Superpositions and Categorical Quantum Reconstructions

Sean Tull

sean.tull@cs.ox.ac.uk
 University of Oxford

SYCO 2 University of Strathclyde December 17 2018

"Local and Global Phases in Categorical Quantum Theory"

The Plan

- 1. Motivation
- 2. Phased Biproducts
- 3. Relating Local and Global Phases
- 4. Quantum Reconstructions

1. Motivation

Pure quantum theory is normally described via the category **Hilb** of Hilbert spaces and continous linear maps $f: \mathcal{H} \to \mathcal{K}$.

Pure quantum theory is normally described via the category **Hilb** of Hilbert spaces and continous linear maps $f: \mathcal{H} \to \mathcal{K}$.

But physically we only consider maps up to global phase:

$$f \sim g \iff f = z \cdot g \text{ for } z \in \mathbb{C}, |z| = 1.$$

Pure quantum theory is normally described via the category **Hilb** of Hilbert spaces and continous linear maps $f: \mathcal{H} \to \mathcal{K}$.

But physically we only consider maps up to global phase:

$$f \sim g \iff f = z \cdot g \text{ for } z \in \mathbb{C}, |z| = 1.$$

Hence it is really given by the category

$$Hilb_P := Hilb/\sim$$

where morphisms are \sim -equivalence classes $[f]: \mathcal{H} \to \mathcal{K}$.

Pure quantum theory is normally described via the category **Hilb** of Hilbert spaces and continous linear maps $f: \mathcal{H} \to \mathcal{K}$.

But physically we only consider maps up to global phase:

$$f \sim g \iff f = z \cdot g \text{ for } z \in \mathbb{C}, |z| = 1.$$

Hence it is really given by the category

$$Hilb_P := Hilb/\sim$$

where morphisms are \sim -equivalence classes $[f]: \mathcal{H} \to \mathcal{K}$.

Question 1: How is **Hilb** built from **Hilb**_P?

A defining quantum feature are superpositions, corresponding to an addition operation f + g in **Hilb**.

A defining quantum feature are superpositions, corresponding to an addition operation f + g in **Hilb**.

This exists because Hilb has biproducts:

$$\mathcal{H} \xrightarrow[]{\kappa_1}{\leftarrow} \mathcal{H} \oplus \mathcal{K} \xrightarrow[]{\kappa_2}{\leftarrow} \mathcal{K}$$

A defining quantum feature are superpositions, corresponding to an addition operation f + g in **Hilb**.

This exists because Hilb has biproducts:

$$\mathcal{H} \xrightarrow[]{\kappa_1}{\leftarrow} \mathcal{H} \oplus \mathcal{K} \xrightarrow[]{\kappa_2}{\leftarrow} \mathcal{K}$$

This means that the κ_i form a coproduct of \mathcal{H}, \mathcal{K} :

and the π_i dually form a product, in a compatible way.

A defining quantum feature are superpositions, corresponding to an addition operation f + g in **Hilb**.

This exists because Hilb has biproducts:

$$\mathcal{H} \xrightarrow[]{\kappa_1}{\leftarrow} \mathcal{H} \oplus \mathcal{K} \xrightarrow[]{\kappa_2}{\leftarrow} \mathcal{K}$$

This means that the κ_i form a coproduct of \mathcal{H}, \mathcal{K} :

and the π_i dually form a product, in a compatible way.

However: $\mathcal{H} \oplus \mathcal{K}$ is not a biproduct in **Hilb**_P.

Question 2: How is $\mathcal{H} \oplus \mathcal{K}$ described in **Hilb**_P?

Question 2: How is $\mathcal{H} \oplus \mathcal{K}$ described in **Hilb**_P?

$$\mathcal{H} \xrightarrow{[\kappa_1]} \mathcal{H} \oplus \mathcal{K} \xleftarrow{[\kappa_2]} \mathcal{K}$$

$$[f] \xrightarrow{[f]} \mathcal{L} \xleftarrow{[g]} \mathcal{K}$$

Commutes when $h \circ \kappa_1 = z \cdot f$ and $h \circ \kappa_2 = w \cdot g$ for global phases z, w.

