Completely Positive Maps for Mixed Unitary Categories

Robin Cockett, Cole Comfort, and Priyaa Srinivasan

University of Calgary

ション ふゆう メヨン メヨン ヨー シタク

(D) (B) (E) (E) E OQO 1/28

Linearly distributive categories

A linearly distributive category (LDC) has two monoidal structures $(\otimes, \top, a_{\otimes}, u_{\otimes}^L, u_{\otimes}^R)$ and $(\oplus, \bot, a_{\oplus}, u_{\oplus}^L, u_{\oplus}^R)$ linked by natural transformations called the linear distributors:

$$\partial_L : A \otimes (B \oplus C) \to (A \otimes B) \oplus C$$

 $\partial_R : (A \oplus B) \otimes C \to A \oplus (B \otimes C)$

LDCs are equipped with a graphical calculus.

LDCs provide a categorical semantics for multiplicative linear logic.

Mix categories

$(1 \oplus (u_{\oplus}^{L})^{-1})(1 \otimes (\mathsf{m} \oplus 1))\delta^{L}(u_{\otimes}^{R} \oplus 1) = ((u_{\oplus}^{R})^{-1} \oplus 1)((1 \oplus \mathsf{m}) \otimes 1)\delta^{R}(1 \oplus u_{\otimes}^{R})$

mx is called a **mixor**. The mixor is a natural transformation.

It is an **isomix** category if *m* is an isomorphism.

m being an isomorphism does not make the mixor an isomorphism. However, it does make the above coherence automatic.

A compact LDC is an LDC in which every mixor is an isomorphism i.e., in a compact LDC $\otimes \simeq \bigoplus_{n}$, $z \in \mathbb{R}$, $z \in \mathbb{R}$, 2/28

A \dagger -isomix category is an isomix category equipped with a $\dagger : \mathbb{X}^{op} \to \mathbb{X}$ functor and the following natural isomorphisms:

tensor laxors:
$$\lambda_{\oplus} : A^{\dagger} \oplus B^{\dagger} \rightarrow (A \otimes B)^{\dagger}$$

 $\lambda_{\otimes} : A^{\dagger} \otimes B^{\dagger} \rightarrow (A \oplus B)^{\dagger}$
unit laxors: $\lambda_{\top} : \top \rightarrow \bot^{\dagger}$
 $\lambda_{\perp} : \bot \rightarrow \top^{\dagger}$
involutor: $\iota : A \rightarrow A^{\dagger\dagger}$

<ロ> (日) (日) (王) (王) (王) (3/28

such that certain coherence conditions hold.

Unitary category

A **unitary category** is a compact *†*-isomix category in which every object has an isomorphism

$$A \xrightarrow{\varphi_A} A^{\dagger}$$

called the **unitary structure map** for A, such that φ_A satisfies certain coherence conditions.

An isomorphism $A \xrightarrow{f} B \in \mathbb{U}$ is said to be a **unitary isomorphism** if the following diagram commutes:

<ロト (@) (E) (E) E のQ (5/28

Mixed unitary category

A mixed unitary category, $M : \mathbb{U} \to \mathbb{C}$ consists of a

- †-isomix category $\mathbb C$
- ullet unitary category $\mathbb U$
- a strong †- isomix functor $M:\mathbb{U}\to\mathbb{C}$
 - $(M,m_{\otimes},m_{ op})$ is strong monoidal on \otimes
 - (M, n_\oplus, n_\perp) is strong comonoidal on \oplus
 - *M* is a linear functor
 - *M* preserves mix map: $n_{\perp}M(m)m_{\top} = m$
 - $(
 ho,
 ho^{-1}):M((_{-})^{\dagger}) o M(_{-})^{\dagger}$ is a linear natural isomorphism

An example of a MUC: $\mathbb{R} \subset \mathbb{C}$

Consider the discrete monoidal category $\mathbb{C}:$

```
Objects: a + ib \in \mathbb{C}Maps: Identity maps only c = cTensor: multiplication<br/>(a + ib) \otimes (x + iy) := (ax - by) + i(ay + bx)Unit: 1Dagger: (a + ib)^{\dagger} := a - ib
```

 $\mathbb C$ is a compact LDC ($\otimes \simeq \oplus)$ with a non-stationary dagger functor.

The subcategory $\mathbb R$ is a unitary category with the unitary structure map being the identity map.

