
Incrementality in
Compositional

Distributional Semantics

SemDial 2018
joint work with M. Purver, J. Hough, R. Kempson

SYCO2, Glasgow
December 2018

M. Sadrzadeh, EECS, QMUL

NLP in one slide

 Formal
Grammar

 Semantic
Calculus

structure preserving map

NLP in one slide

 Formal
Grammar

Models of
First Order

Logic

structure preserving map

NLP in one slide

 Formal
Grammar

Distributions
of Linguistic

Data

structure preserving map

15.1 • WORDS AND VECTORS 5

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 15.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Fig. 15.5 shows a spatial visualization. Note in Fig. 15.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 15.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence

Distributional Semantics

8 CHAPTER 15 • VECTOR SEMANTICS

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 15.7 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 15.4 again showing five dimensions. Note that the 0
ppmi values are ones that had a negative pmi; for example pmi(information,computer) =
log2(.05/(.16 ⇤ .58)) = �0.618, meaning that information and computer co-occur in this
mini-corpus slightly less often than we would expect by chance, and with ppmi we re-
place negative values by zero. Many of the zero ppmi values had a pmi of �•, like
pmi(apricot,computer) = log2(0/(0.16⇤0.11)) = log2(0) =�•.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (15.8)

Pa(c) =
count(c)a

P
c count(c)a (15.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013b) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 15.8 Laplace (add-2) smoothing of the counts in Fig. 15.4.

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 15.9 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 15.8.

15.2.1 Alternatives to PPMI for measuring association
While PPMI is quite popular, it is by no means the only measure of association
between two words (or between a word and some other feature). Other common

15.2 • WEIGHING TERMS: POINTWISE MUTUAL INFORMATION (PMI) 7

chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10�12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI
with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)2:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (15.5)

More formally, let’s assume we have a co-occurrence matrix F with W rows
(words) and C columns (contexts), where fi j gives the number of times word wi
occurs in context c j. This can be turned into a PPMI matrix where ppmii j gives the
PPMI value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(15.6)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (15.7)

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 15.4 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
6
19

= .316

P(w=information) =
11
19

= .579

P(c=data) =
7

19
= .368

ppmi(information,data) = log2(.316/(.368⇤ .579)) = .568

Fig. 15.6 shows the joint probabilities computed from the counts in Fig. 15.4,
and Fig. 15.7 shows the PPMI values.

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.05 0 0.05 0.11
pineapple 0 0 0.05 0 0.05 0.11

digital 0.11 0.05 0 0.05 0 0.21
information 0.05 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 15.6 Replacing the counts in Fig. 15.4 with joint probabilities, showing the
marginals around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

2 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
�• from log(0).

Speech and Language Processing,
Jurafsky and Martin

State of the art NLP
packages

import spacy
nlp = spacy.load('en_core_web_md')
tokens = nlp(u'dog cat car')
for token1 in tokens:
 for token2 in tokens:
 print(token1.text, token2.text, token1.similarity(token2))

dog dog 1.0
dog cat 0.80168545
dog car 0.35629162
cat dog 0.80168545
cat cat 1.0
cat car 0.31907532
car dog 0.35629162
car cat 0.31907532
car car 1.0

Distributional Semantics
dog cat car

dog 1 0.80 0.35

cat 1 0.31

car 1

Distributional Semantics

blood

grave

dead

vampire

zombie

butterfly

Rn

↵ �

a/b ; abl b \ a ; bra

abcl = (ab)cl = a(bcl)

(ab)cl ; a(b/c)

a(bcl) ; (ab)/c

[[abcl]] = A⌦B ⌦ C⇤

satisfying:

(1A ⌦ ✏lA) � (⌘lA ⌦ 1A) = 1A (✏rA ⌦ 1A) � (1A ⌦ ⌘rA) = 1A

(✏lA ⌦ 1Al) � (1Al ⌦ ⌘lA) = 1Al (1Ar ⌦ ✏rA) � (⌘rA ⌦ 1Ar) = 1Ar

A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

Rn

↵ �

a/b ; abl b \ a ; bra

abcl = (ab)cl = a(bcl)

(ab)cl ; a(b/c)

a(bcl) ; (ab)/c

[[abcl]] = A⌦B ⌦ C⇤

satisfying:

(1A ⌦ ✏lA) � (⌘lA ⌦ 1A) = 1A (✏rA ⌦ 1A) � (1A ⌦ ⌘rA) = 1A

(✏lA ⌦ 1Al) � (1Al ⌦ ⌘lA) = 1Al (1Ar ⌦ ✏rA) � (⌘rA ⌦ 1Ar) = 1Ar

A functor F from a monoidal category C to a monoidal category D

F : C ! D

is a monoidal functor, whenever there exits a morphism

I ! F(I)

and a natural transformation:

F(A)⌦ F(B) ! F(A⌦B)

A monoidal functor is strongly monoidal, whenever the above morphism and natu-

ral transformation are invertible.

A Recap on Category Theory

NLP in one slide

 Formal
Grammar

Distributions
of Linguistic

Data

structure preserving map

??? ???
structure preserving map

NLP in one slide

 Formal
Grammar

Distributions
of Linguistic

Data

structure preserving map

Type
Grammars

Multilinear
Algebra

structure preserving map

CCG
Types

Rules

X/Y 7! X ⌦Y
X \ Y 7! Y ⌦ X

X/Y Y =) X 7! X ⌦Y Y =) X
Y X \ Y =) X 7! Y Y ⌦ X =) X

A

X/Y

X \ Y

X/Y Y =) X

Y X \ Y =) X

T

i j···k T

kl···w

T

i j···kT

kl···w = T

i j···l···w

NP ((S \ NP) / NP) NP S \ S

2 S

⌦

N ⌦ S ⌦N⇤ ⌦N⇤ ⌦N ⌦ S ⌦ S⇤

T

i

T

i jk

T

k

T

jl

T

i

T

i jk

T

k

T

jl

=) T

i

T

i j

T

jl

=) T

j

T

jl

=) T

l

M =
A + A

T

2

Z
dxe

�x

2

X/Y 7! X ⌦Y
X \ Y 7! Y ⌦ X

X/Y Y =) X 7! X ⌦Y Y =) X
Y X \ Y =) X 7! Y Y ⌦ X =) X

A

X/Y

X \ Y

X/Y Y =) X

Y X \ Y =) X

T

i j···k T

kl···w

T

i j···kT

kl···w = T

i j···l···w

NP ((S \ NP) / NP) NP S \ S

2 S

⌦

N ⌦ S ⌦N⇤ ⌦N⇤ ⌦N ⌦ S ⌦ S⇤

T

i

T

i jk

T

k

T

jl

T

i

T

i jk

T

k

T

jl

=) T

i

T

i j

T

jl

=) T

j

T

jl

=) T

l

M =
A + A

T

2

Z
dxe

�x

2

NP, S
NP/NP, S\NP
(S\NP)/NP

noun phrase
adj, iTv

Tv

NP/NP NP => NP
NP S\NP => S

Multilinear Algebraic
Semantics

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A
A = {e

i

}
i

3 V

i

=
X

i

C

i

e

i

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

(L,, ·, 1, /, \) b a/c () a · b c () a c \ b

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A
A = {e

i

}
i

3 V

i

=
X

i

C

i

e

i

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

(L,, ·, 1, /, \) b a/c () a · b c () a c \ b

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A
A = {e

i

}
i

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

(L,, ·, 1, /, \) b a/c () a · b c () a c \ b

Vectors

A/B 7! A ⌦ B
A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
U = {e

i

}
i

3 V

i

=
X

i

C

i

e

i

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

(L,, ·, 1, /, \) b a/c () a · b c () a c \ b

(L,, ·, 1, /, \, !)

a · (a/c) c (c \ b) · b c

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

Matrices

Multilinear Algebraic
Semantics

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

(L,, ·, 1, /) b a/c () a · b c a · (a/c) c

Cubes

Multilinear Algebraic
Semantics

Higher order tensors

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

Multilinear Algebraic
Semantics

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

S

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Q(a

r · b) = Q(a

l · b) = Q(a)

⇤ ⌦ Q(b)

Matrix Multiplication

N 7! N S 7! S N/N N
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

Multilinear Algebraic
Semantics

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

a

b

!
7!

a 0

0 b

!

