Incrementality in Compositional Distributional Semantics

M. Sadrzadeh, EECS, QMUL

SemDial 2018 joint work with M. Purver, J. Hough, R. Kempson

SYCO2, Glasgow December 2018

structure preserving map

Semantic Calculus

Distributional Semantics

sugar, a sliced lemon, a tablespoonful of **apricot** their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**.

preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from for the purpose of gathering data and information necessary for the study authorized in the

	computer	data	pinch	result	sugar	
apricot	0	0	2.25	0	2.25	
pineapple	0	0	2.25	0	2.25	
digital	1.66	0	0	0	0	
information	0	0.57	0	0.47	0	

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

State of the art NLP packages

import spacy
nlp = spacy.load('en_core_web_md')
tokens = nlp(u'dog cat car')
for token1 in tokens:
 for token2 in tokens:
 print(token1.text, token2.text, token1.similarity(token2))

dog dog 1.0 dog cat 0.80168545 dog car 0.35629162 cat dog 0.80168545 cat cat 1.0 cat car 0.31907532 car dog 0.35629162 car cat 0.31907532 car car 1.0

spaCy

Distributional Semantics

	dog	cat	car
dog	1	0.80	0.35
cat		1	0.31
car			1

Distributional Semantics

???

CCG

Rules

$\begin{array}{cccc} X/Y & Y \implies X \\ Y & X \setminus Y \implies X \end{array} & \begin{array}{c} \mathsf{NP/NP} & \mathsf{NP} => \mathsf{NP} \\ \mathsf{NP} & \mathsf{S} \backslash \mathsf{NP} => \mathsf{S} \end{array}$

$A/B \mapsto \mathcal{A} \otimes \mathcal{B} \qquad \qquad \mathcal{A} = \{e_i\}_i \quad \mathcal{B} = \{e_j\}_j$

$$\mathcal{A} \otimes \mathcal{B} \ \ni T_{ij} = \sum_{ij} C_{ij} \ e_i \otimes e_j$$

 $A/(B/C) \mapsto \mathcal{A} \otimes (\mathcal{B} \otimes C) \qquad \mathcal{A} = \{e_i\}_i \quad \mathcal{B} = \{e_j\}_j \quad C = \{e_k\}_k$

$$\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C} \ni T_{ijk} = \sum_{ijk} C_{ijk} \ e_i \otimes e_j \otimes e_k$$

Higher order tensors

$$\mathcal{A} \otimes \mathcal{B} \otimes \cdots \otimes \mathcal{Z} \ni T_{ij\cdots w} = \sum_{ij\cdots w} C_{ij\cdots w} e_i \otimes e_j \otimes \cdots \otimes e_w$$

Matrix Multiplication

 $A/B \quad B \implies A \quad \mapsto \quad (\mathcal{A} \otimes \mathcal{B}) \quad \mathcal{B} \implies \mathcal{A}$

$$\begin{array}{ccc} T_{ij} & T_j & \underset{\longrightarrow}{\text{tensor contract}} & T_i \end{array} \end{array}$$

$$(\sum_{ij} C_{ij} e_i \otimes e_j)(\sum_i C_j e_j) = \sum_i C_{ij} C_j e_i \langle e_j \mid e_j \rangle$$

Higher order tensor contraction

 $\cdots \mapsto \mathcal{A} \otimes \mathcal{B} \otimes \cdots \otimes \mathcal{M} \quad \mathcal{M} \otimes \mathcal{N} \otimes \mathcal{P} \otimes \cdots \otimes \mathcal{W}$

$$T_{ij\cdots m} \quad T_{mnp\cdots w} \stackrel{\text{tensor contract}}{\Longrightarrow} \quad T_{ij\cdots np\cdots w}$$

$$(\sum_{ij\cdots m} C_{ij\cdots m} e_i \otimes e_j \otimes \cdots \otimes e_m)(\sum_{mn\cdots w} C_{mn\cdots w} e_m \otimes e_n \otimes \cdots \otimes e_w)$$
$$= \sum_{ij\cdots n\cdots w} C_{ij\cdots m} C_{mn\cdots w} e_i \otimes e_j \otimes \cdots \otimes e_n \otimes \cdots \otimes e_w \langle e_m \mid e_m \rangle$$

DogsChaseWhiteCatsNP $(S \setminus NP)/NP$ NP/NPNP

NP

 $S \setminus NP$

S

 T_{j}

Pregroup Grammars

)85		
XY^l	$NPNP^l$	NP ^r S
$Y^r X$	NP^rSNP^l	

Rules

14

$XY^{l}Y \leq X \qquad \qquad NPNP^{l}NP \leq NP$ $YY^{r}X \leq X \qquad \qquad NPNP^{r}S \leq S$

Catgorical Semantics

Categorial Grammars + Distributional Semantics

Coecke, Sadrzadeh, Clark, 2010 Grefenstette and Sadrzadeh 2011, 2015 Maillard, Clark, Grefenstette, 2014 Krishnamurti and Mitchell, 2014 Baroni and Zamparelli 2010 Wijnholds (and Moortgat) 2015-16

Language Processing

Complete Sentences

Naturally Occurring Dialogue

- "A: mary likes ..." "B: john?"
- "A: mary likes ..." "B: who?"
- "A: mary likes ..." "B: nobody really"

Naturally Occurring Dialogue

A: Ray destroyed . . .B: . . . the fuchsia. He never liked it. The roses he spared . . .A: . . . this time.

