Traced concategories

Paul Blain Levy, Sergey Goncharov and Lutz Schröder

December 18, 2018

1 Varying the notion of category

- 2 Concategories
- Symmetric concategories
- 4 Traced concategories

5 Further work

Notion	Morphism	Main example
Category	$f \colon a \to b$	

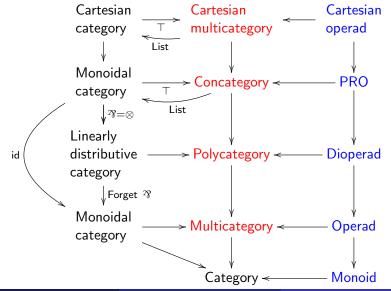
Notion	Morphism	Main example
Category	$f\colon a\to b$	
Cartesian multicategory	$f\colon \overrightarrow{a} \to b$	$f \colon \prod \overrightarrow{a} \to b$ in a cartesian category

Notion	Morphism	Main example
Category	$f\colon a\to b$	
Cartesian multicategory	$f\colon \overrightarrow{a} \to b$	$f \colon \prod \overrightarrow{a} \to b$ in a cartesian category
Multicategory	$f: \overrightarrow{a} \to b$	$f\colon \bigotimes \overrightarrow{a} ightarrow b$ in a monoidal category

Notion	Morphism	Main example
Category	$f\colon a\to b$	
		$f \colon \prod \overrightarrow{a} \to b$ in a cartesian category
Multicategory	$f \colon \overrightarrow{a} \to b$	$f: \bigotimes \overrightarrow{a} \to b$ in a monoidal category $f: \bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b}$ in a monoidal category
Concategory	$f: \overrightarrow{a} \to \overrightarrow{b}$	$f\colon \bigotimes \overrightarrow{a} o \bigotimes \overrightarrow{b}$ in a monoidal category

Notion	Morphism	Main example
Category	$f\colon a\to b$	
0,		$f\colon \prod \overrightarrow{a} ightarrow b$ in a cartesian category
Multicategory	$f\colon \overrightarrow{a} \to b$	$f\colon \bigotimes \overrightarrow{a} ightarrow b$ in a monoidal category
Concategory	$f \colon \overrightarrow{a} \to \overrightarrow{b}$	$f\colon \bigotimes \overrightarrow{a} o \bigotimes \overrightarrow{b}$ in a monoidal category
Polycategory	$f: \overrightarrow{a} \to \overrightarrow{b}$	$f: \bigotimes \overrightarrow{a} \to b \text{ in a monoidal category}$ $f: \bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b} \text{ in a monoidal category}$ $f: \bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b} \text{ in a monoidal category}$ $f: \bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b} \text{ in a linearly}$ distributive category

Constructions



A concategory $\mathcal C$ consists of the following data.

- \bullet A class ob ${\mathcal C}$ of objects.
- A homset $\mathcal{C}(\overrightarrow{a}; \overrightarrow{b})$ for each pair of object lists $\overrightarrow{a}, \overrightarrow{b}$.

A concategory $\mathcal C$ consists of the following data.

- A class ob C of objects.
- A homset $\mathcal{C}(\overrightarrow{a};\overrightarrow{b})$ for each pair of object lists $\overrightarrow{a},\overrightarrow{b}$.
- The sequential composite of $f : \overrightarrow{a} \to \overrightarrow{b}$ and $g : \overrightarrow{b} \to \overrightarrow{c}$ is $f; g : \overrightarrow{a} \to \overrightarrow{c}$.
- The parallel composite of $f: \overrightarrow{a} \to \overrightarrow{b}$ and $g: \overrightarrow{c} \to \overrightarrow{d}$ is $f \boxtimes g: \overrightarrow{a} + \overrightarrow{c} \to \overrightarrow{b} + \overrightarrow{d}$.

A concategory $\mathcal C$ consists of the following data.