Question 2: How is $\mathcal{H} \oplus \mathcal{K}$ described in **Hilb**_P?

$$\mathcal{H} \xrightarrow{[\kappa_1]} \mathcal{H} \oplus \mathcal{K} \xleftarrow{[\kappa_2]} \mathcal{K}$$

$$\downarrow [h] \qquad \downarrow [g]$$

Commutes when $h \circ \kappa_1 = z \cdot f$ and $h \circ \kappa_2 = w \cdot g$ for global phases z, w.

So [h] exists but is now only unique up to a phase:

$$\mathcal{H} \oplus \mathcal{K} \xrightarrow{[U]} \mathcal{H} \oplus \mathcal{K} \quad \text{with} \quad U = \begin{pmatrix} \operatorname{id}_{\mathcal{H}} & 0 \\ 0 & z \cdot \operatorname{id}_{\mathcal{K}} \end{pmatrix}$$

Definition

In any category, a phased coproduct of A, B is an object A + B along with morphisms κ_A , κ_B as below, called coprojections, such that:

Definition

In any category, a phased coproduct of A, B is an object A + B along with morphisms κ_A , κ_B as below, called coprojections, such that:

1. For all f, g as above there exists h making the diagram commute;

Definition

In any category, a phased coproduct of A, B is an object A + B along with morphisms κ_A , κ_B as below, called coprojections, such that:

- 1. For all f, g as above there exists h making the diagram commute;
- 2. For any such h, h' we have $h' = h \circ U$ for some endomorphism U of A + B which is a phase, meaning that

$$U \circ \kappa_A = \kappa_A \qquad U \circ \kappa_B = \kappa_B$$

Lemma

- 1. They are unique up to (non-unique) isomorphism.
- 2. Any phase is an isomorphism.
- 3. Associativity holds:

$$(A \dotplus B) \dotplus C \simeq A \dotplus B \dotplus C \simeq A \dotplus (B \dotplus C)$$

4. Having finite phased coproducts A₁ + · · · + A_n
 ↔ having binary ones A + B and an initial object 0.

Lemma

- 1. They are unique up to (non-unique) isomorphism.
- 2. Any phase is an isomorphism.
- 3. Associativity holds:

$$(A \dotplus B) \dotplus C \simeq A \dotplus B \dotplus C \simeq A \dotplus (B \dotplus C)$$

4. Having finite phased coproducts $A_1 + \cdots + A_n$ \iff having binary ones A + B and an initial object 0.

In a monoidal category, call them distributive when they interact well with $\otimes,$ via isomorphisms

$$A \otimes (B \dotplus C) \simeq (A \otimes B) \dotplus (A \otimes C)$$

Lemma

- 1. They are unique up to (non-unique) isomorphism.
- 2. Any phase is an isomorphism.
- 3. Associativity holds:

$$(A \stackrel{.}{+} B) \stackrel{.}{+} C \simeq A \stackrel{.}{+} B \stackrel{.}{+} C \simeq A \stackrel{.}{+} (B \stackrel{.}{+} C)$$

4. Having finite phased coproducts $A_1 + \cdots + A_n$ \iff having binary ones A + B and an initial object 0.

In a monoidal category, call them distributive when they interact well with $\otimes,$ via isomorphisms

$$A \otimes (B \dotplus C) \simeq (A \otimes B) \dotplus (A \otimes C)$$

Can define phased products $(A \leftarrow A \times B \rightarrow B)$ dually, and even phased (co)limits more generally.

Definition

In a category with zero morphisms, a phased biproduct of A, B is an object $A \oplus B$ which is both a phased coproduct and phased product:

$$A \xrightarrow[]{\kappa_1}{\kappa_1} A \stackrel{\cdot}{\oplus} B \xrightarrow[]{\kappa_2}{\pi_2} B$$

Definition

In a category with zero morphisms, a phased biproduct of A, B is an object $A \oplus B$ which is both a phased coproduct and phased product:

$$A \xrightarrow[]{\kappa_1}{\kappa_1} A \stackrel{\cdot}{\oplus} B \xrightarrow[]{\kappa_2}{\pi_2} B$$

with the same phases for each, and satisfying

$$\pi_i \circ \kappa_j = \begin{cases} \text{id} & i = j \\ 0 & i \neq j \end{cases}$$

Definition

In a category with zero morphisms, a phased biproduct of A, B is an object $A \oplus B$ which is both a phased coproduct and phased product:

$$A \xrightarrow[]{\kappa_1}{\kappa_1} A \stackrel{\cdot}{\oplus} B \xrightarrow[]{\kappa_2}{\pi_2} B$$

with the same phases for each, and satisfying

$$\pi_i \circ \kappa_j = \begin{cases} \mathrm{id} & i = j \\ 0 & i \neq j \end{cases}$$

In a dagger category, a phased dagger biproduct also has $\pi_i = \kappa_i^{\dagger}$.