Naturally Occurring Dialogue

A: You are going to write the letter? B: Only if you post it!

Howes et al, 2011, Poesio and Reiser 2010

Computational Dialogue Systems

A: I want to book a ticket ...
B: ... from where?
A: London
B: ... to where?
A: to Paris.

Purver and Kempson 2011 Purver, Eshghi, Hough 2017

Psycholinguistic Analysis

A:The footballer dribbled ... B (thinking) it means controlling the ball A:... the ball across the pitch

A:The baby dribbled ... the milk all over the floor.

Pickering and Frisson 2001

Cognitive Neuroscience

Predictive Processing: agents incrementally generate expectations and judge the degree to which they are met.

Frisson and Frith 2001 Clarke 2015

Incremental Language Processing

Dynamic Syntax + Type Theoretic Semantics

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gabbay. 2001.

Hough 2015, Purver et al 2014.

Recent Contribution

Dynamic Syntax + Distributional Semantics

Sadrzadeh, Purver, Hough, Kempson

SemDial 2018

Outline

• Dynamic Syntax: DS

- CDS for DS
- Some Examples
- Some Experimental Results

Trees decorated with semantic formulae and applications

and with ...

- Ty: types of formulae
- ?: requirements for further development
- <>: node currently under development
- links: connect trees of arguments of conjunctives etc

"mary likes john"

 $Ty(t), Fo(like(mary, john)), \diamondsuit$

Ty(e), Fo(mary) $Ty(\langle e, t \rangle), Fo(\lambda x.like(x, john))$

 $Ty(e), Fo(john) \qquad Ty(\langle e, \langle e, t \rangle \rangle), Fo(\lambda y \lambda x. like(x, y))$

Mary who sleeps snores.

Multilinear Algebraic Semantics for DS

Simple Nodes

- $X_1 \mapsto T_{i_1 i_2 \cdots i_n}$
- $\in V_1 \otimes V_2 \otimes \cdots \otimes V_n$ $\in V_{n+k} \otimes V_{n+k+1} \otimes \cdots \vee V_{n+k+m}$

Multilinear Algebraic Semantics for DS

Operations Nodes

$\mathbf{O}(X_1, X_2) \qquad \mapsto \quad T_{i_1 i_2 \cdots i_n} T_{i_n i_{n+1} \cdots i_{n+k}} \\ \in \quad V_1 \otimes V_2 \otimes \cdots \otimes V_{n-1} \otimes V_{n+1} \otimes \cdots \otimes V_{n+k}$

Multilinear Algebraic Semantics for DS

- Ty(e) ---> W
- ?X —-> sum or direct sum of the words and phrase with semantics in X and their probabilities
- ---> a neutral element such as the identity in X
- —> a tensor full of 1's in X

"mary likes john"

"Babies ..."

"Babies ..."

"Babies ..."

 $T^{vomit} + T^{score} + T^{dribble} + T^{control \ baby} + T^{control \ milk} + T^{control \ footballer} + T^{control \ ball}$

"Babies ..."

"Babies vomit"

 $T_i^{babies}T_{ij}^{vomit}$

"Babies score"

 $T_i^{babies}T_{ij}^{score}$

"Footballers ..."

 $T^{footballers}T^+$

"Footballers vomit"

 $T^{footballers}T^{vomit}_{ij}$

"Footballers score"

 $T_i^{footballers} T_{ij}^{score}$

Footballers ... Footballers vomit

Dataset

- Kartsaklis D., MS, Pulman S.: <u>Separating disambiguation from</u> <u>composition in compositional distributional semantics</u>.
- Chose ambiguous verbs and two landmark meanings from Pickering and Frisson 2001
- Picked subjects and objects for landmarks using most frequently occurring ones in the BNC

Dataset

• Pairs of subjects and complete sentences

(footballers ..., footballers dribble milk) (footballers ..., footballers dribble ball)

• Pairs of subject+verb and complete sentences:

(footballers dribble ..., footballers dribble milk) (footballers dribble ..., footballers dribble ball)

• Pairs of complete sentences:

(footballers dribble milk, footballers dribble ball) (babies dribble milk, babies dribble ball)

Vectors: 300 Dim from Word2Vec, Tensors: the G&S EMNLP 2011 method

Just subject

Just Subject

Subject + Verb

Complete Sentences

0.22 < 0.36

Complete Sentences

0.34 > 0.32

babies drip milk babies dribble milk 0.34 0.32 babies control milk

Accuracy Results

Work in Progress

Implement the plausibilities model of Clark 2013, Polajnar et al 2015 ... under way ...

Extend it to experimental expectation predication

Incremental Understanding of Dialogue Content

Categorical Semantics

A: Thank ...

 \otimes

B: ... you!