- A class ob C of objects.
- A homset $\mathcal{C}(\overrightarrow{a};\overrightarrow{b})$ for each pair of object lists $\overrightarrow{a},\overrightarrow{b}$.
- The sequential composite of $f: \overrightarrow{a} \to \overrightarrow{b}$ and $g: \overrightarrow{b} \to \overrightarrow{c}$ is $f; g: \overrightarrow{a} \to \overrightarrow{c}$.
- The parallel composite of $f : \overrightarrow{a} \to \overrightarrow{b}$ and $g : \overrightarrow{c} \to \overrightarrow{d}$ is $f \boxtimes g : \overrightarrow{a} + \overrightarrow{c} \to \overrightarrow{b} + \overrightarrow{d}$.
- The sequential identity $\operatorname{id}_{\overrightarrow{a}} \colon \overrightarrow{a} \to \overrightarrow{a}$.
- The parallel identity $id_{\boxtimes} \colon \varepsilon \to \varepsilon$. (Redundant.)

The ten commandments

- Sequential composition is associative and unital.
- Parallel composition is associative and unital.
- Interchange between sequential and parallel composition:

$$(f;g) \boxtimes (h;k) = (f \boxtimes h); (g \boxtimes k)$$

• Interchange between sequential identity and parallel composition:

$$\operatorname{id}_{\overrightarrow{a}} \boxtimes \operatorname{id}_{\overrightarrow{b}} = \operatorname{id}_{\overrightarrow{a} + \overrightarrow{b}}$$

• Interchange between sequential composition and parallel identity:

$$\mathsf{id}_{\boxtimes} = \mathsf{id}_{\boxtimes}; \mathsf{id}_{\boxtimes}$$

• Interchange between sequential and parallel identity:

$$\mathsf{id}_{\varepsilon} = \mathsf{id}_{\boxtimes}$$

• "Category" alludes to sequential composition

$$f;g:\overrightarrow{a}\rightarrow\overrightarrow{c}$$

• "Concat" alludes to parallel composition

$$f \boxtimes g \colon \overrightarrow{a} + \overrightarrow{c} \to \overrightarrow{b} + \overrightarrow{d}$$

• "Category" alludes to sequential composition

$$f;g:\overrightarrow{a}\rightarrow\overrightarrow{c}$$

• "Concat" alludes to parallel composition

$$f\boxtimes g\colon \overrightarrow{a} + \overrightarrow{c} \to \overrightarrow{b} + \overrightarrow{d}$$

• The overlap alludes to the interchange law.

Map of concategories

A map $F: \mathcal{C} \to \mathcal{D}$ sends objects to objects and morphisms to morphisms, preserving all structure.

Natural transformation

A natural transformation sends each object a to $\alpha_a \colon [Fa] \to [Ga]$.

For
$$f: \overrightarrow{a} \to \overrightarrow{b}$$
 we require $f; \overrightarrow{a_b} = \overrightarrow{a_a}; f$.

• A monoidal category. Morphisms go from $\bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b}$.

- A monoidal category. Morphisms go from $\bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b}$.
- A cartesian multicategory.

- A monoidal category. Morphisms go from $\bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b}$.
- A cartesian multicategory.
- A PRO.

It corresponds to a single-object concategory

- A monoidal category. Morphisms go from $\bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b}$.
- A cartesian multicategory.
- A PRO.

It corresponds to a single-object concategory

 A many-sorted list-to-list signature. Acyclic string diagrams modulo isomorphism.

- A monoidal category. Morphisms go from $\bigotimes \overrightarrow{a} \to \bigotimes \overrightarrow{b}$.
- A cartesian multicategory.
- A PRO.

It corresponds to a single-object concategory

- A many-sorted list-to-list signature. Acyclic string diagrams modulo isomorphism.
- S A dataflow model e.g. Kahn's or Jonsson's.

