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How can we understand new combinations of concepts?

When a male octopus spots a female, his normally gray-
ish body suddenly becomes striped. He swims above the
female and begins caressing her with seven of his arms.

Cherries jubilee on a white suit? Wine on an altar cloth?
Apply club soda immediately. It works beautifully to re-
move the stains from fabrics.

Steven Pinker. The Language Instinct: How the Mind Creates Language

(Penguin Science) (pp. 1-2).
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How can we understand new combinations of concepts?

When a male octopus spots a female, his normally gray-
ish body suddenly becomes striped. He swims above the
female and begins caressing her with seven of his arms.

Cherries jubilee on a white suit? Wine on an altar cloth?
Apply club soda immediately. It works beautifully to re-
move the stains from fabrics.

Steven Pinker. The Language Instinct: How the Mind Creates Language

(Penguin Science) (pp. 1-2).

... And how can we get computers to do the same?
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Compositional Distributional Semantics
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Distributional hypothesis
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ords that occur in

similar contexts have similar meanings

[Harris, 1958].
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The meaning of words

Distributional hypothesis

Words that occur in similar contexts have similar meanings
[Harris, 1958].

U.S. Senate, because they are ? , like to eat as high on the
It made him ? .

sympathy for the problems of ? beings caught up in the
peace and the sanctity of ? life are not only religious

without the accompaniment of ? sacrifice.
a monstrous crime against the ? race.
this mystic bond between the ? and natural world that the

suggests a current nostalgia for ? values in art.
Harbor” in 1915), the ? element was the compelling

an earthy and very ? modern dance work,
To be ? , he believes, is to seek one’s

Ordinarily, the ? liver synthesizes only enough
nothing in the whole range of ? experience more widely

It is said that fear in ? beings produces an odor that
megatons: the damage to ? germ plasm would be such
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The meaning of words

Distributional hypothesis

Words that occur in similar contexts have similar meanings
[Harris, 1958].

U.S. Senate, because they are human , like to eat as high on the
It made him human .

sympathy for the problems of human beings caught up in the
peace and the sanctity of human life are not only religious

without the accompaniment of human sacrifice.
a monstrous crime against the human race.
this mystic bond between the human and natural world that the

suggests a current nostalgia for human values in art.
Harbor” in 1915), the human element was the compelling

an earthy and very human modern dance work,
To be human , he believes, is to seek one’s

Ordinarily, the human liver synthesizes only enough
nothing in the whole range of human experience more widely

It is said that fear in human beings produces an odor that
megatons: the damage to human germ plasm would be such
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Distributional Semantics

Words are represented as vectors
Entries of the vector are derived from how often the target
word co-occurs with the context word

iguana

cuddly

smelly

scaly

teeth
cute

1

10

15

7

2 scaly

cuddly

smelly

Wilbur

iguana

Similarity is given by cosine distance:

sim(v ,w) = cos(θv ,w ) =
〈v ,w〉
||v ||||w ||
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The role of compositionality

Compositional distributional models

We can produce a sentence vector by composing the vectors
of the words in that sentence.

−→s = f (−→w1,
−→w2, . . . ,

−→wn)

Three generic classes of CDMs:

Vector mixture models [Mitchell and Lapata (2010)]

Tensor-based models [Coecke, Sadrzadeh, Clark (2010); Baroni and

Zamparelli (2010)]

Neural models [Socher et al. (2012); Kalchbrenner et al. (2014)]
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Applications (1/2)

Why are CDMs important?

The problem of producing robust representations for the
meaning of phrases and sentences is at the heart of every
task related to natural language.

Paraphrase detection

Problem: Given two sentences, decide if they say the same
thing in different words

Solution: Measure the cosine similarity between the sentence
vectors

Sentiment analysis

Problem: Extract the general sentiment from a sentence or a
document

Solution: Train a classifier using sentence vectors as input
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Applications (2/2)

Textual entailment

Problem: Decide if one sentence logically infers a different one

Solution: Examine the feature inclusion properties of the
sentence vectors

Machine translation

Problem: Automatically translate one sentence into a different
language

Solution: Encode the source sentence into a vector, then use
this vector to decode a surface form into the target language

And so on. Many other potential applications exist...
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A general programme

1. a Choose a compositional structure, such as a pregroup or
combinatory categorial grammar.

b Interpret this structure as a category, the grammar category.

2. a Choose or craft appropriate meaning or concept spaces, such
as vector spaces, density matrices, or conceptual spaces.

b Organize these spaces into a category, the semantics
category, with the same abstract structure as the grammar
category.

