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1. Motivation



Two Categories for Quantum Theory

Pure quantum theory is normally described via the category Hilb of
Hilbert spaces and continous linear maps f : H → K.

But physically we only consider maps up to global phase:

f ∼ g ⇐⇒ f = z · g for z ∈ C, |z | = 1.

Hence it is really given by the category

HilbP := Hilb/∼

where morphisms are ∼-equivalence classes [f ] : H → K.

Question 1: How is Hilb built from HilbP?
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Idea: Superpositions

A defining quantum feature are superpositions, corresponding to an
addition operation f + g in Hilb.

This exists because Hilb has biproducts:

H H⊕K K
κ1

π1 π2

κ2

This means that the κi form a coproduct of H,K:

H H⊕K K

L

κ1

f
∃!h

κ2

g

and the πi dually form a product, in a compatible way.

However: H⊕K is not a biproduct in HilbP.



Idea: Superpositions

A defining quantum feature are superpositions, corresponding to an
addition operation f + g in Hilb.

This exists because Hilb has biproducts:

H H⊕K K
κ1

π1 π2

κ2

This means that the κi form a coproduct of H,K:

H H⊕K K

L

κ1

f
∃!h

κ2

g

and the πi dually form a product, in a compatible way.

However: H⊕K is not a biproduct in HilbP.



Idea: Superpositions

A defining quantum feature are superpositions, corresponding to an
addition operation f + g in Hilb.

This exists because Hilb has biproducts:

H H⊕K K
κ1

π1 π2

κ2

This means that the κi form a coproduct of H,K:

H H⊕K K

L

κ1

f
∃!h

κ2

g

and the πi dually form a product, in a compatible way.

However: H⊕K is not a biproduct in HilbP.



Idea: Superpositions

A defining quantum feature are superpositions, corresponding to an
addition operation f + g in Hilb.

This exists because Hilb has biproducts:

H H⊕K K
κ1

π1 π2

κ2

This means that the κi form a coproduct of H,K:

H H⊕K K

L

κ1

f
∃!h

κ2

g

and the πi dually form a product, in a compatible way.

However: H⊕K is not a biproduct in HilbP.



Question 2: How is H⊕K described in HilbP?

H H⊕K K

L

[κ1]

[f ]
[h]

[κ2]

[g ]

Commutes when h ◦ κ1 = z · f and h ◦ κ2 = w · g for global phases z ,w .

So [h] exists but is now only unique up to a phase:

H⊕K H⊕K[U]
with U =

(
idH 0

0 z · idK

)
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2. Phased Biproducts



Phased Coproducts

Definition
In any category, a phased coproduct of A,B is an object A +̇ B along with
morphisms κA, κB as below, called coprojections, such that:

1. For all f , g as above there exists h making the diagram commute;

2. For any such h, h′ we have h′ = h ◦ U for some endomorphism U of
A +̇ B which is a phase, meaning that

U ◦ κA = κA U ◦ κB = κB
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Phased coproducts are surprisingly well-behaved.

Lemma

1. They are unique up to (non-unique) isomorphism.

2. Any phase is an isomorphism.

3. Associativity holds:

(A +̇ B) +̇ C ' A +̇ B +̇ C ' A +̇ (B +̇ C )

4. Having finite phased coproducts A1 +̇ · · · +̇ An

⇐⇒ having binary ones A +̇ B and an initial object 0.

In a monoidal category, call them distributive when they interact well with
⊗, via isomorphisms

A⊗ (B +̇ C ) ' (A⊗ B) +̇ (A⊗ C )

Can define phased products (A← A ×̇ B → B) dually, and even phased
(co)limits more generally.
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Phased Biproducts

Definition
In a category with zero morphisms, a phased biproduct of A,B is an
object A ⊕̇ B which is both a phased coproduct and phased product:

A A ⊕̇ B B
κ1

π1 π2

κ2

with the same phases for each, and satisfying

πi ◦ κj =

{
id i = j

0 i 6= j

In a dagger category, a phased dagger biproduct also has πi = κ†i .

Example

HilbP has phased dagger biproducts given by the direct sum H⊕K of
Hilbert spaces.
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3. Relating Local and Global Phases



From Global to Local Phases

In any monoidal category (C,⊗), by a choice of global phases we mean a
designated subgroup P of its invertible central scalars.

We then define

f ∼ g ⇐⇒ f = p · g for some p ∈ P

and write CP := C/∼.

