Process Matrices @ SYCO 2

Sander Uijlen

18 December - Glasgow

Sander Uijlen

Causality

SYCO 2 1 / 32

Say something about process matrices on general grounds using categorical semantics for higher order processes.

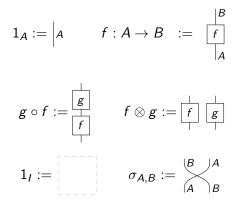
Sander Uijlen

SYCO 2 2 / 32

イロト イポト イヨト イヨト

Process theories

Symmetric monoidal categories + interpretation as systems and processes.



Sander Uijlen

SYCO 2 3 / 32

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

States and effects

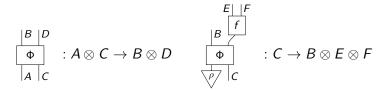
$$\downarrow \rho$$
: $I \to A$ state

$$\lambda: I \rightarrow I$$
 scalars

States and effects

$$\downarrow \rho$$
: $I \to A$ state

 $\lambda: I \rightarrow I$ scalars



Only connectivity matters!

Sander Uijlen

SYCO 2 4 / 32

What else do we need to talk about caual orders?

イロト イ団ト イヨト イヨト 三日

What else do we need to talk about caual orders? Consider a special family of *discarding* effects:

$$\overline{\uparrow}_A \qquad \overline{\uparrow}_{A\otimes B} := \overline{\uparrow}_A \ \overline{\uparrow}_B \qquad \overline{\uparrow}_I := 1$$

What else do we need to talk about caual orders? Consider a special family of *discarding* effects:

$$\overline{\uparrow}_A \qquad \overline{\uparrow}_{A\otimes B} := \overline{\uparrow}_A \ \overline{\uparrow}_B \qquad \overline{\uparrow}_I := 1$$

This enables us to say when a process is *causal*:

$$\begin{array}{c} \overline{-} \\ \overline{-} \\ \phi \end{array} = \begin{array}{c} \overline{-} \\ \hline \end{array}$$

"If the outputs of a process are ignored, it doesn't matter which process happened."

(日) (周) (三) (三)

SYCO 2

5 / 32

What else do we need to talk about caual orders? Consider a special family of *discarding* effects:

$$\overline{\uparrow}_A$$
 $\overline{\uparrow}_{A\otimes B}$:= $\overline{\uparrow}_A$ $\overline{\uparrow}_B$ $\overline{\uparrow}_I$:= 1

This enables us to say when a process is *causal*:

$$\begin{array}{c} \overline{-} \\ \overline{-} \\ \phi \end{array} = \begin{array}{c} \overline{-} \\ \hline \end{array}$$

"If the outputs of a process are ignored, it doesn't matter which process happened."

Consequence: A causal process only affects other processes which consume its outputs (i.e., those that lie in its *causal future*).

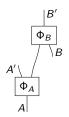
Sander Uijlen

イロト イポト イヨト イヨト

SYCO 2

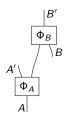
5 / 32

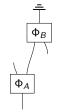
No signalling from the future



≣। ≣ •०९० SYCO 2 6/32

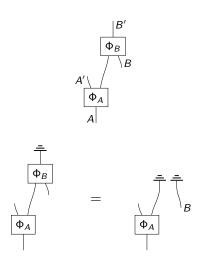
No signalling from the future





Sander Uijlen

No signalling from the future



Sander Uijlen

Causality

● ■ • ○ < ○
 SYCO 2 6 / 32

Causal orders

One-way signalling:

$$\begin{bmatrix} \Phi \\ A \end{bmatrix} \models \begin{bmatrix} B \\ A \end{bmatrix} = \begin{bmatrix} \Phi' \\ A \end{bmatrix} = \begin{bmatrix} \Phi' \\ \Phi \end{bmatrix} = \begin{bmatrix} \Phi'$$

The output of A does not depend on B.

