Completeness for Cartesian bicategories Relational algebra with string diagrams

Filippo Bonchi, Jens Seeber, Paweł Sobociński

IMT School for Advanced Studies Lucca

Glasgow - 18th December, 2018

2 Frobenius theories

String diagrams

• Idea: Use string diagrams as syntax for *relational* algebraic theories

String diagrams

- Idea: Use string diagrams as syntax for *relational* algebraic theories
- Develop a categorical logic for those theories

The category ${\bf Rel}$ of sets with relations as morphisms

The category ${\bf Rel}$ of sets with relations as morphisms

• forms a symmetric monoidal category:

The category ${\bf Rel}$ of sets with relations as morphisms

• forms a symmetric monoidal category:

 $R_1 \otimes R_2 = \{((a,b), (c,d)) \mid (a,c) \in R_1, (b,d) \in R_2\}$

The category **Rel** of sets with relations as morphisms

• forms a symmetric monoidal category:

 $R_1 \otimes R_2 = \{((a,b), (c,d)) \mid (a,c) \in R_1, (b,d) \in R_2\}$

• Composition:

$$R_1; R_2 = \{(x, z) \mid \exists y : (x, y) \in R_1, (y, z) \in R_2\}$$

• Relations are ordered by inclusion

- Relations are ordered by inclusion
- Every object:

- Relations are ordered by inclusion
- Every object:
 - Copying and discarding —

- Relations are ordered by inclusion
- Every object:
 - Copying and discarding -- , -- •

SCHOOL FOR ADV STUDIES LUCCA

イロト イポト イヨト イヨト 三日

- Relations are ordered by inclusion
- Every object:
 - Copying and discarding -- , -- •
 - Equality and "spawn"

- Relations are ordered by inclusion
- Every object:

æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Definition (Carboni & Walters) A Cartesian bicategory

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

• a comonoid

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism

SCHOOL

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor

SCHOOL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor preserving the ordering, the comonoid and the monoid.

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor preserving the ordering, the comonoid and the monoid.

This captures the "relational algebraic" properties of **Rel**.

2 Frobenius theories

Frobenius theories

Definition

A Lawvere theory is a finite-product category with objects the natural numbers.

Frobenius theories

Definition

A Frobenius theory is a Cartesian bicategory with objects the natural numbers.

Definition

A Frobenius theory is a Cartesian bicategory with objects the natural numbers.

Definition

A model of a Lawvere theory T (in ${\bf Set})$ is a morphism of finite-product categories

$$\mathcal{M} \colon T \to \mathbf{Set}$$

A morphism between models is a natural transformation.

Definition

A Frobenius theory is a Cartesian bicategory with objects the natural numbers.

Definition

A model of a Frobenius theory F (in ${\bf Rel})$ is a morphism of Cartesian bicategories

$$\mathcal{M} \colon F \to \mathbf{Rel}$$

A morphism between models is a lax natural transformation.

A Frobenius theory is a Cartesian bicategory with objects the natural numbers.

Definition

A model of a Frobenius theory F (in ${\bf Rel})$ is a morphism of Cartesian bicategories

$$\mathcal{M} \colon F \to \mathbf{Rel}$$

A morphism between models is a lax natural transformation.

Theorem (Completeness for Lawvere theories) If x, y are morphisms in T such that $\mathcal{M}(x) = \mathcal{M}(y)$ for all models $\mathcal{M}: T \to \mathbf{Set}$, then

$$x = y.$$

A Frobenius theory is a Cartesian bicategory with objects the natural numbers.

Definition

A model of a Frobenius theory F (in ${\bf Rel})$ is a morphism of Cartesian bicategories

$$\mathcal{M} \colon F \to \mathbf{Rel}$$

A morphism between models is a lax natural transformation.

Theorem (Completeness for Frobenius theories) If x, y are morphisms in F such that $\mathcal{M}(x) \leq \mathcal{M}(y)$ for all models $\mathcal{M}: F \to \mathbf{Rel}$, then

$$x \leq y.$$

Signature Σ

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma \colon n \to m$.

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

э

< ロ > < 同 > < 回 > < 回 >

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

modulo the laws of Cartesian bicategories.

