Picturing Resources in Concurrency: from Linear to Additive Relations

Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński and Fabio Zanasi

SYCO 2

What are the Fundamental Structures of Concurrency? We still don't know!

Samson Abramsky ¹,²

Oxford University Computing Laboratory Oxford, U.K.

Abstract

Process algebra has been successful in many ways; but we don't yet see the lineaments of a fundamental theory. Some fleeting glimpses are sought from Petri Nets, physics and geometry.

Keywords: Concurrency, process algebra, Petri nets, geometry, quantum information and computation.

Process algebras vs. Petri nets

★ ∃ ►

We try to bridge the gap between the two approaches.

- Start from a simple diagrammatic language for linear dynamical systems.
- ► Give it a resource-conscious semantics by changing the domain from a field to the semiring N.
- Provide a sound and complete equational theory for this new semantics.
- Showcase the expressiveness of the calculus by embedding Petri nets with their usual operational semantics.

Drawing open systems

< ⊒ >

Drawing open systems

$\llbracket c \rrbracket_X \subseteq X \times X^2, \ \llbracket d \rrbracket_X \subseteq X \times X \dots \text{ for some fixed set } X.$

< 3 >

Parallel composition

Bonchi et al.

Picturing Resources in Concurrency

< ⊒ >

Parallel composition

Synchronising composition

Image: A matched black

→ ∃ →

Synchronising composition

$$\left\{ \left(x, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right) \mid \exists y, (x, y) \in \llbracket d \rrbracket_X, \left(y, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right) \in \llbracket c \rrbracket_X \right\}$$

Т

< ⊒ >

More complex networks

Bonchi et al.

17 Dec 2018 7 / 27

< ⊒ >

Only the connectivity matters

(日)

Only the connectivity matters

 $\left[\bigcirc \\ \mathbf{x} \end{bmatrix}_{\mathbf{x}} = \left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} y \\ x \end{pmatrix} \right) \middle| x, y \in X \right\}$

Bonchi et al.

17 Dec 2018 8 / 27

Image: A math the second se

Multiple connections

া7 Dec 2018 9/27

< ⊒ >

Frobenius monoids

Special boxes/systems: — , — , — , — satisfying:

form a special commutative Frobenius monoid.

Bonchi et al.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Interpreted as:

$$\llbracket - \Box \rrbracket_X = \left\{ \left(x, \begin{pmatrix} x \\ x \end{pmatrix} \right) \mid x \in X \right\} \qquad \llbracket - \bullet \rrbracket_X = \{ (x, \bullet) \mid x \in X \}$$
$$\llbracket - \bullet \rrbracket_X = \left\{ \left(\begin{pmatrix} x \\ x \end{pmatrix}, x \right) \mid x \in X \right\} \qquad \llbracket \bullet - \rrbracket_X = \{ (\bullet, x) \mid x \in X \}$$

More algebraic structure

If X = R is a semiring we buy ourselves more structure:

$$\bigcirc$$
, \frown and $-r$ for $r \in R$

If X = R is a semiring we buy ourselves more structure:

$$] \bullet -, \circ - \text{ and } - r - \text{ for } r \in R$$

$$\downarrow$$

$$[] \bullet -]_{R} = \left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, x + y \right) \mid (x, y) \in \mathbb{R}^{2} \right\} \qquad [[\circ -]]_{R} = \{(0, \bullet)\}$$

$$[[- r -]]_{R} = \{(x, rx) \mid x \in \mathbb{R}\}$$

If X = R is a semiring we buy ourselves more structure:

$$\neg$$
, \frown and $-r$ for $r \in R$

and tranposes for free:

If X = R is a semiring we buy ourselves more structure:

$$\bigcirc$$
, \bigcirc and $-r$ for $r \in R$

satisfying:

< □ > < □ > < □ > < □ > < □ > < □ >

If X = R is a semiring we buy ourselves more structure:

$$\bigcirc$$
, \bigcirc and $-r$ for $r \in R$

satisfying:

Encode the additive and multiplicative operations of R.

Adding state

• Introduce -x— that we interpret as a state-holding register.

Image: Image:

- 4 ∃ ▶

Adding state

- ▶ Introduce x→ that we interpret as a state-holding register.
- A stateful diagram $c \colon k \to l$ is interpreted as a relation

 $\llbracket c \rrbracket \subseteq \mathsf{R}^{s+k} \times \mathsf{R}^{s+l}$

where *s* is the number of -x.