Higher order tensor contraction

N 7! N S 7! S N/N N
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A

N 7! N S 7! S N/N N
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A

Multilinear Algebraic
Semantics

Dogs Chase White Cats

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

NP (S \ NP)/NP NP/NP NP

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

T

i

T

i jk

T

kl

T

l

=
X

i jkl

C

i

C

i jk

C

kl

C

l

�!
e

i

2 S

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

NP (S \ NP)/NP NP/NP NP

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

T

i

T

i jk

T

kl

T

l

=
X

i jkl

C

i

C

i jk

C

kl

C

l

�!
e

i

2 S

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

NP (S \ NP)/NP NP/NP NP

S \ NP

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

Dogs Chase White Cats

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S S ⌦N

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S S ⌦N

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

a

b

!
7! (

a

b

!
,

a

b

!
)

f (

�!
v

i

) = (

�!
v

i

,�!v
i

)

Dogs Chase White Cats

T

k

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

T

k

T

i j

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

T

k

T

i j

T

j

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

A = {e
i

}
i

B = {e
j

}
j

C = {e
k

}
k

3 T

i

=
X

i

C

i

e

i

3 T

i j

=
X

i j

C

i j

e

i

⌦ e

j

A ⌦ B ⌦ C 3 T

i jk

=
X

i jk

C

i jk

e

i

⌦ e

j

⌦ e

k

A ⌦ B ⌦ · · · ⌦Z 3 T

i j···w =
X

i j···w
C

i j···w e

i

⌦ e

j

⌦ · · · ⌦ e

w

T

i j

T

j

tensor contract

=) T

i

T

i

T

i jk

T

kl

T

l

· · · 7! A ⌦ B ⌦ · · · ⌦M M ⌦N ⌦ P ⌦ · · · ⌦W

T

i j···m T

mnp···w
tensor contract

=) T

i j···np···w

A 7! A

A/B B =) A 7! (A ⌦ B) B =) A
A/(B/C) (B/C) =) A 7! A ⌦ (B ⌦ C) (B ⌦ C) =) A

B B \ A =) A 7! B (B ⌦A) =) A
(B/C) (B/C) \ A =) A 7! (B ⌦ C) (B ⌦ C) ⌦A =) A

F(x

l

) � F(x

r

) � F(x)

⇤

F(x) ⌦ F(x)

⇤ ! I

Pregroup Grammars
Types …

Rules

XY

l

Y

r

X

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S S ⌦N

XY

l

Y

r

X

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

S S ⌦N

XY

l

Y

r

X

NPNP

l

NP

r

S NP

r

S NP

l

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

XY

l

Y

r

X

NPNP

l

NP

r

S NP

r

S NP

l

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

S \ NP

XY

l

Y

r

X

XY

l

Y X YY

r

X X

NPNP

l

NP

r

S NP

r

S NP

l

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

XY

l

Y

r

X

XY

l

Y X YY

r

X X

NPNP

l

NP

r

S NP

r

S NP

l

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

XY

l

Y

r

X

XY

l

Y X YY

r

X X

NPNP

l

NP NP NPNP

r

S S NP

r

S NP

l

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

XY

l

Y

r

X

XY

l

Y X YY

r

X X

NPNP

l

NP NP NPNP

r

S S NP

r

S NP

l

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
N 7! N S 7! S NP/NP NP

(S \ N)/N S \ N S
T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S ⌦N) ⌦N N ⌦N N

NP (S \ NP)/NP NP/NP NP

Catgorical Semantics

 Formal
Grammar

Distributions
of Linguistic

Data

structure preserving map

Pregroup
Grammars

FVect
monoidal functor

Categorial Grammars
+

Distributional Semantics

Coecke, Sadrzadeh, Clark, 2010
Grefenstette and Sadrzadeh 2011, 2015

Maillard, Clark, Grefenstette, 2014
Krishnamurti and Mitchell, 2014

Baroni and Zamparelli 2010
Wijnholds (and Moortgat) 2015-16

Language Processing

Complete Sentences

Naturally Occurring Dialogue

? ()

(), () ? (⟨ , ⟩)

? (),♦ (⟨ , ⟨ , ⟩⟩), (λ λ . (,))

Naturally Occurring Dialogue

Exploring Semantic Incrementality
with Dynamic Syntax and Vector Space Semantics

Mehrnoosh Sadrzadeh,1 Matthew Purver,1 Julian Hough,1 Ruth Kempson2

1School of Electronic Engineering and Computer Science,
Queen Mary University of London

{m.sadrzadeh,m.purver,j.hough}@qmul.ac.uk
2Department of Philosophy, King’s College London

ruth.kempson@kcl.ac.uk

Abstract

One of the fundamental requirements for models of semantic processing in dialogue is incre-

mentality: a model must reflect how people interpret and generate language at least on a word-

by-word basis, and handle phenomena such as fragments, incomplete and jointly-produced ut-

terances. We show that the incremental word-by-word parsing process of Dynamic Syntax (DS)

can be assigned a compositional distributional semantics, with the composition operator of DS

corresponding to the general operation of tensor contraction from multilinear algebra. We pro-

vide abstract semantic decorations for the nodes of DS trees, in terms of vectors, tensors, and

sums thereof; using the latter to model the underspecified elements crucial to assigning partial

representations during incremental processing. As a working example, we give an instantiation

of this theory using plausibility tensors of compositional distributional semantics, and show how

our framework can incrementally assign a semantic plausibility measure as it parses phrases and

sentences.

1 Introduction

An incremental, word-by-word view on language processing is motivated by much empirical evidence

from human-human dialogue. This evidence includes split, interrupted, and corrective utterances, see

e.g. (Howes et al., 2011):

(1) A: Ray destroyed . . .

B: . . . the fuchsia. He never liked it. The roses he spared . . .

A: . . . this time.

In (1), the utterances are either inherently incomplete or potentially complete, with more than one agent

contributing to the unfolding of a sequence, with in principle arbitrary speaker switch points and indef-

inite extendibility. In such cases, speakers and hearers must be processing the structural and semantic

information encoded in each utterance incrementally. A second motivation comes from computational

dialogue systems, where the ability to process incrementally helps speed up systems and provide more

natural interaction (Aist et al., 2007). A third motivation comes from psycholinguistic results, even in in-

dividual language processing, which show that hearers can incrementally disambiguate word senses and

resolve references, before sentences are complete and even using partial words and disfluent material to

do so (Brennan and Schober, 2001). In (2a,b), the ambiguous word dribbled can be resolved to a partic-

ular sense early on, given the (footballer or baby) subject, without waiting for the rest of the sentence. A

fourth comes from cognitive neuroscience and models such as Predictive Processing (Friston and Frith,

2015; Clark, 2015) which focus on agents’ incremental ability to generate expectations and judge the

degree to which they are met by observed input.

(2) a. The footballer dribbled the ball across the pitch.

b. The baby dribbled the milk all over the floor.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

A: You are going to write the letter?
B: Only if you post it!

Naturally Occurring Dialogue

Howes et al, 2011, Poesio and Reiser 2010

Computational Dialogue Systems

A: I want to book a ticket …
B: … from where?
A: London
B: … to where?
A: to Paris.

Purver and Kempson 2011
Purver, Eshghi, Hough 2017

Psycholinguistic Analysis

A: The footballer dribbled …
B (thinking) it means controlling the ball
A: … the ball across the pitch

A: The baby dribbled … the milk all over the floor.

Pickering and Frisson 2001

Cognitive Neuroscience

Predictive Processing: agents incrementally generate
expectations and judge the degree to which they are met.

Frisson and Frith 2001
Clarke 2015

Dynamic Syntax
+

Type Theoretic Semantics

• Incremental Language Processing

Hough 2015, Purver et al 2014.

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gabbay. 2001.

Recent Contribution

Dynamic Syntax
+

Distributional Semantics

Sadrzadeh, Purver, Hough, Kempson

SemDial 2018

Outline
• Dynamic Syntax: DS

• CDS for DS

• Some Examples
• Some Experimental Results

Dynamic Syntax

We use the framework of Dynamic Syntax (DS) for incremental grammatical and semantic analysis

(Kempson et al., 2001; Cann et al., 2005; Kempson et al., 2016). DS has sufficient expressivity to capture

the dialogue phenomena in (1) and has been used to provide incremental interpretation and generation for

dialogue systems (Purver et al., 2011; Eshghi et al., 2017). Yet incremental disambiguation is currently

beyond its expressive power; and while its framework is broadly predictive, it does not yet provide an

explanation for how specific expectations can be generated or their similarity to observations measured-

though see (Hough and Purver, 2017) for DS’s interface to a probabilistic semantics.

DS does not fix a special form of syntax and instead defines grammaticality directly in terms of incre-

mental semantic tree growth. Symbolic methods are employed for labelling the contents of these trees,

via terms either from an epsilon calculus (Kempson et al., 2001) or a suitable type theory with records

(Purver et al., 2010). These symbolic approaches are not easily able to reflect the non-deterministic

content of natural language forms, nor the way any initially unfixable interpretation, polysemy being

rampant, can be narrowed down during the utterance interpretation process. For the same reason, the

assigned term specifications do not provide a basis for the graded judgements that humans are able to

make during processing to assess similarity to (or divergence from) expectations (Clark, 2015), to incre-

mentally narrow down a word’s interpretation, or disambiguate its sense in the emerging context.

Non-determinisms of meaning and gradient similarity judgements are the stronghold of the so-called

distributional or vector space semantics (Salton et al., 1975; Schütze, 1998; Lin, 1998; Curran, 2004).

By modelling word meanings as vectors within a continuous space, such approaches directly express

graded similarity of meaning (e.g. as distance or angle between vectors) and changes in interpretation (via

movements of vectors within a space). Vector space semantics has been extended from words to phrases

and sentences using different grammatical formalisms, e.g. Lambek pregroups, Lambek Calculus, and

Combinatory Categorial Grammar (CCG) (Maillard et al., 2014; Krishnamurthy and Mitchell, 2013;

Coecke et al., 2010; Coecke et al., 2013). It has, however, not been extended to incremental and dialogue

formalisms such as DS.