- A PRO consists of a family of sets (A_{m,n})_{m,n∈ℕ} with f ∈ A_{m,n} written f: m → n and sequential and parallel composition and identity satisfying the ten commandments.
- A PRO A correspond to a single-object concategory \tilde{A} .

- Object = "colour".
- ${\sf Concategory}=""" coloured PRO"$
- ${\sf Multicategory} = ``coloured operad''$
- Polycategory = "coloured dioperad"

- Object = "colour".
- Concategory = "coloured PRO"
- ${\sf Multicategory} = ``coloured operad''$
- Polycategory = "coloured dioperad"
- Category = "coloured monoid" (Tom Leinster satire)

Object = "colour".

 ${\sf Concategory} = ``{\sf coloured} \ {\sf PRO}"$

 ${\sf Multicategory} = ``coloured operad''$

Polycategory = "coloured dioperad"

Category = "coloured monoid" (Tom Leinster satire)

Monoidal category = "monoidal coloured monoid"

Object = "colour".

Concategory = "coloured PRO"

 ${\sf Multicategory} = ``coloured operad"$

Polycategory = "coloured dioperad"

Category = "coloured monoid" (Tom Leinster satire)

Monoidal category = "monoidal coloured monoid"

In colourful literature, usually:

- Colours form a set, sometimes a finite set, sometimes fixed in advance.
- The construction monoidal category → concategory is not prominent.

The 2-embedding of MONCAT in CONCAT is reflective.

List \mathcal{C} is a strict monoidal category.

Its objects are lists of C-objects.

The induced comonad on **MONCAT** is strictification.

So we have resolved strictification into two parts.

Here are two concategories:

- the PRO of complex matrices, regarded as a concategory
- \bullet the monoidal category of finite dimensional Hilbert spaces with $\oplus,$ regarded as a concategory.

They are not equivalent concategories,

but List sends them to equivalent strict monoidal categories.

Symmetric concategory

Given a morphism $f \colon \overrightarrow{a} \to \overrightarrow{b}$

a pre-symmetry allows you to swap two adjacent wires into for two adjacent wires out of f

with suitable laws.

This gives actions of the symmetric group.

Symmetric concategory

Given a morphism $f \colon \overrightarrow{a} \to \overrightarrow{b}$

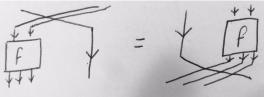
a pre-symmetry allows you to swap two adjacent wires into f

or two adjacent wires out of f

with suitable laws.

This gives actions of the symmetric group.

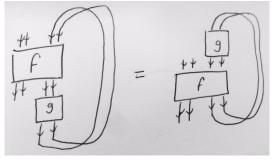
The pre-symmetry is a symmetry when we have the naturality law:



A PRO with symmetry is called a PROP.

Traced concategory

- A pre-trace for a symmetric concategory takes a morphism $f : \overrightarrow{a}, c \to \overrightarrow{b}, c$ to a morphism $f : \overrightarrow{a} \to \overrightarrow{b}$.
- Must be natural in \overrightarrow{a} and \overrightarrow{b} and satisfy vanishing I, vanishing II, superposing and yanking.
- Then a morphism $f: \overrightarrow{a}, \overrightarrow{c} \to \overrightarrow{b}, \overrightarrow{c}$ gives a morphism $f: \overrightarrow{a} \to \overrightarrow{b}$.
- The pre-trace is a trace when this is dinatural in \overrightarrow{c} .