Sander Uijlen

SYCO 2 7 / 32

Causal orders

One-way signalling:

$$\begin{bmatrix} \Phi \\ A \end{bmatrix} \models \begin{bmatrix} B \\ A \end{bmatrix} = \begin{bmatrix} \Phi' \\ A \end{bmatrix} = \begin{bmatrix} \Phi' \\ \Phi \end{bmatrix} = \begin{bmatrix} \Phi'$$

The output of A does not depend on B. No-signalling

$$\begin{array}{c|c} | \\ \hline \Phi \\ \hline A \\ B \\ \end{array} \models A \\ B \\ \end{array} = \begin{array}{c|c} B \\ \hline \Phi \\ \hline A \\ \hline A \\ \end{array} = \begin{array}{c|c} B \\ \hline \Phi \\ \hline A \\ \hline A \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline A \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline A \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline A \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline A \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \hline B \\ \hline B \\ \end{array} = \begin{array}{c|c} A \\ \end{array} =$$

Sander Uijlen

SYCO 2 7 / 32

Dual processes

Causal order of dual process, e.g.,

"What can they take in?" Dual processes can witness the causal order.

(日) (同) (三) (三)

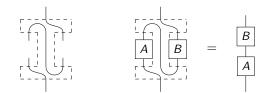
SYCO 2

8 / 32

Higher Order Processes

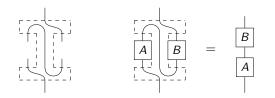
SYCO 2 9 / 32

Higher Order Processes

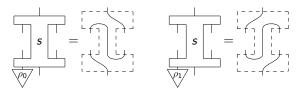


≣। ≣ •२९० SYCO 2 9/32

Higher Order Processes



Quantum switch:



Allows for 'coherent superpositions' of causal orders.

Image: A match a ma

Compact closure

An easy way to get higher-order processes!

Compact closure

An easy way to get higher-order processes!

A way to 'bend wires' (Choi-Jamiołkowski - Objects have duals *A**)

 $A \cap A^*$

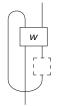
Satisfying

SYCO 2 10 / 32

イロト 不得 トイヨト イヨト 二日

Problem

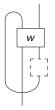
Take (causal) processes as inputs



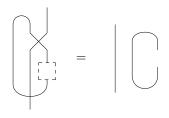
▲□▶ ▲圖▶ ▲温▶ ▲温≯

Problem

Take (causal) processes as inputs



...but this does not preserve causality:



Sander Uijlen

SYCO 2 11 / 32

Solution

Precausal category $\mathcal{C} \mapsto \operatorname{Caus}[\mathcal{C}]$

compact closed category + 4 $\overline{-}$ axioms

**-autonomous category capturing 'logic of causality'*

イロト 不得下 イヨト イヨト 二日

SYCO 2 12 / 32

Solution

$\begin{array}{ccc} \mbox{Precausal category } \mathcal{C} & \mapsto & \mbox{Caus}[\mathcal{C}] \\ \mbox{compact closed category} & & *-autonomous category \\ & + 4 \stackrel{-}{\top} axioms & capturing 'logic of causality' \\ & \mbox{Mat}(\mathbb{R}_{+}) & \mapsto & \mbox{HO stochastic maps} \\ & \mbox{CPM} & \mapsto & \mbox{HO quantum channels} \end{array}$

SYCO 2 12 / 32

イロト イポト イヨト イヨト

Input: Precausal Category

Compact closed category with $\bar{\uparrow}$ + rules

• Second-order causal processes factorise:

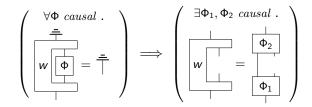


Image: A matrix

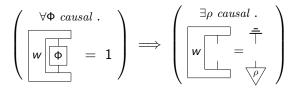
Equivalent to

• Causal one-way signalling processes factorise:

$$\begin{pmatrix} \exists \Phi' \ causal \ . \\ \downarrow \stackrel{=}{\xrightarrow{}} \\ \hline \Phi \\ \hline - \\ \hline \hline - \\ \hline$$

