PyZX:
Quantum circuit optimization using
the ZX-calculus

Aleks Kissinger
aleks@cs.ru.nl
John van de Wetering
john@vdwetering.name

Institute for Computing and Information Sciences
Radboud University Nijmegen

December 17, 2018

Introduction

» In fault-tolerant quantum computing, Clifford gates are cheap.

Introduction

» In fault-tolerant quantum computing, Clifford gates are cheap.

» But to achieve universal QC we need other gates.

Introduction

» In fault-tolerant quantum computing, Clifford gates are cheap.
» But to achieve universal QC we need other gates.
» Most commonly T = Rz(w/4).

Introduction

» In fault-tolerant quantum computing, Clifford gates are cheap.
» But to achieve universal QC we need other gates.
» Most commonly T = Rz(w/4).

» T gates are far more expensive than Clifford gates.

Introduction

» In fault-tolerant quantum computing, Clifford gates are cheap.
» But to achieve universal QC we need other gates.

» Most commonly T = Rz(w/4).

» T gates are far more expensive than Clifford gates.

» So:
Optimizing fault tolerant QC means optimizing T-count.

T-count optimization

Finding optimal T-count is NP-hard,
so we need heuristics.

T-count optimization

Finding optimal T-count is NP-hard,
so we need heuristics.

Existing heuristics fall basically in two categories.

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

T =
L

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

= By making T gates adjacent,

= —8)—

we can decrease T count.

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:

T =
AT T = —s)—

= By making T gates adjacent, we can decrease T count.

!
S
I

D— & Tho{T

Method 1: Commutation and Cancellation

Adjacent T gates become Clifford:
=
-
= By making T gates adjacent, we can decrease T count.

AT _ —1T

s ~ md

And loads more...

P

Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as
Ulx) = e 78X |f(x), ..., f(x))
where x € Z3 is a binary vector,

g : 25 — Zg is a polynomial and
fi : Z§ — Zo are Zo-linear functions.

Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as
Ulx) = e 58X |f(x),.. ., fo(x))

where x € Z3 is a binary vector,
g : 25 — Zg is a polynomial and
fi : Z§ — Zo are Zo-linear functions.

= Using this translation, we can make interesting simplifications

Method 2: Phase Polynomials

Circuits built out of CNOT and T gates can be written as
Ulxy = 58X [(x),..., fo(x))

where x € Z3 is a binary vector,
g : 25 — Zg is a polynomial and
fi : Z§ — Zo are Zo-linear functions.

= Using this translation, we can make interesting simplifications

AR D

* uu\/ _
BENE —{5}e

(but optimal T-count finding still seems to be in NP)

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:

These methods never stray from the circuit model

Limitations

Using commutation, cancellation and phase polynomials,
a lot of progress can be made...

...but there is an obvious limitation:
These methods never stray from the circuit model

Enter the ZX-calculus

ZX-diagrams

» ZX-diagrams consist of two types of maps

» Z-spiders

» X-spiders

XA

0--

.oxo...o‘_|_efa|1...1><1...1|

ZX-diagrams

» ZX-diagrams consist of two types of maps

» Z-spiders }u{ = |0---0X0---0] + e®|L---1X1---1]
» X-spiders X = e @ X=vee- \

» By wiring these together, we can make arbitrary linear maps
between qubits. For instance:

059 T- O
CNOTzi czzi

ZX-diagrams

» ZX-diagrams consist of two types of maps

» Z-spiders }u{ = |0---0X0---0] + e®|L---1X1---1]
» X-spiders X = e @ X=vee- \

» By wiring these together, we can make arbitrary linear maps
between qubits. For instance:

He—o = @O0® T- 60—

/X-calculus

a,B € [0,2r], ae {0,1}

Circuit optimization with the ZX-calculus

» Write your circuit as a ZX-diagram.

Circuit optimization with the ZX-calculus

» Write your circuit as a ZX-diagram.

» Apply rewrite rules to simplify it.

Circuit optimization with the ZX-calculus

» Write your circuit as a ZX-diagram.
» Apply rewrite rules to simplify it.
» Turn the resulting diagram back into a circuit.

First steps: graph-like ZX-diagrams

» First turn all X-spiders into Z-spiders:

First steps: graph-like ZX-diagrams

» First turn all X-spiders into Z-spiders:

» Cancel all double Hadamards: 0o~ = —.

First steps: graph-like ZX-diagrams

» First turn all X-spiders into Z-spiders:

» Cancel all double Hadamards: oo~ =

» Fuse all adjacent spiders.

First steps: graph-like ZX-diagrams

v

First turn all X-spiders into Z-spiders:

v

Cancel all double Hadamards: oo~ =

v

Fuse all adjacent spiders.

v

Cancel parallel connections:

e e

First steps: graph-like ZX-diagrams

v

First turn all X-spiders into Z-spiders:

v

Cancel all double Hadamards: oo =
» Fuse all adjacent spiders.

