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Introduction



Standard point of view

• pure QM is not random, and is reversible

• pure QM does not allow discarding

• full QM: mixed states, quantum channels
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Von Neumann’s model: density matrices

Pure QM (+ ancillas)

• state space Cn

• combination of systems: b

• ancilla (auxiliary system)

• unitary transformation U

|j0〉 H S T ×

|j1〉 • H S

|j2〉 • • H ×

Figure 1: Quantum Fourier

transform on three qubits

Completely Positive Trace Preserving

(CPTP) maps

• MnpCq

• combination of systems: b

• ancilla

• adU : M ÞÑ UMU˚ super-operator

• no global phase

• allows discarding (trace)
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LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|j1〉 = |0〉 H • S H •
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|j2〉 = |0〉 H • T S H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|s0〉
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Figure 2: Three-qubit phase estimation circuit

with QFT and controlled-U
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Today’s presentation

Informally:
The category of Completely Positive Trace Preserving (CPTP) is the

simplest category that interprets PureQM with ancillas, quotients global

phase and allows discarding.

CPTP is the universal monoidal category on PureQM whose unit

is a terminal object:

Pure
QT

Pu
reQ

M

@

Fu
ll Q

TD!

V.N
.

PureQM CPTP

@D
@F

E

D!F̂
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Symmetric strict monoidal category

A symmetric monoidal category pC,b, I , α, λ, σq is symmetric strict

monoidal when

• αA,B,C : pAb Bq b C “ Ab pB b C q

• λA : I b A “ A “ Ab I

• σA,B : Ab B Ñ B b A ‰ id in general

6



The category Isometry (PureQM)

We define the category Isometry as follows:

• Objects: natural numbers n (Cn)

• Morphisms f : nÑ m are linear maps f : Cn Ñ Cm that are

isometries: @v , ||f pvq|| “ ||v ||

• Composition: composition of linear maps

• m b n :“ mn and f b g is the usual tensor product

Equivalently morphisms are matrices V such that V ˚V “ I and b is

then the Kronecker product.

Examples:

• the isometries V : nÑ n are the unitaries

• an isometry V : 1 Ñ n is a pure state

7
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Discarding

Monoidal category with discarding:1

A (strict) symmetric monoidal category pC,b, I q has discarding when the

unit of the tensor product I is a terminal object.

A I

B

!

f
!

1B. Jacobs (1994): Semantics of weakening and contraction,

D. Walker (2002): Substructural Type Systems,

P. Selinger & B. Valiron (2006): A lambda calculus for quantum computation with classical control.
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The category CPTP (FullQM)

We define the category CPTP of completely positive trace preserving

maps as follows:

• Objects are natural numbers n (MnpCq)

• Morphisms f : nÑ m are linear maps f :MnpCq ÑMmpCq that

are completely positive and trace preserving (quantum channels)

• Composition: composition of linear maps

• m b n :“ mn and f b g is again the tensor product

CPTP has discarding

• !n : nÑ 1 is the trace operator

• idmb!n : m b nÑ m b 1 “ m is the partial trace operator
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Symmetric strict monoidal functor

A symmetric monoidal functor F is symmetric strict monoidal when the

isomorphisms

• F pAq b F pBq – F pAb Bq

• I – F pI q

are identities.

E : Isometry Ñ CPTP

• E pnq :“ n

• E pV q :“ adV : M ÞÑ VMV ˚

10
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Main theorem

The category of Completely Positive Trace Preserving (CPTP) is the

simplest category that interprets PureQM with ancillas, quotients global

phase and allows discarding.

Theorem: universality of CPTP

• @ D strict symmetric monoidal category with discarding

• @ F : Isometry Ñ D symmetric strict monoidal functor

There is a unique symmetric strict monoidal functor F̂ : CPTP Ñ D

such that:

Isometry CPTP

D
F

E

F̂
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Proof: key lemma

Stinespring’s theorem2

For every CPTP f there is a pair pV , aq such that:

m n

n ¨ a

idb!

adW 1

f

adV

adW

idb!

idb!

adV 1

2B. Coecke & A. Kissinger (2017): Picturing Quantum Processes. CUP..
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Proof: key lemma

Stinespring’s theorem2

For every CPTP f there is a pair pV , aq such that:

n ¨ b

m n ¨ c n

n ¨ a

idb!

adW 1

f

adV

adW

idb!

idb!

adV 1

pV , a) is called a dilation for f .

2B. Coecke & A. Kissinger (2017): Picturing Quantum Processes. CUP..
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Proof: uniqueness

If any symmetric monoidal functor F̂ is going to make diagram commute

then it must be defined as

• F̂ pnq
def
“ F pnq as E is identity on objects

• If

n m

n ¨ a

f

adV idb!
then

n m

n ¨ a

F̂pf q

F̂padV qFpV q F̂pidb!qpidb!q
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Proof: well-definedness

Only choice :

• F̂ pnq
def
“ F pnq

• F̂ ppidb!q ˝ adV q
def
“ pidb!q ˝ F pV q

Independence of the choice of dilation pV , aq

Given pW , bq another dilation,

F pnq b F paq

F pmq F pnq

F pnq b F pbq

FpnqbFpV 1
q

Fpnqb!

FpV q

FpW q

Fpnqb!