(Semicausal operations are semilocalizable)

• For all $w : A \otimes B^*$:



Sander Uijlen

SYCO 2 14 / 32

(日) (同) (三) (三)

Output: Category of Higher Order Processes - $Caus[\mathcal{C}]$

Build a new process theory describing 'causal' states:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Output: Category of Higher Order Processes - $Caus[\mathcal{C}]$

Build a new process theory describing 'causal' states: New types:

$$oldsymbol{A}:=(A,c_{oldsymbol{A}})$$
 where $c_{oldsymbol{A}}\subseteq\mathcal{C}(I,A))$

SYCO 2 15 / 32

Output: Category of Higher Order Processes - $Caus[\mathcal{C}]$

Build a new process theory describing 'causal' states: New types:

$$\boldsymbol{A} := (A, \boldsymbol{c}_{\boldsymbol{A}})$$
 where $\boldsymbol{c}_{\boldsymbol{A}} \subseteq \mathcal{C}(I, A))$

With normalization and $c_{\pmb{A}} = c_{\pmb{A}}^{**}$

$$oldsymbol{c}^* \ := \ \left\{ \pi: A^* \ \left| \ orall
ho \in oldsymbol{c} \ . \ rac{1}{\left| \begin{array}{c} lateslamiltarrow
ho
ight|} \ = \ 1
ight\}$$

Sander Uijlen

SYCO 2 15 / 32

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Output: Category of Higher Order Processes - Caus[C]

Build a new process theory describing 'causal' states: New types:

$$\boldsymbol{A} := (A, c_{\boldsymbol{A}})$$
 where $c_{\boldsymbol{A}} \subseteq \mathcal{C}(I, A)$)

With normalization and $c_{\boldsymbol{A}} = c_{\boldsymbol{A}}^{**}$

Types: causal states, causal processes, no-signalling processes...

SYCO 2 15 / 32

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Processes preserve the *generalized* causal states:

$$\downarrow : c_{\mathbf{A}} \Rightarrow \checkmark \qquad \Phi \qquad : c_{\mathbf{B}}$$

SYCO 2 16 / 32

Processes preserve the *generalized* causal states:

$$\bigvee_{\rho}: c_{\mathbf{A}} \Rightarrow \bigvee_{\rho} c_{\mathbf{A}} : c_{\mathbf{B}}$$

- Causal states to causal states,
- Causal processes to a number (dual),
- No-signalling processes to causal processes,

• ...

イロト 不得下 イヨト イヨト 二日

SYCO 2

16 / 32

Caus[C] is ISOmix *-autonomous

We have a tensor, unit and duals

$$\begin{split} \boldsymbol{A}\otimes\boldsymbol{B} &:= (\boldsymbol{A}\otimes\boldsymbol{B}, (\boldsymbol{c_A}\otimes\boldsymbol{c_B})^{**}) \qquad \boldsymbol{I} := (\boldsymbol{I}, \{\boldsymbol{1}_l\}) \cong \boldsymbol{I}^* \\ \boldsymbol{A}^* &:= (\boldsymbol{A}^*, \boldsymbol{c_A}^*) \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Caus[C] is ISOmix *-autonomous

We have a tensor, unit and duals

$$\begin{split} \boldsymbol{A}\otimes\boldsymbol{B} &:= (\boldsymbol{A}\otimes\boldsymbol{B}, (\boldsymbol{c_A}\otimes\boldsymbol{c_B})^{**}) \qquad \boldsymbol{I} := (\boldsymbol{I}, \{\boldsymbol{1}_I\}) \cong \boldsymbol{I}^* \\ \boldsymbol{A}^* &:= (\boldsymbol{A}^*, \boldsymbol{c_A}^*) \end{split}$$

...But no compact closure!

$$A \ \mathfrak{P} B := (A^* \otimes B^*)^* \neq A \otimes B$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