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

modulo the laws of Cartesian bicategories. A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of

(日) (四) (日) (日)

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

modulo the laws of Cartesian bicategories. A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of

• a set
$$V = \mathcal{M}(1)$$

Signature Σ , each $\sigma \in \Sigma$ equipped with arity and coarity, $\sigma: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

modulo the laws of Cartesian bicategories. A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of

• a set
$$V = \mathcal{M}(1)$$

• relations $\mathcal{M}(\sigma) \subseteq V^n \times V^m$ for $\sigma \in \Sigma, \sigma \colon n \to m$

э

(日) (四) (日) (日)

Example

•
$$-- \leq$$
 $-R$

Example

• _____ \leq _____R ____ ensures that R is reflexive

Example

• _____ \leq _____ ensures that R is reflexive • ______ R _____ \leq ______ R _____

Example

• _____ \leq _____ ensures that R is reflexive • ______ R _____ = ______ ensures that R is transitive

Example

•

• --- \leq --R ensures that R is reflexive • -R -R - -R ensures that R is transitive

Example

ensure that R is a function.

< ロ > < 同 > < 回 > < 回 >

SCHOOL FOR ADV STUDIES LUCCA

э

Example

- _____ \leq _____ ensures that R is reflexive
- $-\underline{R}$ $\underline{-R}$ $\underline{-R}$ ensures that R is transitive

ensure that R is a function.

Example

- _____ \leq _____ ensures that R is reflexive
- $-\underline{R}$ $\underline{-R}$ $\underline{-R}$ ensures that R is transitive

ensure that R is a function.

• $\left| \begin{array}{c} \bullet \end{array} \right| \leq \bullet$ ensures that the underlying set is nonempty.

Fix a signature Σ and let E be a set of (well-typed) inequalities of morphisms in \mathbb{CB}_{Σ} .

Fix a signature Σ and let E be a set of (well-typed) inequalities of morphisms in \mathbb{CB}_{Σ} .

The Frobenius theory $\mathbb{CB}_{\Sigma/E}$ has the morphisms of \mathbb{CB}_{Σ} taken modulo E.

Fix a signature Σ and let E be a set of (well-typed) inequalities of morphisms in \mathbb{CB}_{Σ} .

The Frobenius theory $\mathbb{CB}_{\Sigma/E}$ has the morphisms of \mathbb{CB}_{Σ} taken modulo E.

Lemma

A model of $\mathbb{CB}_{\Sigma/E}$ is the same thing as a model of \mathbb{CB}_{Σ} satisfying E.

Fix a signature Σ and let E be a set of (well-typed) inequalities of morphisms in \mathbb{CB}_{Σ} .

The Frobenius theory $\mathbb{CB}_{\Sigma/E}$ has the morphisms of \mathbb{CB}_{Σ} taken modulo E.

Lemma

A model of $\mathbb{CB}_{\Sigma/E}$ is the same thing as a model of \mathbb{CB}_{Σ} satisfying E.

Lemma

Every Frobenius theory is of the shape $\mathbb{CB}_{\Sigma/E}$ for some Σ, E .

Cartesian bicategories

Frobenius theories

• A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of

- a set $V = \mathcal{M}(1)$
- relations $\mathcal{M}(\sigma) \subseteq V^n \times V^m$ for $\sigma \in \Sigma, \sigma \colon n \to m$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of

- a set $V = \mathcal{M}(1)$
- relations $\mathcal{M}(\sigma) \subseteq V^n \times V^m$ for $\sigma \in \Sigma, \sigma \colon n \to m$

• In model theory, these are called Σ -structures.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of
 - a set $V = \mathcal{M}(1)$
 - relations $\mathcal{M}(\sigma) \subseteq V^n \times V^m$ for $\sigma \in \Sigma, \sigma \colon n \to m$
- In model theory, these are called Σ -structures.
- A morphism between Σ-structures is a function between the underlying sets respecting the relations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of
 - a set $V = \mathcal{M}(1)$
 - relations $\mathcal{M}(\sigma) \subseteq V^n \times V^m$ for $\sigma \in \Sigma, \sigma \colon n \to m$
- In model theory, these are called Σ -structures.
- A morphism between Σ-structures is a function between the underlying sets respecting the relations.
- One can view a set as a Σ -structure with empty relations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A model $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$ consists of
 - a set $V = \mathcal{M}(1)$
 - relations $\mathcal{M}(\sigma) \subseteq V^n \times V^m$ for $\sigma \in \Sigma, \sigma \colon n \to m$
- In model theory, these are called Σ -structures.
- A morphism between Σ-structures is a function between the underlying sets respecting the relations.
- One can view a set as a Σ -structure with empty relations
- For S a Σ -structure, a morphism $n \to S$ is an n-tuple in S

