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• Idea: Use string diagrams as syntax for relational algebraic
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Relations with string diagrams

The category Rel of sets with relations as morphisms

• forms a symmetric monoidal category:

R1 ⊗R2 = {((a, b), (c, d)) | (a, c) ∈ R1, (b, d) ∈ R2}

R1
a c

R2
b d

• Composition:

R1 ;R2 = {(x, z) | ∃y : (x, y) ∈ R1, (y, z) ∈ R2}

R1 R2
x y z
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Relations with string diagrams

• Relations are ordered by inclusion

• Every object:
• Copying and discarding ,

• Equality and “spawn” ,
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Cartesian bicategories

Definition (Carboni & Walters)

A Cartesian bicategory

is a locally ordered symmetric monoidal
category where every object is equipped with

• a comonoid

• a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor preserving the ordering, the
comonoid and the monoid.

This captures the “relational algebraic” properties of Rel.
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Frobenius theories

Definition
A Lawvere theory is a finite-product category with objects the
natural numbers.

Definition
A model of a theory is a morphism of

M :

A morphism between models is a natural transformation.

Theorem (Completeness for theories)

If x, y are morphisms in such that M(x)M(y) for all models
M : , then

xy.
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The syntactic Frobenius theory

Signature Σ

, each σ ∈ Σ equipped with arity and coarity,
σ : n→ m.
Freely generated (syntactic) Cartesian bicategory CBΣ has
objects N and morphisms

Mor(CBΣ) ::= ε
∣∣∣ ∣∣∣ ∣∣∣ ...

...S2

...
...S1
∣∣∣ ...

...S1
...S2

∣∣∣∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ...
...σ

modulo the laws of Cartesian bicategories.
A model M : CBΣ → Rel consists of

• a set V =M(1)

• relations M(σ) ⊆ V n × V m for σ ∈ Σ, σ : n→ m
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Example Frobenius theories

Example

• ≤ R

ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R

ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤

ensures that the underlying set is nonempty.



Example Frobenius theories

Example

• ≤ R ensures that R is reflexive

• R R ≤ R ensures that R is transitive

•

R≤
R

R

and R≤

ensure that R is a function.

• ≤ ensures that the underlying set is nonempty.



Presentations

Definition
Fix a signature Σ and let E be a set of (well-typed) inequalities
of morphisms in CBΣ.

The Frobenius theory CBΣ/E has the morphisms of CBΣ taken
modulo E.

Lemma
A model of CBΣ/E is the same thing as a model of CBΣ

satisfying E.

Lemma
Every Frobenius theory is of the shape CBΣ/E for some Σ, E.
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Σ-structures

• A model M : CBΣ → Rel consists of
• a set V =M(1)
• relations M(σ) ⊆ V n × V m for σ ∈ Σ, σ : n→ m

• In model theory, these are called Σ-structures.

• A morphism between Σ-structures is a function between
the underlying sets respecting the relations.

• One can view a set as a Σ-structure – with empty relations

• For S a Σ-structure, a morphism n→ S is an n-tuple in S
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Universal models

Example

We can translate a morphism R : n→ m in CBΣ to a finite
model UR with n

ιR−→ UR
ωR←−− m (called universal model).

UR(1) = {x, y, z}

UR(σ) = {(x, y), (y, z)}, UR(τ) = {x}

ιR = x, ωR = y
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Connection with Completeness

Theorem (SYCO 1)

The assignment of R : n→ m to n
ιR−→ UR

ωR←−− m is a bijection

between morphisms in CBΣ and discrete cospans of finite
Σ-structures.

S ≤ R

if and only if there is α : UR → US such that

UR

n m

US

α

ιR

ιS

ωR

ωS

Connects semantics to syntax.
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Connects semantics to syntax.



The (·)E construction

Idea: Saturate a Σ-structure with respect to the axioms E.

Theorem
There is a functor (·)E : ModCBΣ

→ ModCBΣ
with a natural

transformation ζS : S → SE with the following property:
If A ≤ B is an axiom in E, and (x, y) ∈ S(A) then
(ζ(x), ζ(y)) ∈ SE(B).

Definition
An algebra for the pointed endofunctor (·)E is a Σ-structure S
with a morphism α : SE → S such that α ◦ ζS = idS

Lemma
(·)E-algebras are models for CBΣ/E.
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Example

Take Σ = ∅, E =
{

≤
}

, ModCBΣ/E
is the category of

non-empty sets.

• SE = S + 1

• (·)E–algebras are pointed sets

The category of (·)E–algebras is better behaved than ModCBΣ/E
.



Example

Take Σ = ∅, E =
{

≤
}

, ModCBΣ/E
is the category of

non-empty sets.

• SE = S + 1

• (·)E–algebras are pointed sets

The category of (·)E–algebras is better behaved than ModCBΣ/E
.



Example

Take Σ = ∅, E =
{

≤
}

, ModCBΣ/E
is the category of

non-empty sets.

• SE = S + 1

• (·)E–algebras are pointed sets

The category of (·)E–algebras is better behaved than ModCBΣ/E
.



Example

Take Σ = ∅, E =
{

≤
}

, ModCBΣ/E
is the category of

non-empty sets.

• SE = S + 1

• (·)E–algebras are pointed sets

The category of (·)E–algebras is better behaved than ModCBΣ/E
.



Example

Take Σ = ∅, E =
{

≤
}

, ModCBΣ/E
is the category of

non-empty sets.

• SE = S + 1

• (·)E–algebras are pointed sets

The category of (·)E–algebras is better behaved than ModCBΣ/E
.



The free algebra

(·)E -Alg ModCBΣ

ModCBΣ/E

U

S SE SE2 · · · SEω



The free algebra

(·)E -Alg ModCBΣ

ModCBΣ/E

U

⊥

S SE SE2 · · · SEω



The free algebra

(·)E -Alg ModCBΣ

ModCBΣ/E

U

⊥

(·)Eω

S SE SE2 · · · SEω



The free algebra

(·)E -Alg ModCBΣ

ModCBΣ/E

U

⊥

(·)Eω

S SE SE2 · · · SEω



The free algebra

(·)E -Alg ModCBΣ

ModCBΣ/E

U

⊥

(·)Eω

S SE SE2 · · · SEω



From semantics to syntax

Theorem

S ≤ R in CBΣ

if and only if there is α : UR → US such that

UR

n m

US

α

ιR

ιS

ωR

ωS



From semantics to syntax

Theorem

S ≤ R in CBΣ/E

if and only if there is α : (UR)Eω → (US)Eω such that
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n m

(US)Eω

α



From semantics to syntax

Proof sketch.

(UR)Eω

n m

(US)Eω

α

• UR is compact

• n→ (US)Ei ← m correspond to string diagrams Si

• Sk ≤ R in CBΣ, hence in CBΣ/E

• Si+1 is obtained by blindly applying all axioms to Si

• S = S0 ≤ S1 ≤ S2 ≤ · · · ≤ Sk ≤ R in CBΣ/E
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The completeness result

Theorem
Frobenius theories are complete with respect to relational
interpretations.


	Cartesian bicategories
	Frobenius theories
	Completeness