SYCO 2

17 / 32

$\operatorname{Caus}[\mathcal{C}]$ is ISOmix *-autonomous

We have a tensor, unit and duals

$$oldsymbol{A}\otimesoldsymbol{B}:=(A\otimes B,(c_{oldsymbol{A}}\otimes c_{oldsymbol{B}})^{**}) \qquad oldsymbol{I}:=(I,\{1_I\})\congoldsymbol{I}^*$$
 $oldsymbol{A}^*:=(A^*,c_{oldsymbol{A}}^*)$

...But no compact closure!

$$A \ \mathfrak{P} B := (A^* \otimes B^*)^* \neq A \otimes B$$

Define $A \multimap B := A^* \ \mathfrak{P} B$ giving internal hom

$$Hom(A \otimes B, C) \cong Hom(A, B \multimap C)$$

n particular
$$Hom(A, B) \cong Hom(I, A \multimap B)$$

Sander Uijlen

Causality

SYCO 2 17 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Examples

First order $(A, \{ \bar{\uparrow}_A \}^*)$

Sander Uijlen

Causality

SYCO 2 18 / 32

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Examples

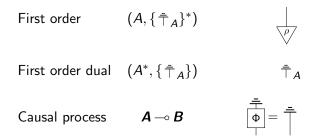
⇒ ¬⊤A

First order
$$(A, \{\bar{\uparrow}_A\}^*)$$

First order dual
$$(A^*, \{ \stackrel{-}{\uparrow}_A \})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

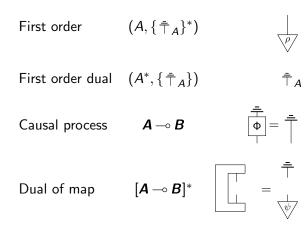
Examples



◆ ■ > ■ < つへ @ SYCO 2
18 / 32

<ロ> (日) (日) (日) (日) (日)

Examples



< ■ → ■ → Q ○ SYCO 2 18 / 32

(日) (同) (日) (日) (日)

Bipartite process
$$(\boldsymbol{A} \multimap \boldsymbol{A}') \, \mathfrak{N} \, (\boldsymbol{B} \multimap \boldsymbol{B}')$$

Bipartite process
$$(\boldsymbol{A} \multimap \boldsymbol{A}') \, \mathfrak{P} \left(\boldsymbol{B} \multimap \boldsymbol{B}'
ight)$$

One-way signalling A

$$A \multimap ((A' \multimap B) \multimap B')$$

Bipartite process
$$(\boldsymbol{A} \multimap \boldsymbol{A}') \, \Im \, (\boldsymbol{B} \multimap \boldsymbol{B}')$$

One-way signalling
$$oldsymbol{A} o ((oldsymbol{A}' o oldsymbol{B}) o oldsymbol{B}')$$

Φ

No signalling $(\boldsymbol{A} \multimap \boldsymbol{A}') \otimes (\boldsymbol{B} \multimap \boldsymbol{B}')$ both factorizations

イロト 不得下 イヨト イヨト 二日

Bipartite process
$$(\boldsymbol{A} \multimap \boldsymbol{A}') \, \mathfrak{V} \, (\boldsymbol{B} \multimap \boldsymbol{B}')$$

One-way signalling
$$A \multimap ((A' \multimap B) \multimap B'))$$

ሐ

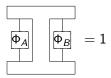
No signalling $(\boldsymbol{A} \multimap \boldsymbol{A}') \otimes (\boldsymbol{B} \multimap \boldsymbol{B}')$ both factorizations

Dual-NS (W-matrix) $[(\mathbf{A} \multimap \mathbf{A}') \otimes (\mathbf{B} \multimap \mathbf{B}')]^*$

(E) E つへで SYCO 2 19 / 32

Process Matrices

Satisfying for all causal Φ_A, Φ_B :

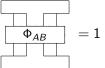


SYCO 2 20 / 32

(日) (同) (日) (日) (日)