Lemma
If C has distributive (co,bi)products then CP has distributive phased
(co,bi)products.

Examples

HilbP has phased biproducts as we’ve seen, arising from Hilb via the
global phases P := {z ∈ C | |z | = 1}.
So does the quotient VecP of Vec:= k-vectors spaces and linear maps, via
P := {λ ∈ k | λ 6= 0}.
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From Local to Global Phases

Observation:
Linear maps f : H → K

⇐⇒ Equivalence classes

[(
f 0
0 1

)]
: H⊕ C→ K⊕ C

Definition
Let (D,⊗) have phased coproducts. We define a category GP(D) by:

I objects are phased coproducts of the form A = A +̇ I in D;

I morphisms are those f : A→ B in D with:

A B

A B

f

κA

∃g

κB

A B

I

f

κI κI



From Local to Global Phases

Observation:
Linear maps f : H → K

⇐⇒ Equivalence classes

[(
f 0
0 1

)]
: H⊕ C→ K⊕ C

Definition
Let (D,⊗) have phased coproducts. We define a category GP(D) by:

I objects are phased coproducts of the form A = A +̇ I in D;

I morphisms are those f : A→ B in D with:

A B

A B

f

κA

∃g

κB

A B

I

f

κI κI



From Local to Global Phases

Observation:
Linear maps f : H → K

⇐⇒ Equivalence classes

[(
f 0
0 1

)]
: H⊕ C→ K⊕ C

Definition
Let (D,⊗) have phased coproducts. We define a category GP(D) by:

I objects are phased coproducts of the form A = A +̇ I in D;

I morphisms are those f : A→ B in D with:

A B

A B

f

κA

∃g

κB

A B

I

f

κI κI



From Local to Global Phases

We have reached our first main result.

Theorem
Let D be a monoidal category with finite distributive phased biproducts
(resp. ‘nice’ phased coproducts). Then GP(D) is a monoidal category
with finite distributive biproducts (resp. coproducts) and a choice of
global phases

P := {u : I → I | u is a phase on I = I +̇ I in D}

such that
D ' GP(D)P
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Summary

Biproducts and
global phases

Phased Biproducts

C CP

GP(D) D

'

Examples

Hilb ' GP(HilbP)

Vec ' GP(VecP)

Remark
Results generalise beyond monoidal setting, to categories:

I C with biproducts and trivial isomorphisms A ' A on each object A

I D with phased biproducts and a phase generator I .
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4. Quantum Reconstructions



Generalised Quantum Theories

If D is a dagger compact category, then CPM(D) has the same objects
and morphisms A→ B being those in D of the form

f

A

C

A

f

BB

MatS : morphisms M : n→ m are m × n matrices over S , for any
commutative involutive semi-ring (S , †).

Definition
QuantS := CPM(MatS).

Examples

QuantC: fin. dim. Hilbert spaces and completely positive maps
f : B(H)→ B(K).
QuantR is Quantum theory on real Hilbert spaces.
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Characterising Quantum Theories

Lemma (Coecke)

A dagger compact C is of the form CPM(D) precisely when it has an
environment structure: a choice of

I discarding morphism A on each object

I dagger compact subcategory Cpure satisfying purification:

∀f g

A

B
C

B

f

A

= for some g ∈ Dpure

and some further axioms.

We will say that Cpure has the superposition properties when it has finite
phased dagger biproducts satisfying some mild conditions.
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A Recipe for Quantum Reconstructions

Theorem
Let (C,Cpure, ) be an environment structure for which Cpure has the
superposition properties. Then there is an embedding

QuantS ↪→ C

preserving †,⊗, , for some involutive semi-ring S with Cpure(I , I ) ' Spos.

Proof.
GP(Cpure) has biproducts, so contains MatS for its scalars S . Then

QuantS ↪→ CPM(GP(Cpure)) '? CPM(Cpure) ' C

where ? follows from our assumptions on Cpure.
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Outlook

Phased co/biproducts:

I Describe superpositions in HilbP;

I Allow passing to a ‘nicer’ category GP(C), such as Hilb;

I Provie a ‘recipe’ for reconstructing quantum-like theories.

However they are new and yet to be fully explored:

I Further (non-monoidal) examples throughout mathematics?

I Relation to other notions of weak (2-)limit?

I Generalisations of the GP construction?

Thanks for listening!
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