In this paper, we address these lacunae, by defining an incremental vector space semantic model

for DS that can express non-determinism and similarity in word meaning, and yet keep incremental

compositionality over conversational exchanges. As a working example, we instantiate this model us-

ing the plausibility instance of (Clark, 2013b) developed for a type-driven compositional distributional

semantics, and show how it can incrementally assign a semantic plausibility measure as it performs

word-by-word parses of phrases and sentences. We discuss how this ability enables us to incrementally

disambiguate words using their immediate contexts and to model the plausibility of continuations and

thus a hearer’s expectations.

2 Dynamic Syntax and its Semantics

In its original form, Dynamic Syntax (DS) provides a strictly incremental formalism relating word se-

quences to semantic representations. Conventionally, these are seen as trees decorated with semantic

formulae that are terms in a typed lambda calculus (Kempson et al., 2001), chapter 9:
O(X3,O(X1, X2))

X3 O(X1, X2)

X1 X2

“In this paper we will take the operation O to be

function application in a typed lambda calculus, and

the objects of the parsing process [. . .] will be terms

in this calculus together with some labels; [. . .]”

This allows us to give analyses of the semantic output of the word-by-word parsing process in terms

of partial semantic trees, in which nodes are labelled with type Ty and semantic formula Fo, or with

requirements for future development (e.g. ?Ty. ?Fo), and with a pointer ♦ indicating the node currently

under development. This is shown in Figure 1 for the simple sentence Mary likes John. Phenomena

such as conjunction, apposition and relative clauses are analysed via LINKed trees (corresponding to

semantic conjunction). For reasons of space we do not present an original DS tree here; an example of a

non-restrictive relative clause linked tree labelled with vectors is presented in Figure 3.

However, the DS formalism is in fact considerably more general. To continue the quotation above:

“[. . .] it is important to keep in mind that the choice of the actual representation language is

Trees decorated with semantic formulae and applications

Dynamic Syntax
and with …

- Ty: types of formulae
- ?: requirements for further development
- <>: node currently under development
- links: connect trees of arguments of conjunctives etc

Dynamic Syntax
→

? ()

,♦

(), () ? (⟨ , ⟩),♦

Dynamic Syntax
→

? ()

,♦

(), () ? (⟨ , ⟩)

,♦

? (),♦ (⟨ , ⟨ , ⟩⟩), (λ λ . (,))

Dynamic Syntax
→

? ()

,♦

(), () ? (⟨ , ⟩),♦

?

(), ()

,♦

(⟨ , ⟨ , ⟩⟩), (λ λ . (,))

Dynamic Syntax→

?

(), ((,)),♦

(), ()

?

(⟨ , ⟩), (λ . (,))

,♦

?

(), ()

,♦

(⟨ , ⟨ , ⟩⟩), (λ λ . (,))

“mary . . . ” “. . . likes . . . ” “. . . john”

?S

W,Tmary
i ?W ⊗ S,♦

?S

W,Tmary
i ?W ⊗ S

?W,♦ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♦

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 2: A DS with Vector Space Semantics parse of ‘Mary likes John’.

DS requirements can now be treated as requirements for tensors of a particular order (e.g. ?W , ?W⊗S

as above). If we can give these suitable vector-space representations, we can then provide an analogue to

Hough and Purver (2012)’s incremental type inference procedure, allowing us to compile a partial tree to

specify its overall semantic representation (at its root node). One alternative would be to interpret them

as picking out an element which is neutral with regards to composition: the unit vector/tensor of the

space they annotate. A more informative alternative would be to interpret them as enumerating all the

possibilities for further development. This can be derived from all the word vector and phrase tensors

of the space under question — i.e. all the word and phrases whose vectors and tensors live in W and

in W ⊗ S in this case — by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.

Summing will give us one vector/tensor, accumulating the information encoded in the vectors/tensors of

each word/phrase; direct summing will give us a tuple, keeping this information separate from each other.

This gives us the equivalent of a sub-lattice of the record type lattices described in (Hough and Purver,

2017), with the appropriate underspecified record type as the top element, and the attendant advantages

for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the semantic information they

“mary, . . . ” “. . . who . . . ”

?S

W,Tmary
i ,♦ ?W ⊗ S

?S

W, Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♦

“. . . sleeps, . . . ”

?S

W,Tmary
i ?W ⊗ S,♦

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“. . . snores . . . ”

S, µ(Tmary
i T sleep

ij , Tmary
i T snore

ij),♦

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 3: A DS with Vector Space Semantics parse of ‘Mary, who sleeps, snores’.

Mary who sleeps snores.

Multilinear Algebraic
Semantics for DS

We use the framework of Dynamic Syntax (DS) for incremental grammatical and semantic analysis

(Kempson et al., 2001; Cann et al., 2005; Kempson et al., 2016). DS has sufficient expressivity to capture

the dialogue phenomena in (1) and has been used to provide incremental interpretation and generation for

dialogue systems (Purver et al., 2011; Eshghi et al., 2017). Yet incremental disambiguation is currently

beyond its expressive power; and while its framework is broadly predictive, it does not yet provide an

explanation for how specific expectations can be generated or their similarity to observations measured-

though see (Hough and Purver, 2017) for DS’s interface to a probabilistic semantics.

DS does not fix a special form of syntax and instead defines grammaticality directly in terms of incre-

mental semantic tree growth. Symbolic methods are employed for labelling the contents of these trees,

via terms either from an epsilon calculus (Kempson et al., 2001) or a suitable type theory with records

(Purver et al., 2010). These symbolic approaches are not easily able to reflect the non-deterministic

content of natural language forms, nor the way any initially unfixable interpretation, polysemy being

rampant, can be narrowed down during the utterance interpretation process. For the same reason, the

assigned term specifications do not provide a basis for the graded judgements that humans are able to

make during processing to assess similarity to (or divergence from) expectations (Clark, 2015), to incre-

mentally narrow down a word’s interpretation, or disambiguate its sense in the emerging context.

Non-determinisms of meaning and gradient similarity judgements are the stronghold of the so-called

distributional or vector space semantics (Salton et al., 1975; Schütze, 1998; Lin, 1998; Curran, 2004).

By modelling word meanings as vectors within a continuous space, such approaches directly express

graded similarity of meaning (e.g. as distance or angle between vectors) and changes in interpretation (via

movements of vectors within a space). Vector space semantics has been extended from words to phrases

and sentences using different grammatical formalisms, e.g. Lambek pregroups, Lambek Calculus, and

Combinatory Categorial Grammar (CCG) (Maillard et al., 2014; Krishnamurthy and Mitchell, 2013;

Coecke et al., 2010; Coecke et al., 2013). It has, however, not been extended to incremental and dialogue

formalisms such as DS.

In this paper, we address these lacunae, by defining an incremental vector space semantic model

for DS that can express non-determinism and similarity in word meaning, and yet keep incremental

compositionality over conversational exchanges. As a working example, we instantiate this model us-

ing the plausibility instance of (Clark, 2013b) developed for a type-driven compositional distributional

semantics, and show how it can incrementally assign a semantic plausibility measure as it performs

word-by-word parses of phrases and sentences. We discuss how this ability enables us to incrementally

disambiguate words using their immediate contexts and to model the plausibility of continuations and

thus a hearer’s expectations.

2 Dynamic Syntax and its Semantics

In its original form, Dynamic Syntax (DS) provides a strictly incremental formalism relating word se-

quences to semantic representations. Conventionally, these are seen as trees decorated with semantic

formulae that are terms in a typed lambda calculus (Kempson et al., 2001), chapter 9:
O(X3,O(X1, X2))

X3 O(X1, X2)

X1 X2

“In this paper we will take the operation O to be

function application in a typed lambda calculus, and

the objects of the parsing process [. . .] will be terms

in this calculus together with some labels; [. . .]”

This allows us to give analyses of the semantic output of the word-by-word parsing process in terms

of partial semantic trees, in which nodes are labelled with type Ty and semantic formula Fo, or with

requirements for future development (e.g. ?Ty. ?Fo), and with a pointer ♦ indicating the node currently

under development. This is shown in Figure 1 for the simple sentence Mary likes John. Phenomena

such as conjunction, apposition and relative clauses are analysed via LINKed trees (corresponding to

semantic conjunction). For reasons of space we do not present an original DS tree here; an example of a

non-restrictive relative clause linked tree labelled with vectors is presented in Figure 3.

However, the DS formalism is in fact considerably more general. To continue the quotation above:

“[. . .] it is important to keep in mind that the choice of the actual representation language is

compositional operators based on fully fledged categorial grammar derivations, e.g. pregroup grammars

(Coecke et al., 2010; Clark, 2013b) or CCG (Krishnamurthy and Mitchell, 2013; Baroni et al., 2014;

Maillard et al., 2014). However, the work done so far has not been directly compatible with incremental

processing: this paper is the first attempt to develop such an incremental semantics, using a framework

not based on a categorial grammar, i.e. one in which a full categorial analysis of the phrase/sentence is

not the obligatory starting point.