Process Matrices

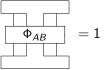
Equivalent to normalization on all no-signalling processes: for every no-signalling map $\Phi_{AB} : (\mathbf{A} \multimap \mathbf{A}') \otimes (\mathbf{B} \multimap \mathbf{B}')$ we have



イロト 不得下 イヨト イヨト 二日

Process Matrices

Equivalent to normalization on all no-signalling processes: for every no-signalling map $\Phi_{AB} : (\mathbf{A} \multimap \mathbf{A}') \otimes (\mathbf{B} \multimap \mathbf{B}')$ we have



Definition

A process matrix is a process in the dual of no-signalling processes, i.e., a process of type $[(A \multimap A') \otimes (B \multimap B')]^*$.

SYCO 2 21 / 32

イロト イポト イヨト イヨト 二日

SYCO 2 22 / 32

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Indefinite causal orders

Most general way to obtain probabilities from no-signalling processes.

Indefinite causal orders

- Most general way to obtain probabilities from no-signalling processes.
- Interesting informational properties

(日) (四) (王) (王) (王)

Indefinite causal orders

- Most general way to obtain probabilities from no-signalling processes.
- Interesting informational properties
- Can break causal bounds! *Quantum correlations with no causal order Ognyan Oreshkov, Fabio Costa, Caslav Brukner arXiv:1105.4464v3*

イロト 不得下 イヨト イヨト 二日

Duals of one-way signalling processes

Process matrices compatible with a specific causal order

$$(\mathbf{A} \preceq \mathbf{B})^* := [\mathbf{A} \multimap ((\mathbf{A}' \multimap \mathbf{B}) \multimap \mathbf{B}')]^*$$

Make a type which includes both duals $(\mathbf{A} \leq \mathbf{B})^*$ and $(\mathbf{B} \leq \mathbf{A})^*$

Sander Uijlen

SYCO 2 24 / 32

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Proposition

The intersection of one-way signalling maps with $A \leq B$ and one-way signalling maps $B \leq A$ are the no-signalling maps.

 $A \preceq B \cap B \preceq A = NS$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proposition

The intersection of one-way signalling maps with $A \leq B$ and one-way signalling maps $B \leq A$ are the no-signalling maps.

 $A \preceq B \cap B \preceq A = NS$

Theorem

$$[(\mathbf{A} \preceq \mathbf{B})^* \cup (\mathbf{B} \preceq \mathbf{A})^*]^{**} = \mathsf{NS}^*$$

イロト 不得 トイヨト イヨト 二日

Proposition

The intersection of one-way signalling maps with $A \leq B$ and one-way signalling maps $B \leq A$ are the no-signalling maps.

 $A \preceq B \cap B \preceq A = NS$

Theorem

$$[(\mathbf{A} \preceq \mathbf{B})^* \cup (\mathbf{B} \preceq \mathbf{A})^*]^{**} = \mathsf{NS}^*$$

Smallest type that contians boths duals are all process matrices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへの

SYCO 2

25 / 32

What does it mean ..?

- In QM and probability theory, the dubble dual is the positive affine closure.
- Every process matrix is an affine closure of duals of one-way signalling processes (combs).

イロト イポト イヨト イヨト

What does it mean ..?

- In QM and probability theory, the dubble dual is the positive affine closure.
- Every process matrix is an affine closure of duals of one-way signalling processes (combs).
- There are processes which are not *convex* combinations. (Switch, OCB, also in probability theory)

(日) (周) (三) (三)

What does it mean..?