 $\mathbb{R} \subset \mathbb{C}$ is a mixed unitary category. 6/28

(D) (D)

An example of a MUC: $Mat(\mathbb{C}) \subset FMat(\mathbb{C})$

A finiteness space, $(X, \mathcal{A}, \mathcal{B})$, consists of a set X and a subset $\mathcal{A}, \mathcal{B} \subseteq P(X)$ such that $\mathcal{B} = \mathcal{A}^{\perp}$, that is

$$\mathcal{B} = \{b | b \in \mathcal{P}(X) ext{ with for all } a \in A, |a \cap b| < \infty\},$$

and $\mathcal{A} = \mathcal{B}^{\perp}$.

A finiteness relation, $(X, \mathcal{A}, \mathcal{B}) \xrightarrow{R} (Y, \mathcal{A}', \mathcal{B}')$ is relation $X \xrightarrow{R} Y$ such that

$$\forall A \in \mathcal{A}.AR \in \mathcal{A}' \text{ and } \forall B' \in \mathcal{B}'.RB' \in \mathcal{B}$$

Finiteness spaces with finiteness relation form a *-autonomous category.

An example of a MUC: $Mat(\mathbb{C}) \subset FMat(\mathbb{C})$

 $\mathsf{FMat}(\mathbb{C})$ is defined as follows:

Objects: Finiteness spaces $(X, \mathcal{A}, \mathcal{B})$ Maps: $(X, \mathcal{A}, \mathcal{B}) \xrightarrow{M} (Y, \mathcal{A}', \mathcal{B}')$ is a matrix $X \times Y \xrightarrow{M} \mathbb{C}$ such that

 $supp(M) := \{(x,y) | x \in X, y \in Y \text{ and } M(x,y) \neq 0\}$

is a finiteness relation from $(X, \mathcal{A}, \mathcal{B})$ to $(Y, \mathcal{A}', \mathcal{B}')$. Dagger: $(X, \mathcal{A}, \mathcal{B})^{\dagger} := (X, \mathcal{B}, \mathcal{A})$ M^{\dagger} is the complex conjugate of M.

 $Mat(\mathbb{C})$ is a full subcategory of $FMat(\mathbb{C})$ which is determined by the objects, (X, P(X), P(X)), where X is a finite set.

 $\mathsf{Mat}(\mathbb{C})$ is a unitary category, indeed a well-known †-compact closed category.

The inclusion $Mat(\mathbb{C}) \subset FMat(\mathbb{C})$ is a mixed unitary category, 8/28

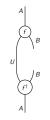
 CP^{∞} construction •0000000000 Environment structure

in MUCs

CPM construction

in †- compact closed categories

Selinger, 2007



in †-SMCs

Coecke and Heunen, 2011

Environment structure

Kraus maps

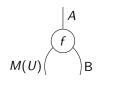
A Kraus map

$$(f, U): A \to B$$

in a mixed unitary category, $M : \mathbb{U} \to \mathbb{C}$, is a map

$$f: A \to M(U) \oplus B \in \mathbb{C}$$

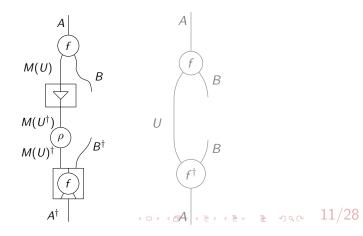
for some $U \in \mathbb{U}$ and M(U) is called the ancillary system of f.



 CP^{∞} construction 0000000000 Environment structure

Combinator

A Kraus map can be glued along the unitary structure map with the dagger of itself to get a combinator which takes positive maps to positive maps:

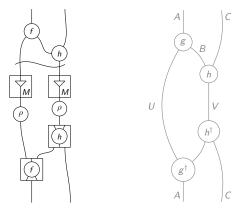


 CP^{∞} construction 000000000

Environment structure

Test maps

A combinator built from a Kraus map $(f, U) : A \to B$ acts on **test** maps, $h : B \otimes C \to M(V)$ as follows:

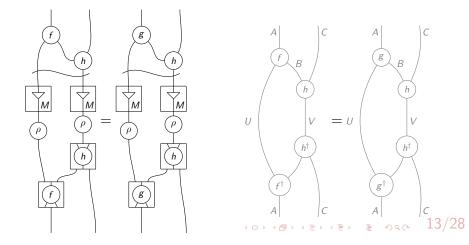


Test maps are glued along unitary structure map with its dagger to give a **positive map**. (12/28)