Compositional vector space semantic models have a complementary property to DS. Whereas DS

is agnostic to its choice of semantics, compositional vector space models are agnostic to the choice

of the syntactic system. Coecke et al. (2010) show how they provide semantics for sentences based

on the grammatical structures given by Lambek’s pregroup grammars (Lambek, 1997); Coecke et al.

(2013) show how this semantics also works starting from the parse trees of Lambek’s Syntactic Calculus

(Lambek, 1958); Wijnholds (2017) shows how the same semantics can be extended to the Lambek-

Grishin Calculus; and (Krishnamurthy and Mitchell, 2013; Baroni et al., 2014; Maillard et al., 2014)

show how it works for CCG trees. These semantic models homomorphically map the concatenation

and slashes of categorial grammars to tensors and their evaluation/application/composition operations to

tensor contraction.

In DS terms, structures X1, X2, X3 are mapped to general higher order tensors, e.g. as follows:

X1 !→ Ti1i2···in ∈ V1 ⊗ V2 ⊗ · · ·Vn

X2 !→ Tinin+1···in+k
∈ Vn ⊗ Vn+1 ⊗ · · ·Vn+k

X3 !→ Tin+kin+k+1···in+k+m
∈ Vn+k ⊗ Vn+k+1 ⊗ · · ·Vn+k+m

Each Ti1i2···in abbreviates the linear expansion of a tensor, which is normally written as follows:

Ti1i2···in ≡
∑

i1i2···in

Ci1i2···ine1 ⊗ e2 ⊗ · · ·⊗ en

for ei a basis of Vi and Ci1i2···in its corresponding scalar value. The O operations are mapped to contrac-

tions between these tensors, formed as follows:

O(X1, X2) !→ Ti1i2···inTinin+1···in+k

∈ V1 ⊗ V2 ⊗ · · ·⊗ Vn−1 ⊗ Vn+1 ⊗ · · ·⊗ Vn+k

O(X3,O(X1, X2)) !→ Ti1i2···inTinin+1···in+k
Tin+kin+k+1···in+k+m

∈ V1 ⊗ V2 ⊗ · · ·⊗ Vn−1 ⊗ Vn+1 ⊗ · · ·⊗ Vn+k−1 ⊗ Vn+k+1 ⊗ · · ·⊗ Vn+k+m

In their most general form presented above, these formulae are large and the index notation becomes

difficult to read. In special cases, however, it is often enough to work with spaces of rank around 3. For

instance, the application of a transitive verb to its object is mapped to the following contraction:

Ti1i2i3Ti3 = (
∑

i1i2i3

Ci1i2i3e1 ⊗ e2 ⊗ e3)(
∑

i3

Ci3e3) =
∑

i1i2

Ci1i2i3Ci3e1 ⊗ e2

This is the contraction between a cube Ti1i2i3 in X1 ⊗ X2 ⊗ X3 and a vector Ti3 in X3, resulting in a

matrix in Ti1i2 in X1 ⊗X2.

We take the DS propositional type Ty(t) to correspond to a sentence space S, and the entity type

Ty(e) a word space W . Given vectors Tmary
i , T john

k in W and the (cube) tensor T like
ijk in W ⊗ S ⊗W ,

the tensor semantic trees of the DS parsing process of Mary likes John become as in Fig. 2.1

A very similar procedure is applicable to the linked structures, where conjunction can be interpreted

by the µ map of a Frobenius algebra over a vector space, e.g. as in (Kartsaklis, 2015), or as composition

of the interpretations of its two conjuncts, as in (Muskens and Sadrzadeh, 2016). The µ map has also

been used to model relative clauses (Clark et al., 2013; Sadrzadeh et al., 2013; Sadrzadeh et al., 2014).

It combines the information of the two vector spaces into one. Figure 2 shows how it combines the

information of two contracted tensors Tmary
i T sleep

ij and Tmary
i T snore

ij .

1There has been much discussion about whether sentence and word spaces should be the same or separate. In previous
work, we have worked with both cases, i.e. when W ̸= S and when W = S.

Simple Nodes

We use the framework of Dynamic Syntax (DS) for incremental grammatical and semantic analysis

(Kempson et al., 2001; Cann et al., 2005; Kempson et al., 2016). DS has sufficient expressivity to capture

the dialogue phenomena in (1) and has been used to provide incremental interpretation and generation for

dialogue systems (Purver et al., 2011; Eshghi et al., 2017). Yet incremental disambiguation is currently

beyond its expressive power; and while its framework is broadly predictive, it does not yet provide an

explanation for how specific expectations can be generated or their similarity to observations measured-

though see (Hough and Purver, 2017) for DS’s interface to a probabilistic semantics.

DS does not fix a special form of syntax and instead defines grammaticality directly in terms of incre-

mental semantic tree growth. Symbolic methods are employed for labelling the contents of these trees,

via terms either from an epsilon calculus (Kempson et al., 2001) or a suitable type theory with records

(Purver et al., 2010). These symbolic approaches are not easily able to reflect the non-deterministic

content of natural language forms, nor the way any initially unfixable interpretation, polysemy being

rampant, can be narrowed down during the utterance interpretation process. For the same reason, the

assigned term specifications do not provide a basis for the graded judgements that humans are able to

make during processing to assess similarity to (or divergence from) expectations (Clark, 2015), to incre-

mentally narrow down a word’s interpretation, or disambiguate its sense in the emerging context.

Non-determinisms of meaning and gradient similarity judgements are the stronghold of the so-called

distributional or vector space semantics (Salton et al., 1975; Schütze, 1998; Lin, 1998; Curran, 2004).

By modelling word meanings as vectors within a continuous space, such approaches directly express

graded similarity of meaning (e.g. as distance or angle between vectors) and changes in interpretation (via

movements of vectors within a space). Vector space semantics has been extended from words to phrases

and sentences using different grammatical formalisms, e.g. Lambek pregroups, Lambek Calculus, and

Combinatory Categorial Grammar (CCG) (Maillard et al., 2014; Krishnamurthy and Mitchell, 2013;

Coecke et al., 2010; Coecke et al., 2013). It has, however, not been extended to incremental and dialogue

formalisms such as DS.

In this paper, we address these lacunae, by defining an incremental vector space semantic model

for DS that can express non-determinism and similarity in word meaning, and yet keep incremental

compositionality over conversational exchanges. As a working example, we instantiate this model us-

ing the plausibility instance of (Clark, 2013b) developed for a type-driven compositional distributional

semantics, and show how it can incrementally assign a semantic plausibility measure as it performs

word-by-word parses of phrases and sentences. We discuss how this ability enables us to incrementally

disambiguate words using their immediate contexts and to model the plausibility of continuations and

thus a hearer’s expectations.

2 Dynamic Syntax and its Semantics

In its original form, Dynamic Syntax (DS) provides a strictly incremental formalism relating word se-

quences to semantic representations. Conventionally, these are seen as trees decorated with semantic

formulae that are terms in a typed lambda calculus (Kempson et al., 2001), chapter 9:
O(X3,O(X1, X2))

X3 O(X1, X2)

X1 X2

“In this paper we will take the operation O to be

function application in a typed lambda calculus, and

the objects of the parsing process [. . .] will be terms

in this calculus together with some labels; [. . .]”

This allows us to give analyses of the semantic output of the word-by-word parsing process in terms

of partial semantic trees, in which nodes are labelled with type Ty and semantic formula Fo, or with

requirements for future development (e.g. ?Ty. ?Fo), and with a pointer ♦ indicating the node currently

under development. This is shown in Figure 1 for the simple sentence Mary likes John. Phenomena

such as conjunction, apposition and relative clauses are analysed via LINKed trees (corresponding to

semantic conjunction). For reasons of space we do not present an original DS tree here; an example of a

non-restrictive relative clause linked tree labelled with vectors is presented in Figure 3.

However, the DS formalism is in fact considerably more general. To continue the quotation above:

“[. . .] it is important to keep in mind that the choice of the actual representation language is

Operations Nodes

compositional operators based on fully fledged categorial grammar derivations, e.g. pregroup grammars

(Coecke et al., 2010; Clark, 2013b) or CCG (Krishnamurthy and Mitchell, 2013; Baroni et al., 2014;

Maillard et al., 2014). However, the work done so far has not been directly compatible with incremental

processing: this paper is the first attempt to develop such an incremental semantics, using a framework

not based on a categorial grammar, i.e. one in which a full categorial analysis of the phrase/sentence is

not the obligatory starting point.

Compositional vector space semantic models have a complementary property to DS. Whereas DS

is agnostic to its choice of semantics, compositional vector space models are agnostic to the choice

of the syntactic system. Coecke et al. (2010) show how they provide semantics for sentences based

on the grammatical structures given by Lambek’s pregroup grammars (Lambek, 1997); Coecke et al.