FpnqbFpW 1
q

Fpnqb!
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Proof: functoriality

• Identity: dilation pidn, 1q

• Composition: if pV , aq is a dilation of f : mÑ n and pW , bq is a

dilation of g : nÑ p,

F pnq

F pmq F ppq

c

FpW q

F̂pgqF̂pf q

FpV q

F̂pgf q

Fpnqb!

FpW qbidFpaq
Fppqb!

FpnqbFpbqb!
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Proof: monoidal functor

• pV , aq is a dilation of f : mÑ n

• pW , bq is a dilation of g : p Ñ q

Then ppidm b σ b idpq ˝ pV bW q, ab bq is a dilation of f b g .

F pmq b F ppq F pnq b F pqq

F̂pf qbF̂pgq

FpV qbFpW q

F̂pf bgq

Fpnqb!bFpqqb!

FpnqbσbFpbq

FpnqbFpqqb!
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Interpretation of the universality3

• foundational justification for the model

• new definition for CPTP

• relies on Stinespring theorem (purification uniqueness)

Pure
QT

Iso
metry

@

Fu
ll Q

TD!

CPTP

PureQM CPTP

@D
@F

E

D!F̂

3B. Coecke (2006): Axiomatic description of mixed states from Selinger’s CPM-construction,

O. Cunningham & C. Heunen (2015): Axiomatizing complete positivity.
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Affine reflection4

• SMCat: category of (small) symmetric strict monoidal categories

and symmetric monoidal functors

• AMCat: category of (small) symmetric strict monoidal categories for

which the unit is terminal and symmetric monoidal functors.

Affine–With discarding

The full and faithful embedding AMCatÑ SMCat has a left adjoint

L : SMCatÑ AMCat.

In other words, AMCat is a reflective subcategory of SMCat.

Corollary:

The symmetric monoidal category of CPTP maps is the affine reflection

of the symmetric monoidal category of isometries:

LpIsometryq – CPTP

4C. Hermida & R.D. Tennent (2009): Monoidal Indeterminates and Categories of Possible Worlds. In: Proc. MFPS“IeC –“textquoteright ˝09.
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PROPs

A PROP is a symmetric strict monoidal category generated by one object.

Isometry and CPTP are not PROPs. However:

PROPs: Isometry2 and CPTP2

• Isometry2: full subcategory of Isometry whose objects are powers

of 2

• CPTP2: full subcategory of CPTP whose objects are powers of 2

• E : Isometry Ñ CPTP restricts to a symmetric strict monoidal

functor E2 : Isometry2 Ñ CPTP2

21
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Universality of CPTP2

Theorem: universality of CPTP2

Isometry2 CPTP2

@D
@F

E2

D!F̂

where:

• F , pF are symmetric strict monoidal functors

• D is a symmetric strict monoidal category

22



A relation to quantum circuits

Affine reflection of a PROP:
When D is a PROP, the affine reflection LpDq is a PROP, presented by

one generating morphism : 1 Ñ 0 and equations of the form:

f = g =

and so on.

Consequence:

CPTP2 is obtained by freely adding discarding to Isometry2

23
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Enriched categories

A functor F : C Ñ D between (locally small) categories C,D induces

@A,B P ObjpCq a Set function FA,B : CpA,Bq Ñ DpFA,FBq.

CpA,Bq,DpFA,FBq and FA,B are equiped with the structure from the

Cartesian monoidal category Set.

More generally they could be equiped with the structure of a monoidal

category pV,b, I q, such as Top and Met.

Examples:

• Top: topological spaces and continuous maps, with Cartesian

product

• Met: metric spaces and short maps, with Ab B :“ Aˆ B and

dAbB “ dA ` dB

25
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Isometry and CPTP as enriched categories

Linear functions f : V ÑW can be equiped with the operator norm

||f ||op :“ sup||v ||V“1||f pvq||W .

This gives a norm and hence a distance on isometries, and also on CPTP

maps by dpf , gq :“ ||f ´ g ||op.

The metric induces a topology on isometries and on CPTP maps.

We can therefore see Isometry and CPTP as enriched categories, and E

as an enriched functor, both over Top or over Met.

26
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Enriched completion theorem

Theorem: universality of CPTP in the enriched setting

Isometry CPTP

@D
@F

E

D!F̂

where:

• F , pF are symmetric strict monoidal V-functors

• D is a symmetric strict monoidal V-category

• V is Top or Met

None of the theorems is trivially deduced from the others.
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Considering the second tensor product

‘ is a second tensor product on vector spaces and linear maps. It restricts

to a tensor on Isometry and to a small extension CPTP1 of CPTP.

There is a distributivity law pA‘ Bq b C – pAb C q ‘ pB b C q. ‘ is

responsible for entanglement — e.g. pId2 ‘ X q is the controlled-not

operator on one qubit —

CPTP1 is a completion of Isometry

In this setting with two tensors and a distributive law, CPTP1 is a lax

completion of Isometry, where the lax morphism

Mn`npCq ÑMnpCq ‘MnpCq gives measurement.
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Summary and conclusion: CPTP is canonical

CPTP is the universal monoidal category on Isometry whose unit

is a terminal object:

Pure
QT

Iso
metry

@

Fu
ll Q

TD!

CPTP

PureQM CPTP

@D
@F

E

D!F̂

• In the broader context of affine reflections

• Theorem for underlying PROPs Isometry2 Ñ CPTP2

• Theorems in the topological and the metric enriched cases

• Added the second tensor product ‘ to recover bits, measurement
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