Environment structure

Equivalence relation

 $(f, U) \sim (g, V) : A \rightarrow B$, if for all test maps maps $h : B \otimes C \rightarrow V$, the following holds:



Unitarily isomorphic \Rightarrow equivalence

Lemma: For any two Kraus morphisms $(f, U), (g, V) : A \rightarrow B$,

 $(f,U)\sim (g,V)$

if

• $U \xrightarrow{\alpha} V$ is a unitary isomorphism, and,

•
$$f(M(\alpha) \oplus 1) = f'$$

CP^∞ construction

 $CP^{\infty}(M : \mathbb{U} \to \mathbb{C})$ is given as follows: **Objects:** Same as \mathbb{C} **Maps:** A map

$$[(f, U)]: A \to B \in \mathsf{CP}^{\infty}(M : \mathbb{U} \to \mathbb{C})$$

is an equivalence class of Kraus maps

$$(f, U): A \rightarrow B \in \mathbb{C} / \sim$$

Environment structure

CP^{∞} construction cont...

Composition:

$$[(f, U)][(g, V)] := \begin{bmatrix} f \\ f \\ g \\ M \end{bmatrix}$$

$$[A \xrightarrow{f} M(U) \oplus B \xrightarrow{1 \oplus g} M(U) \oplus (M(V) \oplus C) \xrightarrow{a_{\oplus}} (M(U) \oplus M(V) \oplus C \xrightarrow{n_{\oplus}^{-1} \oplus 1} M(U \oplus V) \oplus C]$$

Identity: $1_A := [A \xrightarrow{(u_{\oplus}^L)^{-1}} \bot \oplus A \xrightarrow{n_{\bot}^{-1} \oplus 1} M(\bot) \oplus A]$

17/28

CP^{∞} construction cont...

 $\mathsf{CP}^{\infty}(M:\mathbb{U}\to\mathbb{C})$ has two tensor products:

Unit of \otimes is \top and the unit of \oplus is \bot .

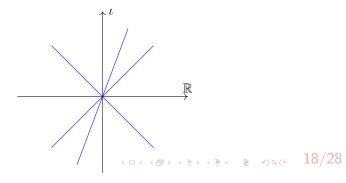
Lemma: $CP^{\infty}(M : \mathbb{U} \to \mathbb{C})$ is an isomix category.

$\mathsf{CP}^\infty(\mathbb{R}\subset\mathbb{C})$

Kraus maps in
$$\mathbb C$$
 are $(=, r) : c \to c'$ such that $c = rc'$.

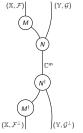
 $c' \neq 0$ then there is at most one Kraus map $(=, r) : c \to c'$, for all $c \in \mathbb{C}$ when c = rc'.

$$c'=0$$
 then $c=0$ and for all $r'\in\mathbb{R}$,
 $(=,r)\sim(=,r'):c
ightarrow c'.$



$\mathsf{CP}^\infty(\mathsf{Mat}(\mathbb{C})\subset\mathsf{FMat}(\mathbb{C}))$

A Kraus map $(M, \mathbb{C}) : A \to B$ gives a **pure completely positive** map:



Choi's theorem for $\mathsf{FMat}(\mathbb{C})$: Every map in $\mathsf{CP}^{\infty}(\mathsf{Mat}(\mathbb{C}) \subset \mathsf{FMat}(\mathbb{C}))$ can be written as a sum of pure completely positive maps.

Environment structure

An **environment structure** for a mixed unitary category, $M : \mathbb{U} \to \mathbb{C}$, is a pair

$$(F:\mathbb{C} o\mathbb{D},\downarrow)$$

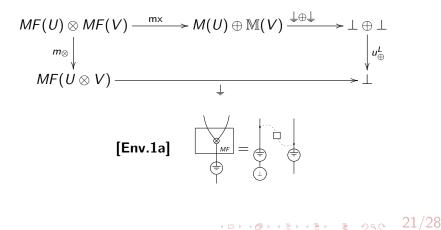
where,

- \mathbb{D} is any isomix category,
- F is a strict Frobenius isomix functor, and
- $\downarrow : MF(U) \rightarrow \bot$ is a family of maps indexed by the objects $U \in \mathbb{U}$ such that the following conditions hold:

(D) (B) (E) (E) E OQQ 20/

Environment structure cont...

