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Biunitaries already have most of the structure of perfect tensors.
We knew of some biunitaries, and wondered if they could be used
to build perfect tensors.

SPOILER ALERT!

Guess what, they could!

[ will tell you how.

First here are some definitions.
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Basic definitions

Definition. Given Hilbert spaces H, A and B, let
Biu:'H® A— A& H be a 4-valent tensor.

Biu is a biunitary if the following two conditions hold:

> @ 1S unitary > @ 1S unitary
If the following also holds then Biu is an error detecting tensor:

> , @ is an isometry

If the isometry is unitary then Biu is a perfect tensor.
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Quantum Latin squares

Definition. A Latin square of order n is an n-by-n grid of elements of

{0,....n — 1}, with every element appearing exactly once in each
row and column.

Definition. (MV, QPL 2015.) A quantum Latin square of order n is
an n-by-n grid of elements v; € C", such that every row and
column gives an orthonormal basis.

Here is a quantum Latin square not equivalent to one arising from a
Latin square:

0) 1) 2) 3)

L(11) —[2) | L(0) +213)) | L (2(0) +3)) | (1) +[2)

L(11) +12)) | L(20) +113)) | L0y +2/3)) | L(11) - [2))
3y 2) 1) 0)
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Graphical QLSs

Definition. A (j, k, n)-tensor is a linear map of type (C")*/ — (C")®k,

Definition. We write /A\ for the (1, 2. n)-tensor which copies basis
states, sending |i) — |i) ® |i).

Definition. (MV, QPL 2015.)

A quantum Latin square of order n is a
(2.1.n)-tensor O such that the following
are unitary:
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Quantum Latin squares are biunitaries

Wait a minute... ... let me have another look at a quantum Latin
square!

That’s a 3-valent tensor, how can that be a biunitary?
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Projective quantum Latin square

Given a QLS we can “project it out” as follows:

This is a grid on 1-dimensional projectors and is a biunitary.



Can a projQLS be perfect?

Given a QLS can the following diagram be unitary?



Can a projQLS be perfect?

Given a QLS can the following diagram be unitary?




Can a projQLS be perfect?

Given a QLS can the following diagram be unitary?

The answer is no, so the search for perfection goes on...
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Skew Projective QLS

We can also compose a pair of different QLSs in the same way:

This is also biunitary. We will see later that a skew projective QLS
can be perfect.
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Orthogonality

Definition. (Mann, 1942.) A pair of Latin squares L, M are
orthogonal when the ordered pairs {(L;.M;;)} are all distinct.

Here is an example of an orthogonal pair of Latin squares:

012 021
11210 1102
2101 21110

Definition. A pair of quantum Latin squares P, Q of order n are
orthogonal when the elements !Pf.j> ® !Qf J> are orthonormal.

This is equivalent to a more complicated definition in GRMZv1, and
was independently described in GRMZv2.
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Quantum Latin isometry squares

We now define a generalisation of quantum Latin square.

Definition. A quantum Latin
isometry square (¢;;, Hj;.J) of order
n is an n-by-n grid of isometries Hij-
kij : Cli — C4, complete along each
row and column.

Example. Every quantum Latin square is also a quantum Latin
isometry square.

Example. Write “H¢;;” for the family of Hilbert spaces which is H
when i = j, and 0 otherwise. For any family of unitaries U; on H, we
get a quantum Latin isometry square (U;d;;. Ho;j, H).
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Graphical QLiSs

This is known as a projective permutation matrix (PPM), the
projectors form POVMs on every row and column. PPMs have
appeared in connection to non-local games for example in AMRSSV.

We can project out a QLiS to obtain a grid of projectors:
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Matrix of partial isometries

We can compose two different QLiSs:

This a biunitary. It is known as a matrix of partial isometries and
was shown to characterise quantum channels preserving pointer
states in NB.
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Definition. Two quantum Latin isometry squares are orthogonal
when the elements of the associated matrix of partial isometries
span the space of operators.

This generalizes orthogonality for quantum Latin squares.

Theorem. Given a pair of orthogonal QLiSs the associated matrix
of partial isometries:

is an error detecting tensor.
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Unitary error bases

We can use orthogonality to characterize unitary error bases,
important quantum combinatorial objects which form the
foundation for quantum teleportation protocols, as follows.

Theorem. For a family of unitaries U; : H — H, the following are
equivalent:

» the quantum Latin isometry squares (U;d;;, H;.n) and
(idgdyj, Hojj. n) are orthogonal;

» the family U; forms a unitary error basis.