Example

Example

Example

Example

$$\mathcal{U}_R(1) = \{x, y, z\}$$

Example

We can translate a morphism $R: n \to m$ in \mathbb{CB}_{Σ} to a finite model \mathcal{U}_R with $n \xrightarrow{\iota_R} \mathcal{U}_R \xleftarrow{\omega_R} m$ (called *universal* model).

$$\mathcal{U}_R(1) = \{x, y, z\}$$

$$\mathcal{U}_R(\sigma) = \{(x, y), (y, z)\}, \ \mathcal{U}_R(\tau) = \{x\}$$

3

イロト 不得下 イヨト イヨト

Example

$$\mathcal{U}_R(1) = \{x, y, z\}$$

$$\mathcal{U}_R(\sigma) = \{(x, y), (y, z)\}, \ \mathcal{U}_R(\tau) = \{x\}$$

$$\iota_R = x, \ \omega_R = y$$

$$\lim_{\substack{\text{for advanced struct} \\ \text{subjects}}} \sup_{\substack{\text{for advanced struct} \\ \text{subjects}}} w$$

Connection with Completeness

Theorem (SYCO 1)

The assignment of $R: n \to m$ to $n \xrightarrow{\iota_R} \mathcal{U}_R \xleftarrow{\omega_R} m$ is a bijection

Theorem (SYCO 1)

The assignment of $R: n \to m$ to $n \xrightarrow{\iota_R} \mathcal{U}_R \xleftarrow{\omega_R} m$ is a bijection between morphisms in \mathbb{CB}_{Σ} and discrete cospans of finite Σ -structures.

Theorem (SYCO 1)

The assignment of $R: n \to m$ to $n \xrightarrow{\iota_R} \mathcal{U}_R \xleftarrow{\omega_R} m$ is a bijection between morphisms in \mathbb{CB}_{Σ} and discrete cospans of finite Σ -structures.

 $S \leq R$

if and only if there is $\alpha \colon \mathcal{U}_B \to \mathcal{U}_S$ such that

3

Theorem (SYCO 1)

The assignment of $R: n \to m$ to $n \xrightarrow{\iota_R} \mathcal{U}_R \xleftarrow{\omega_R} m$ is a bijection between morphisms in \mathbb{CB}_{Σ} and discrete cospans of finite Σ -structures.

 $S \leq R$

if and only if there is $\alpha \colon \mathcal{U}_B \to \mathcal{U}_S$ such that

Connects semantics to syntax.

- 20

Idea: Saturate a Σ -structure with respect to the axioms E.

Idea: Saturate a Σ -structure with respect to the axioms E.

Theorem

There is a functor $(\cdot)_E : \operatorname{Mod}_{\mathbb{CB}_{\Sigma}} \to \operatorname{Mod}_{\mathbb{CB}_{\Sigma}}$ with a natural transformation $\zeta_S : S \to S_E$ with the following property:

Idea: Saturate a Σ -structure with respect to the axioms E.

Theorem

There is a functor $(\cdot)_E$: $\operatorname{Mod}_{\mathbb{CB}_{\Sigma}} \to \operatorname{Mod}_{\mathbb{CB}_{\Sigma}}$ with a natural transformation $\zeta_S \colon S \to S_E$ with the following property: If $A \leq B$ is an axiom in E, and $(x, y) \in S(A)$ then $(\zeta(x), \zeta(y)) \in S_E(B)$.

Idea: Saturate a Σ -structure with respect to the axioms E.

Theorem

There is a functor $(\cdot)_E : \operatorname{Mod}_{\mathbb{CB}_{\Sigma}} \to \operatorname{Mod}_{\mathbb{CB}_{\Sigma}}$ with a natural transformation $\zeta_S : S \to S_E$ with the following property: If $A \leq B$ is an axiom in E, and $(x, y) \in S(A)$ then $(\zeta(x), \zeta(y)) \in S_E(B)$.

Definition

An algebra for the pointed endofunctor $(\cdot)_E$ is a Σ -structure S with a morphism $\alpha \colon S_E \to S$ such that $\alpha \circ \zeta_S = \mathrm{id}_S$

Idea: Saturate a Σ -structure with respect to the axioms E.

Theorem

There is a functor $(\cdot)_E : \operatorname{Mod}_{\mathbb{CB}_{\Sigma}} \to \operatorname{Mod}_{\mathbb{CB}_{\Sigma}}$ with a natural transformation $\zeta_S : S \to S_E$ with the following property: If $A \leq B$ is an axiom in E, and $(x, y) \in S(A)$ then $(\zeta(x), \zeta(y)) \in S_E(B)$.