Definition

In a category with zero morphisms, a phased biproduct of A, B is an object $A \oplus B$ which is both a phased coproduct and phased product:

$$A \xrightarrow[]{\kappa_1}{\kappa_1} A \stackrel{\cdot}{\oplus} B \xrightarrow[]{\kappa_2}{\pi_2} B$$

with the same phases for each, and satisfying

$$\pi_i \circ \kappa_j = \begin{cases} \text{id} & i = j \\ 0 & i \neq j \end{cases}$$

In a dagger category, a phased dagger biproduct also has $\pi_i = \kappa_i^{\dagger}$.

Example

 \textbf{Hilb}_P has phased dagger biproducts given by the direct sum $\mathcal{H}\oplus\mathcal{K}$ of Hilbert spaces.

3. Relating Local and Global Phases

In any monoidal category (\mathbf{C}, \otimes) , by a choice of global phases we mean a designated subgroup \mathbb{P} of its invertible *central* scalars.

In any monoidal category (\mathbf{C}, \otimes) , by a choice of global phases we mean a designated subgroup \mathbb{P} of its invertible *central* scalars. We then define

$$f \sim g \iff f = p \cdot g$$
 for some $p \in \mathbb{P}$

and write $\mathbf{C}_{\mathbb{P}} := \mathbf{C}/\!\!\sim$.

In any monoidal category (\mathbf{C}, \otimes) , by a choice of global phases we mean a designated subgroup \mathbb{P} of its invertible *central* scalars. We then define

$$f \sim g \iff f = p \cdot g$$
 for some $p \in \mathbb{P}$

and write $\mathbf{C}_{\mathbb{P}} := \mathbf{C}/\!\!\sim$.

Lemma

If **C** has distributive (co,bi)products then $C_{\mathbb{P}}$ has distributive phased (co,bi)products.

In any monoidal category (\mathbf{C}, \otimes) , by a choice of global phases we mean a designated subgroup \mathbb{P} of its invertible *central* scalars. We then define

$$f \sim g \iff f = p \cdot g$$
 for some $p \in \mathbb{P}$

and write $\mathbf{C}_{\mathbb{P}} := \mathbf{C}/\!\!\sim$.

Lemma

If **C** has distributive (co,bi)products then $C_{\mathbb{P}}$ has distributive phased (co,bi)products.

Examples

Hilb_P has phased biproducts as we've seen, arising from **Hilb** via the global phases $\mathbb{P} := \{z \in \mathbb{C} \mid |z| = 1\}$. So does the quotient **Vec**_P of **Vec**:= k-vectors spaces and linear maps, via $\mathbb{P} := \{\lambda \in k \mid \lambda \neq 0\}$.

Observation:

 $\begin{array}{c} \mathsf{Linear\ maps}\ f:\ \mathcal{H}\to\mathcal{K}\\ \Leftrightarrow \mathsf{Equivalence\ classes}\ \left[\begin{pmatrix}f&0\\0&1\end{pmatrix}\right]:\ \mathcal{H}\oplus\mathbb{C}\to\mathcal{K}\oplus\mathbb{C}\end{array}$

Observation:

 $\begin{array}{c} \mathsf{Linear\ maps}\ f:\ \mathcal{H}\to\mathcal{K}\\ \Leftrightarrow \mathsf{Equivalence\ classes}\ \left[\begin{pmatrix}f&0\\0&1\end{pmatrix}\right]:\ \mathcal{H}\oplus\mathbb{C}\to\mathcal{K}\oplus\mathbb{C}\end{array}$

Definition

Let (\mathbf{D},\otimes) have phased coproducts. We define a category $\mathsf{GP}(\mathbf{D})$ by:

- objects are phased coproducts of the form $\mathbf{A} = A + I$ in **D**;
- morphisms are those $f: \mathbf{A} \rightarrow \mathbf{B}$ in **D** with:

Observation:

 $\begin{array}{c} \mathsf{Linear\ maps}\ f:\ \mathcal{H}\to\mathcal{K}\\ \Leftrightarrow \mathsf{Equivalence\ classes}\ \left[\begin{pmatrix}f&0\\0&1\end{pmatrix}\right]:\ \mathcal{H}\oplus\mathbb{C}\to\mathcal{K}\oplus\mathbb{C}\end{array}$

Definition

Let (\mathbf{D},\otimes) have phased coproducts. We define a category $\mathsf{GP}(\mathbf{D})$ by:

- objects are phased coproducts of the form $\mathbf{A} = A + I$ in **D**;
- morphisms are those $f: \mathbf{A} \rightarrow \mathbf{B}$ in **D** with:

We have reached our first main result.