(2013) show how this semantics also works starting from the parse trees of Lambek’s Syntactic Calculus

(Lambek, 1958); Wijnholds (2017) shows how the same semantics can be extended to the Lambek-

Grishin Calculus; and (Krishnamurthy and Mitchell, 2013; Baroni et al., 2014; Maillard et al., 2014)

show how it works for CCG trees. These semantic models homomorphically map the concatenation

and slashes of categorial grammars to tensors and their evaluation/application/composition operations to

tensor contraction.

In DS terms, structures X1, X2, X3 are mapped to general higher order tensors, e.g. as follows:

X1 !→ Ti1i2···in ∈ V1 ⊗ V2 ⊗ · · ·Vn

X2 !→ Tinin+1···in+k
∈ Vn ⊗ Vn+1 ⊗ · · ·Vn+k

X3 !→ Tin+kin+k+1···in+k+m
∈ Vn+k ⊗ Vn+k+1 ⊗ · · ·Vn+k+m

Each Ti1i2···in abbreviates the linear expansion of a tensor, which is normally written as follows:

Ti1i2···in ≡
∑

i1i2···in

Ci1i2···ine1 ⊗ e2 ⊗ · · ·⊗ en

for ei a basis of Vi and Ci1i2···in its corresponding scalar value. The O operations are mapped to contrac-

tions between these tensors, formed as follows:

O(X1, X2) !→ Ti1i2···inTinin+1···in+k

∈ V1 ⊗ V2 ⊗ · · ·⊗ Vn−1 ⊗ Vn+1 ⊗ · · ·⊗ Vn+k

O(X3,O(X1, X2)) !→ Ti1i2···inTinin+1···in+k
Tin+kin+k+1···in+k+m

∈ V1 ⊗ V2 ⊗ · · ·⊗ Vn−1 ⊗ Vn+1 ⊗ · · ·⊗ Vn+k−1 ⊗ Vn+k+1 ⊗ · · ·⊗ Vn+k+m

In their most general form presented above, these formulae are large and the index notation becomes

difficult to read. In special cases, however, it is often enough to work with spaces of rank around 3. For

instance, the application of a transitive verb to its object is mapped to the following contraction:

Ti1i2i3Ti3 = (
∑

i1i2i3

Ci1i2i3e1 ⊗ e2 ⊗ e3)(
∑

i3

Ci3e3) =
∑

i1i2

Ci1i2i3Ci3e1 ⊗ e2

This is the contraction between a cube Ti1i2i3 in X1 ⊗ X2 ⊗ X3 and a vector Ti3 in X3, resulting in a

matrix in Ti1i2 in X1 ⊗X2.

We take the DS propositional type Ty(t) to correspond to a sentence space S, and the entity type

Ty(e) a word space W . Given vectors Tmary
i , T john

k in W and the (cube) tensor T like
ijk in W ⊗ S ⊗W ,

the tensor semantic trees of the DS parsing process of Mary likes John become as in Fig. 2.1

A very similar procedure is applicable to the linked structures, where conjunction can be interpreted

by the µ map of a Frobenius algebra over a vector space, e.g. as in (Kartsaklis, 2015), or as composition

of the interpretations of its two conjuncts, as in (Muskens and Sadrzadeh, 2016). The µ map has also

been used to model relative clauses (Clark et al., 2013; Sadrzadeh et al., 2013; Sadrzadeh et al., 2014).

It combines the information of the two vector spaces into one. Figure 2 shows how it combines the

information of two contracted tensors Tmary
i T sleep

ij and Tmary
i T snore

ij .

1There has been much discussion about whether sentence and word spaces should be the same or separate. In previous
work, we have worked with both cases, i.e. when W ̸= S and when W = S.

Multilinear Algebraic
Semantics for DS

Extras
• Ty(t) —-> S

• Ty(e) —> W

• ?X —-> sum or direct sum of the words and phrase
with semantics in X and their probabilities

• —-> a neutral element such as the identity in X
• —> a tensor full of 1’s in X

Multilinear Algebraic
Semantics for DS

?

,♦

∋ ? ⊗ ,♦

?

,♦

∋ ? ⊗

,♦

? ,♦ ⊗ ⊗ ∋

?

∋ ,♦

∋

?

⊗ ∋

,♦

?

∋

,♦

⊗ ⊗ ∋

“Babies …”

“mary . . . ” “. . . likes . . . ” “. . . john”

?S

W,Tmary
i ?W ⊗ S,♦

?S

W,Tmary
i ?W ⊗ S

?W,♦ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♦

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 2: A DS with Vector Space Semantics parse of ‘Mary likes John’.

DS requirements can now be treated as requirements for tensors of a particular order (e.g. ?W , ?W⊗S

as above). If we can give these suitable vector-space representations, we can then provide an analogue to

Hough and Purver (2012)’s incremental type inference procedure, allowing us to compile a partial tree to

specify its overall semantic representation (at its root node). One alternative would be to interpret them

as picking out an element which is neutral with regards to composition: the unit vector/tensor of the

space they annotate. A more informative alternative would be to interpret them as enumerating all the

possibilities for further development. This can be derived from all the word vector and phrase tensors

of the space under question — i.e. all the word and phrases whose vectors and tensors live in W and

in W ⊗ S in this case — by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.

Summing will give us one vector/tensor, accumulating the information encoded in the vectors/tensors of

each word/phrase; direct summing will give us a tuple, keeping this information separate from each other.

This gives us the equivalent of a sub-lattice of the record type lattices described in (Hough and Purver,

2017), with the appropriate underspecified record type as the top element, and the attendant advantages

for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the semantic information they

“mary, . . . ” “. . . who . . . ”

?S

W,Tmary
i ,♦ ?W ⊗ S

?S

W, Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♦

“. . . sleeps, . . . ”

?S

W,Tmary
i ?W ⊗ S,♦

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“. . . snores . . . ”

S, µ(Tmary
i T sleep

ij , Tmary
i T snore

ij),♦

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 3: A DS with Vector Space Semantics parse of ‘Mary, who sleeps, snores’.

Similar calculations provide us with the following sentence representations:

Tbabies score = 34⊤+ 318⊥

Tbabies dribble = 958⊤+ 98⊥

T footballers vomit = 33⊤+ 723⊥

T footballers score = 493⊤+ 11⊥

T footballers dribble = 986⊤+ 526⊥

It follows that Babies vomit is more plausible than Footballers vomit, Footballers score is more plausible

than Babies score, but Babies dribble and Footballers dribble have more or less the same degree of

plausibility.

A transitive verb such as control will have a tensor representation as follows:

T control =
∑

ijk

Ccontrol
ijk ei ⊗ ej ⊗ ek

for ei, ek basis of W and ej either ⊤ or ⊥. Suppose that control has a 1 entry value at pitch and goal

with ej = ⊤ and a low or zero entry everywhere else. It is easy to show that the sentence representation

of Footballers control balls is much more plausible than that of Babies control balls.

T footballers control balls = T footballers
i T control

ijk T balls
k

= Cfootballer
i Cball

k ⟨pitch⟩Ccontrol
ijk (⟨pitch,⊤, pitch⟩+ ⟨pitch,⊤, goal⟩)

+ Cfootballer
i Cball

k ⟨goal⟩Ccontrol
ijk (⟨goal,⊤, pitch⟩+ ⟨goal,⊤, goal⟩)

= 6866⊤

Tbabies control balls = T babies
i T control

ijk T balls
k = 0

In an unfinished utterance, such as babies . . . , parsing will first derive a semantic tree containing the

vector for babies and a tensor for ?W ⊗ S; then we tensor contract the two to obtain a vector in ?S. The

underspecified tensor in W ⊗ S is computed by summing all known elements of W ⊗ S:

T+
ij = T vomit + T score + T dribble + T control baby + T control milk + T control footballer + T control ball

The tensor contraction of this with the vector of babies provides us with the meaning of the utterance:

T babies
i T+

ij

Similar calculations to the previous cases show that plausibility increases when moving from the incom-

plete utterence T babies
i T+

ij to the complete one T babies
i T vomit

ij . Conceptually speaking, the incomplete

phrase will be a dense, high-entropy vector with nearly equal values on ⊤ and ⊥, whereas the complete

phrase (or the more complete phrase), will result in a sparser vector with more differential values on ⊤
and ⊥. Continuation with a less plausible verb, e.g. score would result in a reduction in plausibility;

and different transitive verb phrases would of course have corresponding different effects. We therefore

cautiously view this as an initial step towards a model which can provide the “error signal” feedback

assumed in models of expectation during language interpretation (Clark, 2015).

5 Nondeterminism of Meaning and Incremental Disambiguation

5.1 Incremental Disambiguation

Distributional semantics comes with a straightforward algorithm for acquisition of word meaning, but

when a word is ambiguous its vector representation becomes a mixture of the representations of its dif-

ferent senses. Post processing of these vectors is needed to obtain different representations for each

k

Incremental Utterances

babies

“Babies …”

“mary . . . ” “. . . likes . . . ” “. . . john”

?S

W,Tmary
i ?W ⊗ S,♦

?S

W,Tmary
i ?W ⊗ S

?W,♦ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♦

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 2: A DS with Vector Space Semantics parse of ‘Mary likes John’.