- In QM and probability theory, the dubble dual is the positive affine closure.
- Every process matrix is an affine closure of duals of one-way signalling processes (combs).
- There are processes which are not *convex* combinations. (Switch, OCB, also in probability theory)

defnite	\simeq	seperable
indefinite		entangled

(日) (周) (三) (三)

SYCO 2

26 / 32

Transformations of W-matrices

Type of such a transformation:

$$[(\boldsymbol{A}\multimap\boldsymbol{A}')\otimes(\boldsymbol{B}\multimap\boldsymbol{B}')]^*\multimap [(\boldsymbol{C}\multimap\boldsymbol{C}')\otimes(\boldsymbol{D}\multimap\boldsymbol{D}')]^*$$

Transformations of W-matrices

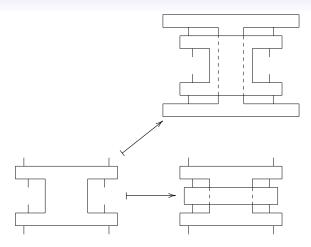
Type of such a transformation:

$$\begin{array}{l} [(\pmb{A} \multimap \pmb{A}') \otimes (\pmb{B} \multimap \pmb{B}')]^* \multimap [(\pmb{C} \multimap \pmb{C}') \otimes (\pmb{D} \multimap \pmb{D}')]^* \\ \cong \\ [(\pmb{C} \multimap \pmb{C}') \otimes (\pmb{D} \multimap \pmb{D}')] \multimap [(\pmb{A} \multimap \pmb{A}') \otimes (\pmb{B} \multimap \pmb{B}')] \end{array}$$

Transformations of W-matrices are transformations of no signalling processes.

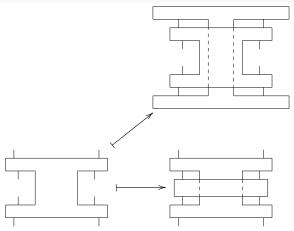
SYCO 2

27 / 32



SYCO 2 28 / 32

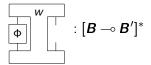
◆□ → < @ → < 差 → < 差 → < 差 → の < ??</p>



Dynamics of quantum causal structures E. Castro-Ruiz, F. Giacomini, . Brukner - arXiv:1710.03139v2

SYCO 2 28 / 32

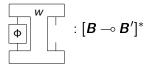
Signalling for Process matrices



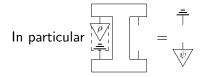
Dual for causal processes \mapsto factors

イロト 不得下 イヨト イヨト 二日

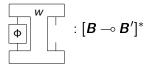
Signalling for Process matrices



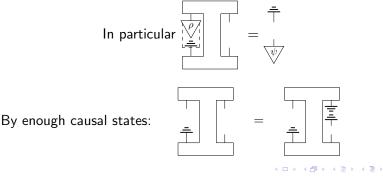
Dual for causal processes \mapsto factors



Signalling for Process matrices



Dual for causal processes \mapsto factors



Sander Uijlen

Causality

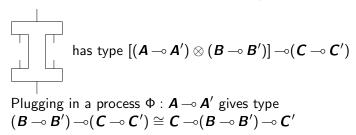
SYCO 2 29 / 32

W-matrices with in/output



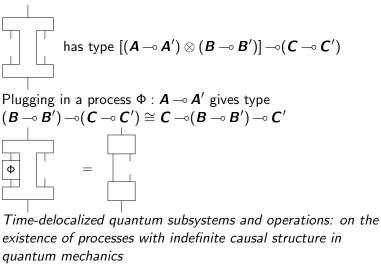
イロト イ団ト イヨト イヨト 三日

W-matrices with in/output



(日) (周) (三) (三)

W-matrices with in/output

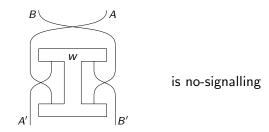


Ognyan Oreshkov - arXiv:1801.07594v2

Sander Uijlen

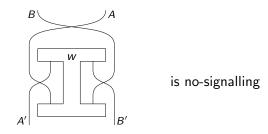
SYCO 2 30 / 32

- 4 同 6 4 日 6 4 日 6

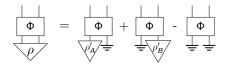


Process matrices embed in no-signalling processes.

SYCO 2 31 / 32



Process matrices embed in no-signalling processes. In QM we find this image as



SYCO 2 31 / 32

SYCO 2 32 / 32