3. Interpret the compositional structure of the grammar category
in the semantics category via a functor preserving the
necessary structure.

4. Bingo! This functor maps type reductions in the grammar
category onto algorithms for composing meanings in the
semantics category.
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Diagrammatic calculus: Summary

A

f A

V V W V W Z
B
morphisms tensors

A Ar
A Ar A = Ar

Ar A

ε-map η-map (εrA ⊗ 1A) ◦ (1A ⊗ ηrA) = 1A
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Quantizing the grammar

Coecke, Sadrzadeh and Clark (2010):

Pregroup grammars are structurally homomorphic with the
category of finite-dimensional vector spaces and linear maps
(both share compact closure)

In abstract terms, there exists a structure-preserving passage
from grammar to meaning:

F : Grammar→ Meaning

The meaning of a sentence w1w2 . . .wn with grammatical
derivation α is defined as:

−−−−−−−→w1w2 . . .wn := F(α)(−→w1 ⊗−→w2 ⊗ . . .⊗−→wn)
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Pregroup grammars

A pregroup grammar P(Σ,B) is a relation that assigns gram-
matical types from a Compact CC freely generated over a set
of atomic types B to words of a vocabulary Σ.

Atomic types x ∈ B have morphisms

εrx : x · x r → 1, εlx : x l · x → 1

ηrx : 1→ x r · x , ηlx : 1→ x · x l

Elements of the pregroup are basic (atomic) grammatical
types, e.g. B = {n, s}.
Atomic grammatical types can be combined to form types of
higher order (e.g. n · nl or nr · s · nl)

A sentence w1w2 . . .wn (with word wi to be of type ti ) is
grammatical whenever:

t1 · t2 · . . . · tn → s
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Pregroup derivation: example

p · pr → 1→ pr · p pl · p → 1→ p · pl

S

NP

Adj

Sad

N

clowns

VP

V

tell

N

jokes

Sad clowns tell jokes

n nl n nr s nl n

n · nl · n · nr · s · nl · n → n · 1 · nr · s · 1
= n · nr · s
→ 1 · s
= s
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A functor from syntax to semantics

We define a strongly monoidal functor F such that:

F : P(Σ,B)→ FVect

F(p) = P ∀p ∈ B
F(1) = R

F(p · q) = F(p)⊗F(q)

F(pr ) = F(pl) = F(p)

F(p ≤ q) = F(p)→ F(q)

F(εr ) = F(εl) = inner product in FVect

F(ηr ) = F(ηl) = identity maps in FVect

[Kartsaklis, Sadrzadeh, Pulman and Coecke, 2016]
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A multi-linear model

The grammatical type of a word defines the vector space
in which the word lives:

Nouns are vectors in N;

adjectives are linear maps N → N, i.e elements in
N ⊗ N;

intransitive verbs are linear maps N → S , i.e. elements
in N ⊗ S ;

transitive verbs are bi-linear maps N ⊗ N → S , i.e.
elements of N ⊗ S ⊗ N;

The composition operation is tensor contraction, i.e.
elimination of matching dimensions by application of inner
product.
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Graphical calculus: example

Sad clowns tell jokes

N VP

Adj N V N

S

F( ) = N N l N Nr S N l N

F(α)(trembling ⊗−−−−−→shadows ⊗ play ⊗−−−−−−−−−→hide-and-seek)

Sad clowns tell jokes

N N l N Nr S N l N

⊗
i

−→wi 7→

F(α) 7→
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Summary

Formal semantic approaches are good at composition...

... but the things they compose are featureless atoms

Distributional semantics give a much richer meaning to their
atoms...

... but have no obvious compositional mechanisms.

The categorical compositional model marries the two by
interpreting both the grammar and the sematics category as
being compact closed.

The structure and interactions of the grammar category are
mapped over to the semantic category.
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A general programme

1. a Choose a compositional structure, such as a pregroup or
combinatory categorial grammar.

b Interpret this structure as a category, the grammar category.

2. a Choose or craft appropriate meaning or concept spaces, such
as vector spaces, density matrices, or conceptual spaces.

b Organize these spaces into a category, the semantics
category, with the same abstract structure as the grammar
category.

3. Interpret the compositional structure of the grammar category
in the semantics category via a functor preserving the
necessary structure.