DS requirements can now be treated as requirements for tensors of a particular order (e.g. ?W , ?W⊗S

as above). If we can give these suitable vector-space representations, we can then provide an analogue to

Hough and Purver (2012)’s incremental type inference procedure, allowing us to compile a partial tree to

specify its overall semantic representation (at its root node). One alternative would be to interpret them

as picking out an element which is neutral with regards to composition: the unit vector/tensor of the

space they annotate. A more informative alternative would be to interpret them as enumerating all the

possibilities for further development. This can be derived from all the word vector and phrase tensors

of the space under question — i.e. all the word and phrases whose vectors and tensors live in W and

in W ⊗ S in this case — by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.

Summing will give us one vector/tensor, accumulating the information encoded in the vectors/tensors of

each word/phrase; direct summing will give us a tuple, keeping this information separate from each other.

This gives us the equivalent of a sub-lattice of the record type lattices described in (Hough and Purver,

2017), with the appropriate underspecified record type as the top element, and the attendant advantages

for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the semantic information they

“mary, . . . ” “. . . who . . . ”

?S

W,Tmary
i ,♦ ?W ⊗ S

?S

W, Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♦

“. . . sleeps, . . . ”

?S

W,Tmary
i ?W ⊗ S,♦

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“. . . snores . . . ”

S, µ(Tmary
i T sleep

ij , Tmary
i T snore

ij),♦

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 3: A DS with Vector Space Semantics parse of ‘Mary, who sleeps, snores’.

Similar calculations provide us with the following sentence representations:

Tbabies score = 34⊤+ 318⊥

Tbabies dribble = 958⊤+ 98⊥

T footballers vomit = 33⊤+ 723⊥

T footballers score = 493⊤+ 11⊥

T footballers dribble = 986⊤+ 526⊥

It follows that Babies vomit is more plausible than Footballers vomit, Footballers score is more plausible

than Babies score, but Babies dribble and Footballers dribble have more or less the same degree of

plausibility.

A transitive verb such as control will have a tensor representation as follows:

T control =
∑

ijk

Ccontrol
ijk ei ⊗ ej ⊗ ek

for ei, ek basis of W and ej either ⊤ or ⊥. Suppose that control has a 1 entry value at pitch and goal

with ej = ⊤ and a low or zero entry everywhere else. It is easy to show that the sentence representation

of Footballers control balls is much more plausible than that of Babies control balls.

T footballers control balls = T footballers
i T control

ijk T balls
k

= Cfootballer
i Cball

k ⟨pitch⟩Ccontrol
ijk (⟨pitch,⊤, pitch⟩+ ⟨pitch,⊤, goal⟩)

+ Cfootballer
i Cball

k ⟨goal⟩Ccontrol
ijk (⟨goal,⊤, pitch⟩+ ⟨goal,⊤, goal⟩)

= 6866⊤

Tbabies control balls = T babies
i T control

ijk T balls
k = 0

In an unfinished utterance, such as babies . . . , parsing will first derive a semantic tree containing the

vector for babies and a tensor for ?W ⊗ S; then we tensor contract the two to obtain a vector in ?S. The

underspecified tensor in W ⊗ S is computed by summing all known elements of W ⊗ S:

T+
ij = T vomit + T score + T dribble + T control baby + T control milk + T control footballer + T control ball

The tensor contraction of this with the vector of babies provides us with the meaning of the utterance:

T babies
i T+

ij

Similar calculations to the previous cases show that plausibility increases when moving from the incom-

plete utterence T babies
i T+

ij to the complete one T babies
i T vomit

ij . Conceptually speaking, the incomplete

phrase will be a dense, high-entropy vector with nearly equal values on ⊤ and ⊥, whereas the complete

phrase (or the more complete phrase), will result in a sparser vector with more differential values on ⊤
and ⊥. Continuation with a less plausible verb, e.g. score would result in a reduction in plausibility;

and different transitive verb phrases would of course have corresponding different effects. We therefore

cautiously view this as an initial step towards a model which can provide the “error signal” feedback

assumed in models of expectation during language interpretation (Clark, 2015).

5 Nondeterminism of Meaning and Incremental Disambiguation

5.1 Incremental Disambiguation

Distributional semantics comes with a straightforward algorithm for acquisition of word meaning, but

when a word is ambiguous its vector representation becomes a mixture of the representations of its dif-

ferent senses. Post processing of these vectors is needed to obtain different representations for each

Incremental Utterances

babies

“Babies …”

“mary . . . ” “. . . likes . . . ” “. . . john”

?S

W,Tmary
i ?W ⊗ S,♦

?S

W,Tmary
i ?W ⊗ S

?W,♦ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♦

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 2: A DS with Vector Space Semantics parse of ‘Mary likes John’.

DS requirements can now be treated as requirements for tensors of a particular order (e.g. ?W , ?W⊗S

as above). If we can give these suitable vector-space representations, we can then provide an analogue to

Hough and Purver (2012)’s incremental type inference procedure, allowing us to compile a partial tree to

specify its overall semantic representation (at its root node). One alternative would be to interpret them

as picking out an element which is neutral with regards to composition: the unit vector/tensor of the

space they annotate. A more informative alternative would be to interpret them as enumerating all the

possibilities for further development. This can be derived from all the word vector and phrase tensors

of the space under question — i.e. all the word and phrases whose vectors and tensors live in W and

in W ⊗ S in this case — by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.

Summing will give us one vector/tensor, accumulating the information encoded in the vectors/tensors of

each word/phrase; direct summing will give us a tuple, keeping this information separate from each other.

This gives us the equivalent of a sub-lattice of the record type lattices described in (Hough and Purver,

2017), with the appropriate underspecified record type as the top element, and the attendant advantages

for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the semantic information they

“mary, . . . ” “. . . who . . . ”

?S

W,Tmary
i ,♦ ?W ⊗ S

?S

W, Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♦

“. . . sleeps, . . . ”

?S

W,Tmary
i ?W ⊗ S,♦

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“. . . snores . . . ”

S, µ(Tmary
i T sleep

ij , Tmary
i T snore

ij),♦

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 3: A DS with Vector Space Semantics parse of ‘Mary, who sleeps, snores’.

Similar calculations provide us with the following sentence representations:

Tbabies score = 34⊤+ 318⊥

Tbabies dribble = 958⊤+ 98⊥

T footballers vomit = 33⊤+ 723⊥

T footballers score = 493⊤+ 11⊥

T footballers dribble = 986⊤+ 526⊥

It follows that Babies vomit is more plausible than Footballers vomit, Footballers score is more plausible

than Babies score, but Babies dribble and Footballers dribble have more or less the same degree of

plausibility.

A transitive verb such as control will have a tensor representation as follows:

T control =
∑

ijk

Ccontrol
ijk ei ⊗ ej ⊗ ek

for ei, ek basis of W and ej either ⊤ or ⊥. Suppose that control has a 1 entry value at pitch and goal

with ej = ⊤ and a low or zero entry everywhere else. It is easy to show that the sentence representation

of Footballers control balls is much more plausible than that of Babies control balls.

T footballers control balls = T footballers
i T control

ijk T balls
k

= Cfootballer
i Cball

k ⟨pitch⟩Ccontrol
ijk (⟨pitch,⊤, pitch⟩+ ⟨pitch,⊤, goal⟩)

+ Cfootballer
i Cball

k ⟨goal⟩Ccontrol
ijk (⟨goal,⊤, pitch⟩+ ⟨goal,⊤, goal⟩)

= 6866⊤

Tbabies control balls = T babies
i T control

ijk T balls
k = 0

In an unfinished utterance, such as babies . . . , parsing will first derive a semantic tree containing the

vector for babies and a tensor for ?W ⊗ S; then we tensor contract the two to obtain a vector in ?S. The

underspecified tensor in W ⊗ S is computed by summing all known elements of W ⊗ S:

T+
ij = T vomit + T score + T dribble + T control baby + T control milk + T control footballer + T control ball

The tensor contraction of this with the vector of babies provides us with the meaning of the utterance:

T babies
i T+

ij

Similar calculations to the previous cases show that plausibility increases when moving from the incom-

plete utterence T babies
i T+

ij to the complete one T babies
i T vomit

ij . Conceptually speaking, the incomplete

phrase will be a dense, high-entropy vector with nearly equal values on ⊤ and ⊥, whereas the complete

phrase (or the more complete phrase), will result in a sparser vector with more differential values on ⊤
and ⊥. Continuation with a less plausible verb, e.g. score would result in a reduction in plausibility;

and different transitive verb phrases would of course have corresponding different effects. We therefore

cautiously view this as an initial step towards a model which can provide the “error signal” feedback

assumed in models of expectation during language interpretation (Clark, 2015).