» Cancel parallel connections:

e -

» Use new notation:

Example

1
Lr

More involved example

More involved example

%
i
%

—e 0 =0 e
H—— &6

We call these diagrams graph-like.

More involved example

K 20 ‘ P *-@—o—
j \ & ‘”/ - Q ,,,,,, 3 3 i ;
- e o0

—o—O- R

We call these diagrams graph-like.
To simplify these diagrams, we want to remove as many interior
vertices as possible.

Local complementation and pivoting

_..1 GrksDn

Simplification so far

» Convert diagram into graph-like diagram.

Simplification so far

» Convert diagram into graph-like diagram.

» Remove all internal +7/2 spiders by local complementation.

Simplification so far

» Convert diagram into graph-like diagram.
» Remove all internal +7/2 spiders by local complementation.

» Remove all connected internal ar spiders by pivoting.

Simplification so far

» Convert diagram into graph-like diagram.
» Remove all internal +7/2 spiders by local complementation.
» Remove all connected internal ar spiders by pivoting.

» Remove internal am spider connected to boundary by unfusing
and pivoting:

Simplification so far

» Convert diagram into graph-like diagram.
» Remove all internal +7/2 spiders by local complementation.
» Remove all connected internal ar spiders by pivoting.

» Remove internal am spider connected to boundary by unfusing
and pivoting:

e}
B

» If the original diagram was Clifford, then the simplified
diagram has no internal spiders

Clifford example

Recall the example Clifford diagram:

—C z) o O~ —o—
e R I R = O s e o

o= o0
——O- 0o

Clifford example

Recall the example Clifford diagram:

Clifford+T example

Clifford+T example

Question: How do we turn this into a circuit.

Clifford+T example

}

!

Question: How do we turn this into a circuit.
Answer: We use the fact that it has a gFlow.

gFlow

Informally, a gFlow associates an ‘arrow of time' with a graph.
Circuits have a gFlow.

gFlow

Informally, a gFlow associates an ‘arrow of time' with a graph.
Circuits have a gFlow.

Proposition

Local complementation and pivoting preserve gFlow

gFlow

Informally, a gFlow associates an ‘arrow of time' with a graph.
Circuits have a gFlow.

Proposition
Local complementation and pivoting preserve gFlow

Theorem
There is an efficient procedure that transforms a ZX-diagram with
a gFlow into a circuit.

The simplification procedure

» We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

» It reduces Clifford circuits to a quasi normal-form.

The simplification procedure

» We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

» It reduces Clifford circuits to a quasi normal-form.

» But: T gates never get removed by Icomp and pivoting.

The simplification procedure

» We indeed have a circuit-to-circuit simplification procedure
using the ZX-calculus.

» It reduces Clifford circuits to a quasi normal-form.

» But: T gates never get removed by Icomp and pivoting.
» So:
To do significant T-count optimization, we need to do better.

Gadgetization

We turn all non-Clifford spiders into phase gadgets:

gadget

Gadgetization

We turn all non-Clifford spiders into phase gadgets:

gadget

This makes the base of the gadget available for pivoting.

Example: Gadgetization and pivoting

After the first round of simplifications:

Example: Gadgetization and pivoting

After the first round of simplifications:

Example: Gadgetization and pivoting

After the first round of simplifications:

Final step: phase gadget fusion

Whenever phase gadgets have the same set of neighbours, they

can fuse:
®@ ® © @ 00
Q Q Q Q

Spider fusion + Local complementation + Pivoting
+ Gadgetization + Gadget fusion

State-of-the-art T-count optimization

Circuit extraction

Problem: We still need to get a circuit out of the diagram.

Circuit extraction

Problem: We still need to get a circuit out of the diagram.

The good news: We have ‘heuristics’ that always seem to work.

Circuit extraction

Problem: We still need to get a circuit out of the diagram.

The good news: We have ‘heuristics’ that always seem to work.
The bad news: We don't know why.

Demonstration of PyZX

Conclusion and future work

The Takeaway:

The ZX-calculus is very useful for
T-count optimization

Conclusion and future work

The Takeaway:

The ZX-calculus is very useful for
T-count optimization

Open problems:

» Why does our circuit extraction work?

Conclusion and future work

The Takeaway:

The ZX-calculus is very useful for
T-count optimization

Open problems:
» Why does our circuit extraction work?

» How to use phase-polynomial methods on ZX-diagrams?

Conclusion and future work

The Takeaway:

The ZX-calculus is very useful for
T-count optimization

Open problems:
» Why does our circuit extraction work?
» How to use phase-polynomial methods on ZX-diagrams?

» Is the ZH-calculus useful?

Thank you for your attention