4. Bingo! This functor maps type reductions in the grammar
category onto algorithms for composing meanings in the
semantics category.
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Conceptual spaces

Conceptual spaces [Gärdenfors, 2014] can provide a more
cognitively realistic semantics.

noun ∈ COLOUR⊗ SHAPE⊗ · · ·

[Moulton et al., 2015]
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Convex algebras

Notation. For a set X we write
∑

i pi |xi 〉 for a finite formal
convex sum of elements of X , where pi ∈ R≥0 and

∑
i pi = 1.

A convex algebra is a set A with a mixing operation α
satisfying:

α(|a〉) = a

α(
∑
i ,j

piqi ,j |ai ,j〉) = α(
∑
i

pi |α(
∑
j

qi ,j |ai ,j〉)〉)

Examples: Real or complex vector spaces, simplices,
semilattices, trees

A convex relation between convex algebras (A, α) and (B, β)
is a relation that commutes with forming convex
combinations, i.e.

(∀i .R(ai , bi ))⇒ R(
∑
i

piai ,
∑
i

pibi )
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A category for conceptual spaces

We define the category ConvexRel as having convex algebras
as objects and convex relations as morphisms

ConvexRel is compact closed with × as monoidal product.

We build a functor from pregroup grammar in the same way:
choose a space N for nouns, a space S for sentences.

Drawback: how do we start to build word representations?
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Change of category - CPM(FVect)

We can use density matrices, and more generally, positive
operators rather than vectors to represent words.

Positive operators A, B have the Löwner ordering
A v B ⇐⇒ B − A is positive.

We use this ordering to represent entailment, and introduce a
graded version - useful for linguistic phenomena.

We will show that graded entailment lifts compositionally to
sentence level.

Similar approaches in [Sadrzadeh et al., 2018]
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Words as positive operators

A positive operator P is self-adjoint and ∀v ∈ V . 〈v |P |v〉 ≥ 0

Density matrices are convex combinations of projectors:
ρ =

∑
i pi |vi 〉 〈vi |, s.t.

∑
i pi = 1

We can view concepts as collections of items, with pi

indicating relative frequency.

For example:

JpetK =pd |dog〉 〈dog|+ pc |cat〉 〈cat|+
pt |tarantula〉 〈tarantula|+ ...

where ∀i .pi ≥ 0 and
∑
i

pi = 1

There are various choices for normalisation of the density
matrices...
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Sentence meaning in CPM(FVect)

We assign semantics via a strong monoidal functor
S : Preg→ CPM(FVect)

Let w1w2...wn be a string of words with corresponding
grammatical types ti in Preg{n,s} such that t1, ...tn

r−→ s

Let JwiK be the meaning of word wi in CPM(FVect). Then
the meaning of w1w2...wn is given by:

Jw1w2...wnK = S(r)(Jw1K⊗ ...⊗ JwnK)

The sisters enjoy drinks

S NN NN
=

N S N ′ N ′ N ′NNN N ′ S

The sisters enjoy drinks
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So how do we do graded hyponymy?

Recall that positive operators A, B have the Löwner ordering
A v B ⇐⇒ B − A is positive.

We say that A is a hyponym of B if A v B

We say that A is a k-hyponym of B for a given value of k in
the range (0, 1] and write A 2k B if:

B − kA is positive

We are interested in the maximum such k .

Theorem

For positive self-adjoint matrices A, B such that
supp(A) ⊆ supp(B), the maximum k such that B − kA ≥ 0 is
given by 1/λ where λ is the maximum eigenvalue of B+A.
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k-hyponymy interacts well with compositionality

We would like our notion of entailment to work at the
sentence level.

Since sentences are represented as positive operators, we can
compare them directly.

If sentences have similar structure, we can also give a lower
bound on the entailment strength between sentences based on
the entailment strengths between the words in the sentences.

Example

Suppose JdogK 2k JpetK and JparkK 2l JfieldK. Then

JMy dog runs in the parkK 2??? JMy pet runs in the fieldK
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How should we build density matrices for words?

WordNet. Princeton University. 2010
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Experiments

Hyperlex [Vulić et al., 2017] gold-standard dataset. 2,163 noun
pairs human annotated.