5 Nondeterminism of Meaning and Incremental Disambiguation

5.1 Incremental Disambiguation

Distributional semantics comes with a straightforward algorithm for acquisition of word meaning, but

when a word is ambiguous its vector representation becomes a mixture of the representations of its dif-

ferent senses. Post processing of these vectors is needed to obtain different representations for each

Similar calculations provide us with the following sentence representations:

Tbabies score = 34⊤+ 318⊥

Tbabies dribble = 958⊤+ 98⊥

T footballers vomit = 33⊤+ 723⊥

T footballers score = 493⊤+ 11⊥

T footballers dribble = 986⊤+ 526⊥

It follows that Babies vomit is more plausible than Footballers vomit, Footballers score is more plausible

than Babies score, but Babies dribble and Footballers dribble have more or less the same degree of

plausibility.

A transitive verb such as control will have a tensor representation as follows:

T control =
∑

ijk

Ccontrol
ijk ei ⊗ ej ⊗ ek

for ei, ek basis of W and ej either ⊤ or ⊥. Suppose that control has a 1 entry value at pitch and goal

with ej = ⊤ and a low or zero entry everywhere else. It is easy to show that the sentence representation

of Footballers control balls is much more plausible than that of Babies control balls.

T footballers control balls = T footballers
i T control

ijk T balls
k

= Cfootballer
i Cball

k ⟨pitch⟩Ccontrol
ijk (⟨pitch,⊤, pitch⟩+ ⟨pitch,⊤, goal⟩)

+ Cfootballer
i Cball

k ⟨goal⟩Ccontrol
ijk (⟨goal,⊤, pitch⟩+ ⟨goal,⊤, goal⟩)

= 6866⊤

Tbabies control balls = T babies
i T control

ijk T balls
k = 0

In an unfinished utterance, such as babies . . . , parsing will first derive a semantic tree containing the

vector for babies and a tensor for ?W ⊗ S; then we tensor contract the two to obtain a vector in ?S. The

underspecified tensor in W ⊗ S is computed by summing all known elements of W ⊗ S:

T+
ij = T vomit + T score + T dribble + T control baby + T control milk + T control footballer + T control ball

The tensor contraction of this with the vector of babies provides us with the meaning of the utterance:

T babies
i T+

ij

Similar calculations to the previous cases show that plausibility increases when moving from the incom-

plete utterence T babies
i T+

ij to the complete one T babies
i T vomit

ij . Conceptually speaking, the incomplete

phrase will be a dense, high-entropy vector with nearly equal values on ⊤ and ⊥, whereas the complete

phrase (or the more complete phrase), will result in a sparser vector with more differential values on ⊤
and ⊥. Continuation with a less plausible verb, e.g. score would result in a reduction in plausibility;

and different transitive verb phrases would of course have corresponding different effects. We therefore

cautiously view this as an initial step towards a model which can provide the “error signal” feedback

assumed in models of expectation during language interpretation (Clark, 2015).

5 Nondeterminism of Meaning and Incremental Disambiguation

5.1 Incremental Disambiguation

Distributional semantics comes with a straightforward algorithm for acquisition of word meaning, but

when a word is ambiguous its vector representation becomes a mixture of the representations of its dif-

ferent senses. Post processing of these vectors is needed to obtain different representations for each

Incremental Utterances

babies

“Babies …”

“mary . . . ” “. . . likes . . . ” “. . . john”

?S

W,Tmary
i ?W ⊗ S,♦

?S

W,Tmary
i ?W ⊗ S

?W,♦ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♦

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 2: A DS with Vector Space Semantics parse of ‘Mary likes John’.

DS requirements can now be treated as requirements for tensors of a particular order (e.g. ?W , ?W⊗S

as above). If we can give these suitable vector-space representations, we can then provide an analogue to

Hough and Purver (2012)’s incremental type inference procedure, allowing us to compile a partial tree to

specify its overall semantic representation (at its root node). One alternative would be to interpret them

as picking out an element which is neutral with regards to composition: the unit vector/tensor of the

space they annotate. A more informative alternative would be to interpret them as enumerating all the

possibilities for further development. This can be derived from all the word vector and phrase tensors

of the space under question — i.e. all the word and phrases whose vectors and tensors live in W and

in W ⊗ S in this case — by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.

Summing will give us one vector/tensor, accumulating the information encoded in the vectors/tensors of

each word/phrase; direct summing will give us a tuple, keeping this information separate from each other.

This gives us the equivalent of a sub-lattice of the record type lattices described in (Hough and Purver,

2017), with the appropriate underspecified record type as the top element, and the attendant advantages

for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the semantic information they

“mary, . . . ” “. . . who . . . ”

?S

W,Tmary
i ,♦ ?W ⊗ S

?S

W, Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♦

“. . . sleeps, . . . ”

?S

W,Tmary
i ?W ⊗ S,♦

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“. . . snores . . . ”

S, µ(Tmary
i T sleep

ij , Tmary
i T snore

ij),♦

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 3: A DS with Vector Space Semantics parse of ‘Mary, who sleeps, snores’.

Similar calculations provide us with the following sentence representations:

Tbabies score = 34⊤+ 318⊥

Tbabies dribble = 958⊤+ 98⊥

T footballers vomit = 33⊤+ 723⊥

T footballers score = 493⊤+ 11⊥

T footballers dribble = 986⊤+ 526⊥

It follows that Babies vomit is more plausible than Footballers vomit, Footballers score is more plausible

than Babies score, but Babies dribble and Footballers dribble have more or less the same degree of

plausibility.

A transitive verb such as control will have a tensor representation as follows:

T control =
∑

ijk

Ccontrol
ijk ei ⊗ ej ⊗ ek

for ei, ek basis of W and ej either ⊤ or ⊥. Suppose that control has a 1 entry value at pitch and goal

with ej = ⊤ and a low or zero entry everywhere else. It is easy to show that the sentence representation

of Footballers control balls is much more plausible than that of Babies control balls.

T footballers control balls = T footballers
i T control

ijk T balls
k

= Cfootballer
i Cball

k ⟨pitch⟩Ccontrol
ijk (⟨pitch,⊤, pitch⟩+ ⟨pitch,⊤, goal⟩)

+ Cfootballer
i Cball

k ⟨goal⟩Ccontrol
ijk (⟨goal,⊤, pitch⟩+ ⟨goal,⊤, goal⟩)

= 6866⊤

Tbabies control balls = T babies
i T control

ijk T balls
k = 0

In an unfinished utterance, such as babies . . . , parsing will first derive a semantic tree containing the

vector for babies and a tensor for ?W ⊗ S; then we tensor contract the two to obtain a vector in ?S. The

underspecified tensor in W ⊗ S is computed by summing all known elements of W ⊗ S:

T+
ij = T vomit + T score + T dribble + T control baby + T control milk + T control footballer + T control ball

The tensor contraction of this with the vector of babies provides us with the meaning of the utterance:

T babies
i T+

ij

Similar calculations to the previous cases show that plausibility increases when moving from the incom-

plete utterence T babies
i T+

ij to the complete one T babies
i T vomit

ij . Conceptually speaking, the incomplete

phrase will be a dense, high-entropy vector with nearly equal values on ⊤ and ⊥, whereas the complete

phrase (or the more complete phrase), will result in a sparser vector with more differential values on ⊤
and ⊥. Continuation with a less plausible verb, e.g. score would result in a reduction in plausibility;

and different transitive verb phrases would of course have corresponding different effects. We therefore

cautiously view this as an initial step towards a model which can provide the “error signal” feedback

assumed in models of expectation during language interpretation (Clark, 2015).

5 Nondeterminism of Meaning and Incremental Disambiguation

5.1 Incremental Disambiguation

Distributional semantics comes with a straightforward algorithm for acquisition of word meaning, but

when a word is ambiguous its vector representation becomes a mixture of the representations of its dif-

ferent senses. Post processing of these vectors is needed to obtain different representations for each

k

Incremental Utterances

Babies …

babies

“Babies vomit”

contribute. The use of the identity provides no semantic information; the sum gives information about the

“average” vector/tensor expected on the basis of what is known about the language and its use in context

(encoded in the vector space model); the direct sum enumerates the possibilities. In each case, more

semantic information can then arrive later as more words are parsed. The best alternative will depend on

task and implementation: in the next section, we give a working example using the sum operation.

4 Incremental Plausibility: a working example

In order to exemplify the abstract tensors and tensor contraction operations of the model and provide a

proof of concept for its applicability to semantic incrementality, we characterise the incremental disam-

biguation of the The footballer dribbled.... example in (2). This example is worked out in the instance

of the compositional distributional semantics introduced in (Clark, 2013b) and implemented in (Polajnar

et al., 2014), intended to model plausibility. In this instance, S is a two dimensional space with basis

vectors true ⊤ and false ⊥. Sentences that are highly plausible have a vector representation close to the

⊤ basis; highly implausible sentences have one close to the ⊥ basis. As an illustrative example, we take

W to be the following 4× 4 matrix based on co-occurrence counts:2

infant nappy pitch goal
baby 34 10 0 0
milk 10 1 0 0
footballer 0 0 11 52
ball 0 1 27 49

For an example of a vector representation, consider the row corresponding to baby: this gives us a vector

with the linear expansion
∑

iC
baby
i ei, for ei ∈ {infant, nappy, pitch, goal} a basis vector of W

and Cbaby
i its corresponding scalar value. The value Cbaby

2 = 10 represents the number of times baby

occurred in the same piece of text as nappy; the value Cbaby
4 = 0 represents the number of times baby

occurred in the same excerpt as goal, e.g. as the subjects of wore nappy or crawled into a goal.