We have reached our first main result.

Theorem

Let **D** be a monoidal category with finite distributive phased biproducts (resp. 'nice' phased coproducts). Then GP(D) is a monoidal category with finite distributive biproducts (resp. coproducts) and a choice of global phases

$$\mathbb{P} := \{ u \colon \mathbf{I} \to \mathbf{I} \mid u \text{ is a phase on } \mathbf{I} = \mathbf{I} \stackrel{\cdot}{+} \mathbf{I} \text{ in } \mathbf{D} \}$$

such that

 $\boldsymbol{\mathsf{D}}\simeq\mathsf{GP}(\boldsymbol{\mathsf{D}})_{\mathbb{P}}$

Summary

Biproducts and global phases

Phased Biproducts

Summary

$\begin{array}{ccc} \text{Biproducts and} & \text{Phased Biproducts} \\ & & & & \\ & & & & \\ & & &$

Examples

$$\begin{split} \textbf{Hilb} &\simeq \mathsf{GP}(\textbf{Hilb}_\mathsf{P}) \\ \textbf{Vec} &\simeq \mathsf{GP}(\textbf{Vec}_\mathsf{P}) \end{split}$$

Summary

 $\begin{aligned} \textbf{Hilb} \simeq \mathsf{GP}(\textbf{Hilb}_{\mathsf{P}}) \\ \textbf{Vec} \simeq \mathsf{GP}(\textbf{Vec}_{\mathsf{P}}) \end{aligned}$

Remark

Results generalise beyond monoidal setting, to categories:

- **C** with biproducts and trivial isomorphisms $A \simeq A$ on each object A
- **D** with phased biproducts and a phase generator *I*.

4. Quantum Reconstructions

If **D** is a dagger compact category, then CPM(D) has the same objects and morphisms $A \rightarrow B$ being those in **D** of the form

If **D** is a dagger compact category, then CPM(D) has the same objects and morphisms $A \rightarrow B$ being those in **D** of the form

Mat_S: morphisms $M: n \rightarrow m$ are $m \times n$ matrices over S, for any commutative involutive semi-ring (S, \dagger) .

If **D** is a dagger compact category, then CPM(D) has the same objects and morphisms $A \rightarrow B$ being those in **D** of the form

Mat_S: morphisms $M: n \rightarrow m$ are $m \times n$ matrices over S, for any commutative involutive semi-ring (S, \dagger) .

Definition

 $Quant_S := CPM(Mat_S).$

If **D** is a dagger compact category, then CPM(D) has the same objects and morphisms $A \rightarrow B$ being those in **D** of the form

Mat_S: morphisms $M: n \rightarrow m$ are $m \times n$ matrices over S, for any commutative involutive semi-ring (S, \dagger) .

Definition

 $Quant_S := CPM(Mat_S).$

Examples

 $Quant_{\mathbb{C}}$: fin. dim. Hilbert spaces and completely positive maps $f: B(\mathcal{H}) \to B(\mathcal{K})$. $Quant_{\mathbb{R}}$ is Quantum theory on real Hilbert spaces.

Lemma (Coecke)

A dagger compact **C** is of the form CPM(D) precisely when it has an environment structure: a choice of

Lemma (Coecke)

A dagger compact **C** is of the form CPM(D) precisely when it has an environment structure: a choice of

• discarding morphism $=_A$ on each object

Lemma (Coecke)

A dagger compact **C** is of the form CPM(D) precisely when it has an environment structure: a choice of

- discarding morphism $=_A$ on each object
- ► dagger compact subcategory **C**_{pure} satisfying purification:

$$\forall f \qquad \boxed{\begin{array}{c} B \\ \hline f \\ \hline f \\ A \\ \end{array}} = \boxed{\begin{array}{c} B \\ \hline \hline f \\ \hline g \\ \hline \\ A \\ \end{array}} for some g \in \mathbf{D}_{pure}$$

and some further axioms.