Model Dev Test

Poincaré embeddings - 0.512
SDSN (Random) 0.757 0.692
SDSN (Lexical) 0.577 0.544

Density matrices - 0.551
Density matrices (non) - 0.631
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Experiments

Dataset from [Sadrzadeh et al., 2018] consisting of 23 sentence
pairs. Example pairs are:

recommend development |= suggest improvement
progress reduce |= development replace

With normalization:

Model ρ p

Verb-only 0.268 > 0.25

Frobenius mult. 0.508 > 0.05
Frobenius n.c. 0.436 > 0.05
Additive 0.643 > 0.001

Inter-annotator 0.66 -

[Bankova et al., 2019]
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Experiments

Dataset from [Sadrzadeh et al., 2018]. Example pairs are:

recommend development |= suggest improvement
progress reduce |= development replace

Without normalization:

Model ρ p

Verb-only 0.370 > 0.1

Frobenius mult. 0.696 > 5 · 10−4

Frobenius n.c. 0.306 0.15
Additive 0.737 > 5 · 10−5

Inter-annotator 0.66 -
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Speculation
Published as a conference paper at ICLR 2015

Figure 1: Learned diagonal vari-
ances, as used in evaluation (Section
6), for each word, with the first let-
ter of each word indicating the po-
sition of its mean. We project onto
generalized eigenvectors between the
mixture means and variance of query
word Bach. Nearby words to Bach
are other composers e.g. Mozart,
which lead to similar pictures.

After discussing related work and presenting our algorithms below we explore properties of our al-
gorithms with multiple qualitative and quantitative evaluation on several real and synthetic datasets.
We show that concept containment and specificity matches common intuition on examples concern-
ing people, genres, foods, and others. We compare our embeddings to Skip-Gram on seven standard
word similarity tasks, and evaluate the ability of our method to learn unsupervised lexical entail-
ment. We also demonstrate that our training method also supports new styles of supervised training
that explicitly incorporate asymmetry into the objective.

2 RELATED WORK

This paper builds on a long line of work on both distributed and distributional semantic word vec-
tors, including distributional semantics, neural language models, count-based language models, and,
more broadly, the field of representation learning.

Related work in probabilistic matrix factorization (Mnih & Salakhutdinov, 2007) embeds rows and
columns as Gaussians, and some forms of this do provide each row and column with its own vari-
ance (Salakhutdinov & Mnih, 2008). Given the parallels between embedding models and matrix
factorization (Deerwester et al., 1990; Riedel et al., 2013; Levy & Goldberg, 2014), this is relevant
to our approach. However, these Bayesian methods apply Bayes’ rule to observed data to infer the
latent distributions, whereas our model works directly in the space of probability distributions and
discriminatively trains them. This allows us to go beyond the Bayesian approach and use arbitrary
(and even asymmetric) training criteria, and is more similar to methods that learn kernels (Lanckriet
et al., 2004) or function-valued neural networks such as mixture density networks (Bishop, 1994).

Other work in multiplicative tensor factorization for word embeddings (Kiros et al., 2014) and met-
ric learning (Xing et al., 2002) learns some combinations of representations, clusters, and a distance
metric jointly; however, it does not effectively learn a distance function per item. Fitting Gaussian
mixture models on embeddings has been done in order to apply Fisher kernels to entire documents
(Clinchant & Perronnin, 2013b;a). Preliminary concurrent work from Kiyoshiyo et al. (2014) de-
scribes a significantly different model similar to Bayesian matrix factorization, using a probabilistic
Gaussian graphical model to define a distribution over pairs of words, and they lack quantitative
experiments or evaluation.

In linguistic semantics, work on the distributional inclusion hypothesis (Geffet & Dagan, 2005), uses
traditional count-based vectors to define regions in vector space (Erk, 2009) such that subordinate
concepts are included in these regions. In fact, one strength of our proposed work is that we extend
these intuitively appealing ideas (as well as the ability to use a variety of asymmetric distances
between vectors) to the dense, low-dimensional distributed vectors that are now gaining popularity.

3 BACKGROUND

Our goal is to map every word type w in some dictionary D and context word type c in a dictionary C
to a Gaussian distribution over a latent embedding space, such that linguistic properties of the words

2

[Vilnis and McCallum, 2014], and similar approaches seen in
[Jameel and Schockaert, 2017], [Bražinskas et al., 2017]
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Summary

Vector spaces provide a good means of talking about
similarity between words.

But both conceptual spaces and positive operators give us a
richer word representation.