\bullet A many-sorted list-to-list signature ${\cal S}$ is

- a set of sorts
- a set of symbols equipped with a pair of lists of sorts.
- A string diagram on ${\mathcal S}$ consists of
 - a set of boxes, each assigned a symbol
 - a bijection from the output ports to the input ports.
- String diagrams modulo isomorphism is the free traced concategory on $\mathcal{S}.$ (To be checked)

\bullet A many-sorted list-to-list signature ${\cal S}$ is

- a set of sorts
- a set of symbols equipped with a pair of lists of sorts.
- A string diagram on ${\mathcal S}$ consists of
 - a set of boxes, each assigned a symbol
 - a bijection from the output ports to the input ports.
- String diagrams modulo isomorphism is the free traced concategory on S. (To be checked) (or confirmed by audience)

\bullet A many-sorted list-to-list signature ${\cal S}$ is

- a set of sorts
- a set of symbols equipped with a pair of lists of sorts.
- A string diagram on ${\mathcal S}$ consists of
 - a set of boxes, each assigned a symbol
 - a bijection from the output ports to the input ports.
- String diagrams modulo isomorphism is the free traced concategory on S. (To be checked) (or confirmed by audience)
- Acyclic string diagrams modulo isomorphism is the free symmetric concategory on $\mathcal{S}.$

Often said

• "String diagrams are a great notation for monoidal categories."

Often said

• "String diagrams are a great notation for monoidal categories." Sometimes said

• "String diagrams are a great notation for strict monoidal categories."

Often said

• "String diagrams are a great notation for monoidal categories." Sometimes said

• "String diagrams are a great notation for strict monoidal categories."

The truth is in between

• "String diagrams are a great notation for concategories."

More sermons

Monoids

In a monoidal category.

More generally in a multicategory.

More sermons

Monoids

In a monoidal category.

More generally in a multicategory.

Bimonoids

In a symmetric monoidal category.

More generally in a symmetric concategory.

Monoids

In a monoidal category.

More generally in a multicategory.

Bimonoids

In a symmetric monoidal category.

More generally in a symmetric concategory.

Dual objects

In a symmetric monoidal category.

More generally in a symmetric polycategory.

Monoids

In a monoidal category.

More generally in a multicategory.

Bimonoids

In a symmetric monoidal category.

More generally in a symmetric concategory.

Dual objects

In a symmetric monoidal category.

More generally in a symmetric polycategory.

Models of a cartesian operad (equivalently, Lawvere theory)

In a cartesian category.

More generally in a cartesian multicategory.

Monoids

In a monoidal category.

More generally in a multicategory.

Bimonoids

In a symmetric monoidal category.

More generally in a symmetric concategory.

Dual objects

In a symmetric monoidal category.

More generally in a symmetric polycategory.

Models of a cartesian operad (equivalently, Lawvere theory)

In a cartesian category.

More generally in a cartesian multicategory.

Models of a PROP

In a symmetric monoidal category.

More generally in a symmetric concategory.

- A dataflow program inputs data from several channels and outputs data to several channels.
- Each channel has a set of permitted values.

- A dataflow program inputs data from several channels and outputs data to several channels.
- Each channel has a set of permitted values.
- Kahn gave a model of deterministic dataflow.
- Jonsson gave a model of nondeterministic dataflow.

- A dataflow program inputs data from several channels and outputs data to several channels.
- Each channel has a set of permitted values.
- Kahn gave a model of deterministic dataflow.
- Jonsson gave a model of nondeterministic dataflow.
- These form traced concategories. (To be checked.)

Objects are sets.

Stream(A) is the domain of finite and infinite streams of values in A. A morphism from $(A_i)_{i < m}$ to $(B_j)_{j < n}$ is a continuous function

$$\prod_{i < m} \operatorname{Stream}(A_i) \to \prod_{j < n} \operatorname{Stream}(B_j)$$

Objects are sets.

Stream(A) is the domain of finite and infinite streams of values in A. A morphism from $(A_i)_{i < m}$ to $(B_j)_{j < n}$ is a continuous function

$$\prod_{i < m} \mathsf{Stream}(A_i) \to \prod_{j < n} \mathsf{Stream}(B_j)$$

Trace is least (pre)fixpoint.

- Lots of expected things need to be checked.
- Guarded traces? (Goncharov and Schröder, FoSSaCS 2018)