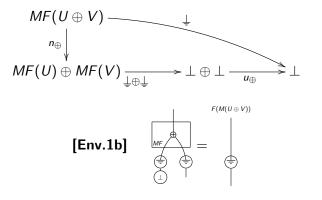
For all unitary objects $U, V \in \mathbb{U}$, the following diagrams commute:



10, 10, 10, 12, 12, 12, 20, 22/28

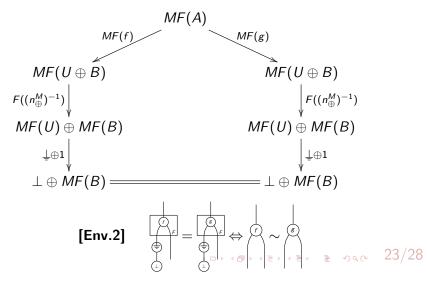
Environment structure cont...

For all unitary objects $U, V \in \mathbb{U}$, the following diagrams commute:



Environment structure cont...

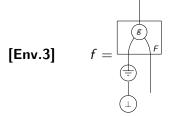
 $(f, U) \sim (g, V) \in \mathbb{C}$ if and only if the following equation holds:



The purification axiom

An environment structure $(F : \mathbb{U}\mathbb{C}_M \to \mathbb{D}, \downarrow)$ satisfies **purification** axiom if

- F is injective on objects, and
- for all f : A → B ∈ D, there exists a Kraus map (g, U) : X
 → Y ∈ C such that



Equationally,

$$A \xrightarrow{f} B = F(A) \xrightarrow{F(g)} F(M(U) \oplus Y) \xrightarrow{n_{\oplus}} M(F(U)) \oplus F(Y)$$
$$\xrightarrow{\downarrow \oplus 1} \bot \oplus F(Y) \xrightarrow{u_{\oplus}} F(Y) \xrightarrow{r_{\oplus}} F(Y) \xrightarrow{r_{\oplus}} 24/28$$

Examples

Lemma: For any mixed unitary category, $M : \mathbb{U} \to \mathbb{C}$, there exists an environment structure $(\mathbb{C} \xrightarrow{Q} CP^{\infty}(M : \mathbb{U} \to \mathbb{C}), \downarrow)$ satisfying purification axiom where,

$$Q(A) := A$$
$$Q(f) := [(f(u_{\oplus}^L)^{-1}(n_{\oplus})^{-1}, \bot)]$$
$$\downarrow : F(M(U)) \rightarrow \bot := [((u_{\oplus}^R)^{-1}, U)]$$

Examples cont...

 \bullet Consider the MUC, $\mathbb{R} \subset \mathbb{C}.$ Then,

$$(\mathbb{R} \stackrel{Q}{\longrightarrow} \mathsf{CP}^{\infty}(\mathbb{R} \subset \mathbb{C}), {\scriptstyle \downarrow r} : r \to 1)$$

is an environment structure where,

$$\downarrow_r := (=, 1/r) : r \to 1$$

 \bullet Consider the MUC, $\mathsf{Mat}_{\mathbb{C}}\to\mathsf{FMat}(\mathbb{C}).$ Then,

$$\mathsf{Mat}(\mathbb{C}) \xrightarrow{Q} \mathsf{CP}^{\infty}(\mathsf{Mat}(\mathbb{C}) \subset \mathsf{FMat}(\mathbb{C}))$$

is an environment structure where,

$$\downarrow_{\mathbb{C}^n} : \mathbb{C}^n \to \mathbb{C}; \rho \mapsto Tr(\rho)$$

٠

Axiomatization of CP^{∞} construction

Proposition: Let \mathbb{D} be any isomix category. If $(F : \mathbb{C} \to \mathbb{D}, \downarrow)$ is an environment structure for the mixed unitary category $M : \mathbb{U} \to \mathbb{C}$ which satisfies the purification axiom, then

$$\mathbb{D}\simeq \mathsf{CP}^\infty(M:\mathbb{U}\to\mathbb{C})$$

ADDARDAEDAEDE OQC 28/

Robin Cockett, Cole Comfort, and Priyaa Srinivasan.

Dagger linear logic for categorical quantum mechanics. *ArXiv e-prints*, September 2018.

Coming soon on arXiv....

Completely positive maps for mixed unitary categories.