Lemma (Coecke)

A dagger compact C is of the form CPM(D) precisely when it has an environment structure: a choice of

- discarding morphism $=_A$ on each object
- dagger compact subcategory C_{pure} satisfying purification:

$$\forall f \qquad \boxed{\begin{array}{c} B \\ \hline f \\ \hline f \\ A \\ \end{array}} = \boxed{\begin{array}{c} B \\ \hline \hline f \\ \hline g \\ \hline \\ A \\ \end{array}} for some g \in \mathbf{D}_{pure}$$

and some further axioms.

We will say that C_{pure} has the superposition properties when it has finite phased dagger biproducts satisfying some mild conditions.

A Recipe for Quantum Reconstructions

A Recipe for Quantum Reconstructions

Theorem

Let $(C, C_{pure}, \bar{\tau})$ be an environment structure for which C_{pure} has the superposition properties. Then there is an embedding

$\textsf{Quant}_{\mathcal{S}} \hookrightarrow \textsf{C}$

preserving $\dagger, \otimes, \ddagger$, for some involutive semi-ring S with $C_{pure}(I, I) \simeq S^{pos}$.

A Recipe for Quantum Reconstructions

Theorem

Let $(C, C_{pure}, \bar{\tau})$ be an environment structure for which C_{pure} has the superposition properties. Then there is an embedding

$\mathsf{Quant}_{\mathcal{S}} \hookrightarrow \mathsf{C}$

preserving $\dagger, \otimes, \ddagger$, for some involutive semi-ring *S* with $C_{pure}(I, I) \simeq S^{pos}$. Proof.

 $GP(\mathbf{C}_{pure})$ has biproducts, so contains Mat_S for its scalars S. Then

$$\mathsf{Quant}_{\mathcal{S}} \hookrightarrow \mathsf{CPM}(\mathsf{GP}(\mathsf{C}_{\mathsf{pure}})) \simeq_{\star} \mathsf{CPM}(\mathsf{C}_{\mathsf{pure}}) \simeq \mathsf{C}$$

where \star follows from our assumptions on C_{pure} .

Phased co/biproducts:

Phased co/biproducts:

Describe superpositions in Hilb_P;

Phased co/biproducts:

- Describe superpositions in Hilb_P;
- Allow passing to a 'nicer' category GP(C), such as Hilb;

Phased co/biproducts:

- Describe superpositions in Hilb_P;
- Allow passing to a 'nicer' category GP(C), such as Hilb;
- Provie a 'recipe' for reconstructing quantum-like theories.

However they are new and yet to be fully explored:

Phased co/biproducts:

- Describe superpositions in Hilb_P;
- Allow passing to a 'nicer' category GP(C), such as Hilb;
- Provie a 'recipe' for reconstructing quantum-like theories.

However they are new and yet to be fully explored:

Further (non-monoidal) examples throughout mathematics?

Phased co/biproducts:

- Describe superpositions in Hilb_P;
- Allow passing to a 'nicer' category GP(C), such as Hilb;
- Provie a 'recipe' for reconstructing quantum-like theories.

However they are new and yet to be fully explored:

- Further (non-monoidal) examples throughout mathematics?
- Relation to other notions of weak (2-)limit?

Phased co/biproducts:

- Describe superpositions in Hilb_P;
- Allow passing to a 'nicer' category GP(C), such as Hilb;
- Provie a 'recipe' for reconstructing quantum-like theories.

However they are new and yet to be fully explored:

- Further (non-monoidal) examples throughout mathematics?
- Relation to other notions of weak (2-)limit?
- Generalisations of the GP construction?

Phased co/biproducts:

- Describe superpositions in Hilb_P;
- Allow passing to a 'nicer' category GP(C), such as Hilb;
- Provie a 'recipe' for reconstructing quantum-like theories.

However they are new and yet to be fully explored:

- Further (non-monoidal) examples throughout mathematics?
- Relation to other notions of weak (2-)limit?
- Generalisations of the GP construction?

Thanks for listening!

References

- ST. A Categorical Reconstruction of Quantum Theory. arXiv:1804.02265. 2018.
- ▶ ST. Quotient Categories and Phases. arXiv:1801.09532. 2018.