Semantics extended inductively with

$$\llbracket - \llbracket - \rrbracket_{\mathsf{R}} = \left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} y \\ x \end{pmatrix} \right) \ \middle| \ x, y \in \mathsf{R} \right\}$$

The register is canonical

Isomorphism of props (*if* they are traced monoidal):

The register is canonical

Isomorphism of props (*if* they are traced monoidal):

The register is canonical

Isomorphism of props (*if* they are traced monoidal):

Section 2

The Linear Interpretation

The prop of linear relations

As relations over a field \mathbb{K} :

$$\llbracket - \bullet \Box \rrbracket_{\mathbb{K}} = \left\{ \left(x, \begin{pmatrix} x \\ x \end{pmatrix} \right) \mid x \in \mathbb{K} \right\} \qquad \qquad \llbracket - \bullet \rrbracket_{\mathbb{K}} = \{ (x, \bullet) \mid x \in \mathbb{K} \}$$

$$\llbracket \bigcirc - \rrbracket_{\mathbb{K}} = \left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, x + y \right) \mid (x, y) \in \mathbb{K}^2 \right\} \qquad \llbracket \bigcirc - \rrbracket_{\mathbb{K}} = \{(0, \bullet)\}$$
$$\llbracket - \llbracket - \rrbracket_{\mathbb{K}} = \{(x, rx) \mid x \in \mathbb{K}\}$$

For a diagram c: k → l, [[c]]_K is a linear subspace of K^k × K^l, i.e., a relation closed under K-linear combinations.

Complete equational theory

Interacting Hopf algebras

Filippo Bonchi^a, Paweł Sobociński^b, Fabio Zanasi^{c,*}

Addition is also a special commutative Frobenius monoid:

Scalars are invertible:

Linear dynamical systems

For the stateful linear case:

- $\mathbb{K} = \mathbb{R}[x]$ susbumes the notion of state we introduced.
- Semantics in terms of generalised *streams* (Laurent series).
- Model linear discrete-time dynamical systems (e.g., digital filters, amplifiers)
- Generalisation of Shannon's signal flow graphs.
- Control-theory in diagrammatic terms (e.g., controllability, observability).

Section 3

The Resource Interpretation

イロト イヨト イヨト

for v = t + s

Over a field \mathbb{K} , we can relate any two *r* and *s*:

for
$$v = t + s$$

Over \mathbb{N} , we must have $s \leq v$ so:

Over \mathbb{N} , we must have $s \leq v$ so:

Intuition

Without additive inverses, we cannot borrow arbitrary quantities.

The Resource Interpretation

Motivating example

Additive relations

For a diagram $c \colon k \to l$, $\llbracket c \rrbracket_{\mathbb{N}}$ is an *additive relation*: a finitely-generated submonoid of $\mathbb{N}^k \times \mathbb{N}^l$, i.e., a relation closed under addition and containing $(\mathbf{0}, \mathbf{0})$.

Proposition

Finitely-generated additive relations form a prop, AddRel.

 The proof that they compose is non-trivial and relies on Dickson's lemma.

The Resource Interpretation

Complete equational theory

The Resource Calculus (RC) \cong AddRel

▶ ৰ ≣ ▶ ≣ ৩ ৭ ৫ 17 Dec 2018 23 / 27

Complete equational theory

The Resource Calculus (RC)
$$\cong$$
 AddRel

Embedding Petri nets

With new syntactic sugar:

Embedding Petri nets

With new syntactic sugar:

Theorem

Firing semantics of Petri nets = semantics of corresponding diagram

▶ We can use RC to reason equationally about Petri nets.

An assembly language

We can change the usual operational semantics of Petri nets using RC. Consider, e.g,

$$\bullet \bullet \bullet \left\{ \left(\begin{pmatrix} n \\ i \end{pmatrix}, \begin{pmatrix} m \\ o \end{pmatrix} \right) \mid i + n = m + o \right\}$$

Banking semantics

In summary

- Started from a generic diagrammatic language.
- Provided a resource-conscious semantics to model concurrent phenomena, e.g., Petri nets.
- Axiomatised this interpretation by giving a sound and complete equational theory.
- Seemingly diverse computational models can be studied within the same algebraic/categorical framework.

Much more to be done

- Affine extension (done): discrete polyhedral relations to capture mutual exclusion and more.
- Coarser semantics:
 - streams for trace equivalence,
 - more behavioural equivalence, like bisimulation.
- Compositional reachability checking.
- Beyond Petri nets: compile process algebras into RC.