Definition

An algebra for the pointed endofunctor $(\cdot)_E$ is a Σ -structure S with a morphism $\alpha \colon S_E \to S$ such that $\alpha \circ \zeta_S = \mathrm{id}_S$

Lemma

 $(\cdot)_E$ -algebras are models for $\mathbb{CB}_{\Sigma/E}$.

Example Take $\Sigma = \emptyset$, $E = \left\{ \bigcup_{i=1}^{|i-1|} \leq \bullet - \bullet \right\}$, $\operatorname{Mod}_{\mathbb{CB}_{\Sigma/E}}$ is the category of non-empty sets.

Example Take $\Sigma = \emptyset$, $E = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \leq \bullet \bullet \bullet \right\}$, $\operatorname{Mod}_{\mathbb{CB}_{\Sigma/E}}$ is the category of non-empty sets.

•
$$S_E = S + 1$$

Example Take $\Sigma = \emptyset$, $E = \left\{ \begin{bmatrix} & & \\ & &$

•
$$S_E = S + 1$$

•
$$(\cdot)_E$$
-algebras are *pointed* sets

Example Take $\Sigma = \emptyset$, $E = \left\{ \bigcup_{k=1}^{|| - 1|} \leq \bullet - \bullet \right\}$, $\operatorname{Mod}_{\mathbb{CB}_{\Sigma/E}}$ is the category of non-empty sets.

- $S_E = S + 1$
- $(\cdot)_E$ -algebras are *pointed* sets

The category of $(\cdot)_E$ -algebras is better behaved than $\operatorname{Mod}_{\mathbb{CB}_{\Sigma/E}}$.

$$\begin{array}{c} (\cdot)_E \operatorname{-Alg} & \xrightarrow{U} & \operatorname{Mod}_{\mathbb{CB}_{\Sigma}} \\ & \downarrow \\ & \operatorname{Mod}_{\mathbb{CB}_{\Sigma/E}} \end{array}$$

$$S \longrightarrow S_E \Longrightarrow S_{E^2} \Longrightarrow \cdots \longrightarrow S_{E^{\omega}}$$

Theorem

$S \leq R \ in \mathbb{CB}_{\Sigma}$

if and only if there is $\alpha \colon \mathcal{U}_R \to \mathcal{U}_S$ such that

æ

< ロ > < 同 > < 回 > < 回 >

Theorem

 $S \leq R \text{ in } \mathbb{CB}_{\Sigma/E}$

if and only if there is $\alpha \colon (\mathcal{U}_R)_{E^{\omega}} \to (\mathcal{U}_S)_{E^{\omega}}$ such that

Proof sketch.

Proof sketch.

Proof sketch.

• \mathcal{U}_R is compact

Proof sketch.

• \mathcal{U}_R is compact

(日)

SCHOOI FOR ADV STUDIES

< E

Proof sketch.

- \mathcal{U}_R is compact
- $n \to (\mathcal{U}_S)_{E^i} \leftarrow m$ correspond to string diagrams S_i

(日)

SCHOOL

< E

Proof sketch.

- \mathcal{U}_R is compact
- $n \to (\mathcal{U}_S)_{E^i} \leftarrow m$ correspond to string diagrams S_i
- $S_k \leq R$ in \mathbb{CB}_{Σ} , hence in $\mathbb{CB}_{\Sigma/E}$

Proof sketch.

- \mathcal{U}_R is compact
- $n \to (\mathcal{U}_S)_{E^i} \leftarrow m$ correspond to string diagrams S_i
- $S_k \leq R$ in \mathbb{CB}_{Σ} , hence in $\mathbb{CB}_{\Sigma/E}$
- S_{i+1} is obtained by blindly applying all axioms to S_i

イロト イポト イヨト イヨ

Proof sketch.

- \mathcal{U}_R is compact
- $n \to (\mathcal{U}_S)_{E^i} \leftarrow m$ correspond to string diagrams S_i
- $S_k \leq R$ in \mathbb{CB}_{Σ} , hence in $\mathbb{CB}_{\Sigma/E}$
- S_{i+1} is obtained by blindly applying all axioms to S_i
- $S = S_0 \le S_1 \le S_2 \le \dots \le S_k \le R$ in $\mathbb{CB}_{\Sigma/E}$

The completeness result

Theorem

Frobenius theories are complete with respect to relational interpretations.