We don’t have a good way of building word representations in
conceptual spaces yet, but using information from WordNet to
build density matrices seems to give good results with very
little effort.
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Recursive Neural Networks

−→p2 = g(
−−−−→
Clowns,−→p1)

−−−−→
Clowns

−→p1 = g(
−→
tell,
−−→
jokes)

−→
tell

−−→
jokes

gRNN : Rn × Rn → Rn :: (−→v1 ,
−→v2) 7→ f1

(
M ·

[−→v1−→v2

])
gRNTN : Rn×Rn → Rn :: (−→v1 ,

−→v2) 7→ gRNN(−→v1 ,
−→v2)+f2

(−→v1
> · T · −→v2

)
[Socher et al., 2012, Bowman et al., 2014]
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A (compact closed) category for neural networks

???
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Alternatively... linear recursive neural networks

−→p2 = g(
−−−−→
Clowns,−→p1)

−−−−→
Clowns

−→p1 = g(
−→
tell,
−−→
jokes)

−→
tell

−−→
jokes

[Lewis, 2019]
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Alternatively... linear recursive neural networks

Clowns tell jokes

gLin

gLin

−→p1 = gLin(−−−→cross,
−−−→
roads)

−→p2 = gLin(
−−−−→
Clowns,−→p1)
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Alternatively... linear recursive neural networks

Clowns

tell

jokes

gLin

gLin
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Content/structure split

Adjectives and intransitive verbs

gLin gLin
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Content/structure split

−→p3 = g(
−−−−→
Clowns,−→p2)

−−−−→
Clowns

−→p2 = g(
−−→
who,−→p1)

−−→
who

−→p1 = g(
−→
tell,
−−→
jokes)

−→
tell

−−→
jokes
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Content/structure split

who : nrns ls

Clowns tell jokeswho

=

Clowns tell jokes
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Content/structure split

himself : nsrnrrnr s

John loves himself

=

John loves
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Benefits

Understanding neural networks as a semantics category for
Lambek categorial grammar opens up more possibilities to use
tools from formal semantics in computational linguistics.

We can immediately see possibilities for building alternative
networks.

Decomposing the tensors for functional words into repeated
applications of a compositionality function gives options for
learning representations.

Brittleness of word types in DisCo is alleviated
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To do

Incorporate non-linearity

Extend to other types of network that are currently
state-of-the-art

Testing on data - comparison with standard DisCo
representations, examine ability to switch word types, look at
specialised tensors
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Summary

The categorical compositional model of [Coecke et al., 2010]
can be instantiated with a choice of grammar category (which
we saw yesterday in Sadrzadeh’s and Wijnhold’s talks).

We also have a choice of meaning category, allowing us to
move towards a richer semantics. Initial results are positive.

We have started to link to neural network methods for
building word vectors.
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Outlook

Develop ways of building word regions from corpora

Links between positive matrices and multivariate Gaussian
word embeddings?

Building on more cognitively plausible concept representations.

Starting to model meaning change and game-theoretic models
of language [Bradley et al., 2018, Hedges and Lewis, 2018].

Modelling non-literal uses of language.
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Thanks!

NWO Veni grant ‘Metaphorical Meanings for Artificial Agents’
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Bražinskas, A., Havrylov, S., and Titov, I. (2017).

Embedding words as distributions with a bayesian skip-gram model.
arXiv preprint arXiv:1711.11027.

Coecke, B., Sadrzadeh, M., and Clark, S. (2010).

Mathematical Foundations for a Compositional Distributional Model of Meaning. Lambek Festschrift.
Linguistic Analysis, 36:345–384.

Gärdenfors, P. (2014).

The geometry of meaning: Semantics based on conceptual spaces.
MIT Press.

Hedges, J. and Lewis, M. (2018).

Towards functorial language-games.
arXiv preprint arXiv:1807.07828.

M. Lewis Semantic Spaces 52/53



References II

Jameel, S. and Schockaert, S. (2017).

Modeling context words as regions: An ordinal regression approach to word embedding.
In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages
123–133.

Lewis, M. (2019).

Compositionality for recursive neural networks.
IfCoLog Journal of Applied Logics.
to appear.

Moulton, D., Goriely, A., and Chirat, R. (2015).

The morpho-mechanical basis of ammonite form.
Journal of Theoretical Biology, 364:220–230.

Sadrzadeh, M., Kartsaklis, D., and Balkır, E. (2018).

Sentence entailment in compositional distributional semantics.
Annals of Mathematics and Artificial Intelligence, 82(4):189–218.

Socher, R., Huval, B., Manning, C., and A., N. (2012).

Semantic compositionality through recursive matrix-vector spaces.
In Conference on Empirical Methods in Natural Language Processing 2012.

Vilnis, L. and McCallum, A. (2014).

Word representations via gaussian embedding.
arXiv preprint arXiv:1412.6623.
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