Intransitive verbs v will have matrix representations with linear expansion
∑

ij C
v
ijei ⊗ ej with ei a

basis vector of W and ej a basis vector of S. A high value for v on the basis ⟨ei,⊤⟩ means that it is

highly plausible that v has the property ei; a high value at the ⟨ei,⊥⟩ means that it is highly implausible

that v has property ei. For example, consider the verbs vomit, score, dribble in their intransitive roles:

T score has a high value at ⟨goal,⊤⟩, since it is highly plausible that things that are scored are goals; and

a high entry at ⟨nappy,⊥⟩, since it is highly implausible that things that wear nappies (e.g. babies) score.

T vomit has an opposite plausibility distribution for infant and nappy wearing agents. T dribble is a mixture

of these two, since both nappy wearing and goal scoring agents do it, but in different senses. Here, we

instantiate the matrix purely from text co-occurrence, approximating plausibility from co-occurrence of

verb and entity in the same text excerpt and implausibility from lack thereof, i.e. occurrence of verb

without the entity. Other methods could of course be used, e.g. using dependency parse information

to show verb-agent relations directly; or learning entries via regression (Polajnar et al., 2014). Note

that while this makes our plausibility and implausibility degrees dependent, and the two dimensional S

can therefore be reduced to a one dimensional one, the theory supports spaces of any dimension, so we

present values and computations for both dimensions to illustrate this.

⟨infant,⊤⟩ ⟨infant,⊥⟩ ⟨nappy,⊤⟩ ⟨nappy,⊥⟩ ⟨pitch,⊤⟩ ⟨pitch,⊥⟩ ⟨goal,⊤⟩ ⟨goal,⊥⟩
vomit 10 2 9 3 3 9 0 12
score 1 7 0 8 7 1 8 0
dribble 22 2 21 3 14 10 16 8

The interpretation of an intransitive sentence, such as Babies vomit is calculated as follows:

Tbabies vomit = T babies
i T vomit

ij = (Cbaby
1 Cvomit

11 + Cbaby
2 Cvomit

21 + Cbaby
3 Cvomit

31 + Cbaby
4 Cvomit

41)⊤+

(Cbaby
1 Cvomit

12 + Cbaby
2 Cvomit

22 + Cbaby
3 Cvomit

32 + Cbaby
4 Cvomit

42)⊥
= (34× 10 + 10× 9)⊤+ (34× 2 + 10× 3)⊥
= 430⊤+ 98⊥

2For illustrative purposes, the co-occurrence counts are taken from random excerpts of up to 100 sentences, taken from the
BNC; a full implementation would of course use larger datasets.

Incremental Utterances

Babies vomit

Babies …

“Babies score”

kT

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 0 0 · · · 1 1 1

T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

ik

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
(S \ N)/N S \ N S

T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

(B \C)/A 7! (C ⌦ B) ⌦A
A 7! A

Incremental Utterances

Babies …

Babies score

Babies vomit

“Footballers …”

kT

f ootballers

T

+
T

f ootballers

i

T

dribble

i jk

T

balls

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
(S \ N)/N S \ N S

T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

Incremental Utterances

Footballers …

“Footballers vomit”

kT

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

balls

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
(S \ N)/N S \ N S

T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

Incremental Utterances

Footballers …

Footballers vomit

“Footballers score”

kT

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

balls

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
(S \ N)/N S \ N S

T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

(

X

i j

C

i j

e

i

⌦ e

j

)(

X

i

C

j

e

j

) =
X

i

C

i j

C

j

e

i

he
j

| e
j

i

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

���!
Verb ⌦ ���!Verb

A/B 7! A ⌦ B

A/(B/C) 7! A ⌦ (B ⌦ C)

(B/C)/A 7! (B ⌦ C) ⌦A
A/(B \C) 7! A ⌦ (C ⌦ B)

Incremental Utterances

Footballers …

Footballers vomit

Footballers score

Dataset

• Kartsaklis D., MS, Pulman S.: Separating disambiguation from
composition in compositional distributional semantics.

• Chose ambiguous verbs and two landmark meanings from
Pickering and Frisson 2001

• Picked subjects and objects for landmarks using most frequently
occurring ones in the BNC

• Pairs of subjects and complete sentences

(footballers … , footballers dribble milk)
(footballers … , footballers dribble ball)

• Pairs of subject+verb and complete sentences:

(footballers dribble … , footballers dribble milk)
(footballers dribble … , footballers dribble ball)

• Pairs of complete sentences:

(footballers dribble milk , footballers dribble ball)
(babies dribble milk , babies dribble ball)

Dataset

Data
Vectors: 300 Dim from Word2Vec,
Tensors: the G&S EMNLP 2011 method

footballers control

0.086 footballers …

0.049 footballers drip

Just subject

Data

footballers dribble ball

0.0046
footballers …

0.0019 footballers dribble milk

Just Subject

Data

footballers dribble ball

0.22
footballers dribble …

0.02 footballers dribble milk

Subject + Verb

Data

footballers drip ball

0.22

footballers dribble ball
0.360.22 < 0.36

footballers control ball

Complete Sentences

Data

babies dribble milk
babies drip milk

0.34
babies control milk0.320.34 > 0.32

Complete Sentences

Data

1 1.5 2 2.5 3
0.4

0.45

0.5

0.55

0.6

0.65
G&S
copy-subj
copy-obj
add

Partiality

Accuracy

Subj Subj+ Verb Subj+ Verb+Obj

copy-obj

copy-subj

add

Accuracy Results

Work in Progress

Implement the plausibilities model of Clark 2013, Polajnar
et al 2015

… under way …

Extend it to experimental expectation predication
…

Incremental Understanding of Dialogue Content

 …

Categorical Semantics

 CCC FVect
functor

CCC +
biproducts

FVect
?

�x.�y.eats(x, y)(T) = �x.eats(x,T) �x.eats(x,T)(J) = eats(J,T)

p =
X

i

filler

i

⌦ role

i

=
���!
desc ⌦ �!D + ����!genre ⌦ �!G + k

�!
M + · · ·

T

f ootballers

T

vomit

i j

T

f ootballers

i

T

dribble

i jk

T

milk

k

T

f ootballers

i

T

dribble

i jk

T

+
T

f ootballers

i

T

score

i j

T

babies

i

T

dribble

i jk

T

balls

k

T

babies

i

T

dribble

i jk

T

+
T

babies

i

T

score

i j

?S = k> + (k ± epsilon)?
?W ⌦ S =

hinfant, >, infanti hinfant, ?, infanti hinfant,>, nappyi · · · hpitch,?, goali hgoal,>, goali hgoal,?, goali
control 0 5 0 · · · 4 6 1

T

word

i j

2 W ⌦ S T

word

i jk

2 W ⌦ S ⌦W

T

control

i jk

=
X

i jk

C

control

i jk

e

i

⌦ e

j

⌦ e

k

= 0infant ⌦ >infant + 0infant ⌦ ?infant + · · · + 1pitch ⌦ ?goal + 1goal ⌦ >goal + 1goal ⌦ ?goal

T

baby

i

=
X

i

C

baby

i

e

i

= 34infant + 10nappy + 0pitch + 0goal

=

0
BBBBBBBBBBBB@

10 2

9 3

3 9

0 12

1
CCCCCCCCCCCCA

T

vomit

i j

=
X

i j

C

vomit

i j

e

i

⌦ e

j

= 10infant ⌦ > + 2infant ⌦ ? + · · · + 0goal ⌦ > + 12goal ⌦ ?

T

word

i

2 W ⌦ S T

vomit

i j

,T score

i j

,T dribble

i j

2 W ⌦ S

T

word

i

2 W T

baby

i

,T milk

i

,T f ootballer

i

,T ball

i

2 W

N 7! N S 7! S N/N N
(S \ N)/N S \ N S

T

k

T

i j

T

j

2 S 2 N 2 N ⌦ S
N (S \ N)/N N/N N

T

i jk

=
X

i jk

C

i jk

�!
e

i

⌦�!e
j

⌦�!e
k

2 W⌦S⌦W T

kl

=
X

i j

C

i j

�!
e

k

⌦�!e
l

2 W⌦W T

i

=
X

i

C

i

�!
e

i

2 W T

k

=
X

l

C

k

�!
e

l

2 W

T

i

T

i jk

T

kl

T

l

=
X

i jkl

C

i

C

i jk

C

kl

C

l

�!
e

i

2 S

(

X

i j···m
C

i j···me

i

⌦ e

j

⌦ · · · ⌦ e

m

)(

X

mn···w
C

mn···we

m

⌦ e

n

⌦ · · · ⌦ e

w

)

=
X

i j···n···w
C

i j···mC

mn···we

i

⌦ e

j

⌦ · · · ⌦ e

n

⌦ · · · ⌦ e

w

he
m

| e
m

i

A: Thank …

B: … you!

