zo-linear functions.
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Circuits built out of CNOT and T gates can be written as
Ulxy = 58X [ (x),..., fo(x))

where x € Z3 is a binary vector,
g : 25 — Zg is a polynomial and
fi : Z§ — Zo are Zo-linear functions.

= Using this translation, we can make interesting simplifications
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(but optimal T-count finding still seems to be in NP)
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Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:
These methods never stray from the circuit model

Enter the ZX-calculus
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» ZX-diagrams consist of two types of maps

» Z-spiders }u{ = |0---0X0---0] + e®|L---1X1---1]
» X-spiders X = e @ X=vee- \

» By wiring these together, we can make arbitrary linear maps
between qubits. For instance:
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/X-calculus

a,B € [0,2r], ae {0,1}
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Circuit optimization with the ZX-calculus

» Write your circuit as a ZX-diagram.
» Apply rewrite rules to simplify it.
» Turn the resulting diagram back into a circuit.
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First steps: graph-like ZX-diagrams

v

First turn all X-spiders into Z-spiders:

v

Cancel all double Hadamards: oo =
» Fuse all adjacent spiders.

» Cancel parallel connections:

e -

» Use new notation:



Example
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More involved example
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We call these diagrams graph-like.
To simplify these diagrams, we want to remove as many interior
vertices as possible.



Local complementation and pivoting
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Simplification so far

» Convert diagram into graph-like diagram.
» Remove all internal +7/2 spiders by local complementation.
» Remove all connected internal ar spiders by pivoting.

» Remove internal am spider connected to boundary by unfusing
and pivoting:
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B

» If the original diagram was Clifford, then the simplified
diagram has no internal spiders



Clifford example

Recall the example Clifford diagram:
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Clifford example

Recall the example Clifford diagram:




Clifford+T example




Clifford+T example

Question: How do we turn this into a circuit.



Clifford+T example

}

!

Question: How do we turn this into a circuit.
Answer: We use the fact that it has a gFlow.
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gFlow

Informally, a gFlow associates an ‘arrow of time' with a graph.
Circuits have a gFlow.

Proposition
Local complementation and pivoting preserve gFlow

Theorem
There is an efficient procedure that transforms a ZX-diagram with
a gFlow into a circuit.
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The simplification procedure

» We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

» It reduces Clifford circuits to a quasi normal-form.

» But: T gates never get removed by Icomp and pivoting.
» So:
To do significant T-count optimization, we need to do better.
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Gadgetization

We turn all non-Clifford spiders into phase gadgets:

gadget

This makes the base of the gadget available for pivoting.
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Example: Gadgetization and pivoting

After the first round of simplifications:




Final step: phase gadget fusion

Whenever phase gadgets have the same set of neighbours, they

can fuse:
®@ ® © @ 00
Q Q Q Q




Spider fusion + Local complementation + Pivoting
+ Gadgetization + Gadget fusion

State-of-the-art T-count optimization
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Circuit extraction

Problem: We still need to get a circuit out of the diagram.

The good news: We have ‘heuristics’ that always seem to work.
The bad news: We don't know why.



Demonstration of PyZX
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Conclusion and future work

The Takeaway:

The ZX-calculus is very useful for
T-count optimization

Open problems:
» Why does our circuit extraction work?
» How to use phase-polynomial methods on ZX-diagrams?

» Is the ZH-calculus useful?



Thank you for your attention



